1
|
Mellen RW, Calabro KR, McCullough KT, Crosson SM, Cova ADL, Fajardo D, Xu E, Boye SL, Boye SE. Development of an AAV-CRISPR-Cas9-based treatment for dominant cone-rod dystrophy 6. Mol Ther Methods Clin Dev 2023; 30:48-64. [PMID: 37361352 PMCID: PMC10285452 DOI: 10.1016/j.omtm.2023.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023]
Abstract
Cone-rod dystrophy 6 (CORD6) is caused by gain-of-function mutations in the GUCY2D gene, which encodes retinal guanylate cyclase-1 (RetGC1). There are currently no treatments available for this autosomal dominant disease, which is characterized by severe, early-onset visual impairment. The purpose of our study was to develop an adeno-associated virus (AAV)-CRISPR-Cas9-based approach referred to as "ablate and replace" and evaluate its therapeutic potential in mouse models of CORD6. This two-vector system delivers (1) CRISPR-Cas9 targeted to the early coding sequence of the wild-type and mutant GUCY2D alleles and (2) a CRISPR-Cas9-resistant cDNA copy of GUCY2D ("hardened" GUCY2D). Together, these vectors knock out ("ablate") expression of endogenous RetGC1 in photoreceptors and supplement ("replace") a healthy copy of exogenous GUCY2D. First, we confirmed that ablation of mutant R838S GUCY2D was therapeutic in a transgenic mouse model of CORD6. Next, we established a proof of concept for "ablate and replace" and optimized vector doses in Gucy2e+/-:Gucy2f-/- and Gucy2f-/- mice, respectively. Finally, we confirmed that the "ablate and replace" approach stably preserved retinal structure and function in a novel knockin mouse model of CORD6, the RetGC1 (hR838S, hWT) mouse. Taken together, our results support further development of the "ablate and replace" approach for treatment of CORD6.
Collapse
Affiliation(s)
- Russell W. Mellen
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Kaitlyn R. Calabro
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - K. Tyler McCullough
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Sean M. Crosson
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Alejandro de la Cova
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Diego Fajardo
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Emily Xu
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Sanford L. Boye
- Powell Gene Therapy Center, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Shannon E. Boye
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
2
|
Gao Y, Ren X, Lin H, Li K, Xiao L, Wang X, Zeng Z, Ran R, Tao Y, Lin Y, Fu X, Yan N, Zhang M. Phenotypic characterization of autosomal dominant progressive cone dystrophies associated with a heterozygous variant c.2512C>T of GUCY2D gene in a large kindred. Eye (Lond) 2023; 37:2461-2469. [PMID: 36509996 PMCID: PMC10397296 DOI: 10.1038/s41433-022-02355-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 11/08/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
PURPOSE In this study, we described a large family presenting different manifestations of cone dystrophy at different ages associated with GUCY2D gene mutation. METHOD Sixty-three individuals of a single kindred, including 23 affected with cone dystrophies, were recruited and received ocular examinations, including best corrected visual acuity, intraocular pressure, slit-lamp biomicroscopy, color fundus photograph (CFP), fundus autofluorescence, optical coherence tomography, fluorescence fundus angiography, color vision testing, full-field electroretinography, and electro-oculogram. Whole exome sequencing (WES) and Sanger sequencing were performed for underlying mutations associated with cone dystrophy. RESULT There were 23 affected family members. Clinical analysis showed that the proband and other patients had impaired visual acuity ranging from 20/800 to 20/50 with impaired color vision. Fundus photograph showed retinal pigment epithelium (RPE) granular abnormalities with depressed macular reflex in young patients and macular or retinochoriodal atrophy in older patients. OCT examination confirmed the reduced outer retinal thickness or inner retinal thickness, absence of the ellipsoid zone (EZ) and retinal atrophy to varying degrees. Electroretinography revealed a reduced cone response combined with a relatively maintained rod response. WES and Sanger sequencing revealed a heterozygous variant c.2512C>T in the GUCY2D gene of the affected family members. CONCLUSIONS We reported cone dystrophy in 23 affected individuals in a five-generation family and demonstrated different macular abnormalities in OCT scans and CFP at different ages. The multimodal ocular records in our study provide physicians and ophthalmologists with a better understanding of cone dystrophy associated with GUCY2D mutation.
Collapse
Affiliation(s)
- Yunxia Gao
- Department of Ophthalmology, Ophthalmic Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Xiang Ren
- Department of Ophthalmology, Ophthalmic Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy; West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Hong Lin
- Department of Ophthalmology, Ophthalmic Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Kang Li
- Department of Ophthalmology, Ophthalmic Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
- Department of Ophthalmology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciencies, 100730, Beijing, PR China
| | - Lirong Xiao
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy; West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Xiaoyue Wang
- Department of Ophthalmology, Ophthalmic Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Zhibing Zeng
- Department of Ophthalmology, Ophthalmic Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Ruijin Ran
- Department of Ophthalmology, Ophthalmic Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
- Minda Hospital of Hubei Minzu University, Enshi, PR China
| | - Yunhan Tao
- Department of Ophthalmology, Ophthalmic Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Yu Lin
- Department of Ophthalmology, Ophthalmic Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy; West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Xiangyu Fu
- Department of Ophthalmology, Ophthalmic Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy; West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Naihong Yan
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy; West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| | - Ming Zhang
- Department of Ophthalmology, Ophthalmic Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
3
|
Li S, Ma H, Yang F, Ding X. cGMP Signaling in Photoreceptor Degeneration. Int J Mol Sci 2023; 24:11200. [PMID: 37446378 PMCID: PMC10342299 DOI: 10.3390/ijms241311200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Photoreceptors in the retina are highly specialized neurons with photosensitive molecules in the outer segment that transform light into chemical and electrical signals, and these signals are ultimately relayed to the visual cortex in the brain to form vision. Photoreceptors are composed of rods and cones. Rods are responsible for dim light vision, whereas cones are responsible for bright light, color vision, and visual acuity. Photoreceptors undergo progressive degeneration over time in many hereditary and age-related retinal diseases. Despite the remarkable heterogeneity of disease-causing genes, environmental factors, and pathogenesis, the progressive death of rod and cone photoreceptors ultimately leads to loss of vision/blindness. There are currently no treatments available for retinal degeneration. Cyclic guanosine 3', 5'-monophosphate (cGMP) plays a pivotal role in phototransduction. cGMP governs the cyclic nucleotide-gated (CNG) channels on the plasma membrane of the photoreceptor outer segments, thereby regulating membrane potential and signal transmission. By gating the CNG channels, cGMP regulates cellular Ca2+ homeostasis and signal transduction. As a second messenger, cGMP activates the cGMP-dependent protein kinase G (PKG), which regulates numerous targets/cellular events. The dysregulation of cGMP signaling is observed in varieties of photoreceptor/retinal degenerative diseases. Abnormally elevated cGMP signaling interferes with various cellular events, which ultimately leads to photoreceptor degeneration. In line with this, strategies to reduce cellular cGMP signaling result in photoreceptor protection in mouse models of retinal degeneration. The potential mechanisms underlying cGMP signaling-induced photoreceptor degeneration involve the activation of PKG and impaired Ca2+ homeostasis/Ca2+ overload, resulting from overactivation of the CNG channels, as well as the subsequent activation of the downstream cellular stress/death pathways. Thus, targeting the cellular cGMP/PKG signaling and the Ca2+-regulating pathways represents a significant strategy for photoreceptor protection in retinal degenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Xiqin Ding
- Department of Cell Biology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.L.); (H.M.); (F.Y.)
| |
Collapse
|
4
|
Jacobson SG, Cideciyan AV, Ho AC, Roman AJ, Wu V, Garafalo AV, Sumaroka A, Krishnan AK, Swider M, Mascio AA, Kay CN, Yoon D, Fujita KP, Boye SL, Peshenko IV, Dizhoor AM, Boye SE. Night vision restored in days after decades of congenital blindness. iScience 2022; 25:105274. [PMID: 36274938 PMCID: PMC9579015 DOI: 10.1016/j.isci.2022.105274] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/29/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
Signaling of vision to the brain starts with the retinal phototransduction cascade which converts visible light from the environment into chemical changes. Vision impairment results when mutations inactivate proteins of the phototransduction cascade. A severe monogenically inherited blindness, Leber congenital amaurosis (LCA), is caused by mutations in the GUCY2D gene, leading to a molecular defect in the production of cyclic GMP, the second messenger of phototransduction. We studied two patients with GUCY2D-LCA who were undergoing gene augmentation therapy. Both patients had large deficits in rod photoreceptor-based night vision before intervention. Within days of therapy, rod vision in both patients changed dramatically; improvements in visual function and functional vision in these hyper-responding patients reached more than 3 log10 units (1000-fold), nearing healthy rod vision. Quick activation of the complex molecular pathways from retinal photoreceptor to visual cortex and behavior is thus possible in patients even after being disabled and dormant for decades.
Collapse
Affiliation(s)
- Samuel G. Jacobson
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Artur V. Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Allen C. Ho
- Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Alejandro J. Roman
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vivian Wu
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexandra V. Garafalo
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexander Sumaroka
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arun K. Krishnan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Malgorzata Swider
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Abraham A. Mascio
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Dan Yoon
- Atsena Therapeutics, Inc., Durham, NC 27709, USA
| | | | - Sanford L. Boye
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL 32601, USA
| | - Igor V. Peshenko
- Pennsylvania College of Optometry, Salus University, Elkins Park, PA 19027, USA
| | | | - Shannon E. Boye
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida College of Medicine, Gainesville, FL 32611, USA
| |
Collapse
|
5
|
Yu H, Wang Q, Wu W, Zeng W, Feng Y. Therapeutic Effects of Melatonin on Ocular Diseases: Knowledge Map and Perspective. Front Pharmacol 2021; 12:721869. [PMID: 34795578 PMCID: PMC8593251 DOI: 10.3389/fphar.2021.721869] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/30/2021] [Indexed: 01/08/2023] Open
Abstract
Melatonin plays a critical role in the pathophysiological process including circadian rhythm, apoptosis, and oxidative stress. It can be synthesized in ocular tissues, and its receptors are also found in the eye, triggering more investigations concentrated on the role of melatonin in the eye. In the past decades, the protective and therapeutic potentials of melatonin for ocular diseases have been widely revealed in animal models. Herein, we construct a knowledge map of melatonin in treating ocular diseases through bibliometric analysis and review its current understanding and clinical evidence. The overall field could be divided into twelve topics through keywords co-occurrence analysis, in which the glaucoma, myopia, and retinal diseases were of greatest research interests according to the keywords burst detection. The existing clinical trials of melatonin in ocular diseases mainly focused on the glaucoma, and more research should be promoted, especially for various diseases and drug administration. We also discuss its bioavailability and further research topics including developing melatonin sensors for personalized medication, acting as stem cell therapy assistant drug, and consuming food-derived melatonin for facilitating its clinical transformation.
Collapse
Affiliation(s)
- Haozhe Yu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.,Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Qicong Wang
- Department of Chinese Medicine of Taiwan, Hong Kong and Macao, Beijing University of Chinese Medicine, Beijing, China
| | - Wenyu Wu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Weizhen Zeng
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Yun Feng
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.,Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
6
|
Yan J, Chen Y, Zhu Y, Paquet-Durand F. Programmed Non-Apoptotic Cell Death in Hereditary Retinal Degeneration: Crosstalk between cGMP-Dependent Pathways and PARthanatos? Int J Mol Sci 2021; 22:10567. [PMID: 34638907 PMCID: PMC8508647 DOI: 10.3390/ijms221910567] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
Programmed cell death (PCD) is a highly regulated process that results in the orderly destruction of a cell. Many different forms of PCD may be distinguished, including apoptosis, PARthanatos, and cGMP-dependent cell death. Misregulation of PCD mechanisms may be the underlying cause of neurodegenerative diseases of the retina, including hereditary retinal degeneration (RD). RD relates to a group of diseases that affect photoreceptors and that are triggered by gene mutations that are often well known nowadays. Nevertheless, the cellular mechanisms of PCD triggered by disease-causing mutations are still poorly understood, and RD is mostly still untreatable. While investigations into the neurodegenerative mechanisms of RD have focused on apoptosis in the past two decades, recent evidence suggests a predominance of non-apoptotic processes as causative mechanisms. Research into these mechanisms carries the hope that the knowledge created can eventually be used to design targeted treatments to prevent photoreceptor loss. Hence, in this review, we summarize studies on PCD in RD, including on apoptosis, PARthanatos, and cGMP-dependent cell death. Then, we focus on a possible interplay between these mechanisms, covering cGMP-signaling targets, overactivation of poly(ADP-ribose)polymerase (PARP), energy depletion, Ca2+-permeable channels, and Ca2+-dependent proteases. Finally, an outlook is given into how specific features of cGMP-signaling and PARthanatos may be targeted by therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - François Paquet-Durand
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076 Tübingen, Germany; (J.Y.); (Y.C.); (Y.Z.)
| |
Collapse
|
7
|
Retinal degeneration-3 protein attenuates photoreceptor degeneration in transgenic mice expressing dominant mutation of human retinal guanylyl cyclase. J Biol Chem 2021; 297:101201. [PMID: 34537244 PMCID: PMC8517212 DOI: 10.1016/j.jbc.2021.101201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 11/22/2022] Open
Abstract
Different forms of photoreceptor degeneration cause blindness. Retinal degeneration-3 protein (RD3) deficiency in photoreceptors leads to recessive congenital blindness. We proposed that aberrant activation of the retinal membrane guanylyl cyclase (RetGC) by its calcium-sensor proteins (guanylyl cyclase-activating protein [GCAP]) causes this retinal degeneration and that RD3 protects photoreceptors by preventing such activation. We here present in vivo evidence that RD3 protects photoreceptors by suppressing activation of both RetGC1 and RetGC2 isozymes. We further suggested that insufficient inhibition of RetGC by RD3 could contribute to some dominant forms of retinal degeneration. The R838S substitution in RetGC1 that causes autosomal-dominant cone-rod dystrophy 6, not only impedes deceleration of RetGC1 activity by Ca2+GCAPs but also elevates this isozyme's resistance to inhibition by RD3. We found that RD3 prolongs the survival of photoreceptors in transgenic mice harboring human R838S RetGC1 (R838S+). Overexpression of GFP-tagged human RD3 did not improve the calcium sensitivity of cGMP production in R838S+ retinas but slowed the progression of retinal blindness and photoreceptor degeneration. Fluorescence of the GFP-tagged RD3 in the retina only partially overlapped with immunofluorescence of RetGC1 or GCAP1, indicating that RD3 separates from the enzyme before the RetGC1:GCAP1 complex is formed in the photoreceptor outer segment. Most importantly, our in vivo results indicate that, in addition to the abnormal Ca2+ sensitivity of R838S RetGC1 in the outer segment, the mutated RetGC1 becomes resistant to inhibition by RD3 in a different cellular compartment(s) and suggest that RD3 overexpression could be utilized to reduce the severity of cone-rod dystrophy 6 pathology.
Collapse
|
8
|
Almutairi F, Almeshari N, Ahmad K, Magliyah MS, Schatz P. Congenital stationary night blindness: an update and review of the disease spectrum in Saudi Arabia. Acta Ophthalmol 2021; 99:581-591. [PMID: 33369259 DOI: 10.1111/aos.14693] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 11/03/2020] [Indexed: 12/22/2022]
Abstract
Congenital stationary night blindness (CSNB) is a group of rare, mainly stationary disorders of the retina, resulting from dysfunction of several specific and essential visual processing mechanisms. The inheritance is often recessive and as such, CSNB may be more common among populations with a high degree of consanguinity. Here, we present a topic update and a review of the clinical and molecular genetic spectrum of CSNB in Saudi Arabia. Since a major review article on CSNB in 2015, which described 17 genes underlying CSNB, an additional four genes have been incriminated in autosomal recessive CSNB: RIMS2, GNB3, GUCY2D and ABCA4. These have been associated with syndromic cone-rod synaptic disease, ON bipolar cell dysfunction with reduced cone sensitivity, CSNB with dysfunction of the phototransduction (Riggs type) and CSNB with cone-rod dystrophy, respectively. In Saudi Arabia, a total of 24 patients with CSNB were identified, using a combination of literature search and retrospective study of previously unpublished cases. Recessive mutations in TRPM1 and CABP4 accounted for the majority of cases (5 and 13 for each gene, respectively). These genes were associated with complete (cCSNB) and incomplete (icCSNB), respectively, and were associated with high myopia in the former and hyperopia in the latter. Four novel mutations were identified. For the first time, we describe the fundus albipunctatus in two patients from Saudi Arabia, caused by recessive mutation in RDH5 and RPE65, where the former in addition featured findings compatible with cone dystrophy. No cases were identified with any dominantly inherited CSNB.
Collapse
Affiliation(s)
- Faris Almutairi
- Vitreoretinal Division King Khaled Eye Specialist Hospital Riyadh Saudi Arabia
- King Khalid University Hospital Riyadh Saudi Arabia
| | | | - Khabir Ahmad
- Research Department King Khaled Eye Specialist Hospital Riyadh Saudi Arabia
| | - Moustafa S. Magliyah
- Vitreoretinal Division King Khaled Eye Specialist Hospital Riyadh Saudi Arabia
- Ophthalmology Department Prince Mohammed Medical City AlJouf Saudi Arabia
| | - Patrik Schatz
- Vitreoretinal Division King Khaled Eye Specialist Hospital Riyadh Saudi Arabia
- Department of Ophthalmology Clinical Sciences Skane University Hospital Lund University Lund Sweden
| |
Collapse
|
9
|
First 3D-Structural Data of Full-Length Guanylyl Cyclase 1 in Rod-Outer-Segment Preparations of Bovine Retina by Cross-Linking/Mass Spectrometry. J Mol Biol 2021; 433:166947. [PMID: 33744315 DOI: 10.1016/j.jmb.2021.166947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/24/2022]
Abstract
The rod-outer-segment guanylyl cyclase 1 (ROS-GC1) is a key transmembrane protein for retinal phototransduction. Mutations of ROS-GC1 correlate with different retinal diseases that often lead to blindness. No structural data are available for ROS-GC1 so far. We performed a 3D-structural analysis of native ROS-GC1 from bovine retina by cross-linking/mass spectrometry (XL-MS) and computational modeling. Absolute quantification and activity measurements of native ROS-GC1 were performed by MS-based assays directly in bovine retina samples. Our data present the first 3D-structural analysis of active, full-length ROS-GC1 derived from bovine retina. We propose a novel domain organization for the intracellular domain ROS-GC1. Our XL-MS data of native ROS-GC1 from rod-outer-segment preparations of bovine retina agree with a dimeric architecture. Our integrated approach can serve as a blueprint for conducting 3D-structural studies of membrane proteins in their native environment.
Collapse
|
10
|
Dizhoor AM, Olshevskaya EV, Peshenko IV. Retinal degeneration-3 protein promotes photoreceptor survival by suppressing activation of guanylyl cyclase rather than accelerating GMP recycling. J Biol Chem 2021; 296:100362. [PMID: 33539922 PMCID: PMC8047982 DOI: 10.1016/j.jbc.2021.100362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 01/19/2023] Open
Abstract
Retinal degeneration-3 protein (RD3) deficiency causes photoreceptor dysfunction and rapid degeneration in the rd3 mouse strain and in human Leber's congenital amaurosis, a congenital retinal dystrophy that results in early vision loss. However, the mechanisms responsible for photoreceptor death remain unclear. Here, we tested two hypothesized biochemical events that may underlie photoreceptor death: (i) the failure to prevent aberrant activation of retinal guanylyl cyclase (RetGC) by calcium-sensor proteins (GCAPs) versus (ii) the reduction of GMP phosphorylation rate, preventing its recycling to GDP/GTP. We found that GMP converts to GDP/GTP in the photoreceptor fraction of the retina ∼24-fold faster in WT mice and ∼400-fold faster in rd3 mice than GTP conversion to cGMP by RetGC. Adding purified RD3 to the retinal extracts inhibited RetGC 4-fold but did not affect GMP phosphorylation in wildtype or rd3 retinas. RD3-deficient photoreceptors rapidly degenerated in rd3 mice that were reared in constant darkness to prevent light-activated GTP consumption via RetGC and phosphodiesterase 6. In contrast, rd3 degeneration was alleviated by deletion of GCAPs. After 2.5 months, only ∼40% of photoreceptors remained in rd3/rd3 retinas. Deletion of GCAP1 or GCAP2 alone preserved 68% and 57% of photoreceptors, respectively, whereas deletion of GCAP1 and GCAP2 together preserved 86%. Taken together, our in vitro and in vivo results support the hypothesis that RD3 prevents photoreceptor death primarily by suppressing activation of RetGC by both GCAP1 and GCAP2 but do not support the hypothesis that RD3 plays a significant role in GMP recycling.
Collapse
Affiliation(s)
- Alexander M Dizhoor
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania, USA.
| | - Elena V Olshevskaya
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania, USA
| | - Igor V Peshenko
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania, USA.
| |
Collapse
|
11
|
Regulation of retinal membrane guanylyl cyclase (RetGC) by negative calcium feedback and RD3 protein. Pflugers Arch 2021; 473:1393-1410. [PMID: 33537894 PMCID: PMC8329130 DOI: 10.1007/s00424-021-02523-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 11/07/2022]
Abstract
This article presents a brief overview of the main biochemical and cellular processes involved in regulation of cyclic GMP production in photoreceptors. The main focus is on how the fluctuations of free calcium concentrations in photoreceptors between light and dark regulate the activity of retinal membrane guanylyl cyclase (RetGC) via calcium sensor proteins. The emphasis of the review is on the structure of RetGC and guanylyl cyclase activating proteins (GCAPs) in relation to their functional role in photoreceptors and congenital diseases of photoreceptors. In addition to that, the structure and function of retinal degeneration-3 protein (RD3), which regulates RetGC in a calcium-independent manner, is discussed in detail in connections with its role in photoreceptor biology and inherited retinal blindness.
Collapse
|
12
|
Peshenko IV, Olshevskaya EV, Dizhoor AM. GUCY2D mutations in retinal guanylyl cyclase 1 provide biochemical reasons for dominant cone-rod dystrophy but not for stationary night blindness. J Biol Chem 2020; 295:18301-18315. [PMID: 33109612 PMCID: PMC7939455 DOI: 10.1074/jbc.ra120.015553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/23/2020] [Indexed: 11/07/2022] Open
Abstract
Mutations in the GUCY2D gene coding for the dimeric human retinal membrane guanylyl cyclase (RetGC) isozyme RetGC1 cause various forms of blindness, ranging from rod dysfunction to rod and cone degeneration. We tested how the mutations causing recessive congenital stationary night blindness (CSNB), recessive Leber's congenital amaurosis (LCA1), and dominant cone-rod dystrophy-6 (CORD6) affected RetGC1 activity and regulation by RetGC-activating proteins (GCAPs) and retinal degeneration-3 protein (RD3). CSNB mutations R666W, R761W, and L911F, as well as LCA1 mutations R768W and G982VfsX39, disabled RetGC1 activation by human GCAP1, -2, and -3. The R666W and R761W substitutions compromised binding of GCAP1 with RetGC1 in HEK293 cells. In contrast, G982VfsX39 and L911F RetGC1 retained the ability to bind GCAP1 in cyto but failed to effectively bind RD3. R768W RetGC1 did not bind either GCAP1 or RD3. The co-expression of GUCY2D allelic combinations linked to CSNB did not restore RetGC1 activity in vitro The CORD6 mutation R838S in the RetGC1 dimerization domain strongly dominated the Ca2+ sensitivity of cyclase regulation by GCAP1 in RetGC1 heterodimer produced by co-expression of WT and the R838S subunits. It required higher Ca2+ concentrations to decelerate GCAP-activated RetGC1 heterodimer-6-fold higher than WT and 2-fold higher than the Ser838-harboring homodimer. The heterodimer was also more resistant than homodimers to inhibition by RD3. The observed biochemical changes can explain the dominant CORD6 blindness and recessive LCA1 blindness, both of which affect rods and cones, but they cannot explain the selective loss of rod function in recessive CSNB.
Collapse
Affiliation(s)
- Igor V Peshenko
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania, USA
| | - Elena V Olshevskaya
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania, USA
| | - Alexander M Dizhoor
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania, USA.
| |
Collapse
|
13
|
Sun Z, Wu S, Zhu T, Li H, Wei X, Du H, Sui R. Variants at codon 838 in the GUCY2D gene result in different phenotypes of cone rod dystrophy. Ophthalmic Genet 2020; 41:548-555. [PMID: 32811265 DOI: 10.1080/13816810.2020.1807026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND The GUCY2D gene encodes the photoreceptor guanylate cyclase (GC-E) and different pathogenic variants can lead to Leber congenital amaurosis (LCA) or cone-rod dystrophy (CRD). In this study, we describe three unrelated families who carried different mutations at codon 838 of the GUCY2D gene, and presented different phenotypes of retinal degeneration. MATERIALS AND METHODS Family and personal histories were collected, and the patients underwent best corrected visual acuity (BCVA), fundus photography (FP), electroretinography (ERG), optical coherence tomography (OCT) and fundus autofluorescence (FAF). Venous blood was drawn from patients and family members, and genomic DNA was extracted. Next-generation sequencing of known ocular genes was applied to the proband to find pathogenic variants. Polymerase chain reaction (PCR) and Sanger sequencing were conducted for validation and segregation. RESULTS Six patients from three unrelated families were enrolled. All the patients manifested decreased vision, photophobia and myopia from childhood. ERG recordings demonstrated a significant reduction in cone responses for all patients, while rod responses ranged widely from normal to moderately reduced. All patients were diagnosed with CRD, but the disease severity and progression rates in the three families were significantly different. Three pathogenic variants in the GUCY2D gene (c.2512 C > T (p.R838C), c.2512 C > A (p.R838S) and c.2513 G > A (p.R838H)) were identified. CONCLUSIONS We presented the phenotypes of three Chinese adCRD families carrying different variants at codon 838 of the GUCY2D gene. The R838S variant is a novel genotype associated with GUCY2D-CRD. The R838H variant can cause severe retinal features. Our findings enhance the understanding of GUCY2D phenotypic diversity.
Collapse
Affiliation(s)
- Zixi Sun
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing, China
| | - Shijing Wu
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing, China
| | - Tian Zhu
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing, China
| | - Hui Li
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing, China
| | - Xing Wei
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing, China
| | - Hong Du
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing, China
| | - Ruifang Sui
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing, China
| |
Collapse
|
14
|
RD Genes Associated with High Photoreceptor cGMP-Levels (Mini-Review). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1185:245-249. [PMID: 31884619 DOI: 10.1007/978-3-030-27378-1_40] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Many RD-causing mutations lead to a dysregulation of cyclic guanosine monophosphate (cGMP), making cGMP signalling a prime target for the development of new treatment approaches. We showed previously that an analogue of cGMP, which inhibited cGMP signalling targets, increased photoreceptor viability in three rodent RD models carrying different genetic defects, in different RD genes. This raises the question of the possible generality of this approach as a treatment for RD. Here, we review RD genes that can be associated with high cGMP and discuss which RD genes might be amenable to a treatment aimed at inhibiting excessive cGMP signalling.
Collapse
|
15
|
Tang S, Xia Y, Dai Y, Liu Y, Li J, Pan X, Chen P. Functional characterization of a novel GUCA1A missense mutation (D144G) in autosomal dominant cone dystrophy: A novel pathogenic GUCA1A variant in COD. Mol Vis 2019; 25:921-xxx. [PMID: 32025184 PMCID: PMC6982429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/30/2019] [Indexed: 10/26/2022] Open
Abstract
Purpose To elucidate the clinical phenotypes and pathogenesis of a novel missense mutation in guanylate cyclase activator A1A (GUCA1A) associated with autosomal dominant cone dystrophy (adCOD). Methods The members of a family with adCOD were clinically evaluated. Relevant genes were captured before being sequenced with targeted next-generation sequencing and confirmed with Sanger sequencing. Sequence analysis was made of the conservativeness of mutant residues. An enzyme-linked immunosorbent assay (ELISA) was implemented to detect the cyclic guanosine monophosphate (cGMP) concentration. Then limited protein hydrolysis and an electrophoresis shift were used to assess possible changes in the structure. Coimmunoprecipitation was employed to analyze the interaction between GCAP1 and retGC1. Immunofluorescence staining was performed to observe the colocalization of GCAP1 and retGC1 in human embryonic kidney (HEK)-293 cells. Results A pathogenic mutation in GUCA1A (c.431A>G, p.D144G, exon 5) was revealed in four generations of a family with adCOD. GUCA1A encodes guanylate cyclase activating protein 1 (GCAP1). D144, located in the EF4 loop involving calcium binding, was highly conserved in the species. GCAP1-D144G was more susceptible to hydrolysis, and the mobility of the D144G band became slower in the presence of Ca2+. At high Ca2+ concentrations, GCAP1-D144G stimulated retGC1 in the HEK-293 membrane to significantly increase intracellular cGMP protein concentrations. Compared with wild-type (WT) GCAP1, GCAP1-D144G had an increased interaction with retGC1, as detected in the coimmunoprecipitation assay. Conclusions The newly discovered missense mutation in GUCA1A (p.D144G) might lead to an imbalance of Ca2+ and cGMP homeostasis and eventually, cause a significant variation in adCOD.
Collapse
Affiliation(s)
- Suzhen Tang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao266071, Shandong Province, China
| | - Yujun Xia
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao266071, Shandong Province, China
| | - Yunhai Dai
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Yaning Liu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao266071, Shandong Province, China
| | - Jingshuo Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao266071, Shandong Province, China
| | - Xiaojing Pan
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Peng Chen
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao266071, Shandong Province, China
| |
Collapse
|
16
|
Power M, Das S, Schütze K, Marigo V, Ekström P, Paquet-Durand F. Cellular mechanisms of hereditary photoreceptor degeneration - Focus on cGMP. Prog Retin Eye Res 2019; 74:100772. [PMID: 31374251 DOI: 10.1016/j.preteyeres.2019.07.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022]
Abstract
The cellular mechanisms underlying hereditary photoreceptor degeneration are still poorly understood, a problem that is exacerbated by the enormous genetic heterogeneity of this disease group. However, the last decade has yielded a wealth of new knowledge on degenerative pathways and their diversity. Notably, a central role of cGMP-signalling has surfaced for photoreceptor cell death triggered by a subset of disease-causing mutations. In this review, we examine key aspects relevant for photoreceptor degeneration of hereditary origin. The topics covered include energy metabolism, epigenetics, protein quality control, as well as cGMP- and Ca2+-signalling, and how the related molecular and metabolic processes may trigger photoreceptor demise. We compare and integrate evidence on different cell death mechanisms that have been associated with photoreceptor degeneration, including apoptosis, necrosis, necroptosis, and PARthanatos. A special focus is then put on the mechanisms of cGMP-dependent cell death and how exceedingly high photoreceptor cGMP levels may cause activation of Ca2+-dependent calpain-type proteases, histone deacetylases and poly-ADP-ribose polymerase. An evaluation of the available literature reveals that a large group of patients suffering from hereditary photoreceptor degeneration carry mutations that are likely to trigger cGMP-dependent cell death, making this pathway a prime target for future therapy development. Finally, an outlook is given into technological and methodological developments that will with time likely contribute to a comprehensive overview over the entire metabolic complexity of photoreceptor cell death. Building on such developments, new imaging technology and novel biomarkers may be used to develop clinical test strategies, that fully consider the genetic heterogeneity of hereditary retinal degenerations, in order to facilitate clinical testing of novel treatment approaches.
Collapse
Affiliation(s)
- Michael Power
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Germany; Centre for Integrative Neurosciences (CIN), University of Tübingen, Germany; Graduate Training Centre of Neuroscience (GTC), University of Tübingen, Germany
| | - Soumyaparna Das
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Germany; Graduate Training Centre of Neuroscience (GTC), University of Tübingen, Germany
| | | | - Valeria Marigo
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | - Per Ekström
- Ophthalmology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Sweden
| | - François Paquet-Durand
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Germany.
| |
Collapse
|
17
|
Dizhoor AM, Olshevskaya EV, Peshenko IV. Retinal guanylyl cyclase activation by calcium sensor proteins mediates photoreceptor degeneration in an rd3 mouse model of congenital human blindness. J Biol Chem 2019; 294:13729-13739. [PMID: 31346032 DOI: 10.1074/jbc.ra119.009948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/22/2019] [Indexed: 01/19/2023] Open
Abstract
Deficiency of RD3 (retinal degeneration 3) protein causes recessive blindness and photoreceptor degeneration in humans and in the rd3 mouse strain, but the disease mechanism is unclear. Here, we present evidence that RD3 protects photoreceptors from degeneration by competing with guanylyl cyclase-activating proteins (GCAPs), which are calcium sensor proteins for retinal membrane guanylyl cyclase (RetGC). RetGC activity in rd3/rd3 retinas was drastically reduced but stimulated by the endogenous GCAPs at low Ca2+ concentrations. RetGC activity completely failed to accelerate in rd3/rd3GCAPs -/- hybrid photoreceptors, whose photoresponses remained drastically suppressed compared with the WT. However, ∼70% of the hybrid rd3/rd3GCAPs -/- photoreceptors survived past 6 months, in stark contrast to <5% in the nonhybrid rd3/rd3 retinas. GFP-tagged human RD3 inhibited GCAP-dependent activation of RetGC in vitro similarly to the untagged RD3. When transgenically expressed in rd3/rd3 mouse retinas under control of the rhodopsin promoter, the RD3GFP construct increased RetGC levels to near normal levels, restored dark-adapted photoresponses, and rescued rods from degeneration. The fluorescence of RD3GFP in rd3/rd3RD3GFP + retinas was mostly restricted to the rod photoreceptor inner segments, whereas GCAP1 immunofluorescence was concentrated predominantly in the outer segment. However, RD3GFP became distributed to the outer segments when bred into a GCAPs -/- genetic background. These results support the hypothesis that an essential biological function of RD3 is competition with GCAPs that inhibits premature cyclase activation in the inner segment. Our findings also indicate that the fast rate of degeneration in RD3-deficient photoreceptors results from the lack of this inhibition.
Collapse
Affiliation(s)
- Alexander M Dizhoor
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027
| | - Elena V Olshevskaya
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027
| | - Igor V Peshenko
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027
| |
Collapse
|
18
|
Qu Z, Yimer TA, Xie S, Wong F, Yu S, Liu X, Han S, Ma J, Lu Z, Hu X, Qin Y, Huang Y, Lv Y, Li J, Tang Z, Liu F, Liu M. Knocking out lca5 in zebrafish causes cone-rod dystrophy due to impaired outer segment protein trafficking. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2694-2705. [PMID: 31348989 DOI: 10.1016/j.bbadis.2019.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/06/2019] [Accepted: 07/22/2019] [Indexed: 01/19/2023]
Abstract
Leber congenital amaurosis (LCA) is the most serious form of inherited retinal dystrophy that leads to blindness or severe visual impairment within a few months after birth. Approximately 1-2% of the reported cases are caused by mutations in the LCA5 gene. This gene encodes a ciliary protein called LCA5 that is localized to the connecting cilium of photoreceptors. The retinal phenotypes caused by LCA5 mutations and the underlying pathological mechanisms are still not well understood. In this study, we knocked out the lca5 gene in zebrafish using CRISPR/Cas9 technology. An early onset visual defect is detected by the ERG in 7 dpf lca5-/- zebrafish. Histological analysis by HE staining and immunofluorescence reveal progressive degeneration of rod and cone photoreceptors, with a pattern that cones are more severely affected than rods. In addition, ultrastructural analysis by transmission electron microscopy shows disordered and broken membrane discs in rods' and cones' outer segments, respectively. In our lca5-/- zebrafish, the red-cone opsin and cone α-transducin are selectively mislocalized to the inner segment and synaptic terminal. Moreover, we found that Ift88, a key component of the intraflagellar transport complex, is retained in the outer segments. These data suggest that the intraflagellar transport complex-mediated outer segment protein trafficking might be impaired due to lca5 deletion, which finally leads to a type of retinal degeneration mimicking the phenotype of cone-rod dystrophy in human. Our work provides a novel animal model to study the physiological function of LCA5 and develop potential treatments of LCA.
Collapse
Affiliation(s)
- Zhen Qu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Tinsae Assefa Yimer
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Shanglun Xie
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Fulton Wong
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Shanshan Yu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Xiliang Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Shanshan Han
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Juanjuan Ma
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Zhaojing Lu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Xuebin Hu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Yayun Qin
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Yuwen Huang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Yuexia Lv
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Jingzhen Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Zhaohui Tang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Fei Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China.
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China.
| |
Collapse
|
19
|
Tolone A, Belhadj S, Rentsch A, Schwede F, Paquet-Durand F. The cGMP Pathway and Inherited Photoreceptor Degeneration: Targets, Compounds, and Biomarkers. Genes (Basel) 2019; 10:genes10060453. [PMID: 31207907 PMCID: PMC6627777 DOI: 10.3390/genes10060453] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 12/17/2022] Open
Abstract
Photoreceptor physiology and pathophysiology is intricately linked to guanosine-3’,5’-cyclic monophosphate (cGMP)-signaling. Here, we discuss the importance of cGMP-signaling for the pathogenesis of hereditary retinal degeneration. Excessive accumulation of cGMP in photoreceptors is a common denominator in cell death caused by a variety of different gene mutations. The cGMP-dependent cell death pathway may be targeted for the treatment of inherited photoreceptor degeneration, using specifically designed and formulated inhibitory cGMP analogues. Moreover, cGMP-signaling and its down-stream targets may be exploited for the development of novel biomarkers that could facilitate monitoring of disease progression and reveal the response to treatment in future clinical trials. We then briefly present the importance of appropriate formulations for delivery to the retina, both for drug and biomarker applications. Finally, the review touches on important aspects of future clinical translation, highlighting the need for interdisciplinary cooperation of researchers from a diverse range of fields.
Collapse
Affiliation(s)
- Arianna Tolone
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 5-7, 72076 Tübingen, Germany.
| | - Soumaya Belhadj
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 5-7, 72076 Tübingen, Germany.
| | | | - Frank Schwede
- Biolog Life Science Institute, 28199 Bremen, Germany.
| | - François Paquet-Durand
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 5-7, 72076 Tübingen, Germany.
| |
Collapse
|
20
|
McCullough KT, Boye SL, Fajardo D, Calabro K, Peterson JJ, Strang CE, Chakraborty D, Gloskowski S, Haskett S, Samuelsson S, Jiang H, Witherspoon CD, Gamlin PD, Maeder ML, Boye SE. Somatic Gene Editing of GUCY2D by AAV-CRISPR/Cas9 Alters Retinal Structure and Function in Mouse and Macaque. Hum Gene Ther 2019; 30:571-589. [PMID: 30358434 PMCID: PMC6534089 DOI: 10.1089/hum.2018.193] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 10/23/2018] [Indexed: 12/15/2022] Open
Abstract
Mutations in GUCY2D, the gene encoding retinal guanylate cyclase-1 (retGC1), are the leading cause of autosomal dominant cone-rod dystrophy (CORD6). Significant progress toward clinical application of gene replacement therapy for Leber congenital amaurosis (LCA) due to recessive mutations in GUCY2D (LCA1) has been made, but a different approach is needed to treat CORD6 where gain of function mutations cause dysfunction and dystrophy. The CRISPR/Cas9 gene editing system efficiently disrupts genes at desired loci, enabling complete gene knockout or homology directed repair. Here, adeno-associated virus (AAV)-delivered CRISPR/Cas9 was used specifically to edit/disrupt this gene's early coding sequence in mouse and macaque photoreceptors in vivo, thereby knocking out retGC1 expression and demonstrably altering retinal function and structure. Neither preexisting nor induced Cas9-specific T-cell responses resulted in ocular inflammation in macaques, nor did it limit GUCY2D editing. The results show, for the first time, the ability to perform somatic gene editing in primates using AAV-CRISPR/Cas9 and demonstrate the viability this approach for treating inherited retinal diseases in general and CORD6 in particular.
Collapse
Affiliation(s)
| | - Sanford L. Boye
- Department of Ophthalmology, University of Florida, Gainesville, Florida
| | - Diego Fajardo
- Department of Ophthalmology, University of Florida, Gainesville, Florida
| | - Kaitlyn Calabro
- Department of Ophthalmology, University of Florida, Gainesville, Florida
| | - James J. Peterson
- Department of Ophthalmology, University of Florida, Gainesville, Florida
| | - Christianne E. Strang
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Dibyendu Chakraborty
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | | | | | | | - Paul D. Gamlin
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Shannon E. Boye
- Department of Ophthalmology, University of Florida, Gainesville, Florida
| |
Collapse
|
21
|
Peshenko IV, Cideciyan AV, Sumaroka A, Olshevskaya EV, Scholten A, Abbas S, Koch KW, Jacobson SG, Dizhoor AM. A G86R mutation in the calcium-sensor protein GCAP1 alters regulation of retinal guanylyl cyclase and causes dominant cone-rod degeneration. J Biol Chem 2019; 294:3476-3488. [PMID: 30622141 DOI: 10.1074/jbc.ra118.006180] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/04/2019] [Indexed: 11/06/2022] Open
Abstract
The guanylyl cyclase-activating protein, GCAP1, activates photoreceptor membrane guanylyl cyclase (RetGC) in the light, when free Ca2+ concentrations decline, and decelerates the cyclase in the dark, when Ca2+ concentrations rise. Here, we report a novel mutation, G86R, in the GCAP1 (GUCA1A) gene in a family with a dominant retinopathy. The G86R substitution in a "hinge" region connecting EF-hand domains 2 and 3 in GCAP1 strongly interfered with its Ca2+-dependent activator-to-inhibitor conformational transition. The G86R-GCAP1 variant activated RetGC at low Ca2+ concentrations with higher affinity than did the WT GCAP1, but failed to decelerate the cyclase at the Ca2+ concentrations characteristic of dark-adapted photoreceptors. Ca2+-dependent increase in Trp94 fluorescence, indicative of the GCAP1 transition to its RetGC inhibiting state, was suppressed and shifted to a higher Ca2+ range. Conformational changes in G86R GCAP1 detectable by isothermal titration calorimetry (ITC) also became less sensitive to Ca2+, and the dose dependence of the G86R GCAP1-RetGC1 complex inhibition by retinal degeneration 3 (RD3) protein was shifted toward higher than normal concentrations. Our results indicate that the flexibility of the hinge region between EF-hands 2 and 3 is required for placing GCAP1-regulated Ca2+ sensitivity of the cyclase within the physiological range of intracellular Ca2+ at the expense of reducing GCAP1 affinity for the target enzyme. The disease-linked mutation of the hinge Gly86, leading to abnormally high affinity for the target enzyme and reduced Ca2+ sensitivity of GCAP1, is predicted to abnormally elevate cGMP production and Ca2+ influx in photoreceptors in the dark.
Collapse
Affiliation(s)
- Igor V Peshenko
- From the Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027
| | - Artur V Cideciyan
- the Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, and
| | - Alexander Sumaroka
- the Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, and
| | - Elena V Olshevskaya
- From the Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027
| | - Alexander Scholten
- the Department of Neuroscience, University of Oldenburg, Oldenburg D-26129, Germany
| | - Seher Abbas
- the Department of Neuroscience, University of Oldenburg, Oldenburg D-26129, Germany
| | - Karl-Wilhelm Koch
- the Department of Neuroscience, University of Oldenburg, Oldenburg D-26129, Germany
| | - Samuel G Jacobson
- the Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, and
| | - Alexander M Dizhoor
- From the Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027,
| |
Collapse
|
22
|
Vinberg F, Chen J, Kefalov VJ. Regulation of calcium homeostasis in the outer segments of rod and cone photoreceptors. Prog Retin Eye Res 2018; 67:87-101. [PMID: 29883715 DOI: 10.1016/j.preteyeres.2018.06.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 12/11/2022]
Abstract
Calcium plays important roles in the function and survival of rod and cone photoreceptor cells. Rapid regulation of calcium in the outer segments of photoreceptors is required for the modulation of phototransduction that drives the termination of the flash response as well as light adaptation in rods and cones. On a slower time scale, maintaining proper calcium homeostasis is critical for the health and survival of photoreceptors. Decades of work have established that the level of calcium in the outer segments of rods and cones is regulated by a dynamic equilibrium between influx via the transduction cGMP-gated channels and extrusion via rod- and cone-specific Na+/Ca2+, K+ exchangers (NCKXs). It had been widely accepted that the only mechanism for extrusion of calcium from rod outer segments is via the rod-specific NCKX1, while extrusion from cone outer segments is driven exclusively by the cone-specific NCKX2. However, recent evidence from mice lacking NCKX1 and NCKX2 have challenged that notion and have revealed a more complex picture, including a NCKX-independent mechanism in rods and two separate NCKX-dependent mechanisms in cones. This review will focus on recent findings on the molecular mechanisms of extrusion of calcium from the outer segments of rod and cone photoreceptors, and the functional and structural changes in photoreceptors when normal extrusion is disrupted.
Collapse
Affiliation(s)
- Frans Vinberg
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA; John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Jeannie Chen
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Vladimir J Kefalov
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|