1
|
Chen YY, Areti A, Yoshor D, Foster BL. Individual-specific memory reinstatement patterns within human face-selective cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.06.552130. [PMID: 37609262 PMCID: PMC10441346 DOI: 10.1101/2023.08.06.552130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Humans have the remarkable ability to vividly retrieve sensory details of past events. According to the theory of sensory reinstatement, during remembering, brain regions involved in the sensory processing of prior events are reactivated to support this perception of the past. Recently, several studies have emphasized potential transformations in the spatial organization of reinstated activity patterns. In particular, studies of scene stimuli suggest a clear anterior shift in the location of retrieval activations compared with those during perception. However, it is not clear that such transformations occur universally, with evidence lacking for other important stimulus categories, particularly faces. Critical to addressing these questions, and to studies of reinstatement more broadly, is the growing importance of considering meaningful variations in the organization of sensory systems across individuals. Therefore, we conducted a multi-session neuroimaging study to first carefully map individual participants face-selective regions within ventral temporal cortex (VTC), followed by a second session to examine the correspondence of activity patterns during face memory encoding and retrieval. Our results showed distinct configurations of face-selective regions within the VTC across individuals. While a significant degree of overlap was observed between face perception and memory encoding, memory retrieval engagement exhibited a more selective and constricted reinstatement pattern within these regions. Importantly, these activity patterns were consistently tied to individual-specific neural substrates, but did not show any consistent direction of spatial transformation (e.g., anteriorization). To provide further insight to these findings, we also report on unique human intracranial recordings from VTC under the same experimental conditions. Our findings highlight the importance of considering individual variations in functional neuroanatomy in the context of assessing the nature of cortical reinstatement. Consideration of such factors will be important for establishing general principles shaping the neural transformations that occur from perception to memory.
Collapse
Affiliation(s)
- Yvonne Y Chen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | | | - Daniel Yoshor
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Brett L Foster
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|
2
|
Taing AS, Mundy ME, Ponsford JL, Spitz G. Traumatic brain injury alters the relationship between brain structure and episodic memory. Brain Behav 2023; 13:e3012. [PMID: 37132290 PMCID: PMC10275516 DOI: 10.1002/brb3.3012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Focal and diffuse pathology resulting from traumatic brain injury (TBI) often disrupts brain circuitry that is critical for episodic memory, including medial temporal lobe and prefrontal regions. Prior studies have focused on unitary accounts of temporal lobe function, associating verbally learned material and brain morphology. Medial temporal lobe structures, however, are domain-sensitive, preferentially supporting different visual stimuli. There has been little consideration of whether TBI preferentially disrupts the type of visually learned material and its association with cortical morphology following injury. Here, we investigated whether (1) episodic memory deficits differ according to the stimulus type, and (2) the pattern in memory performance can be linked to changes in cortical thickness. METHODS Forty-three individuals with moderate-severe TBI and 38 demographically similar healthy controls completed a recognition task in which memory was assessed for three categories of stimuli: faces, scenes, and animals. The association between episodic memory accuracy on this task and cortical thickness was subsequently examined within and between groups. RESULTS Our behavioral results support the notion of category-specific impairments: the TBI group had significantly impaired accuracy for memory for faces and scenes, but not animals. Moreover, the association between cortical thickness and behavioral performance was only significant for faces between groups. CONCLUSION Taken together, these behavioral and structural findings provide support for an emergent memory account, and highlight that cortical thickness differentially affects episodic memory for specific categories of stimuli.
Collapse
Affiliation(s)
- Abbie S. Taing
- School of Psychological Sciences, Turner Institute for Brain and Mental HealthMonash UniversityClaytonVictoriaAustralia
- Monash Epworth Rehabilitation Research CentreRichmondVictoriaAustralia
| | - Matthew E. Mundy
- Faculty of Health and EducationTorrens UniversityMelbourneVictoriaAustralia
| | - Jennie L. Ponsford
- School of Psychological Sciences, Turner Institute for Brain and Mental HealthMonash UniversityClaytonVictoriaAustralia
- Monash Epworth Rehabilitation Research CentreRichmondVictoriaAustralia
| | - Gershon Spitz
- School of Psychological Sciences, Turner Institute for Brain and Mental HealthMonash UniversityClaytonVictoriaAustralia
- Monash Epworth Rehabilitation Research CentreRichmondVictoriaAustralia
| |
Collapse
|
3
|
Lee SM, Shin J, Lee I. Significance of visual scene-based learning in the hippocampal systems across mammalian species. Hippocampus 2022; 33:505-521. [PMID: 36458555 DOI: 10.1002/hipo.23483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/26/2022] [Accepted: 11/19/2022] [Indexed: 12/04/2022]
Abstract
The hippocampus and its associated cortical regions in the medial temporal lobe play essential roles when animals form a cognitive map and use it to achieve their goals. As the nature of map-making involves sampling different local views of the environment and putting them together in a spatially cohesive way, visual scenes are essential ingredients in the formative process of cognitive maps. Visual scenes also serve as important cues during information retrieval from the cognitive map. Research in humans has shown that there are regions in the brain that selectively process scenes and that the hippocampus is involved in scene-based memory tasks. The neurophysiological correlates of scene-based information processing in the hippocampus have been reported as "spatial view cells" in nonhuman primates. Like primates, it is widely accepted that rodents also use visual scenes in their background for spatial navigation and other kinds of problems. However, in rodents, it is not until recently that researchers examined the neural correlates of the hippocampus from the perspective of visual scene-based information processing. With the advent of virtual reality (VR) systems, it has been demonstrated that place cells in the hippocampus exhibit remarkably similar firing correlates in the VR environment compared with that of the real-world environment. Despite some limitations, the new trend of studying hippocampal functions in a visually controlled environment has the potential to allow investigation of the input-output relationships of network functions and experimental testing of traditional computational predictions more rigorously by providing well-defined visual stimuli. As scenes are essential for navigation and episodic memory in humans, further investigation of the rodents' hippocampal systems in scene-based tasks will provide a critical functional link across different mammalian species.
Collapse
Affiliation(s)
- Su-Min Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Jhoseph Shin
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Inah Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
4
|
Budson AE, Richman KA, Kensinger EA. Consciousness as a Memory System. Cogn Behav Neurol 2022; 35:263-297. [PMID: 36178498 PMCID: PMC9708083 DOI: 10.1097/wnn.0000000000000319] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/03/2022] [Indexed: 01/31/2023]
Abstract
We suggest that there is confusion between why consciousness developed and what additional functions, through continued evolution, it has co-opted. Consider episodic memory. If we believe that episodic memory evolved solely to accurately represent past events, it seems like a terrible system-prone to forgetting and false memories. However, if we believe that episodic memory developed to flexibly and creatively combine and rearrange memories of prior events in order to plan for the future, then it is quite a good system. We argue that consciousness originally developed as part of the episodic memory system-quite likely the part needed to accomplish that flexible recombining of information. We posit further that consciousness was subsequently co-opted to produce other functions that are not directly relevant to memory per se, such as problem-solving, abstract thinking, and language. We suggest that this theory is compatible with many phenomena, such as the slow speed and the after-the-fact order of consciousness, that cannot be explained well by other theories. We believe that our theory may have profound implications for understanding intentional action and consciousness in general. Moreover, we suggest that episodic memory and its associated memory systems of sensory, working, and semantic memory as a whole ought to be considered together as the conscious memory system in that they, together, give rise to the phenomenon of consciousness. Lastly, we suggest that the cerebral cortex is the part of the brain that makes consciousness possible, and that every cortical region contributes to this conscious memory system.
Collapse
Affiliation(s)
- Andrew E. Budson
- Center for Translational Cognitive Neuroscience, Veterans Affairs Boston Healthcare System, Boston, Massachusetts
- Alzheimer’s Disease Research Center, Boston University, Boston, Massachusetts
| | - Kenneth A. Richman
- Center for Health Humanities, Massachusetts College of Pharmacy and Health Sciences, Boston, Massachusetts
| | | |
Collapse
|
5
|
Multiple traces and altered signal-to-noise in systems consolidation: Evidence from the 7T fMRI Natural Scenes Dataset. Proc Natl Acad Sci U S A 2022; 119:e2123426119. [PMID: 36279446 PMCID: PMC9636924 DOI: 10.1073/pnas.2123426119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
How do the neural correlates of recognition change over time? We study natural scene image recognition spanning a year with 7-Tesla functional magnetic resonance imaging (fMRI) of the human brain. We find that the medial temporal lobe (MTL) contribution to recognition persists over 200 d, supporting multiple-trace theory and contradicting a trace transfer (from MTL to cortex) point of view. We then test the hypothesis that the signal-to-noise ratio of traces increases over time, presumably a consequence of synaptic “desaturation” in the weeks following learning. The fMRI trace signature associates with the rate of removal of competing traces and reflects a time-related enhancement of image-feature selectivity. We conclude that multiple MTL traces and improved signal-to-noise may underlie systems-level memory consolidation. The brain mechanisms of memory consolidation remain elusive. Here, we examine blood-oxygen-level-dependent (BOLD) correlates of image recognition through the scope of multiple influential systems consolidation theories. We utilize the longitudinal Natural Scenes Dataset, a 7-Tesla functional magnetic resonance imaging human study in which ∼135,000 trials of image recognition were conducted over the span of a year among eight subjects. We find that early- and late-stage image recognition associates with both medial temporal lobe (MTL) and visual cortex when evaluating regional activations and a multivariate classifier. Supporting multiple-trace theory (MTT), parts of the MTL activation time course show remarkable fit to a 20-y-old MTT time-dynamical model predicting early trace intensity increases and slight subsequent interference (R2 > 0.90). These findings contrast a simplistic, yet common, view that memory traces are transferred from MTL to cortex. Next, we test the hypothesis that the MTL trace signature of memory consolidation should also reflect synaptic “desaturation,” as evidenced by an increased signal-to-noise ratio. We find that the magnitude of relative BOLD enhancement among surviving memories is positively linked to the rate of removal (i.e., forgetting) of competing traces. Moreover, an image-feature and time interaction of MTL and visual cortex functional connectivity suggests that consolidation mechanisms improve the specificity of a distributed trace. These neurobiological effects do not replicate on a shorter timescale (within a session), implicating a prolonged, offline process. While recognition can potentially involve cognitive processes outside of memory retrieval (e.g., re-encoding), our work largely favors MTT and desaturation as perhaps complementary consolidative memory mechanisms.
Collapse
|
6
|
Schultz H, Sommer T, Peters J. Category-sensitive incidental reinstatement in medial temporal lobe subregions during word recognition. Learn Mem 2022; 29:126-135. [PMID: 35428729 PMCID: PMC9053111 DOI: 10.1101/lm.053553.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/29/2022] [Indexed: 11/25/2022]
Abstract
During associative retrieval, the brain reinstates neural representations that were present during encoding. The human medial temporal lobe (MTL), with its subregions hippocampus (HC), perirhinal cortex (PRC), and parahippocampal cortex (PHC), plays a central role in neural reinstatement. Previous studies have given compelling evidence for reinstatement in the MTL during explicitly instructed associative retrieval. High-confident recognition may be similarly accompanied by recollection of associated information from the encoding context. It is unclear, however, whether high-confident recognition memory elicits reinstatement in the MTL even in the absence of an explicit instruction to retrieve associated information. Here, we addressed this open question using high-resolution fMRI. Twenty-eight male and female human volunteers engaged in a recognition memory task for words that they had previously encoded together with faces and scenes. Using complementary univariate and multivariate approaches, we show that MTL subregions including the PRC, PHC, and HC differentially reinstate category-sensitive representations during high-confident word recognition, even though no explicit instruction to retrieve the associated category was given. This constitutes novel evidence that high-confident recognition memory is accompanied by incidental reinstatement of associated category information in MTL subregions, and supports a functional model of the MTL that emphasizes content-sensitive representations during both encoding and retrieval.
Collapse
Affiliation(s)
- Heidrun Schultz
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Tobias Sommer
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jan Peters
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,Department of Psychology, Biological Psychology, University of Cologne, 50969 Cologne, Germany
| |
Collapse
|
7
|
Marcinkowska AB, Mankowska ND, Kot J, Winklewski PJ. Impact of Hyperbaric Oxygen Therapy on Cognitive Functions: a Systematic Review. Neuropsychol Rev 2022; 32:99-126. [PMID: 33847854 PMCID: PMC8888529 DOI: 10.1007/s11065-021-09500-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 03/07/2021] [Indexed: 12/13/2022]
Abstract
Hyperbaric oxygen therapy (HBOT) is a modality of treatment in which patients inhale 100% oxygen inside a hyperbaric chamber pressurised to greater than 1 atmosphere. The aim of this review is to discuss neuropsychological findings in various neurological disorders treated with HBOT and to open new perspectives for therapeutic improvement. A literature search was conducted in the MEDLINE (via PubMed) database from the inception up 10 May 2020. Eligibility criteria included original articles published in English. Case studies were excluded. Full-text articles were obtained from the selected studies and were reviewed on the following inclusion criteria (1) performed cognitive processes assessment (2) performed HBOT with described protocol. Two neuropsychologists independently reviewed titles, abstracts, full texts and extracted data. The initial search retrieved 1024 articles, and a total of 42 studies were finally included after applying inclusion and exclusion criteria. The search yielded controversial results with regard to the efficiency of HBOT in various neurological conditions with cognitive disturbance outcome. To the best of our knowledge this is the first state-of-the art, systematic review in the field. More objective and precise neuropsychological assessment methods are needed to exact evaluation of the efficacy of HBOT for neuropsychological deficits. Future studies should widen the assessment of HBOT effects on different cognitive domains because most of the existing studies have focussed on a single process. Finally, there is a need for further longitudinal studies.
Collapse
Affiliation(s)
- Anna B Marcinkowska
- Applied Cognitive Neuroscience Lab, Department of Human Physiology, Medical University of Gdańsk, Tuwima Str. 15 80-210, Gdańsk, Poland.
- 2nd Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland.
| | - Natalia D Mankowska
- Applied Cognitive Neuroscience Lab, Department of Human Physiology, Medical University of Gdańsk, Tuwima Str. 15 80-210, Gdańsk, Poland
| | - Jacek Kot
- National Centre for Hyperbaric Medicine, Institute of Maritime and Tropical Medicine in Gdynia, Medical University of Gdansk, Gdańsk, Poland
| | - Pawel J Winklewski
- Applied Cognitive Neuroscience Lab, Department of Human Physiology, Medical University of Gdańsk, Tuwima Str. 15 80-210, Gdańsk, Poland
- 2nd Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
8
|
Taing AS, Mundy ME, Ponsford JL, Spitz G. Temporal lobe activation during episodic memory encoding following traumatic brain injury. Sci Rep 2021; 11:18830. [PMID: 34552133 PMCID: PMC8458357 DOI: 10.1038/s41598-021-97953-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 08/30/2021] [Indexed: 11/09/2022] Open
Abstract
The temporal lobes are critical for encoding and retrieving episodic memories. The temporal lobes are preferentially disrupted following a traumatic brain injury (TBI), likely contributing to the difficulties observed in episodic memory. However, the underlying neural changes that precipitate or maintain these difficulties in individuals with TBI remains poorly understood. Here, we use functional magnetic resonance imaging (fMRI) to interrogate the relationship between temporal lobe activation and encoding of episodic stimuli. Participants encoded face, scene, and animal stimuli during an fMRI run. In an out-of-scanner task, participants were required to correctly identify previously displayed stimuli over two presentation runs (each in-scanner stimuli presented twice). Forty-three patients with moderate-severe TBI were recruited and compared with 38 demographically similar healthy controls. The pattern of behavioural performance between groups depended on the stimuli presentation run. The TBI group demonstrated poorer episodic memory for faces and scenes during the first presentation, but not the second presentation. When episodic memory was analysed across all presentation runs, behavioural deficits were only apparent for faces. Interestingly, processing of faces emerged as the only between group-difference on fMRI, whereby TBI participants had an increased signal in the middle temporal gyrus extending to the superior temporal sulcus. These findings provide evidence to suggest that following TBI: (a) episodic memory is preferentially impaired for complex stimuli such as faces, and (b) robust behavioural inefficiencies are reflected in increased activation in specific temporal lobe structures during encoding.
Collapse
Affiliation(s)
- Abbie S Taing
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, 3800, Australia
- Monash Epworth Rehabilitation Research Centre, 185-187 Hoddle Street, Richmond, VIC, 3121, Australia
| | - Matthew E Mundy
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Jennie L Ponsford
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, 3800, Australia
- Monash Epworth Rehabilitation Research Centre, 185-187 Hoddle Street, Richmond, VIC, 3121, Australia
| | - Gershon Spitz
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, 3800, Australia.
- Monash Epworth Rehabilitation Research Centre, 185-187 Hoddle Street, Richmond, VIC, 3121, Australia.
| |
Collapse
|
9
|
Bourbon-Teles J, Jorge L, Canário N, Castelo-Branco M. Structural impairments in hippocampal and occipitotemporal networks specifically contribute to decline in place and face category processing but not to other visual object categories in healthy aging. Brain Behav 2021; 11:e02127. [PMID: 34184829 PMCID: PMC8413757 DOI: 10.1002/brb3.2127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 02/27/2021] [Accepted: 03/06/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Functional neuroimaging studies have identified a set of nodes in the occipital-temporal cortex that preferentially respond to faces in comparison with other visual objects. By contrast, the processing of places seems to rely on parahippocampal cortex and structures heavily implicated in memory (e.g., the hippocampus). It has been suggested that human aging leads to decreased neural specialization of core face and place processing areas and impairments in face and place perception. METHODS Using mediation analysis, we tested the potential contribution of micro- and macrostructure within the hippocampal and occipitotemporal systems to age-associated effects in face and place category processing (as measured by 1-back working memory tasks) in 55 healthy adults (age range 23-79 years). To test for specific contributions of the studied structures to face/place processing, we also studied a distinct tract (i.e., the anterior thalamic radiation [ATR]) and cognitive performance for other visual object categories (objects, bodies, and verbal material). Constrained spherical deconvolution-based tractography was used to reconstruct the fornix, the inferior longitudinal fasciculus (ILF), and the ATR. Hippocampal volumetric measures were segmented from FSL-FIRST toolbox. RESULTS It was found that age associates with (a) decreases in fractional anisotropy (FA) in the fornix, in right ILF (but not left ILF), and in the ATR (b) reduced volume in the right and left hippocampus and (c) decline in visual object category processing. Importantly, mediation analysis showed that micro- and macrostructural impairments in the fornix and right hippocampus, respectively, associated with age-dependent decline in place processing. Alternatively, microstructural impairments in right hemispheric ILF associated with age-dependent decline in face processing. There were no other mediator effects of micro- and macrostructural variables on age-cognition relationships. CONCLUSION Together, the findings support specific contributions of the fornix and right hippocampus in visuospatial scene processing and of the long-range right hemispheric occipitotemporal network in face category processing.
Collapse
Affiliation(s)
- José Bourbon-Teles
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Lília Jorge
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Nádia Canário
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
10
|
Fiorilli J, Bos JJ, Grande X, Lim J, Düzel E, Pennartz CMA. Reconciling the object and spatial processing views of the perirhinal cortex through task-relevant unitization. Hippocampus 2021; 31:737-755. [PMID: 33523577 PMCID: PMC8359385 DOI: 10.1002/hipo.23304] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/27/2020] [Accepted: 01/02/2021] [Indexed: 12/21/2022]
Abstract
The perirhinal cortex is situated on the border between sensory association cortex and the hippocampal formation. It serves an important function as a transition area between the sensory neocortex and the medial temporal lobe. While the perirhinal cortex has traditionally been associated with object coding and the "what" pathway of the temporal lobe, current evidence suggests a broader function of the perirhinal cortex in solving feature ambiguity and processing complex stimuli. Besides fulfilling functions in object coding, recent neurophysiological findings in freely moving rodents indicate that the perirhinal cortex also contributes to spatial and contextual processing beyond individual sensory modalities. Here, we address how these two opposing views on perirhinal cortex-the object-centered and spatial-contextual processing hypotheses-may be reconciled. The perirhinal cortex is consistently recruited when different features can be merged perceptually or conceptually into a single entity. Features that are unitized in these entities include object information from multiple sensory domains, reward associations, semantic features and spatial/contextual associations. We propose that the same perirhinal network circuits can be flexibly deployed for multiple cognitive functions, such that the perirhinal cortex performs similar unitization operations on different types of information, depending on behavioral demands and ranging from the object-related domain to spatial, contextual and semantic information.
Collapse
Affiliation(s)
- Julien Fiorilli
- Cognitive and Systems Neuroscience Group, SILS Center for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
- Research Priority Area Brain and CognitionUniversity of AmsterdamAmsterdamThe Netherlands
| | - Jeroen J. Bos
- Cognitive and Systems Neuroscience Group, SILS Center for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
- Research Priority Area Brain and CognitionUniversity of AmsterdamAmsterdamThe Netherlands
- Donders Institute for Brain, Cognition and BehaviorRadboud University and Radboud University Medical CentreNijmegenThe Netherlands
| | - Xenia Grande
- Institute of Cognitive Neurology and Dementia ResearchOtto‐von‐Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative DiseasesMagdeburgGermany
| | - Judith Lim
- Cognitive and Systems Neuroscience Group, SILS Center for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
- Research Priority Area Brain and CognitionUniversity of AmsterdamAmsterdamThe Netherlands
| | - Emrah Düzel
- Institute of Cognitive Neurology and Dementia ResearchOtto‐von‐Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative DiseasesMagdeburgGermany
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
| | - Cyriel M. A. Pennartz
- Cognitive and Systems Neuroscience Group, SILS Center for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
- Research Priority Area Brain and CognitionUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
11
|
Herrmann B, Araz K, Johnsrude IS. Sustained neural activity correlates with rapid perceptual learning of auditory patterns. Neuroimage 2021; 238:118238. [PMID: 34098064 DOI: 10.1016/j.neuroimage.2021.118238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 11/27/2022] Open
Abstract
Repeating structures forming regular patterns are common in sounds. Learning such patterns may enable accurate perceptual organization. In five experiments, we investigated the behavioral and neural signatures of rapid perceptual learning of regular sound patterns. We show that recurring (compared to novel) patterns are detected more quickly and increase sensitivity to pattern deviations and to the temporal order of pattern onset relative to a visual stimulus. Sustained neural activity reflected perceptual learning in two ways. Firstly, sustained activity increased earlier for recurring than novel patterns when participants attended to sounds, but not when they ignored them; this earlier increase mirrored the rapid perceptual learning we observed behaviorally. Secondly, the magnitude of sustained activity was generally lower for recurring than novel patterns, but only for trials later in the experiment, and independent of whether participants attended to or ignored sounds. The late manifestation of sustained activity reduction suggests that it is not directly related to rapid perceptual learning, but to a mechanism that does not require attention to sound. In sum, we demonstrate that the latency of sustained activity reflects rapid perceptual learning of auditory patterns, while the magnitude may reflect a result of learning, such as better prediction of learned auditory patterns.
Collapse
Affiliation(s)
- Björn Herrmann
- Rotman Research Institute, Baycrest, M6A 2E1, North York, ON, Canada; Department of Psychology, University of Toronto, M5S 1A1, Toronto, ON, Canada; Department of Psychology, University of Western Ontario, N6A 3K7, London, ON, Canada.
| | - Kurdo Araz
- Department of Psychology, University of Western Ontario, N6A 3K7, London, ON, Canada
| | - Ingrid S Johnsrude
- Department of Psychology, University of Western Ontario, N6A 3K7, London, ON, Canada; School of Communication Sciences & Disorders, University of Western Ontario, N6A 5B7 London, ON, Canada
| |
Collapse
|
12
|
Semantic Knowledge of Famous People and Places Is Represented in Hippocampus and Distinct Cortical Networks. J Neurosci 2021; 41:2762-2779. [PMID: 33547163 DOI: 10.1523/jneurosci.2034-19.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/14/2021] [Accepted: 01/26/2021] [Indexed: 11/21/2022] Open
Abstract
Studies have found that anterior temporal lobe (ATL) is critical for detailed knowledge of object categories, suggesting that it has an important role in semantic memory. However, in addition to information about entities, such as people and objects, semantic memory also encompasses information about places. We tested predictions stemming from the PMAT model, which proposes there are distinct systems that support different kinds of semantic knowledge: an anterior temporal (AT) network, which represents information about entities; and a posterior medial (PM) network, which represents information about places. We used representational similarity analysis to test for activation of semantic features when human participants viewed pictures of famous people and places, while controlling for visual similarity. We used machine learning techniques to quantify the semantic similarity of items based on encyclopedic knowledge in the Wikipedia page for each item and found that these similarity models accurately predict human similarity judgments. We found that regions within the AT network, including ATL and inferior frontal gyrus, represented detailed semantic knowledge of people. In contrast, semantic knowledge of places was represented within PM network areas, including precuneus, posterior cingulate cortex, angular gyrus, and parahippocampal cortex. Finally, we found that hippocampus, which has been proposed to serve as an interface between the AT and PM networks, represented fine-grained semantic similarity for both individual people and places. Our results provide evidence that semantic knowledge of people and places is represented separately in AT and PM areas, whereas hippocampus represents semantic knowledge of both categories.SIGNIFICANCE STATEMENT Humans acquire detailed semantic knowledge about people (e.g., their occupation and personality) and places (e.g., their cultural or historical significance). While research has demonstrated that brain regions preferentially respond to pictures of people and places, less is known about whether these regions preferentially represent semantic knowledge about specific people and places. We used machine learning techniques to develop a model of semantic similarity based on information available from Wikipedia, validating the model against similarity ratings from human participants. Using our computational model, we found that semantic knowledge about people and places is represented in distinct anterior temporal and posterior medial brain networks, respectively. We further found that hippocampus, an important memory center, represented semantic knowledge for both types of stimuli.
Collapse
|
13
|
Seok JW, Cheong C. Functional dissociation of hippocampal subregions corresponding to memory types and stages. J Physiol Anthropol 2020; 39:15. [PMID: 32616078 PMCID: PMC7331241 DOI: 10.1186/s40101-020-00225-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 06/11/2020] [Indexed: 12/04/2022] Open
Abstract
Background The hippocampus reportedly plays a crucial role in memory. However, examining individual human hippocampal-subfield function remains challenging because of their small sizes and convoluted structures. Here, we identified hippocampal subregions involved in memory types (implicit and explicit memory) and stages (encoding and retrieval). Methods We modified the serial reaction time task to examine four memory types, i.e. implicit encoding, explicit encoding, implicit retrieval, and explicit retrieval. During this task, 7-T functional magnetic resonance imaging was used to compare brain activity evoked by these memory types. Results We found hippocampal activation according to all memory types and stages and identified that the hippocampus subserves both implicit and explicit memory processing. Moreover, we confirmed that cornu ammonis (CA) regions 1–3 were implicated in both memory encoding and retrieval, whereas the subiculum was implicated only in memory retrieval. We also found that CA 1–3 was activated more for explicit than implicit memory. Conclusions These results elucidate human hippocampal-subfield functioning underlying memory and may support future investigations into hippocampal-subfield functioning in health and neurodegenerative disease.
Collapse
Affiliation(s)
- Ji-Woo Seok
- Department of Psychiatry, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Rehabilitation Counseling Psychology, Seoul Hanyoung University, Seoul, Republic of Korea
| | - Chaejoon Cheong
- Center for Research Equipment, Korea Basic Science Institute, 162 Yeongudanji-ro, Ochang, Cheongju, 28119, Chungbook, Republic of Korea.
| |
Collapse
|
14
|
Abstract
People often recognize and remember faces of individuals within their own race more easily than those of other races. While behavioral research has long suggested that the Other-Race Effect (ORE) is due to extensive experience with one’s own race group, the neural mechanisms underlying the effect have remained elusive. Predominant theories of the ORE have argued that the effect is mainly caused by processing disparities between same and other-race faces during early stages of perceptual encoding. Our findings support an alternative view that the ORE is additionally shaped by mnemonic processing mechanisms beyond perception and attention. Using a “pattern separation” paradigm based on computational models of episodic memory, we report evidence that the ORE may be driven by differences in successful memory discrimination across races as a function of degree of interference or overlap between face stimuli. In contrast, there were no ORE-related differences on a comparable match-to-sample task with no long-term memory load, suggesting that the effect is not simply attributable to visual and attentional processes. These findings suggest that the ORE may emerge in part due to “tuned” memory mechanisms that may enhance same-race, at the expense of other-race face detection.
Collapse
|
15
|
McDonald MW, Black SE, Copland DA, Corbett D, Dijkhuizen RM, Farr TD, Jeffers MS, Kalaria RN, Karayanidis F, Leff AP, Nithianantharajah J, Pendlebury S, Quinn TJ, Clarkson AN, O'Sullivan MJ. Cognition in Stroke Rehabilitation and Recovery Research: Consensus-Based Core Recommendations From the Second Stroke Recovery and Rehabilitation Roundtable. Neurorehabil Neural Repair 2019; 33:943-950. [PMID: 31660787 DOI: 10.1177/1545968319886444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cognitive impairment is an important target for rehabilitation as it is common following stroke, is associated with reduced quality of life and interferes with motor and other types of recovery interventions. Cognitive function following stroke was identified as an important, but relatively neglected area during the first Stroke Recovery and Rehabilitation Roundtable (SRRR I), leading to a Cognition Working Group being convened as part of SRRR II. There is currently insufficient evidence to build consensus on specific approaches to cognitive rehabilitation. However, we present recommendations on the integration of cognitive assessments into stroke recovery studies generally and define priorities for ongoing and future research for stroke recovery and rehabilitation. A number of promising interventions are ready to be taken forward to trials to tackle the gap in evidence for cognitive rehabilitation. However, to accelerate progress requires that we coordinate efforts to tackle multiple gaps along the whole translational pathway.
Collapse
Affiliation(s)
- Matthew W McDonald
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada.,Canadian Partnership for Stroke Recovery, Ottawa, Canada
| | - Sandra E Black
- Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada.,Canadian Partnership for Stroke Recovery, Ottawa, Canada
| | - David A Copland
- University of Queensland Centre for Clinical Research, School of Health & Rehabilitation Sciences, University of Queensland, Brisbane, Australia
| | - Dale Corbett
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada.,Canadian Partnership for Stroke Recovery, Ottawa, Canada
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Tracy D Farr
- School of Life Science, University of Nottingham, Nottingham, UK
| | - Matthew S Jeffers
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada.,Canadian Partnership for Stroke Recovery, Ottawa, Canada
| | - Rajesh N Kalaria
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Frini Karayanidis
- Priority Research Centre for Stroke & Brain Injury, The University of Newcastle, Callaghan, Australia
| | - Alexander P Leff
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, UK
| | - Jess Nithianantharajah
- Florey Institute of Neuroscience and Mental Health, Florey Department of Neuroscience, University of Melbourne, Parkville, Australia
| | - Sarah Pendlebury
- Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Terence J Quinn
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Andrew N Clarkson
- The Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Michael J O'Sullivan
- University of Queensland Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
16
|
Ross DA, Sadil P, Wilson DM, Cowell RA. Hippocampal Engagement during Recall Depends on Memory Content. Cereb Cortex 2019; 28:2685-2698. [PMID: 28666344 DOI: 10.1093/cercor/bhx147] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Indexed: 01/22/2023] Open
Abstract
The hippocampus is considered pivotal to recall, allowing retrieval of information not available in the immediate environment. In contrast, neocortex is thought to signal familiarity, contributing to recall only when called upon by the hippocampus. However, this view is not compatible with representational accounts of memory, which reject the mapping of cognitive processes onto brain regions. According to representational accounts, the hippocampus is not engaged by recall per se, rather it is engaged whenever hippocampal representations are required. To test whether hippocampus is engaged by recall when hippocampal representations are not required, we used functional imaging and a non-associative recall task, with images (objects, scenes) studied in isolation, and image patches as cues. As predicted by a representational account, hippocampal activation was modulated by the content of the recalled memory, increasing during recall of scenes-which are known to be processed by hippocampus-but not during recall of objects. Object recall instead engaged neocortical regions known to be involved in object-processing. Further supporting the representational account, effective connectivity analyses revealed that changes in functional activation during recall were driven by increased information flow from neocortical sites, rather than by the spreading of recall-related activation from hippocampus back to neocortex.
Collapse
Affiliation(s)
- David A Ross
- Department of Psychology, University of Massachusetts, Amherst, MA, USA
| | - Patrick Sadil
- Department of Psychology, University of Massachusetts, Amherst, MA, USA
| | - D Merika Wilson
- Department of Psychology, University of Massachusetts, Amherst, MA, USA
| | - Rosemary A Cowell
- Department of Psychology, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
17
|
McDonald MW, Black SE, Copland DA, Corbett D, Dijkhuizen RM, Farr TD, Jeffers MS, Kalaria RN, Karayanidis F, Leff AP, Nithianantharajah J, Pendlebury S, Quinn TJ, Clarkson AN, O’Sullivan MJ. Cognition in stroke rehabilitation and recovery research: Consensus-based core recommendations from the second Stroke Recovery and Rehabilitation Roundtable. Int J Stroke 2019; 14:774-782. [DOI: 10.1177/1747493019873600] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cognitive impairment is an important target for rehabilitation as it is common following stroke, is associated with reduced quality of life and interferes with motor and other types of recovery interventions. Cognitive function following stroke was identified as an important, but relatively neglected area during the first Stroke Recovery and Rehabilitation Roundtable (SRRR I), leading to a Cognition Working Group being convened as part of SRRR II. There is currently insufficient evidence to build consensus on specific approaches to cognitive rehabilitation. However, we present recommendations on the integration of cognitive assessments into stroke recovery studies generally and define priorities for ongoing and future research for stroke recovery and rehabilitation. A number of promising interventions are ready to be taken forward to trials to tackle the gap in evidence for cognitive rehabilitation. However, to accelerate progress requires that we coordinate efforts to tackle multiple gaps along the whole translational pathway.
Collapse
Affiliation(s)
- Matthew W McDonald
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- Canadian Partnership for Stroke Recovery, Ottawa, Canada
| | - Sandra E Black
- Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
- Canadian Partnership for Stroke Recovery, Ottawa, Canada
| | - David A Copland
- University of Queensland Centre for Clinical Research, School of Health & Rehabilitation Sciences, University of Queensland, Brisbane, Australia
| | - Dale Corbett
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- Canadian Partnership for Stroke Recovery, Ottawa, Canada
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Tracy D Farr
- School of Life Science, University of Nottingham, Nottingham, UK
| | - Matthew S Jeffers
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- Canadian Partnership for Stroke Recovery, Ottawa, Canada
| | - Rajesh N Kalaria
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Frini Karayanidis
- Priority Research Centre for Stroke & Brain Injury, The University of Newcastle, Callaghan, Australia
| | - Alexander P Leff
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, UK
| | - Jess Nithianantharajah
- 0Florey Institute of Neuroscience and Mental Health, Florey Department of Neuroscience, University of Melbourne, Parkville, Australia
| | - Sarah Pendlebury
- 1Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Terence J Quinn
- 2Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Andrew N Clarkson
- 3The Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Michael J O’Sullivan
- 4University of Queensland Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW This article summarizes the clinical and anatomic features of the three named variants of primary progressive aphasia (PPA): semantic variant PPA, nonfluent/agrammatic variant PPA, and logopenic variant PPA. Three stroke aphasia syndromes that resemble the PPA variants (Broca aphasia, Wernicke aphasia, and conduction aphasia) are also presented. RECENT FINDINGS Semantic variant PPA and Wernicke aphasia are characterized by fluent speech with naming and comprehension difficulty; these syndromes are associated with disease in different portions of the left temporal lobe. Patients with nonfluent/agrammatic variant PPA or Broca aphasia have nonfluent speech with grammatical difficulty; these syndromes are associated with disease centered in the left inferior frontal lobe. Patients with logopenic variant PPA or conduction aphasia have difficulty with repetition and word finding in conversational speech; these syndromes are associated with disease in the left inferior parietal lobe. While PPA and stroke aphasias resemble one another, this article also presents their distinguishing features. SUMMARY Primary progressive and stroke aphasia syndromes interrupt the left perisylvian language network, resulting in identifiable aphasic syndromes.
Collapse
|
19
|
Robin J, Rai Y, Valli M, Olsen RK. Category specificity in the medial temporal lobe: A systematic review. Hippocampus 2018; 29:313-339. [PMID: 30155943 DOI: 10.1002/hipo.23024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 01/30/2023]
Abstract
Theoretical accounts of medial temporal lobe (MTL) function ascribe different functions to subregions of the MTL including perirhinal, entorhinal, parahippocampal cortices, and the hippocampus. Some have suggested that the functional roles of these subregions vary in terms of their category specificity, showing preferential coding for certain stimulus types, but the evidence for this functional organization is mixed. In this systematic review, we evaluate existing evidence for regional specialization in the MTL for three categories of visual stimuli: faces, objects, and scenes. We review and synthesize across univariate and multivariate neuroimaging studies, as well as neuropsychological studies of cases with lesions to the MTL. Neuroimaging evidence suggests that faces activate the perirhinal cortex, entorhinal cortex, and the anterior hippocampus, while scenes engage the parahippocampal cortex and both the anterior and posterior hippocampus, depending on the contrast condition. There is some evidence for object-related activity in anterior MTL regions when compared to scenes, and in posterior MTL regions when compared to faces, suggesting that aspects of object representations may share similarities with face and scene representations. While neuroimaging evidence suggests some hippocampal specialization for faces and scenes, neuropsychological evidence shows that hippocampal damage leads to impairments in scene memory and perception, but does not entail equivalent impairments for faces in cases where the perirhinal cortex remains intact. Regional specialization based on stimulus categories has implications for understanding the mechanisms of MTL subregions, and highlights the need for the development of theoretical models of MTL function that can accommodate the differential patterns of specificity observed in the MTL.
Collapse
Affiliation(s)
- Jessica Robin
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
| | - Yeshith Rai
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
| | - Mikaeel Valli
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Rosanna K Olsen
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Lin YT, Hsu KS. Oxytocin receptor signaling in the hippocampus: Role in regulating neuronal excitability, network oscillatory activity, synaptic plasticity and social memory. Prog Neurobiol 2018; 171:1-14. [DOI: 10.1016/j.pneurobio.2018.10.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/28/2018] [Accepted: 10/20/2018] [Indexed: 12/23/2022]
|
21
|
Roberts BM, Libby LA, Inhoff MC, Ranganath C. Brain activity related to working memory for temporal order and object information. Behav Brain Res 2018; 354:55-63. [DOI: 10.1016/j.bbr.2017.05.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/31/2017] [Indexed: 11/28/2022]
|
22
|
Weston CSE. Amygdala Represents Diverse Forms of Intangible Knowledge, That Illuminate Social Processing and Major Clinical Disorders. Front Hum Neurosci 2018; 12:336. [PMID: 30186129 PMCID: PMC6113401 DOI: 10.3389/fnhum.2018.00336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/02/2018] [Indexed: 01/21/2023] Open
Abstract
Amygdala is an intensively researched brain structure involved in social processing and multiple major clinical disorders, but its functions are not well understood. The functions of a brain structure are best hypothesized on the basis of neuroanatomical connectivity findings, and of behavioral, neuroimaging, neuropsychological and physiological findings. Among the heaviest neuroanatomical interconnections of amygdala are those with perirhinal cortex (PRC), but these are little considered in the theoretical literature. PRC integrates complex, multimodal, meaningful and fine-grained distributed representations of objects and conspecifics. Consistent with this connectivity, amygdala is hypothesized to contribute meaningful and fine-grained representations of intangible knowledge for integration by PRC. Behavioral, neuroimaging, neuropsychological and physiological findings further support amygdala mediation of a diversity of such representations. These representations include subjective valence, impact, economic value, noxiousness, importance, ingroup membership, social status, popularity, trustworthiness and moral features. Further, the formation of amygdala representations is little understood, and is proposed to be often implemented through embodied cognition mechanisms. The hypothesis builds on earlier work, and makes multiple novel contributions to the literature. It highlights intangible knowledge, which is an influential but insufficiently researched factor in social and other behaviors. It contributes to understanding the heavy but neglected amygdala-PRC interconnections, and the diversity of amygdala-mediated intangible knowledge representations. Amygdala is a social brain region, but it does not represent species-typical social behaviors. A novel proposal to clarify its role is postulated. The hypothesis is also suggested to illuminate amygdala's involvement in several core symptoms of autism spectrum disorder (ASD). Specifically, novel and testable explanations are proposed for the ASD symptoms of disorganized visual scanpaths, apparent social disinterest, preference for concrete cognition, aspects of the disorder's heterogeneity, and impairment in some activities of daily living. Together, the presented hypothesis demonstrates substantial explanatory potential in the neuroscience, social and clinical domains.
Collapse
|
23
|
Reagh ZM, Ranganath C. What does the functional organization of cortico-hippocampal networks tell us about the functional organization of memory? Neurosci Lett 2018; 680:69-76. [PMID: 29704572 PMCID: PMC6467646 DOI: 10.1016/j.neulet.2018.04.050] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 12/12/2022]
Abstract
Historically, research on the cognitive processes that support human memory proceeded, to a large extent, independently of research on the neural basis of memory. Accumulating evidence from neuroimaging, however, has enabled the field to develop a broader and more integrative perspective. Here, we briefly outline how advances in cognitive neuroscience can potentially shed light on concepts and controversies in human memory research. We argue that research on the functional properties of cortico-hippocampal networks informs us about how memories might be organized in the brain, which, in turn, helps to reconcile seemingly disparate perspectives in cognitive psychology. Finally, we discuss several open questions and directions for future research.
Collapse
Affiliation(s)
- Zachariah M Reagh
- Center for Neuroscience, United States; Department of Neurology, University of California, Davis, United States.
| | - Charan Ranganath
- Center for Neuroscience, United States; Memory and Plasticity (MAP) Program, United States; Department of Psychology, University of California, Davis, United States.
| |
Collapse
|
24
|
Okuyama T. Social memory engram in the hippocampus. Neurosci Res 2018; 129:17-23. [DOI: 10.1016/j.neures.2017.05.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/21/2017] [Accepted: 05/25/2017] [Indexed: 01/10/2023]
|
25
|
Hodgetts CJ, Shine JP, Lawrence AD, Downing PE, Graham KS. Evidencing a place for the hippocampus within the core scene processing network. Hum Brain Mapp 2018; 37:3779-3794. [PMID: 27257784 PMCID: PMC5082524 DOI: 10.1002/hbm.23275] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 04/18/2016] [Accepted: 05/17/2016] [Indexed: 01/09/2023] Open
Abstract
Functional neuroimaging studies have identified several “core” brain regions that are preferentially activated by scene stimuli, namely posterior parahippocampal gyrus (PHG), retrosplenial cortex (RSC), and transverse occipital sulcus (TOS). The hippocampus (HC), too, is thought to play a key role in scene processing, although no study has yet investigated scene‐sensitivity in the HC relative to these other “core” regions. Here, we characterised the frequency and consistency of individual scene‐preferential responses within these regions by analysing a large dataset (n = 51) in which participants performed a one‐back working memory task for scenes, objects, and scrambled objects. An unbiased approach was adopted by applying independently‐defined anatomical ROIs to individual‐level functional data across different voxel‐wise thresholds and spatial filters. It was found that the majority of subjects had preferential scene clusters in PHG (max = 100% of participants), RSC (max = 76%), and TOS (max = 94%). A comparable number of individuals also possessed significant scene‐related clusters within their individually defined HC ROIs (max = 88%), evidencing a HC contribution to scene processing. While probabilistic overlap maps of individual clusters showed that overlap “peaks” were close to those identified in group‐level analyses (particularly for TOS and HC), inter‐individual consistency varied across regions and statistical thresholds. The inter‐regional and inter‐individual variability revealed by these analyses has implications for how scene‐sensitive cortex is localised and interrogated in functional neuroimaging studies, particularly in medial temporal lobe regions, such as the HC. Hum Brain Mapp 37:3779–3794, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- C J Hodgetts
- Wales Institute of Cognitive Neuroscience, School of Psychology, Cardiff University, Cardiff, United Kingdom. .,Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom.
| | - J P Shine
- Wales Institute of Cognitive Neuroscience, School of Psychology, Cardiff University, Cardiff, United Kingdom.,Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - A D Lawrence
- Wales Institute of Cognitive Neuroscience, School of Psychology, Cardiff University, Cardiff, United Kingdom.,Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - P E Downing
- Wales Institute of Cognitive Neuroscience, School of Psychology, Bangor University, Bangor, United Kingdom
| | - K S Graham
- Wales Institute of Cognitive Neuroscience, School of Psychology, Cardiff University, Cardiff, United Kingdom.,Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
26
|
Abstract
Primary progressive aphasia (PPA) refers to a disorder of declining language associated with neurodegenerative diseases such as frontotemporal degeneration and Alzheimer disease. Variants of PPA are important to recognize from a medical perspective because these syndromes are clinical markers suggesting specific underlying pathology. In this review, I discuss linguistic aspects of PPA syndromes that may prove informative for parsing our language mechanism and identifying the neural representation of fundamental elements of language. I focus on the representation of word meaning in a discussion of semantic variant PPA, grammatical comprehension and expression in a discussion of nonfluent/agrammatic variant PPA, the supporting role of short-term memory in a discussion of logopenic variant PPA, and components of language associated with discourse in a discussion of behavioral variant frontotemporal dementia. PPA provides a novel perspective that uniquely addresses facets of language and its disorders while complementing traditional aphasia syndromes that follow stroke.
Collapse
Affiliation(s)
- Murray Grossman
- Penn Frontotemporal Degeneration Center and Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
27
|
Ahlgrim NS, Raper J, Johnson E, Bachevalier J. Neonatal perirhinal cortex lesions impair monkeys' ability to modulate their emotional responses. Behav Neurosci 2017; 131:359-71. [PMID: 28956946 PMCID: PMC5675115 DOI: 10.1037/bne0000208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The medial temporal lobe (MTL) is a collection of brain regions best known for their role in perception, memory, and emotional behavior. Within the MTL, the perirhinal cortex (PRh) plays a critical role in perceptual representation and recognition memory, although its contribution to emotional regulation is still debated. Here, rhesus monkeys with neonatal perirhinal lesions (Neo-PRh) and controls (Neo-C) were tested on the Human Intruder (HI) task at 2 months, 4.5 months, and 5 years of age to assess the role of the PRh in the development of emotional behaviors. The HI task presents a tiered social threat to which typically developing animals modulate their emotional responses according to the level of threat. Unlike animals with neonatal amygdala or hippocampal lesions, Neo-PRh animals were not broadly hyper- or hyporesponsive to the threat presented by the HI task as compared with controls. Instead, Neo-PRh animals displayed an impaired ability to modulate their freezing and anxiety-like behavioral responses according to the varying levels of threat. Impaired transmission of perceptual representation generated by the PRh to the amygdala and hippocampus may explain the animals' inability to appropriately assess and react to complex social stimuli. Neo-PRh animals also displayed fewer hostile behaviors in infancy and more coo vocalizations in adulthood. Neither stress-reactive nor basal cortisol levels were affected by the Neo-PRh lesions. Overall, these results suggest that the PRh is indirectly involved in the expression of emotional behavior and that effects of Neo-PRh lesions are dissociable from neonatal lesions to other temporal lobe structures. (PsycINFO Database Record
Collapse
Affiliation(s)
- Nathan S. Ahlgrim
- Graduate Program in Neuroscience, Emory University, Atlanta GA
- Department of Psychology, Emory University, Atlanta GA
| | - Jessica Raper
- Department of Psychology, Emory University, Atlanta GA
- Yerkes National Primate Research Center, Emory University, Atlanta GA
| | - Emily Johnson
- Department of Psychology, Emory University, Atlanta GA
- Yerkes National Primate Research Center, Emory University, Atlanta GA
| | - Jocelyne Bachevalier
- Department of Psychology, Emory University, Atlanta GA
- Yerkes National Primate Research Center, Emory University, Atlanta GA
| |
Collapse
|
28
|
Murray EA, Wise SP, Graham KS. Representational specializations of the hippocampus in phylogenetic perspective. Neurosci Lett 2017; 680:4-12. [PMID: 28473258 PMCID: PMC5665731 DOI: 10.1016/j.neulet.2017.04.065] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 11/28/2022]
Abstract
In a major evolutionary transition that occurred more than 520 million years ago, the earliest vertebrates adapted to a life of mobile, predatory foraging guided by distance receptors concentrated on their heads. Vision and olfaction served as the principal sensory systems for guiding their search for nutrients and safe haven. Among their neural innovations, these animals had a telencephalon that included a homologue of the hippocampus. Experiments on goldfish, turtles, lizards, rodents, macaque monkeys and humans have provided insight into the initial adaptive advantages provided by the hippocampus homologue. These findings indicate that it housed specialized map-like representations of odors and sights encountered at various locations in an animal's home range, including the order and timing in which they should be encountered during a journey. Once these representations emerged in early vertebrates, they also enabled a variety of behaviors beyond navigation. In modern rodents and primates, for example, the specialized representations of the hippocampus enable the learning and performance of tasks involving serial order, timing, recency, relations, sequences of events and behavioral contexts. During primate evolution, certain aspects of these representations gained particular prominence, in part due to the advent of foveal vision in haplorhines. As anthropoid primates-the ancestors of monkeys, apes and humans-changed from small animals that foraged locally into large ones with an extensive home range, they made foraging choices at a distance based on visual scenes. Experimental evidence shows that the hippocampus of monkeys specializes in memories that reflect the representation of such scenes, rather than spatial processing in a general sense. Furthermore, and contrary to the idea that the hippocampus functions in memory to the exclusion of perception, brain imaging studies and lesion effects in humans show that its specialized representations support both the perception and memory of scenes and sequences.
Collapse
Affiliation(s)
- Elisabeth A Murray
- Laboratory of Neuropsychology, NIMH, Building 49, Suite 1B80, 49 Convent Drive, Bethesda, MD 20892-4415, USA.
| | - Steven P Wise
- Olschefskie Institute for the Neurobiology of Knowledge, Potomac, MD 20854, USA
| | - Kim S Graham
- Cognitive Neuroscience, School of Psychology, Cardiff University, CUBRIC Building, Maindy Road, Cardiff, CF24 4HQ, UK
| |
Collapse
|
29
|
Ultra-High-Field fMRI Reveals a Role for the Subiculum in Scene Perceptual Discrimination. J Neurosci 2017; 37:3150-3159. [PMID: 28213445 PMCID: PMC5373110 DOI: 10.1523/jneurosci.3225-16.2017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/13/2017] [Accepted: 01/19/2017] [Indexed: 02/06/2023] Open
Abstract
Recent "representational" accounts suggest a key role for the hippocampus in complex scene perception. Due to limitations in scanner field strength, however, the functional neuroanatomy of hippocampal-dependent scene perception is unknown. Here, we applied 7 T high-resolution functional magnetic resonance imaging (fMRI) alongside a perceptual oddity task, modified from nonhuman primate studies. This task requires subjects to discriminate highly similar scenes, faces, or objects from multiple viewpoints, and has revealed selective impairments during scene discrimination following hippocampal lesions. Region-of-interest analyses identified a preferential response in the subiculum subfield of the hippocampus during scene, but not face or object, discriminations. Notably, this effect was in the anteromedial subiculum and was not modulated by whether scenes were subsequently remembered or forgotten. These results highlight the value of ultra-high-field fMRI in generating more refined, anatomically informed, functional accounts of hippocampal contributions to cognition, and a unique role for the human subiculum in discrimination of complex scenes from different viewpoints.SIGNIFICANCE STATEMENT There is increasing evidence that the human hippocampus supports functions beyond just episodic memory, with human lesion studies suggesting a contribution to the perceptual processing of navigationally relevant, complex scenes. While the hippocampus itself contains several small, functionally distinct subfields, examining the role of these in scene processing has been previously limited by scanner field strength. By applying ultra-high-resolution 7 T fMRI, we delineated the functional contribution of individual hippocampal subfields during a perceptual discrimination task for scenes, faces, and objects. This demonstrated that the discrimination of scenes, relative to faces and objects, recruits the anterior subicular region of the hippocampus, regardless of whether scenes were subsequently remembered or forgotten.
Collapse
|
30
|
Kafkas A, Migo EM, Morris RG, Kopelman MD, Montaldi D, Mayes AR. Material Specificity Drives Medial Temporal Lobe Familiarity But Not Hippocampal Recollection. Hippocampus 2016; 27:194-209. [PMID: 27859925 PMCID: PMC5299537 DOI: 10.1002/hipo.22683] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2016] [Indexed: 12/04/2022]
Abstract
The specific role of the perirhinal (PRC), entorhinal (ERC) and parahippocampal cortices (PHC) in supporting familiarity‐based recognition remains unknown. An fMRI study explored whether these medial temporal lobe (MTL) structures responded in the same way or differentially to familiarity as a function of stimulus type at recognition. A secondary aim was to explore whether the hippocampus responds in the same way to equally strong familiarity and recollection and whether this is influenced by the kind of stimulus involved. Univariate and multivariate analyses revealed that familiarity responses in the PRC, ERC, PHC and the amygdala are material‐specific. Specifically, the PRC and ERC selectively responded to object familiarity, while the PHC responded to both object and scene familiarity. The amygdala only responded to familiarity memory for faces. The hippocampus did not respond to stimulus familiarity for any of the three types of stimuli, but it did respond to recollection for all three types of stimuli. This was true even when recollection was contrasted to equally accurate familiarity. Overall, the findings suggest that the role of the MTL neocortices and the amygdala in familiarity‐based recognition depends on the kind of stimulus in memory, whereas the role of the hippocampus in recollection is independent of the type of cuing stimulus. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alex Kafkas
- Memory Research Unit, School of Biological Sciences, Division of Neuroscience & Experimental Psychology, University of Manchester, United Kingdom
| | - Ellen M Migo
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Robin G Morris
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Michael D Kopelman
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Daniela Montaldi
- Memory Research Unit, School of Biological Sciences, Division of Neuroscience & Experimental Psychology, University of Manchester, United Kingdom
| | - Andrew R Mayes
- Memory Research Unit, School of Biological Sciences, Division of Neuroscience & Experimental Psychology, University of Manchester, United Kingdom
| |
Collapse
|
31
|
Behrmann M, Lee A, Geskin J, Graham K, Barense M. Temporal lobe contribution to perceptual function: A tale of three patient groups. Neuropsychologia 2016; 90:33-45. [DOI: 10.1016/j.neuropsychologia.2016.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/08/2016] [Accepted: 05/02/2016] [Indexed: 11/29/2022]
|
32
|
Duncum AJF, Atkins KJ, Beilharz FL, Mundy ME. Abnormalities in the Visual Processing of Viewing Complex Visual Stimuli Amongst Individuals With Body Image Concern. Adv Cogn Psychol 2016; 12:39-49. [PMID: 27152128 PMCID: PMC4857210 DOI: 10.5709/acp-0185-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 02/18/2016] [Indexed: 12/03/2022] Open
Abstract
Individuals with body dysmorphic disorder (BDD) and clinically concerning
body-image concern (BIC) appear to possess abnormalities in the way they
perceive visual information in the form of a bias towards local visual
processing. As inversion interrupts normal global processing, forcing
individuals to process locally, an upright-inverted stimulus discrimination task
was used to investigate this phenomenon. We examined whether individuals with
nonclinical, yet high levels of BIC would show signs of this bias, in the form
of reduced inversion effects (i.e., increased local processing). Furthermore, we
assessed whether this bias appeared for general visual stimuli or specifically
for appearance-related stimuli, such as faces and bodies. Participants with
high-BIC (n = 25) and low-BIC (n = 30)
performed a stimulus discrimination task with upright and inverted faces,
scenes, objects, and bodies. Unexpectedly, the high-BIC group showed an
increased inversion effect compared to the low-BIC group, indicating perceptual
abnormalities may not be present as local processing biases, as originally
thought. There was no significant difference in performance across stimulus
types, signifying that any visual processing abnormalities may be general rather
than appearance-based. This has important implications for whether visual
processing abnormalities are predisposing factors for BDD or develop throughout
the disorder.
Collapse
Affiliation(s)
- A J F Duncum
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University
| | - K J Atkins
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University
| | - F L Beilharz
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University
| | - M E Mundy
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University
| |
Collapse
|
33
|
Hyperbaric Oxygen Therapy Alleviates Carbon Monoxide Poisoning-Induced Delayed Memory Impairment by Preserving Brain-Derived Neurotrophic Factor-Dependent Hippocampal Neurogenesis. Crit Care Med 2016; 44:e25-39. [PMID: 26488220 DOI: 10.1097/ccm.0000000000001299] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To test the hypothesis that hyperbaric oxygen therapy ameliorates delayed cognitive impairment after acute carbon monoxide poisoning by promoting neurogenesis through upregulating the brain-derived neurotrophic factor in the hippocampus. DESIGN Laboratory animal experiments. SETTING University/Medical center research laboratory. SUBJECTS Adult, male Sprague-Dawley rats. INTERVENTIONS Rats were divided into five groups: (1) non-carbon monoxide-treated control, (2) acute carbon monoxide poisoning, (3) acute carbon monoxide poisoning followed by 7-day hyperbaric oxygen treatment, (4) carbon monoxide + hyperbaric oxygen with additional intracerebroventricular infusion of Fc fragment of tyrosine kinase receptor B protein (TrkB-Fc) chimera, and (5) acute carbon monoxide poisoning followed by intracerebroventricular infusion of brain-derived neurotrophic factor. Acute carbon monoxide poisoning was achieved by exposing the rats to carbon monoxide at 2,500 ppm for 40 minutes, followed by 3,000 ppm for 20 minutes. Hyperbaric oxygen therapy (at 2.5 atmospheres absolute with 100% oxygen for 60 min) was conducted during the first 7 days after carbon monoxide poisoning. Recombinant human TrkB-Fc chimera or brain-derived neurotrophic factor was infused into the lateral ventricle via the implanted osmotic minipump. For labeling of mitotic cells in the hippocampus, bromodeoxyuridine was injected into the peritoneal cavity. Distribution of bromodeoxyuridine and two additional adult neurogenesis markers, Ki-67 and doublecortin, in the hippocampus was evaluated by immunohistochemistry or immunofluorescence staining. Tissue level of brain-derived neurotrophic factor was assessed by enzyme-linked immunosorbent assay. Cognitive behavior was evaluated by the use of eight-arm radial maze. MEASUREMENTS AND MAIN RESULTS Acute carbon monoxide poisoning significantly suppressed adult hippocampal neurogenesis evident by the reduction in number of bromodeoxyuridine-positive, Ki-67⁺, and doublecortin⁺ cells in the subgranular zone of the dentate gyrus. This suppression of adult neurogenesis by the carbon monoxide poisoning was appreciably alleviated by early treatment of hyperbaric oxygen. The hyperbaric oxygen treatment also promoted a sustained increase in hippocampal brain-derived neurotrophic factor level. Blockade of hippocampal brain-derived neurotrophic factor signaling with intracerebroventricular infusion of recombinant human TrkB-Fc chimera significantly blunted the protection by the hyperbaric oxygen on hippocampal neurogenesis; whereas intracerebroventricular infusion of brain-derived neurotrophic factor mimicked the action of hyperbaric oxygen and preserved hippocampal neurogenesis after acute carbon monoxide poisoning. Furthermore, acute carbon monoxide poisoning resulted in a delayed impairment of cognitive function. The hyperbaric oxygen treatment notably restored the cognitive impairment in a brain-derived neurotrophic factor-dependent manner. CONCLUSIONS The early hyperbaric oxygen treatment may alleviate delayed memory impairment after acute carbon monoxide poisoning by preserving adult neurogenesis via an increase in hippocampal brain-derived neurotrophic factor content.
Collapse
|
34
|
Loh E, Deacon M, de Boer L, Dolan RJ, Duzel E. Sharing a Context with Other Rewarding Events Increases the Probability that Neutral Events will be Recollected. Front Hum Neurosci 2016; 9:683. [PMID: 26778998 PMCID: PMC4705271 DOI: 10.3389/fnhum.2015.00683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 12/03/2015] [Indexed: 11/13/2022] Open
Abstract
Although reward is known to enhance memory for reward-predicting events, the extent to which such memory effects spread to associated (neutral) events is unclear. Using a between-subject design, we examined how sharing a background context with rewarding events influenced memory for motivationally neutral events (tested after a 5 days delay). We found that sharing a visually rich context with rewarding objects during encoding increased the probability that neutral objects would be successfully recollected during memory test, as opposed to merely being recognized without any recall of associative detail. In contrast, such an effect was not seen when the context was not explicitly demarcated and objects were presented against a blank black background. These qualitative changes in memory were observed in the absence of any effects on overall recognition (as measured by d′). Additionally, a follow-up study failed to find any evidence to suggest that the mere presence of a context picture in the background during encoding (i.e., without the reward manipulation) produced any such qualitative changes in memory. These results suggest that reward enhances recollection for rewarding objects as well as other non-rewarding events that are representationally linked to the same context.
Collapse
Affiliation(s)
- Eleanor Loh
- Wellcome Trust Centre for Neuroimaging, University College London London, UK
| | - Matthew Deacon
- Institute of Cognitive Neuroscience, University College London London, UK
| | - Lieke de Boer
- Institute of Cognitive Neuroscience, University College London London, UK
| | - Raymond J Dolan
- Wellcome Trust Centre for Neuroimaging, University College LondonLondon, UK; Berlin School of Mind and Brain, Humboldt UniversityBerlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College LondonLondon, UK
| | - Emrah Duzel
- Institute of Cognitive Neuroscience, University College LondonLondon, UK; Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke UniversityMagdeburg, Germany
| |
Collapse
|
35
|
Wang WC, Brashier NM, Wing EA, Marsh EJ, Cabeza R. On Known Unknowns: Fluency and the Neural Mechanisms of Illusory Truth. J Cogn Neurosci 2016; 28:739-46. [PMID: 26765947 DOI: 10.1162/jocn_a_00923] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The "illusory truth" effect refers to the phenomenon whereby repetition of a statement increases its likelihood of being judged true. This phenomenon has important implications for how we come to believe oft-repeated information that may be misleading or unknown. Behavioral evidence indicates that fluency, the subjective ease experienced while processing information, underlies this effect. This suggests that illusory truth should be mediated by brain regions previously linked to fluency, such as the perirhinal cortex (PRC). To investigate this possibility, we scanned participants with fMRI while they rated the truth of unknown statements, half of which were presented earlier (i.e., repeated). The only brain region that showed an interaction between repetition and ratings of perceived truth was PRC, where activity increased with truth ratings for repeated, but not for new, statements. This finding supports the hypothesis that illusory truth is mediated by a fluency mechanism and further strengthens the link between PRC and fluency.
Collapse
|
36
|
Lombardi MG, Fadda L, Serra L, Di Paola M, Caltagirone C, Carlesimo GA. Recollection and familiarity components of recognition: effect of side of mesio-temporal damage. Neurocase 2016; 22:1-11. [PMID: 25692372 DOI: 10.1080/13554794.2015.1014819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We investigated the memory performance of three patients with unilateral mesio-temporal lobe damage with the aim of evaluating the roles of the left and right hemispheres in recollection and familiarity. Consistent with the "Material Specificity Hypothesis", the right brain-damaged individual was selectively poor on recollection and familiarity tests for faces. Conversely, left-lesioned patients were severely deficient in recollection and familiarity of verbal material but mildly deficient on visual-spatial tests. This partially unexpected finding is interpreted in light of the ability of humans to verbally recode almost any material, thus giving rise to left-hemisphere effects for nominally nonverbal stimuli.
Collapse
Affiliation(s)
- Maria Giovanna Lombardi
- a Dipartimento di Neurologia Clinica e Comportamentale , I.R.C.C.S. Fondazione Santa Lucia , Roma , Italy
| | - Lucia Fadda
- a Dipartimento di Neurologia Clinica e Comportamentale , I.R.C.C.S. Fondazione Santa Lucia , Roma , Italy.,b Dipartimento di Medicina dei Sistemi , Università di Roma "Tor Vergata" , Roma , Italy
| | - Laura Serra
- a Dipartimento di Neurologia Clinica e Comportamentale , I.R.C.C.S. Fondazione Santa Lucia , Roma , Italy
| | - Margherita Di Paola
- a Dipartimento di Neurologia Clinica e Comportamentale , I.R.C.C.S. Fondazione Santa Lucia , Roma , Italy.,c Dipartimento di Scienze Umane , LUMSA , Roma , Italy
| | - Carlo Caltagirone
- a Dipartimento di Neurologia Clinica e Comportamentale , I.R.C.C.S. Fondazione Santa Lucia , Roma , Italy.,b Dipartimento di Medicina dei Sistemi , Università di Roma "Tor Vergata" , Roma , Italy
| | - Giovanni Augusto Carlesimo
- a Dipartimento di Neurologia Clinica e Comportamentale , I.R.C.C.S. Fondazione Santa Lucia , Roma , Italy.,b Dipartimento di Medicina dei Sistemi , Università di Roma "Tor Vergata" , Roma , Italy
| |
Collapse
|
37
|
Loh E, Kumaran D, Koster R, Berron D, Dolan R, Duzel E. Context-specific activation of hippocampus and SN/VTA by reward is related to enhanced long-term memory for embedded objects. Neurobiol Learn Mem 2015; 134 Pt A:65-77. [PMID: 26708279 PMCID: PMC5045461 DOI: 10.1016/j.nlm.2015.11.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 11/12/2015] [Accepted: 11/27/2015] [Indexed: 12/03/2022]
Abstract
We tested if a rewarding context improved memory for embedded objects. Pattern-separation demands associated with context discrimination were manipulated. Contextual reward improved object memory in the similar condition alone. Improved memory was linked to context-related activation of the DG/CA3 and SN/VTA. SN/VTA engagement may determine whether memories are improved by contextual reward.
Animal studies indicate that hippocampal representations of environmental context modulate reward-related processing in the substantia nigra and ventral tegmental area (SN/VTA), a major origin of dopamine in the brain. Using functional magnetic resonance imaging (fMRI) in humans, we investigated the neural specificity of context-reward associations under conditions where the presence of perceptually similar neutral contexts imposed high demands on a putative hippocampal function, pattern separation. The design also allowed us to investigate how contextual reward enhances long-term memory for embedded neutral objects. SN/VTA activity underpinned specific context-reward associations in the face of perceptual similarity. A reward-related enhancement of long-term memory was restricted to the condition where the rewarding and the neutral contexts were perceptually similar, and in turn was linked to co-activation of the hippocampus (subfield DG/CA3) and SN/VTA. Thus, an ability of contextual reward to enhance memory for focal objects is closely linked to context-related engagement of hippocampal–SN/VTA circuitry.
Collapse
Affiliation(s)
- Eleanor Loh
- Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3BG, United Kingdom.
| | - Dharshan Kumaran
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, United Kingdom
| | - Raphael Koster
- Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3BG, United Kingdom; Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, United Kingdom
| | - David Berron
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Ray Dolan
- Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3BG, United Kingdom; Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, United Kingdom; Berlin School of Mind and Brain, Humboldt University, 10099 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London WC1B 5EH, United Kingdom
| | - Emrah Duzel
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, United Kingdom; Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, 39120 Magdeburg, Germany
| |
Collapse
|
38
|
Decisions about the past are guided by reinstatement of specific memories in the hippocampus and perirhinal cortex. Neuroimage 2015; 127:144-157. [PMID: 26702775 DOI: 10.1016/j.neuroimage.2015.12.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 12/08/2015] [Accepted: 12/10/2015] [Indexed: 11/22/2022] Open
Abstract
When faced with a new challenge, we often reflect on related past experiences to guide our behavior. The ability to retrieve memories that overlap with current experience, a process known as pattern completion, is theorized as a critical function of the hippocampus. Although this view has influenced research for decades, there is little empirical support for hippocampal pattern completion to individual memory elements and its influence on behavior. We used pattern analysis of brain activity measured with functional magnetic resonance imaging to demonstrate that specific elements of past experiences are reinstated in the hippocampus, as well as perirhinal cortex (PRC), when making decisions about those experiences. Linking neural measures of specific memory reinstatement in the hippocampus and PRC to behavior with computational modeling revealed that reinstatement predicts the speed of memory-based decisions. Moreover, hippocampal activation during retrieval was selectively coupled to regions of occipito-temporal cortex that showed content-specific item reinstatement. These results provide evidence for hippocampal pattern completion and its role in the mechanisms of decision making.
Collapse
|
39
|
Martin CB, Cowell RA, Gribble PL, Wright J, Köhler S. Distributed category-specific recognition-memory signals in human perirhinal cortex. Hippocampus 2015; 26:423-36. [PMID: 26385759 DOI: 10.1002/hipo.22531] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2015] [Indexed: 01/24/2023]
Abstract
Evidence from a large body of research suggests that perirhinal cortex (PrC), which interfaces the medial temporal lobe with the ventral visual pathway for object identification, plays a critical role in item-based recognition memory. The precise manner in which PrC codes for the prior occurrence of objects, however, remains poorly understood. In the present functional magnetic resonance imaging (fMRI) study, we used multivoxel pattern analyses to examine whether the prior occurrence of faces is coded by distributed patterns of PrC activity that consist of voxels with decreases as well as increases in signal. We also investigated whether pertinent voxels are preferentially tuned to the specific object category to which judged stimuli belong. We found that, when no a priori constraints were imposed on the direction of signal change, activity patterns that allowed for successful classification of recognition-memory decisions included some voxels with decreases and others with increases in signal in association with perceived prior occurrence. Moreover, successful classification was obtained in the absence of a mean difference in activity across the set of voxels in these patterns. Critically, we observed a positive relationship between classifier accuracy and behavioral performance across participants. Additional analyses revealed that voxels carrying diagnostic information for classification of memory decisions showed category specificity in their tuning for faces when probed with an independent functional localizer in a nonmnemonic task context. These voxels were spatially distributed in PrC, and extended beyond the contiguous voxel clusters previously described as the anterior temporal face patch. Our findings provide support for proposals, recently raised in the neurophysiological literature, that the prior occurrence of objects is coded by distributed PrC representations. They also suggest that the stimulus category to which an item belongs shapes the organization of these distributed representations.
Collapse
Affiliation(s)
- Chris B Martin
- Department of Psychology, The Brain and Mind Institute, Western University, London, Ontario, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Rosemary A Cowell
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Paul L Gribble
- Department of Psychology, The Brain and Mind Institute, Western University, London, Ontario, Canada.,Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Jessey Wright
- Rotman Institute of Philosophy, Western University, London, Ontario, Canada.,Department of Philosophy, Western University, London, Ontario, Canada
| | - Stefan Köhler
- Department of Psychology, The Brain and Mind Institute, Western University, London, Ontario, Canada.,Baycrest Centre, Rotman Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
40
|
Hodgetts CJ, Postans M, Shine JP, Jones DK, Lawrence AD, Graham KS. Dissociable roles of the inferior longitudinal fasciculus and fornix in face and place perception. eLife 2015; 4. [PMID: 26319355 PMCID: PMC4586481 DOI: 10.7554/elife.07902] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/28/2015] [Indexed: 12/25/2022] Open
Abstract
We tested a novel hypothesis, generated from representational accounts of medial temporal lobe (MTL) function, that the major white matter tracts converging on perirhinal cortex (PrC) and hippocampus (HC) would be differentially involved in face and scene perception, respectively. Diffusion tensor imaging was applied in healthy participants alongside an odd-one-out paradigm sensitive to PrC and HC lesions in animals and humans. Microstructure of inferior longitudinal fasciculus (ILF, connecting occipital and ventro-anterior temporal lobe, including PrC) and fornix (the main HC input/output pathway) correlated with accuracy on odd-one-out judgements involving faces and scenes, respectively. Similarly, blood oxygen level-dependent (BOLD) response in PrC and HC, elicited during oddity judgements, was correlated with face and scene oddity performance, respectively. We also observed associations between ILF and fornix microstructure and category-selective BOLD response in PrC and HC, respectively. These striking three-way associations highlight functionally dissociable, structurally instantiated MTL neurocognitive networks for complex face and scene perception. DOI:http://dx.doi.org/10.7554/eLife.07902.001 Perceiving an object or picture stimulates activity in the regions of the brain that make up the visual system. Some of these regions respond differently depending on what is being viewed: for example, some areas are more active when looking at faces, and others respond more when viewing places. One theory is that, rather than working in a self-contained fashion, category-sensitive brain regions are elements or ‘nodes’ within more complex brain networks that are specialised for processing different types of visual stimuli. The inside of the brain contains regions of dark and light tissue. The lighter regions are known as ‘white matter’ and contain fibres that allow information to travel between different parts of the brain. These fibers may play an important role in how widely distributed brain regions communicate. To investigate this, Hodgetts, Postans et al. used a technique called diffusion MRI to measure the structure, or coherence, of white matter fibers in healthy volunteers. Brain activity was also measured while volunteers completed a task in which they needed to spot the odd-one-out from images of either faces or places. Hodgetts, Postans et al. investigated the fine structure of a white matter fibre bundle known as the inferior longitudinal fasciculus (ILF). This fibre links two parts of the brain involved in face perception, called the occipital and anterior temporal lobes. Strikingly, ILF structure predicted both face-related brain activity in these regions and how well an individual could discriminate between faces, but not place stimuli. By contrast, the ability of volunteers to tell apart different places (but not faces) was related to the structure of the fornix. The fornix is a bundle of white matter fibres that carries information to and from the hippocampus, a region that is important for finding one's way around an environment and remembering such journeys afterwards. Hodgetts, Postans et al.'s findings suggest that the systems that process different visual categories are best thought of as large-scale distributed networks rather than a set of individual, specialised regions in the brain. In the future, research will be needed to further understand how white matter contributes to the perception of different visual categories, and to investigate in finer detail how visual experience influences the structure of white matter pathways. DOI:http://dx.doi.org/10.7554/eLife.07902.002
Collapse
Affiliation(s)
| | - Mark Postans
- School of Psychology, Cardiff University, Cardiff, Wales
| | | | - Derek K Jones
- School of Psychology, Cardiff University, Cardiff, Wales
| | | | - Kim S Graham
- School of Psychology, Cardiff University, Cardiff, Wales
| |
Collapse
|
41
|
Guggenmos M, Rothkirch M, Obermayer K, Haynes JD, Sterzer P. A Hippocampal Signature of Perceptual Learning in Object Recognition. J Cogn Neurosci 2015; 27:787-97. [DOI: 10.1162/jocn_a_00735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Perceptual learning is the improvement in perceptual performance through training or exposure. Here, we used fMRI before and after extensive behavioral training to investigate the effects of perceptual learning on the recognition of objects under challenging viewing conditions. Objects belonged either to trained or untrained categories. Trained categories were further subdivided into trained and untrained exemplars and were coupled with high or low monetary rewards during training. After a 3-day training, object recognition was markedly improved. Although there was a considerable transfer of learning to untrained exemplars within categories, an enhancing effect of reward reinforcement was specific to trained exemplars. fMRI showed that hippocampus responses to both trained and untrained exemplars of trained categories were enhanced by perceptual learning and correlated with the effect of reward reinforcement. Our results suggest a key role of hippocampus in object recognition after perceptual learning.
Collapse
Affiliation(s)
- Matthias Guggenmos
- 1Bernstein Center for Computational Neuroscience, Berlin, Germany
- 2Charité - Universitätsmedizin, Berlin, Germany
| | | | - Klaus Obermayer
- 1Bernstein Center for Computational Neuroscience, Berlin, Germany
| | | | - Philipp Sterzer
- 1Bernstein Center for Computational Neuroscience, Berlin, Germany
- 2Charité - Universitätsmedizin, Berlin, Germany
| |
Collapse
|
42
|
Ryals AJ, Wang JX, Polnaszek KL, Voss JL. Hippocampal contribution to implicit configuration memory expressed via eye movements during scene exploration. Hippocampus 2015; 25:1028-41. [PMID: 25620526 DOI: 10.1002/hipo.22425] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2015] [Indexed: 11/11/2022]
Abstract
Although hippocampus unequivocally supports explicit/declarative memory, fewer findings have demonstrated its role in implicit expressions of memory. We tested for hippocampal contributions to an implicit expression of configural/relational memory for complex scenes using eye-movement tracking during functional magnetic resonance imaging (fMRI) scanning. Participants studied scenes and were later tested using scenes that resembled study scenes in their overall feature configuration but comprised different elements. These configurally similar scenes were used to limit explicit memory, and were intermixed with new scenes that did not resemble studied scenes. Scene configuration memory was expressed through eye movements reflecting exploration overlap (EO), which is the viewing of the same scene locations at both study and test. EO reliably discriminated similar study-test scene pairs from study-new scene pairs, was reliably greater for similarity-based recognition hits than for misses, and correlated with hippocampal fMRI activity. In contrast, subjects could not reliably discriminate similar from new scenes by overt judgments, although ratings of familiarity were slightly higher for similar than new scenes. Hippocampal fMRI correlates of this weak explicit memory were distinct from EO-related activity. These findings collectively suggest that EO was an implicit expression of scene configuration memory associated with hippocampal activity. Visual exploration can therefore reflect implicit hippocampal-related memory processing that can be observed in eye-movement behavior during naturalistic scene viewing.
Collapse
Affiliation(s)
- Anthony J Ryals
- Department of Medical Social Sciences, Ken and Ruth Davee Department of Neurology, and Interdepartmental Neuroscience Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jane X Wang
- Department of Medical Social Sciences, Ken and Ruth Davee Department of Neurology, and Interdepartmental Neuroscience Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Kelly L Polnaszek
- Department of Medical Social Sciences, Ken and Ruth Davee Department of Neurology, and Interdepartmental Neuroscience Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Joel L Voss
- Department of Medical Social Sciences, Ken and Ruth Davee Department of Neurology, and Interdepartmental Neuroscience Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
43
|
Involvement of the Motor System in Comprehension of Non-Literal Action Language: A Meta-Analysis Study. Brain Topogr 2015; 29:94-107. [DOI: 10.1007/s10548-015-0427-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/05/2015] [Indexed: 11/26/2022]
|
44
|
Medial temporal lobe coding of item and spatial information during relational binding in working memory. J Neurosci 2015; 34:14233-42. [PMID: 25339737 DOI: 10.1523/jneurosci.0655-14.2014] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Several models have proposed that different medial temporal lobe (MTL) regions represent different kinds of information in the service of long-term memory. For instance, it has been proposed that perirhinal cortex (PRC), parahippocampal cortex (PHC), and hippocampus differentially support long-term memory for item information, spatial context, and item-context relations present during an event, respectively. Recent evidence has indicated that, in addition to long-term memory, MTL subregions may similarly contribute to processes that support the retention of complex spatial arrangements of objects across short delays. Here, we used functional magnetic resonance imaging and multivoxel pattern similarity analysis to investigate the extent to which human MTL regions independently code for object and spatial information, as well as the conjunction of this information, during working memory encoding and active maintenance. Voxel activity patterns in PRC, temporopolar cortex, and amygdala carried information about individual objects, whereas activity patterns in the PHC and posterior hippocampus carried information about the configuration of spatial locations that was to be remembered. Additionally, the integrity of multivoxel patterns in the right anterior hippocampus across encoding and delay periods was predictive of accurate short-term memory for object-location relationships. These results are consistent with parallel processing of item and spatial context information by PRC and PHC, respectively, and the binding of item and context by the hippocampus.
Collapse
|
45
|
Interindividual variation in fornix microstructure and macrostructure is related to visual discrimination accuracy for scenes but not faces. J Neurosci 2014; 34:12121-6. [PMID: 25186756 DOI: 10.1523/jneurosci.0026-14.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Transection of the nonhuman primate fornix has been shown to impair learning of configurations of spatial features and object-in-scene memory. Although damage to the human fornix also results in memory impairment, it is not known whether there is a preferential involvement of this white-matter tract in spatial learning, as implied by animal studies. Diffusion-weighted MR images were obtained from healthy participants who had completed versions of a task in which they made rapid same/different discriminations to two categories of highly visually similar stimuli: (1) virtual reality scene pairs; and (2) face pairs. Diffusion-MRI measures of white-matter microstructure [fractional anisotropy (FA) and mean diffusivity (MD)] and macrostructure (tissue volume fraction, f) were then extracted from the fornix of each participant, which had been reconstructed using a deterministic tractography protocol. Fornix MD and f measures correlated with scene, but not face, discrimination accuracy in both discrimination tasks. A complementary voxelwise analysis using tract-based spatial statistics suggested the crus of the fornix as a focus for this relationship. These findings extend previous reports of spatial learning impairments after fornix transection in nonhuman primates, critically highlighting the fornix as a source of interindividual variation in scene discrimination in humans.
Collapse
|
46
|
Bachevalier J, Nemanic S, Alvarado MC. The influence of context on recognition memory in monkeys: effects of hippocampal, parahippocampal and perirhinal lesions. Behav Brain Res 2014; 285:89-98. [PMID: 25026097 DOI: 10.1016/j.bbr.2014.07.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/03/2014] [Accepted: 07/06/2014] [Indexed: 10/25/2022]
Abstract
This study further investigated the specific contributions of the medial temporal lobe structures to contextual recognition memory. Monkeys (Macaca mulatta) with either neurotoxic lesions of the hippocampus, aspiration lesions of the perirhinal cortex and parahippocampal areas TH/TF, or sham operations were tested on five conditions of a visual-paired comparison (VPC) task in which 3-dimensional objects were presented over multicolored backgrounds. In two conditions (Conditions 1 and 2: Context-changes), the sample object was presented on a new background during the retention tests, whereas in the three others (Conditions 3-5: No-context-changes) the sample object was presented over its familiar background. Novelty preference scores of control animals were weaker, but still significantly different from chance, in the Context-changes conditions than on the No-context-changes conditions. Animals in the three experimental groups showed strong preference for novelty on the No-context-change conditions, but weaker novelty preference on the Context-change conditions than controls. Thus, animals in all three lesion types had greater difficulty recognizing an object when its background was different from that used during encoding. The data are consistent with the view that the hippocampal formation, areas TH/TF, and perirhinal cortex contribute interactively to contextual memory processes.
Collapse
Affiliation(s)
- Jocelyne Bachevalier
- Department of Neurobiology and Anatomy, University of Texas Health Science Center, Houston, TX, USA.
| | - Sarah Nemanic
- Department of Neurobiology and Anatomy, University of Texas Health Science Center, Houston, TX, USA.
| | - Maria C Alvarado
- Department of Neurobiology and Anatomy, University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
47
|
Mundy ME, Downing PE, Honey RC, Singh KD, Graham KS, Dwyer DM. Brain correlates of experience-dependent changes in stimulus discrimination based on the amount and schedule of exposure. PLoS One 2014; 9:e101011. [PMID: 24967903 PMCID: PMC4072722 DOI: 10.1371/journal.pone.0101011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 06/02/2014] [Indexed: 11/21/2022] Open
Abstract
One product of simple exposure to similar visual stimuli is that they become easier to distinguish. The early visual cortex and other brain areas (such as the prefrontal cortex) have been implicated in such perceptual learning effects, but the anatomical specificity within visual cortex and the relationship between sensory cortex and other brain areas has yet to be examined. Moreover, while variations in the schedule (rather than merely the amount) of exposure influence experience-dependent improvement in discrimination, the neural sequelae of exposure schedule have not been fully investigated. In an event-related fMRI study, participants were exposed to confusable pairs of faces, scenes and dot patterns, using either intermixed or blocked presentation schedules. Participants then performed same/different judgements with exposed and novel pairs of stimuli. Stimulus independent activation, which was correlated with experience-dependent improvement in discrimination, was seen in frontal areas (e.g. frontal and supplementary eye fields and dorsolateral prefrontal cortex) and in early visual cortex (V1-4). In all regions, the difference in activation between exposed and novel stimuli decreased as a function of the degree of discrimination improvement. Overall levels of BOLD activation differed across regions, consistent with the possibility that, as a consequence of experience, processing shifts from initial engagement of early visual regions to higher order visual areas. Similar relationships were observed when contrasting intermixed with blocked exposure, suggesting that the schedule of exposure primarily influences the degree of, rather than the mechanisms for, discrimination performance.
Collapse
Affiliation(s)
- Matthew E. Mundy
- Wales Institute of Cognitive Neuroscience (WICN), School of Psychology, Cardiff University, Cardiff, United Kingdom
- Monash University, School of Psychological Sciences, Melbourne, Victoria, Australia
- * E-mail:
| | - Paul E. Downing
- Wales Institute of Cognitive Neuroscience (WICN), School of Psychology, Bangor University, Gwynedd, United Kingdom
| | - Robert C. Honey
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Krish D. Singh
- Cardiff University Brain Imaging Research Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
| | - Kim S. Graham
- Wales Institute of Cognitive Neuroscience (WICN), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Dominic M. Dwyer
- School of Psychology, Cardiff University, Cardiff, United Kingdom
- School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
48
|
Collins JA, Olson IR. Beyond the FFA: The role of the ventral anterior temporal lobes in face processing. Neuropsychologia 2014; 61:65-79. [PMID: 24937188 DOI: 10.1016/j.neuropsychologia.2014.06.005] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 05/19/2014] [Accepted: 06/08/2014] [Indexed: 11/17/2022]
Abstract
Extensive research has supported the existence of a specialized face-processing network that is distinct from the visual processing areas used for general object recognition. The majority of this work has been aimed at characterizing the response properties of the fusiform face area (FFA) and the occipital face area (OFA), which together are thought to constitute the core network of brain areas responsible for facial identification. Although accruing evidence has shown that face-selective patches in the ventral anterior temporal lobes (vATLs) are interconnected with the FFA and OFA, and that they play a role in facial identification, the relative contribution of these brain areas to the core face-processing network has remained unarticulated. Here we review recent research critically implicating the vATLs in face perception and memory. We propose that current models of face processing should be revised such that the ventral anterior temporal lobes serve a centralized role in the visual face-processing network. We speculate that a hierarchically organized system of face processing areas extends bilaterally from the inferior occipital gyri to the vATLs, with facial representations becoming increasingly complex and abstracted from low-level perceptual features as they move forward along this network. The anterior temporal face areas may serve as the apex of this hierarchy, instantiating the final stages of face recognition. We further argue that the anterior temporal face areas are ideally suited to serve as an interface between face perception and face memory, linking perceptual representations of individual identity with person-specific semantic knowledge.
Collapse
Affiliation(s)
- Jessica A Collins
- Department of Psychology, Temple University, 1701 North 13th street, Philadelphia, PA 19122, USA.
| | - Ingrid R Olson
- Department of Psychology, Temple University, 1701 North 13th street, Philadelphia, PA 19122, USA.
| |
Collapse
|
49
|
Mundy E M, Sadusky A. Abnormalities in visual processing amongst students with body image concerns. Adv Cogn Psychol 2014; 10:39-48. [PMID: 25157299 PMCID: PMC4116756 DOI: 10.5709/acp-0155-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 02/23/2014] [Indexed: 11/23/2022] Open
Abstract
Individuals with body dysmorphic disorder (BDD) appear to possess abnormalities
in the way they observe and discriminate visual information. A pre-occupation
with perceived defects in appearance has been attributed to a local visual
processing bias. We studied the nature of visual bias in individuals who may be
at risk of developing BDD – those with high body image concerns (BICs) – by
using inverted stimulus discrimination. Inversion disrupts global, configural
information in favor of local, feature-based processing. 40 individuals with
high BIC and 40 low BIC controls performed a discrimination task with upright
and inverted faces, bodies, and scenes. Individuals with high BIC discriminated
inverted faces and bodies faster than controls, and were also more accurate when
discriminating inverted bodies and scenes. This reduction in inversion effect
for high BIC individuals may be due to a stimulus-general local, detail-focused
processing bias, which may be associated with maladaptive fixation on small
features in their appearance.
Collapse
Affiliation(s)
- Matthew Mundy E
- School of Psychological Science, Monash University, Australia
| | - Andrea Sadusky
- School of Psychological Science, Monash University, Australia
| |
Collapse
|
50
|
Montuori LM, Honey RC. Representation in development: from a model system to some general processes. Neurosci Biobehav Rev 2014; 50:143-9. [PMID: 24661985 DOI: 10.1016/j.neubiorev.2014.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/25/2014] [Accepted: 03/02/2014] [Indexed: 11/18/2022]
Abstract
The view that filial imprinting might serve as a useful model system for studying the neurobiological basis of memory was inspired, at least in part, by a simple idea: acquired filial preferences reflect the formation of a memory or representation of the imprinting object itself, as opposed to the change in the efficacy of stimulus-response pathways, for example. We provide a synthesis of the evidence that supports this idea; and show that the processes of memory formation observed in filial imprinting find surprisingly close counterparts in other species, including our own.
Collapse
|