1
|
Gogliettino AR, Cooler S, Vilkhu RS, Brackbill NJ, Rhoades C, Wu EG, Kling A, Sher A, Litke AM, Chichilnisky EJ. Modeling responses of macaque and human retinal ganglion cells to natural images using a convolutional neural network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586353. [PMID: 38585930 PMCID: PMC10996505 DOI: 10.1101/2024.03.22.586353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Linear-nonlinear (LN) cascade models provide a simple way to capture retinal ganglion cell (RGC) responses to artificial stimuli such as white noise, but their ability to model responses to natural images is limited. Recently, convolutional neural network (CNN) models have been shown to produce light response predictions that were substantially more accurate than those of a LN model. However, this modeling approach has not yet been applied to responses of macaque or human RGCs to natural images. Here, we train and test a CNN model on responses to natural images of the four numerically dominant RGC types in the macaque and human retina - ON parasol, OFF parasol, ON midget and OFF midget cells. Compared with the LN model, the CNN model provided substantially more accurate response predictions. Linear reconstructions of the visual stimulus were more accurate for CNN compared to LN model-generated responses, relative to reconstructions obtained from the recorded data. These findings demonstrate the effectiveness of a CNN model in capturing light responses of major RGC types in the macaque and human retinas in natural conditions.
Collapse
|
2
|
Patterson SS, Girresch RJ, Mazzaferri MA, Bordt AS, Piñon-Teal WL, Jesse BD, Perera DCW, Schlepphorst MA, Kuchenbecker JA, Chuang AZ, Neitz J, Marshak DW, Ogilvie JM. Synaptic Origins of the Complex Receptive Field Structure in Primate Smooth Monostratified Retinal Ganglion Cells. eNeuro 2024; 11:ENEURO.0280-23.2023. [PMID: 38290840 PMCID: PMC11078106 DOI: 10.1523/eneuro.0280-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 02/01/2024] Open
Abstract
Considerable progress has been made in studying the receptive fields of the most common primate retinal ganglion cell (RGC) types, such as parasol RGCs. Much less is known about the rarer primate RGC types and the circuitry that gives rise to noncanonical receptive field structures. The goal of this study was to analyze synaptic inputs to smooth monostratified RGCs to determine the origins of their complex spatial receptive fields, which contain isolated regions of high sensitivity called "hotspots." Interestingly, smooth monostratified RGCs co-stratify with the well-studied parasol RGCs and are thus constrained to receiving input from bipolar and amacrine cells with processes sharing the same layer, raising the question of how their functional differences originate. Through 3D reconstructions of circuitry and synapses onto ON smooth monostratified and ON parasol RGCs from central macaque retina, we identified four distinct sampling strategies employed by smooth and parasol RGCs to extract diverse response properties from co-stratifying bipolar and amacrine cells. The two RGC types differed in the proportion of amacrine cell input, relative contributions of co-stratifying bipolar cell types, amount of synaptic input per bipolar cell, and spatial distribution of bipolar cell synapses. Our results indicate that the smooth RGC's complex receptive field structure arises through spatial asymmetries in excitatory bipolar cell input which formed several discrete clusters comparable with physiologically measured hotspots. Taken together, our results demonstrate how the striking differences between ON parasol and ON smooth monostratified RGCs arise from distinct strategies for sampling a common set of synaptic inputs.
Collapse
Affiliation(s)
- Sara S Patterson
- Center for Visual Science, University of Rochester, Rochester, NewYork 14617
| | - Rebecca J Girresch
- Department of Biology, Saint Louis University, Saint Louis, Missouri 63103
| | - Marcus A Mazzaferri
- Department of Ophthalmology, University of Washington, Seattle, Washington 98104
| | - Andrea S Bordt
- Department of Ophthalmology, University of Washington, Seattle, Washington 98104
- Departments of Ophthalmology & Visual Science, McGovern Medical School, Houston, Texas 77030
| | - Wendy L Piñon-Teal
- Department of Biology, Saint Louis University, Saint Louis, Missouri 63103
| | - Brett D Jesse
- Department of Biology, Saint Louis University, Saint Louis, Missouri 63103
| | | | | | - James A Kuchenbecker
- Department of Ophthalmology, University of Washington, Seattle, Washington 98104
| | - Alice Z Chuang
- Departments of Ophthalmology & Visual Science, McGovern Medical School, Houston, Texas 77030
| | - Jay Neitz
- Department of Ophthalmology, University of Washington, Seattle, Washington 98104
| | - David W Marshak
- Neurobiology and Anatomy, McGovern Medical School, Houston, Texas 77030
| | | |
Collapse
|
3
|
Feng KM, Tsung TH, Chen YH, Lu DW. The Role of Retinal Ganglion Cell Structure and Function in Glaucoma. Cells 2023; 12:2797. [PMID: 38132117 PMCID: PMC10741833 DOI: 10.3390/cells12242797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Glaucoma, a leading cause of irreversible blindness globally, primarily affects retinal ganglion cells (RGCs). This review dives into the anatomy of RGC subtypes, covering the different underlying theoretical mechanisms that lead to RGC susceptibility in glaucoma, including mechanical, vascular, excitotoxicity, and neurotrophic factor deficiency, as well as oxidative stress and inflammation. Furthermore, we examined numerous imaging methods and functional assessments to gain insight into RGC health. Finally, we investigated the current possible neuroprotective targets for RGCs that could help with future glaucoma research and management.
Collapse
Affiliation(s)
| | | | | | - Da-Wen Lu
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (K.M.F.); (T.-H.T.); (Y.-H.C.)
| |
Collapse
|
4
|
Krüppel S, Khani MH, Karamanlis D, Erol YC, Zapp SJ, Mietsch M, Protti DA, Rozenblit F, Gollisch T. Diversity of Ganglion Cell Responses to Saccade-Like Image Shifts in the Primate Retina. J Neurosci 2023; 43:5319-5339. [PMID: 37339877 PMCID: PMC10359029 DOI: 10.1523/jneurosci.1561-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 04/12/2023] [Accepted: 05/08/2023] [Indexed: 06/22/2023] Open
Abstract
Saccades are a fundamental part of natural vision. They interrupt fixations of the visual gaze and rapidly shift the image that falls onto the retina. These stimulus dynamics can cause activation or suppression of different retinal ganglion cells, but how they affect the encoding of visual information in different types of ganglion cells is largely unknown. Here, we recorded spiking responses to saccade-like shifts of luminance gratings from ganglion cells in isolated marmoset retinas and investigated how the activity depended on the combination of presaccadic and postsaccadic images. All identified cell types, On and Off parasol and midget cells, as well as a type of Large Off cells, displayed distinct response patterns, including particular sensitivity to either the presaccadic or the postsaccadic image or combinations thereof. In addition, Off parasol and Large Off cells, but not On cells, showed pronounced sensitivity to whether the image changed across the transition. Stimulus sensitivity of On cells could be explained based on their responses to step changes in light intensity, whereas Off cells, in particular, parasol and the Large Off cells, seem to be affected by additional interactions that are not triggered during simple light-intensity flashes. Together, our data show that ganglion cells in the primate retina are sensitive to different combinations of presaccadic and postsaccadic visual stimuli. This contributes to the functional diversity of the output signals of the retina and to asymmetries between On and Off pathways and provides evidence of signal processing beyond what is triggered by isolated steps in light intensity.SIGNIFICANCE STATEMENT Sudden eye movements (saccades) shift our direction of gaze, bringing new images in focus on our retinas. To study how retinal neurons deal with these rapid image transitions, we recorded spiking activity from ganglion cells, the output neurons of the retina, in isolated retinas of marmoset monkeys while shifting a projected image in a saccade-like fashion across the retina. We found that the cells do not just respond to the newly fixated image, but that different types of ganglion cells display different sensitivities to the presaccadic and postsaccadic stimulus patterns. Certain Off cells, for example, are sensitive to changes in the image across transitions, which contributes to differences between On and Off information channels and extends the range of encoded stimulus features.
Collapse
Affiliation(s)
- Steffen Krüppel
- Department of Ophthalmology, University Medical Center Göttingen, 37075 Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, 37073 Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075 Göttingen, Germany
| | - Mohammad H Khani
- Department of Ophthalmology, University Medical Center Göttingen, 37075 Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, 37073 Göttingen, Germany
- International Max Planck Research School for Neurosciences, 37077 Göttingen, Germany
| | - Dimokratis Karamanlis
- Department of Ophthalmology, University Medical Center Göttingen, 37075 Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, 37073 Göttingen, Germany
- International Max Planck Research School for Neurosciences, 37077 Göttingen, Germany
| | - Yunus C Erol
- Department of Ophthalmology, University Medical Center Göttingen, 37075 Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, 37073 Göttingen, Germany
- International Max Planck Research School for Neurosciences, 37077 Göttingen, Germany
| | - Sören J Zapp
- Department of Ophthalmology, University Medical Center Göttingen, 37075 Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, 37073 Göttingen, Germany
| | - Matthias Mietsch
- Laboratory Animal Science Unit, German Primate Center, 37077 Göttingen, Germany
- German Center for Cardiovascular Research, 37075 Göttingen, Germany
| | - Dario A Protti
- School of Medical Sciences (Neuroscience), The University of Sydney, Sydney 2006, New South Wales, Australia
| | - Fernando Rozenblit
- Department of Ophthalmology, University Medical Center Göttingen, 37075 Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, 37073 Göttingen, Germany
| | - Tim Gollisch
- Department of Ophthalmology, University Medical Center Göttingen, 37075 Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, 37073 Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
5
|
In vivo chromatic and spatial tuning of foveolar retinal ganglion cells in Macaca fascicularis. PLoS One 2022; 17:e0278261. [PMID: 36445926 PMCID: PMC9707781 DOI: 10.1371/journal.pone.0278261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/13/2022] [Indexed: 11/30/2022] Open
Abstract
The primate fovea is specialized for high acuity chromatic vision, with the highest density of cone photoreceptors and a disproportionately large representation in visual cortex. The unique visual properties conferred by the fovea are conveyed to the brain by retinal ganglion cells, the somas of which lie at the margin of the foveal pit. Microelectrode recordings of these centermost retinal ganglion cells have been challenging due to the fragility of the fovea in the excised retina. Here we overcome this challenge by combining high resolution fluorescence adaptive optics ophthalmoscopy with calcium imaging to optically record functional responses of foveal retinal ganglion cells in the living eye. We use this approach to study the chromatic responses and spatial transfer functions of retinal ganglion cells using spatially uniform fields modulated in different directions in color space and monochromatic drifting gratings. We recorded from over 350 cells across three Macaca fascicularis primates over a time period of weeks to months. We find that the majority of the L vs. M cone opponent cells serving the most central foveolar cones have spatial transfer functions that peak at high spatial frequencies (20-40 c/deg), reflecting strong surround inhibition that sacrifices sensitivity at low spatial frequencies but preserves the transmission of fine detail in the retinal image. In addition, we fit to the drifting grating data a detailed model of how ganglion cell responses draw on the cone mosaic to derive receptive field properties of L vs. M cone opponent cells at the very center of the foveola. The fits are consistent with the hypothesis that foveal midget ganglion cells are specialized to preserve information at the resolution of the cone mosaic. By characterizing the functional properties of retinal ganglion cells in vivo through adaptive optics, we characterize the response characteristics of these cells in situ.
Collapse
|
6
|
Behavioral signatures of Y-like neuronal responses in human vision. Sci Rep 2022; 12:19116. [PMID: 36352245 PMCID: PMC9646870 DOI: 10.1038/s41598-022-23293-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/29/2022] [Indexed: 11/11/2022] Open
Abstract
Retinal ganglion cells initiating the magnocellular/Y-cell visual pathways respond nonlinearly to high spatial frequencies (SFs) and temporal frequencies (TFs). This nonlinearity is implicated in the processing of contrast modulation (CM) stimuli in cats and monkeys, but its contribution to human visual perception is not well understood. Here, we evaluate human psychophysical performance for CM stimuli, consisting of a high SF grating carrier whose contrast is modulated by a low SF sinewave envelope. Subjects reported the direction of motion of CM envelopes or luminance modulation (LM) gratings at different eccentricities. The performance on SF (for LMs) or carrier SF (for CMs) was measured for different TFs (LMs) or carrier TFs (CMs). The best performance for LMs was at lower TFs and SFs, decreasing systematically with eccentricity. However, performance with CMs was bandpass with carrier SF, largely independent of carrier TF, and at the highest carrier TF (20 Hz) decreased minimally with eccentricity. Since the nonlinear subunits of Y-cells respond better at higher TFs compared to the linear response components and respond best at higher SFs that are relatively independent of eccentricity, these results suggest that behavioral tasks employing CM stimuli might reveal nonlinear contributions of retinal Y-like cells to human perception.
Collapse
|
7
|
Baldicano AK, Nasir-Ahmad S, Novelli M, Lee SCS, Do MTH, Martin PR, Grünert U. Retinal ganglion cells expressing CaM kinase II in human and nonhuman primates. J Comp Neurol 2022; 530:1470-1493. [PMID: 35029299 PMCID: PMC9010361 DOI: 10.1002/cne.25292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/07/2022]
Abstract
Immunoreactivity for calcium-/calmodulin-dependent protein kinase II (CaMKII) in the primate dorsal lateral geniculate nucleus (dLGN) has been attributed to geniculocortical relay neurons and has also been suggested to arise from terminals of retinal ganglion cells. Here, we combined immunostaining with single-cell injections to investigate the expression of CaMKII in retinal ganglion cells of three primate species: macaque (Macaca fascicularis, M. nemestrina), human, and marmoset (Callithrix jacchus). We found that in all species, about 2%-10% of the total ganglion cell population expressed CaMKII. In all species, CaMKII was expressed by multiple types of wide-field ganglion cell including large sparse, giant sparse (melanopsin-expressing), broad thorny, and narrow thorny cells. Three other ganglion cells types, namely, inner and outer stratifying maze cells in macaque and tufted cells in marmoset were also found. Double labeling experiments showed that CaMKII-expressing cells included inner and outer stratifying melanopsin cells. Nearly all CaMKII-expressing ganglion cell types identified here are known to project to the koniocellular layers of the dLGN as well as to the superior colliculus. The best characterized koniocellular projecting cell type-the small bistratified (blue ON/yellow OFF) cell-was, however, not CaMKII-positive in any species. Our results indicate that the pattern of CaMKII expression in retinal ganglion cells is largely conserved across different species of primate suggesting a common functional role. But the results also show that CaMKII is not a marker for all koniocellular projecting retinal ganglion cells.
Collapse
Affiliation(s)
- Alyssa K Baldicano
- Save Sight Institute and Discipline of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Subha Nasir-Ahmad
- Save Sight Institute and Discipline of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, NSW, 2000, Australia
| | - Mario Novelli
- Save Sight Institute and Discipline of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Sammy C S Lee
- Save Sight Institute and Discipline of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, NSW, 2000, Australia
| | - Michael Tri H Do
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Paul R Martin
- Save Sight Institute and Discipline of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, NSW, 2000, Australia
| | - Ulrike Grünert
- Save Sight Institute and Discipline of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, NSW, 2000, Australia
| |
Collapse
|
8
|
Kim YJ, Peterson BB, Crook JD, Joo HR, Wu J, Puller C, Robinson FR, Gamlin PD, Yau KW, Viana F, Troy JB, Smith RG, Packer OS, Detwiler PB, Dacey DM. Origins of direction selectivity in the primate retina. Nat Commun 2022; 13:2862. [PMID: 35606344 PMCID: PMC9126974 DOI: 10.1038/s41467-022-30405-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/27/2022] [Indexed: 12/22/2022] Open
Abstract
From mouse to primate, there is a striking discontinuity in our current understanding of the neural coding of motion direction. In non-primate mammals, directionally selective cell types and circuits are a signature feature of the retina, situated at the earliest stage of the visual process. In primates, by contrast, direction selectivity is a hallmark of motion processing areas in visual cortex, but has not been found in the retina, despite significant effort. Here we combined functional recordings of light-evoked responses and connectomic reconstruction to identify diverse direction-selective cell types in the macaque monkey retina with distinctive physiological properties and synaptic motifs. This circuitry includes an ON-OFF ganglion cell type, a spiking, ON-OFF polyaxonal amacrine cell and the starburst amacrine cell, all of which show direction selectivity. Moreover, we discovered that macaque starburst cells possess a strong, non-GABAergic, antagonistic surround mediated by input from excitatory bipolar cells that is critical for the generation of radial motion sensitivity in these cells. Our findings open a door to investigation of a precortical circuitry that computes motion direction in the primate visual system.
Collapse
Affiliation(s)
- Yeon Jin Kim
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Beth B Peterson
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Joanna D Crook
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Hannah R Joo
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Jiajia Wu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Christian Puller
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Farrel R Robinson
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
- Washington National Primate Research Center, Seattle, WA, 98195, USA
| | - Paul D Gamlin
- Department of Ophthalmology and Vision Sciences, University of Alabama at Birmingham, Birmingham, AL, 35294-4390, USA
| | - King-Wai Yau
- Departments of Neuroscience and Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205-2185, USA
| | - Felix Viana
- Institute of Neuroscience, UMH-CSIC, San Juan de Alicante, 03550, Spain
| | - John B Troy
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Robert G Smith
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Orin S Packer
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Peter B Detwiler
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Dennis M Dacey
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA.
- Washington National Primate Research Center, Seattle, WA, 98195, USA.
| |
Collapse
|
9
|
Nasir-Ahmad S, Vanstone KA, Novelli M, Lee SCS, Do MTH, Martin PR, Grünert U. Satb1 expression in retinal ganglion cells of marmosets, macaques, and humans. J Comp Neurol 2022; 530:923-940. [PMID: 34622958 PMCID: PMC8831458 DOI: 10.1002/cne.25258] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/18/2022]
Abstract
Recent advances in single-cell RNA sequencing have enabled the molecular distinction of ganglion cell populations in mammalian retinas. Here we used antibodies against the transcription factor special AT-rich binding protein 1 (Satb1, a protein which is expressed by on-off direction-selective ganglion cells in mouse retina) to study Satb1 expression in the retina of marmosets (Callithrix jacchus), macaques (Macaca fascicularis), and humans. In all species, Satb1 was exclusively expressed in retinal ganglion cells. The Satb1 cells made up ∼2% of the ganglion cell population in the central retina of all species, rising to a maximum ∼7% in peripheral marmoset retina. Intracellular injections in marmoset and macaque retinas revealed that most Satb1 expressing ganglion cells are widefield ganglion cells. In marmoset, Satb1 cells have a densely branching dendritic tree and include broad and narrow thorny, recursive bistratified, and parasol cells, all of which show some costratification with the outer or inner cholinergic amacrine cells. The recursive bistratified cells showed the strongest costratification but did not show extensive cofasciculation as reported for on-off direction-selective ganglion cells in rabbit and rodent retinas. In macaque, Satb1 was not expressed in recursive bistratified cells, but in large sparsely branching cells. Our findings further support the idea that the expression of transcription factors in retinal ganglion cells is not conserved across Old World (human and macaque) and New World (marmoset) primates and provides a further step to link a molecular marker with specific cell types.
Collapse
Affiliation(s)
- Subha Nasir-Ahmad
- Faculty of Medicine and Health, Save Sight Institute, and Discipline of Ophthalmology, The University of Sydney, Sydney, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, Australia
| | - Kurt A Vanstone
- Faculty of Medicine and Health, Save Sight Institute, and Discipline of Ophthalmology, The University of Sydney, Sydney, Australia
| | - Mario Novelli
- Faculty of Medicine and Health, Save Sight Institute, and Discipline of Ophthalmology, The University of Sydney, Sydney, Australia
| | - Sammy C S Lee
- Faculty of Medicine and Health, Save Sight Institute, and Discipline of Ophthalmology, The University of Sydney, Sydney, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, Australia
| | - Michael Tri H Do
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Paul R Martin
- Faculty of Medicine and Health, Save Sight Institute, and Discipline of Ophthalmology, The University of Sydney, Sydney, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, Australia
| | - Ulrike Grünert
- Faculty of Medicine and Health, Save Sight Institute, and Discipline of Ophthalmology, The University of Sydney, Sydney, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, Australia
| |
Collapse
|
10
|
Dilbeck MD, Spahr ZR, Nanjappa R, Economides JR, Horton JC. Columnar and Laminar Segregation of Retinal Input to the Primate Superior Colliculus Revealed by Anterograde Tracer Injection Into Each Eye. Invest Ophthalmol Vis Sci 2022; 63:9. [PMID: 34994767 PMCID: PMC8742525 DOI: 10.1167/iovs.63.1.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Purpose After the lateral geniculate nucleus, the superior colliculus is the richest target of retinal projections in primates. Hubel et al. used tritium autoradiography to show that axon terminals emanating from one eye form irregular columns in the stratum griseum superficiale. Unlabeled gaps were thought to be filled by the other eye, but this assumption was never tested directly. Methods Experiments were performed in two normal macaques. In monkey 1, [3H]proline was injected into the left eye and the pattern of radiolabeling was examined in serial cross-sections through the entire superior colliculus. In monkey 2, cholera toxin subunit B conjugated to Alexa 488 was injected into the right eye and cholera toxin subunit B - Alexa 594 was injected into the left eye. The two fluorescent labels were compared in a reconstruction of the superior colliculus prepared from serial sections. Results In monkey 1, irregular columns of axon terminals were present in the superficial grey. The projection from the peripheral retina was stronger than the projection from the macula. In monkey 2, the two fluorescent Alexa tracers mainly interdigitated: a conspicuous gap in one label was usually filled by a clump of the other label. There was also partial laminar segregation of ocular inputs. In the far peripheral field representation, the contralateral eye's input generally terminated closer to the tectal surface. In the midperiphery the eyes switched, bringing the ipsilateral input nearer the surface. Conclusions Direct retinal input to the macaque superior colliculus is segregated into alternating columns and strata, despite the fact that tectal cells respond robustly to stimulation of either eye.
Collapse
Affiliation(s)
- Mikayla D Dilbeck
- Program in Neuroscience, Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
| | - Zachary R Spahr
- Program in Neuroscience, Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
| | - Rakesh Nanjappa
- Program in Neuroscience, Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
| | - John R Economides
- Program in Neuroscience, Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
| | - Jonathan C Horton
- Program in Neuroscience, Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
| |
Collapse
|
11
|
Grünert U, Martin PR. Morphology, Molecular Characterization, and Connections of Ganglion Cells in Primate Retina. Annu Rev Vis Sci 2021; 7:73-103. [PMID: 34524877 DOI: 10.1146/annurev-vision-100419-115801] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The eye sends information about the visual world to the brain on over 20 parallel signal pathways, each specialized to signal features such as spectral reflection (color), edges, and motion of objects in the environment. Each pathway is formed by the axons of a separate type of retinal output neuron (retinal ganglion cell). In this review, we summarize what is known about the excitatory retinal inputs, brain targets, and gene expression patterns of ganglion cells in humans and nonhuman primates. We describe how most ganglion cell types receive their input from only one or two of the 11 types of cone bipolar cell and project selectively to only one or two target regions in the brain. We also highlight how genetic methods are providing tools to characterize ganglion cells and establish cross-species homologies.
Collapse
Affiliation(s)
- Ulrike Grünert
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney NSW 2000, Australia; , .,Sydney Node, Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney NSW 2000, Australia
| | - Paul R Martin
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney NSW 2000, Australia; , .,Sydney Node, Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney NSW 2000, Australia
| |
Collapse
|
12
|
McCarty MJ, Brumback AC. Rethinking Stereotypies in Autism. Semin Pediatr Neurol 2021; 38:100897. [PMID: 34183141 PMCID: PMC8654322 DOI: 10.1016/j.spen.2021.100897] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 11/30/2022]
Abstract
Stereotyped movements ("stereotypies") are semi-voluntary repetitive movements that are a prominent clinical feature of autism spectrum disorder. They are described in first-person accounts by people with autism as relaxing and that they help focus the mind and cope in overwhelming sensory environments. Therefore, we generally recommend against techniques that aim to suppress stereotypies in individuals with autism. Further, we hypothesize that understanding the neurobiology of stereotypies could guide development of treatments to produce the benefits of stereotypies without the need to generate repetitive motor movements. Here, we link first-person reports and clinical findings with basic neuroanatomy and physiology to produce a testable model of stereotypies. We hypothesize that stereotypies improve sensory processing and attention by regulating brain rhythms, either directly from the rhythmic motor command, or via rhythmic sensory feedback generated by the movements.
Collapse
|
13
|
Grünert U, Lee SCS, Kwan WC, Mundinano IC, Bourne JA, Martin PR. Retinal ganglion cells projecting to superior colliculus and pulvinar in marmoset. Brain Struct Funct 2021; 226:2745-2762. [PMID: 34021395 DOI: 10.1007/s00429-021-02295-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/08/2021] [Indexed: 12/29/2022]
Abstract
We determined the retinal ganglion cell types projecting to the medial subdivision of inferior pulvinar (PIm) and the superior colliculus (SC) in the common marmoset monkey, Callithrix jacchus. Adult marmosets received a bidirectional tracer cocktail into the PIm (conjugated to Alexa fluor 488), and the SC (conjugated to Alexa fluor 594) using an MRI-guided approach. One SC injection included the pretectum. The large majority of retrogradely labelled cells were obtained from SC injections, with only a small proportion obtained after PIm injections. Retrogradely labelled cells were injected intracellularly in vitro using lipophilic dyes (DiI, DiO). The SC and PIm both received input from a variety of ganglion cell types. Input to the PIm was dominated by broad thorny (41%), narrow thorny (24%) and large bistratified (25%) ganglion cells. Input to the SC was dominated by parasol (37%), broad thorny (24%) and narrow thorny (17%) cells. Midget ganglion cells (which make up the large majority of primate retinal ganglion cells) and small bistratified (blue-ON/yellow OFF) cells were never observed to project to SC or PIm. Small numbers of other wide-field ganglion cell types were also encountered. Giant sparse (presumed melanopsin-expressing) cells were only seen following the tracer injection which included the pretectum. We note that despite the location of pulvinar complex in dorsal thalamus, and its increased size and functional importance in primate evolution, the retinal projections to pulvinar have more in common with SC projections than they do with projections to the dorsal lateral geniculate nucleus.
Collapse
Affiliation(s)
- Ulrike Grünert
- Save Sight Institute, Discipline of Clinical Ophthalmology, Sydney Medical School, The University of Sydney, 8 Macquarie Street, Sydney, NSW, 2000, Australia.
- Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, NSW, 2000, Australia.
| | - Sammy C S Lee
- Save Sight Institute, Discipline of Clinical Ophthalmology, Sydney Medical School, The University of Sydney, 8 Macquarie Street, Sydney, NSW, 2000, Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, NSW, 2000, Australia
| | - William C Kwan
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | | | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Paul R Martin
- Save Sight Institute, Discipline of Clinical Ophthalmology, Sydney Medical School, The University of Sydney, 8 Macquarie Street, Sydney, NSW, 2000, Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, NSW, 2000, Australia
| |
Collapse
|
14
|
Kim US, Mahroo OA, Mollon JD, Yu-Wai-Man P. Retinal Ganglion Cells-Diversity of Cell Types and Clinical Relevance. Front Neurol 2021; 12:661938. [PMID: 34093409 PMCID: PMC8175861 DOI: 10.3389/fneur.2021.661938] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/06/2021] [Indexed: 11/24/2022] Open
Abstract
Retinal ganglion cells (RGCs) are the bridging neurons that connect the retinal input to the visual processing centres within the central nervous system. There is a remarkable diversity of RGCs and the various subtypes have unique morphological features, distinct functions, and characteristic pathways linking the inner retina to the relevant brain areas. A number of psychophysical and electrophysiological tests have been refined to investigate this large and varied population of RGCs. Technological advances, such as high-resolution optical coherence tomography imaging, have provided additional tools to define the pattern of RGC involvement and the chronological sequence of events in both inherited and acquired optic neuropathies. The mechanistic insights gained from these studies, in particular the selective vulnerability and relative resilience of particular RGC subtypes, are of fundamental importance as they are directly relevant to the development of targeted therapies for these invariably progressive blinding diseases. This review provides a comprehensive description of the various types of RGCs, the developments in proposed methods of classification, and the current gaps in our knowledge of how these RGCs are differentially affected depending on the underlying aetiology. The synthesis of the current body of knowledge on the diversity of RGCs and the pathways that are potentially amenable to therapeutic modulation will hopefully lead to much needed effective treatments for patients with optic neuropathies.
Collapse
Affiliation(s)
- Ungsoo Samuel Kim
- Kim's Eye Hospital, Seoul, South Korea
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- *Correspondence: Ungsoo Samuel Kim
| | - Omar A. Mahroo
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
- Section of Ophthalmology, King's College London, St. Thomas' Hospital Campus, London, United Kingdom
| | - John D. Mollon
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Patrick Yu-Wai-Man
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
15
|
Solomon SG. Retinal ganglion cells and the magnocellular, parvocellular, and koniocellular subcortical visual pathways from the eye to the brain. HANDBOOK OF CLINICAL NEUROLOGY 2021; 178:31-50. [PMID: 33832683 DOI: 10.1016/b978-0-12-821377-3.00018-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
In primates including humans, most retinal ganglion cells send signals to the lateral geniculate nucleus (LGN) of the thalamus. The anatomical and functional properties of the two major pathways through the LGN, the parvocellular (P) and magnocellular (M) pathways, are now well understood. Neurones in these pathways appear to convey a filtered version of the retinal image to primary visual cortex for further analysis. The properties of the P-pathway suggest it is important for high spatial acuity and red-green color vision, while those of the M-pathway suggest it is important for achromatic visual sensitivity and motion vision. Recent work has sharpened our understanding of how these properties are built in the retina, and described subtle but important nonlinearities that shape the signals that cortex receives. In addition to the P- and M-pathways, other retinal ganglion cells also project to the LGN. These ganglion cells are larger than those in the P- and M-pathways, have different retinal connectivity, and project to distinct regions of the LGN, together forming heterogenous koniocellular (K) pathways. Recent work has started to reveal the properties of these K-pathways, in the retina and in the LGN. The functional properties of K-pathways are more complex than those in the P- and M-pathways, and the K-pathways are likely to have a distinct contribution to vision. They provide a complementary pathway to the primary visual cortex, but can also send signals directly to extrastriate visual cortex. At the level of the LGN, many neurones in the K-pathways seem to integrate retinal with non-retinal inputs, and some may provide an early site of binocular convergence.
Collapse
Affiliation(s)
- Samuel G Solomon
- Department of Experimental Psychology, University College London, London, United Kingdom.
| |
Collapse
|
16
|
Patterson SS, Bordt AS, Girresch RJ, Linehan CM, Bauss J, Yeo E, Perez D, Tseng L, Navuluri S, Harris NB, Matthews C, Anderson JR, Kuchenbecker JA, Manookin MB, Ogilvie JM, Neitz J, Marshak DW. Wide-field amacrine cell inputs to ON parasol ganglion cells in macaque retina. J Comp Neurol 2020; 528:1588-1598. [PMID: 31845339 PMCID: PMC7153979 DOI: 10.1002/cne.24840] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/31/2019] [Accepted: 11/24/2019] [Indexed: 11/07/2022]
Abstract
Parasol cells are one of the major types of primate retinal ganglion cells. The goal of this study was to describe the synaptic inputs that shape the light responses of the ON type of parasol cells, which are excited by increments in light intensity. A connectome from central macaque retina was generated by serial blockface scanning electron microscopy. Six neighboring ON parasol cells were reconstructed, and their synaptic inputs were analyzed. On average, they received 21% of their input from bipolar cells, excitatory local circuit neurons receiving input from cones. The majority of their input was from amacrine cells, local circuit neurons of the inner retina that are typically inhibitory. Their contributions to the neural circuit providing input to parasol cells are not well-understood, and the focus of this study was on the presynaptic wide-field amacrine cells, which provided 17% of the input to ON parasol cells. These are GABAergic amacrine cells with long, relatively straight dendrites, and sometimes also axons, that run in a single, narrow stratum of the inner plexiform layer. The presynaptic wide-field amacrine cells were reconstructed, and two types were identified based on their characteristic morphology. One presynaptic amacrine cell was identified as semilunar type 2, a polyaxonal cell that is electrically coupled to ON parasol cells. A second amacrine was identified as wiry type 2, a type known to be sensitive to motion. These inputs likely make ON parasol cells more sensitive to stimuli that are rapidly changing outside their classical receptive fields.
Collapse
Affiliation(s)
- Sara S Patterson
- Department of Ophthalmology, University of Washington, Seattle, Washington
- Neuroscience Graduate Program, University of Washington, Seattle, Washington
| | - Andrea S Bordt
- Department of Neurobiology & Anatomy, McGovern Medical School, Houston, Texas
| | | | - Conor M Linehan
- Department of Ophthalmology, University of Washington, Seattle, Washington
| | - Jacob Bauss
- Department of Biology, Saint Louis University, Saint Louis, Missouri
| | - Eunice Yeo
- Department of Biology, Saint Louis University, Saint Louis, Missouri
| | - Diego Perez
- Department of Neurobiology & Anatomy, McGovern Medical School, Houston, Texas
| | - Luke Tseng
- Department of Neurobiology & Anatomy, McGovern Medical School, Houston, Texas
| | - Sriram Navuluri
- Department of Neurobiology & Anatomy, McGovern Medical School, Houston, Texas
| | - Nicole B Harris
- Department of Neurobiology & Anatomy, McGovern Medical School, Houston, Texas
| | - Chaiss Matthews
- Department of Neurobiology & Anatomy, McGovern Medical School, Houston, Texas
| | - James R Anderson
- John A. Moran Eye Center, University of Utah, Salt Lake City, Utah
| | | | - Michael B Manookin
- Department of Ophthalmology, University of Washington, Seattle, Washington
| | - Judith M Ogilvie
- Department of Biology, Saint Louis University, Saint Louis, Missouri
| | - Jay Neitz
- Department of Ophthalmology, University of Washington, Seattle, Washington
| | - David W Marshak
- Department of Neurobiology & Anatomy, McGovern Medical School, Houston, Texas
| |
Collapse
|
17
|
Appleby TR, Manookin MB. Selectivity to approaching motion in retinal inputs to the dorsal visual pathway. eLife 2020; 9:e51144. [PMID: 32091390 PMCID: PMC7080407 DOI: 10.7554/elife.51144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/18/2020] [Indexed: 11/13/2022] Open
Abstract
To efficiently navigate through the environment and avoid potential threats, an animal must quickly detect the motion of approaching objects. Current models of primate vision place the origins of this complex computation in the visual cortex. Here, we report that detection of approaching motion begins in the retina. Several ganglion cell types, the retinal output neurons, show selectivity to approaching motion. Synaptic current recordings from these cells further reveal that this preference for approaching motion arises in the interplay between presynaptic excitatory and inhibitory circuit elements. These findings demonstrate how excitatory and inhibitory circuits interact to mediate an ethologically relevant neural function. Moreover, the elementary computations that detect approaching motion begin early in the visual stream of primates.
Collapse
Affiliation(s)
- Todd R Appleby
- Graduate Program in Neuroscience, University of WashingtonSeattleUnited States
- Department of Ophthalmology, University of WashingtonSeattleUnited States
- Vision Science Center, University of WashingtonSeattleUnited States
| | - Michael B Manookin
- Department of Ophthalmology, University of WashingtonSeattleUnited States
- Vision Science Center, University of WashingtonSeattleUnited States
| |
Collapse
|
18
|
Abdullah SN, Sanderson GF, Husni MA, Maddess T. Insights for mfVEPs from perimetry using large spatial frequency-doubling and near frequency-doubling stimuli in glaucoma. Doc Ophthalmol 2020; 141:45-55. [PMID: 32034583 DOI: 10.1007/s10633-020-09750-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/16/2020] [Indexed: 10/25/2022]
Abstract
PURPOSE To compare two forms of perimetry that use large contrast-modulated grating stimuli in terms of: their relative diagnostic power, their independent diagnostic information about glaucoma and their utility for mfVEPs. We evaluated a contrast-threshold mfVEP in normal controls using the same stimuli as one of the tests. METHODS We measured psychophysical contrast thresholds in one eye of 16 control subjects and 19 patients aged 67.8 ± 5.65 and 71.9 ± 7.15, respectively, (mean ± SD). Patients ranged in disease severity from suspects to severe glaucoma. We used the 17-region FDT-perimeter C20-threshold program and a custom 9-region test (R9) with similar visual field coverage. The R9 stimuli scaled their spatial frequencies with eccentricity and were modulated at lower temporal frequencies than C20 and thus did not display a clear spatial frequency-doubling (FD) appearance. Based on the overlapping areas of the stimuli, we transformed the C20 results to 9 measures for direct comparison with R9. We also compared mfVEP-based and psychophysical contrast thresholds in 26 younger (26.6 ± 7.3 y, mean ± SD) and 20 older normal control subjects (66.5 ± 7.3 y) control subjects using the R9 stimuli. RESULTS The best intraclass correlations between R9/C20 thresholds were for the central and outer regions: 0.82 ± 0.05 (mean ± SD, p ≤ 0.0001). The areas under receiver operator characteristic plots for C20 and R9 were as high as 0.99 ± 0.012 (mean ± SE). Canonical correlation analysis (CCA) showed significant correlation (r = 0.638, p = 0.029) with 1 dimension of the C20 and R9 data, suggesting that the lower and higher temporal frequency tests probed the same neural mechanism(s). Low signal quality made the contrast-threshold mfVEPs non-viable. The resulting mfVEP thresholds were limited by noise to artificially high contrasts, which unlike the psychophysical versions, were not correlated with age. CONCLUSION The lower temporal frequency R9 stimuli had similar diagnostic power to the FDT-C20 stimuli. CCA indicated the both stimuli drove similar neural mechanisms, possibly suggesting no advantage of FD stimuli for mfVEPs. Given that the contrast-threshold mfVEPs were non-viable, we used the present and published results to make recommendations for future mfVEP tests.
Collapse
Affiliation(s)
- Siti Nurliyana Abdullah
- Orthoptic Unit, Eye Centre, RIPAS Hospital, Jalan Putera Al-Muhtadee Billah, Bandar Seri Begawan, BA 1710, Brunei Darussalam.,Eccles Institute for Neuroscience, John Curtin School of Medical Research (Bldg 131), Australian National University, Canberra, ACT, 2601, Australia
| | - Gordon F Sanderson
- Ophthalmology Section, Department of Medicine, Otago University, Dunedin, New Zealand
| | - Mohd Aziz Husni
- Department of Ophthalmology, Hospital Selayang, 68100, Batu Caves, Selangor, Darul Ehsan, Malaysia
| | - Ted Maddess
- Eccles Institute for Neuroscience, John Curtin School of Medical Research (Bldg 131), Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
19
|
Grünert U, Martin PR. Cell types and cell circuits in human and non-human primate retina. Prog Retin Eye Res 2020; 78:100844. [PMID: 32032773 DOI: 10.1016/j.preteyeres.2020.100844] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 12/12/2022]
Abstract
This review summarizes our current knowledge of primate including human retina focusing on bipolar, amacrine and ganglion cells and their connectivity. We have two main motivations in writing. Firstly, recent progress in non-invasive imaging methods to study retinal diseases mean that better understanding of the primate retina is becoming an important goal both for basic and for clinical sciences. Secondly, genetically modified mice are increasingly used as animal models for human retinal diseases. Thus, it is important to understand to which extent the retinas of primates and rodents are comparable. We first compare cell populations in primate and rodent retinas, with emphasis on how the fovea (despite its small size) dominates the neural landscape of primate retina. We next summarise what is known, and what is not known, about the postreceptoral neurone populations in primate retina. The inventories of bipolar and ganglion cells in primates are now nearing completion, comprising ~12 types of bipolar cell and at least 17 types of ganglion cell. Primate ganglion cells show clear differences in dendritic field size across the retina, and their morphology differs clearly from that of mouse retinal ganglion cells. Compared to bipolar and ganglion cells, amacrine cells show even higher morphological diversity: they could comprise over 40 types. Many amacrine types appear conserved between primates and mice, but functions of only a few types are understood in any primate or non-primate retina. Amacrine cells appear as the final frontier for retinal research in monkeys and mice alike.
Collapse
Affiliation(s)
- Ulrike Grünert
- The University of Sydney, Save Sight Institute, Faculty of Medicine and Health, Sydney, NSW, 2000, Australia; Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, NSW, 2000, Australia.
| | - Paul R Martin
- The University of Sydney, Save Sight Institute, Faculty of Medicine and Health, Sydney, NSW, 2000, Australia; Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, NSW, 2000, Australia
| |
Collapse
|
20
|
Schiavi C, Finzi A, Cellini M. Steady-State Pattern Electroretinogram and Frequency Doubling Technology in Adult Dyslexic Readers. Clin Ophthalmol 2019; 13:2451-2459. [PMID: 31849443 PMCID: PMC6912011 DOI: 10.2147/opth.s229898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 11/27/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose Dyslexia is a reading disorder with neurological deficit of the magnocellular pathway. The aim of our study was to evaluate the functionality of the magnocellular-Y (M-Y) retinal ganglion cells in adult dyslexic subjects using steady-state pattern electroretinogram and frequency doubling perimetry. Methods Ten patients with dyslexia (7 females and 3 males), mean age 28.7 ± 5.9 years, and 10 subjects without dyslexia (6 females and 4 males), mean age 27.8 ± 4.1 years, were enrolled in the study and underwent both steady-state pattern-electroretinogram examination and frequency doubling perimetry. Results There was a significant difference in the amplitude of the steady-state pattern electroretinogram of the dyslexic group and the healthy controls (0.610±0.110 μV vs 1.250±0.296 μV; p=0.0001). Furthermore, in the dyslexic group we found a significant difference between the right eye and the left eye (0.671±0.11 μV vs 0.559±0.15 μV; p=0.001). With frequency doubling perimetry, the pattern standard deviation index increased in dyslexic eyes compared to healthy controls (4.40±0.81 dB vs 2.99±0.35 dB; p=0.0001) and in the left eye versus the right eye of the dyslexic group (4.43±1.10 dB vs 3.66±0.96 dB; p=0.031). There was a correlation between the reduction in the wave amplitude of the pattern electroretinogram and the simultaneous increase in the pattern standard deviation values (r=0.80; p=0.001). This correlation was also found to be present in the left eye (r=0.93; p<0.001) and the right eye (r=0.81; p=0.005) of dyslexic subjects. Conclusion Our study shows that there was an alteration of the activity of M-Y retinal ganglion cells, especially in the left eye. It confirms that in dyslexia there is a deficit of visual attention with damage not only of the magnocellular-dorsal pathway but also of the M-Y retinal ganglion cells.
Collapse
Affiliation(s)
- Costantino Schiavi
- Department of Experimental, Diagnostic, and Specialty Medicine, Ophthalmology Service, University of Bologna, Bologna 40138, Italy
| | - Alessandro Finzi
- Department of Experimental, Diagnostic, and Specialty Medicine, Ophthalmology Service, University of Bologna, Bologna 40138, Italy
| | - Mauro Cellini
- Department of Experimental, Diagnostic, and Specialty Medicine, Ophthalmology Service, University of Bologna, Bologna 40138, Italy
| |
Collapse
|
21
|
Soto F, Tien NW, Goel A, Zhao L, Ruzycki PA, Kerschensteiner D. AMIGO2 Scales Dendrite Arbors in the Retina. Cell Rep 2019; 29:1568-1578.e4. [PMID: 31693896 PMCID: PMC6871773 DOI: 10.1016/j.celrep.2019.09.085] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/21/2019] [Accepted: 09/27/2019] [Indexed: 12/24/2022] Open
Abstract
The size of dendrite arbors shapes their function and differs vastly between neuron types. The signals that control dendritic arbor size remain obscure. Here, we find that in the retina, starburst amacrine cells (SACs) and rod bipolar cells (RBCs) express the homophilic cell-surface protein AMIGO2. In Amigo2 knockout (KO) mice, SAC and RBC dendrites expand while arbors of other retinal neurons remain stable. SAC dendrites are divided into a central input region and a peripheral output region that provides asymmetric inhibition to direction-selective ganglion cells (DSGCs). Input and output compartments scale precisely with increased arbor size in Amigo2 KO mice, and SAC dendrites maintain asymmetric connectivity with DSGCs. Increased coverage of SAC dendrites is accompanied by increased direction selectivity of DSGCs without changes to other ganglion cells. Our results identify AMIGO2 as a cell-type-specific dendritic scaling factor and link dendrite size and coverage to visual feature detection.
Collapse
Affiliation(s)
- Florentina Soto
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Nai-Wen Tien
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA; Graduate Program in Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Anurag Goel
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Lei Zhao
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Philip A Ruzycki
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Daniel Kerschensteiner
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
22
|
Abstract
In most neurons, all spikes look alike. However, in this issue of Neuron, Rhoades et al. (2019) describe a ganglion cell in primate retina that reports visual input to different regions of its receptive field with distinct action potential waveforms.
Collapse
|
23
|
Rhoades CE, Shah NP, Manookin MB, Brackbill N, Kling A, Goetz G, Sher A, Litke AM, Chichilnisky EJ. Unusual Physiological Properties of Smooth Monostratified Ganglion Cell Types in Primate Retina. Neuron 2019; 103:658-672.e6. [PMID: 31227309 PMCID: PMC6817368 DOI: 10.1016/j.neuron.2019.05.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/26/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023]
Abstract
The functions of the diverse retinal ganglion cell types in primates and the parallel visual pathways they initiate remain poorly understood. Here, unusual physiological and computational properties of the ON and OFF smooth monostratified ganglion cells are explored. Large-scale multi-electrode recordings from 48 macaque retinas revealed that these cells exhibit irregular receptive field structure composed of spatially segregated hotspots, quite different from the classic center-surround model of retinal receptive fields. Surprisingly, visual stimulation of different hotspots in the same cell produced spikes with subtly different spatiotemporal voltage signatures, consistent with a dendritic contribution to hotspot structure. Targeted visual stimulation and computational inference demonstrated strong nonlinear subunit properties associated with each hotspot, supporting a model in which the hotspots apply nonlinearities at a larger spatial scale than bipolar cells. These findings reveal a previously unreported nonlinear mechanism in the output of the primate retina that contributes to signaling spatial information.
Collapse
Affiliation(s)
- Colleen E Rhoades
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| | - Nishal P Shah
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Michael B Manookin
- Department of Ophthalmology, University of Washington, Seattle, WA 98195, USA
| | - Nora Brackbill
- Department of Physics, Stanford University, Stanford, CA 94305, USA
| | - Alexandra Kling
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA
| | - Georges Goetz
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA
| | - Alexander Sher
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Alan M Litke
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - E J Chichilnisky
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Department of Ophthalmology Stanford University, Stanford, CA 94305, USA; Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
24
|
Connectomic Identification and Three-Dimensional Color Tuning of S-OFF Midget Ganglion Cells in the Primate Retina. J Neurosci 2019; 39:7893-7909. [PMID: 31405926 DOI: 10.1523/jneurosci.0778-19.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/27/2019] [Accepted: 08/06/2019] [Indexed: 11/21/2022] Open
Abstract
In the trichromatic primate retina, the "midget" retinal ganglion cell is the classical substrate for red-green color signaling, with a circuitry that enables antagonistic responses between long (L)- and medium (M)-wavelength-sensitive cone inputs. Previous physiological studies showed that some OFF midget ganglion cells may receive sparse input from short (S)-wavelength-sensitive cones, but the effect of S-cone inputs on the chromatic tuning properties of such cells has not been explored. Moreover, anatomical evidence for a synaptic pathway from S cones to OFF midget ganglion cells through OFF midget bipolar cells remains ambiguous. In this study, we address both questions for the macaque monkey retina. First, we used serial block-face electron microscopy to show that every S cone in the parafoveal retina synapses principally with a single OFF midget bipolar cell, which in turn forms a private-line connection with an OFF midget ganglion cell. Second, we used patch electrophysiology to characterize the chromatic tuning of OFF midget ganglion cells in the near peripheral retina that receive combined input from L, M, and S cones. These "S-OFF" midget cells have a characteristic S-cone spatial signature, but demonstrate heterogeneous color properties due to the variable strength of L, M, and S cone input across the receptive field. Together, these findings strongly support the hypothesis that the OFF midget pathway is the major conduit for S-OFF signals in primate retina and redefines the pathway as a chromatically complex substrate that encodes color signals beyond the classically recognized L versus M and S versus L+M cardinal mechanisms.SIGNIFICANCE STATEMENT The first step of color processing in the visual pathway of primates occurs when signals from short (S)-, middle (M)-, and long (L)-wavelength-sensitive cone types interact antagonistically within the retinal circuitry to create color-opponent pathways. The midget (L versus M or "red-green") and small bistratified (S vs L+M, or "blue-yellow") ganglion cell pathways appear to provide the physiological origin of the cardinal axes of human color vision. Here we confirm the presence of an additional S-OFF midget circuit in the macaque monkey fovea with scanning block-face electron microscopy and show physiologically that a subpopulation of S-OFF midget cells combine S, L, and M cone inputs along noncardinal directions of color space, expanding the retinal role in color coding.
Collapse
|
25
|
Molecular Fingerprinting of On-Off Direction-Selective Retinal Ganglion Cells Across Species and Relevance to Primate Visual Circuits. J Neurosci 2018; 39:78-95. [PMID: 30377226 DOI: 10.1523/jneurosci.1784-18.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/08/2018] [Accepted: 10/23/2018] [Indexed: 12/27/2022] Open
Abstract
The ability to detect moving objects is an ethologically salient function. Direction-selective neurons have been identified in the retina, thalamus, and cortex of many species, but their homology has remained unclear. For instance, it is unknown whether direction-selective retinal ganglion cells (DSGCs) exist in primates and, if so, whether they are the equivalent to mouse and rabbit DSGCs. Here, we used a molecular/circuit approach in both sexes to address these issues. In mice, we identify the transcription factor Satb2 (special AT-rich sequence-binding protein 2) as a selective marker for three RGC types: On-Off DSGCs encoding motion in either the anterior or posterior direction, a newly identified type of Off-DSGC, and an Off-sustained RGC type. In rabbits, we find that expression of Satb2 is conserved in On-Off DSGCs; however, it has evolved to include On-Off DSGCs encoding upward and downward motion in addition to anterior and posterior motion. Next, we show that macaque RGCs express Satb2 most likely in a single type. We used rabies virus-based circuit-mapping tools to reveal the identity of macaque Satb2-RGCs and discovered that their dendritic arbors are relatively large and monostratified. Together, these data indicate Satb2-expressing On-Off DSGCs are likely not present in the primate retina. Moreover, if DSGCs are present in the primate retina, it is unlikely that they express Satb2.SIGNIFICANCE STATEMENT The ability to detect object motion is a fundamental feature of almost all visual systems. Here, we identify a novel marker for retinal ganglion cells encoding directional motion that is evolutionarily conserved in mice and rabbits, but not in primates. We show in macaque monkeys that retinal ganglion cells (RGCs) that express this marker comprise a single type and are morphologically distinct from mouse and rabbit direction-selective RGCs. Our findings indicate that On-Off direction-selective retinal neurons may have evolutionarily diverged in primates and more generally provide novel insight into the identity and organization of primate parallel visual pathways.
Collapse
|
26
|
Receptive Field Properties of Koniocellular On/Off Neurons in the Lateral Geniculate Nucleus of Marmoset Monkeys. J Neurosci 2018; 38:10384-10398. [PMID: 30327419 DOI: 10.1523/jneurosci.1679-18.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/12/2018] [Accepted: 10/04/2018] [Indexed: 11/21/2022] Open
Abstract
The koniocellular (K) layers of the primate dorsal lateral geniculate nucleus house a variety of visual receptive field types, not all of which have been fully characterized. Here we made single-cell recordings targeted to the K layers of diurnal New World monkeys (marmosets). A subset of recorded cells was excited by both increments and decrements of light intensity (on/off-cells). Histological reconstruction of the location of these cells confirmed that they are segregated to K layers; we therefore refer to these cells as K-on/off cells. The K-on/off cells show high contrast sensitivity, strong bandpass spatial frequency tuning, and their response magnitude is strongly reduced by stimuli larger than the excitatory receptive field (silent suppressive surrounds). Stationary counterphase gratings evoke unmodulated spike rate increases or frequency-doubled responses in K-on/off cells; such responses are largely independent of grating spatial phase. The K-on/off cells are not orientation or direction selective. Some (but not all) properties of K-on/off cells are consistent with those of local-edge-detector/impressed-by-contrast cells reported in studies of cat retina and geniculate, and broad-thorny ganglion cells recorded in macaque monkey retina. The receptive field properties of K-on/off cells and their preferential location in the ventral K layers (K1 and K2) make them good candidates for the direct projection from geniculate to extrastriate cortical area MT/V5. If so, they could contribute to visual information processing in the dorsal ("where" or "action") visual stream.SIGNIFICANCE STATEMENT We characterize cells in an evolutionary ancient part of the visual pathway in primates. The cells are located in the lateral geniculate nucleus (the main visual afferent relay nucleus), in regions called koniocellular layers that are known to project to extrastriate visual areas as well as primary visual cortex. The cells show high contrast sensitivity and rapid, transient responses to light onset and offset. Their properties suggest they could contribute to visual processing in the dorsal ("where" or "action") visual stream.
Collapse
|
27
|
Murphy-Baum BL, Taylor WR. Diverse inhibitory and excitatory mechanisms shape temporal tuning in transient OFF α ganglion cells in the rabbit retina. J Physiol 2018; 596:477-495. [PMID: 29222817 DOI: 10.1113/jp275195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/23/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Neurons combine excitatory and inhibitory signals to perform computations. In the retina, interactions between excitation and inhibition enable neurons to detect specific visual features. We describe how several excitatory and inhibitory mechanisms work together to allow transient OFF α ganglion cells in the rabbit retina to respond selectively to high temporal frequencies and thus detect faster image motion. The weightings of these different mechanisms change with the contrast and spatiotemporal properties of the visual input, and thereby support temporal tuning in α cells over a range of visual conditions. The results help us understand how ganglion cells selectively integrate excitatory and inhibitory signals to extract specific information from the visual input. ABSTRACT The 20 to 30 types of ganglion cell in the mammalian retina represent parallel signalling pathways that convey different information to the brain. α ganglion cells are selective for high temporal frequencies in visual inputs, which makes them particularly sensitive to rapid motion. Although α ganglion cells have been studied in several species, the synaptic basis for their selective temporal tuning remains unclear. Here, we analyse excitatory synaptic inputs to transient OFF α ganglion cells (t-OFF α GCs) in the rabbit retina. We show that convergence of excitatory and inhibitory synaptic inputs within the bipolar cell terminals presynaptic to the t-OFF α GCs shifts the temporal tuning to higher temporal frequencies. GABAergic inhibition suppresses the excitatory input at low frequencies, but potentiates it at high frequencies. Crossover glycinergic inhibition and sodium channel activity in the presynaptic bipolar cells also potentiate high frequency excitatory inputs. We found differences in the spatial and temporal properties, and contrast sensitivities of these mechanisms. These differences in stimulus selectivity allow these mechanisms to generate bandpass temporal tuning of t-OFF α GCs over a range of visual conditions.
Collapse
Affiliation(s)
- Benjamin L Murphy-Baum
- Casey Eye Institute, Department of Ophthalmology, Oregon Health and Science University, 3375 SW Terwilliger Boulevard, Portland, OR, 97239, USA
| | - W Rowland Taylor
- Casey Eye Institute, Department of Ophthalmology, Oregon Health and Science University, 3375 SW Terwilliger Boulevard, Portland, OR, 97239, USA
| |
Collapse
|
28
|
Takeshita D, Smeds L, Ala-Laurila P. Processing of single-photon responses in the mammalian On and Off retinal pathways at the sensitivity limit of vision. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0073. [PMID: 28193818 PMCID: PMC5312023 DOI: 10.1098/rstb.2016.0073] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2016] [Indexed: 12/21/2022] Open
Abstract
Visually guided behaviour at its sensitivity limit relies on single-photon responses originating in a small number of rod photoreceptors. For decades, researchers have debated the neural mechanisms and noise sources that underlie this striking sensitivity. To address this question, we need to understand the constraints arising from the retinal output signals provided by distinct retinal ganglion cell types. It has recently been shown in the primate retina that On and Off parasol ganglion cells, the cell types likely to underlie light detection at the absolute visual threshold, differ fundamentally not only in response polarity, but also in the way they handle single-photon responses originating in rods. The On pathway provides the brain with a thresholded, low-noise readout and the Off pathway with a noisy, linear readout. We outline the mechanistic basis of these different coding strategies and analyse their implications for detecting the weakest light signals. We show that high-fidelity, nonlinear signal processing in the On pathway comes with costs: more single-photon responses are lost and their propagation is delayed compared with the Off pathway. On the other hand, the responses of On ganglion cells allow better intensity discrimination compared with the Off ganglion cell responses near visual threshold. This article is part of the themed issue ‘Vision in dim light’.
Collapse
Affiliation(s)
- Daisuke Takeshita
- Department of Biosciences, University of Helsinki, PO Box 65, 00014 University of Helsinki, Finland
| | - Lina Smeds
- Department of Biosciences, University of Helsinki, PO Box 65, 00014 University of Helsinki, Finland
| | - Petri Ala-Laurila
- Department of Biosciences, University of Helsinki, PO Box 65, 00014 University of Helsinki, Finland .,Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, PO Box 12200, 00076 Aalto, Finland
| |
Collapse
|
29
|
Kóbor P, Petykó Z, Telkes I, Martin PR, Buzás P. Temporal properties of colour opponent receptive fields in the cat lateral geniculate nucleus. Eur J Neurosci 2017; 45:1368-1378. [PMID: 28391639 DOI: 10.1111/ejn.13574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 11/29/2022]
Abstract
The primordial form of mammalian colour vision relies on opponent interactions between inputs from just two cone types, 'blue' (S-) and 'green' (ML-) cones. We recently described the spatial receptive field structure of colour opponent blue-ON cells from the lateral geniculate nucleus of cats. Functional inputs from the opponent cone types were spatially coextensive and equally weighted, supporting their high chromatic and low achromatic sensitivity. Here, we studied relative cone weights, temporal frequency tuning and visual latency of cat blue-ON cells and non-opponent achromatic cells to temporally modulated cone-isolating and achromatic stimuli. We confirmed that blue-ON cells receive equally weighted antagonistic inputs from S- and ML-cones whereas achromatic cells receive exclusive ML-cone input. The temporal frequency tuning curves of S- and ML-cone inputs to blue-ON cells were tightly correlated between 1 and 48 Hz. Optimal temporal frequencies of blue-ON cells were around 3 Hz, whereas the frequency optimum of achromatic cells was close to 10 Hz. Most blue-ON cells showed negligible response to achromatic flicker across all frequencies tested. Latency to visual stimulation was significantly greater in blue-ON than in achromatic cells. The S- and ML-cone responses of blue-ON cells had on average, similar latencies to each other. Altogether, cat blue-ON cells showed remarkable balance of opponent cone inputs. Our results also confirm similarities to primate blue-ON cells suggesting that colour vision in mammals evolved on the basis of a sluggish pathway that is optimized for chromatic sensitivity at a wide range of spatial and temporal frequencies.
Collapse
Affiliation(s)
- Péter Kóbor
- Institute of Physiology, Medical School, University of Pécs, 7624, Pécs, Hungary.,Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Zoltán Petykó
- Institute of Physiology, Medical School, University of Pécs, 7624, Pécs, Hungary.,Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Ildikó Telkes
- Institute of Physiology, Medical School, University of Pécs, 7624, Pécs, Hungary.,Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Paul R Martin
- Australian Research Council Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia.,Save Sight Institute, University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Péter Buzás
- Institute of Physiology, Medical School, University of Pécs, 7624, Pécs, Hungary.,Centre for Neuroscience, University of Pécs, Pécs, Hungary
| |
Collapse
|
30
|
Masri RA, Percival KA, Koizumi A, Martin PR, Grünert U. Survey of retinal ganglion cell morphology in marmoset. J Comp Neurol 2017; 527:236-258. [PMID: 27997691 DOI: 10.1002/cne.24157] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/09/2016] [Accepted: 11/09/2016] [Indexed: 01/05/2023]
Abstract
In primate retina, the midget, parasol, and small bistratified cell populations form the large majority of ganglion cells. In addition, there is a variety of low-density wide-field ganglion cell types that are less well characterized. Here we studied retinal ganglion cells in the common marmoset, Callithrix jacchus, using particle-mediated gene transfer. Ganglion cells were transfected with an expression plasmid for the postsynaptic density 95-green fluorescent protein. The retinas were processed with established immunohistochemical markers for bipolar and/or amacrine cells to determine ganglion cell dendritic stratification. In total over 500 ganglion cells were classified based on their dendritic field size, morphology, and stratification in the inner plexiform layer. Over 17 types were distinguished, including midget, parasol, broad thorny, small bistratified, large bistratified, recursive bistratified, recursive monostratified, narrow thorny, smooth monostratified, large sparse, giant sparse (melanopsin) ganglion cells, and a group that may contain several as yet uncharacterized types. Assuming each characterized type forms a hexagonal mosaic, the midget and parasol cells account for over 80% of all ganglion cells in the central retina but only ∼50% of cells in the peripheral (>2 mm) retina. We conclude that the fovea is dominated by midget and parasol cells, but outside the fovea the ganglion cell diversity in marmoset is likely as great as that reported for nonprimate retinas. Taken together, the ganglion cell types in marmoset retina resemble those described previously in macaque retina with respect to morphology, stratification, and change in proportion across the retina.
Collapse
Affiliation(s)
- Rania A Masri
- Save Sight Institute and Department of Clinical Ophthalmology, The University of Sydney, Sydney, New South Wales, Australia
| | - Kumiko A Percival
- Save Sight Institute and Department of Clinical Ophthalmology, The University of Sydney, Sydney, New South Wales, Australia
| | - Amane Koizumi
- National Institutes of Natural Sciences, Tokyo, Japan
| | - Paul R Martin
- Save Sight Institute and Department of Clinical Ophthalmology, The University of Sydney, Sydney, New South Wales, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, New South Wales, Australia.,School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Ulrike Grünert
- Save Sight Institute and Department of Clinical Ophthalmology, The University of Sydney, Sydney, New South Wales, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, New South Wales, Australia.,School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
31
|
Takahashi G, Demirel S, Johnson CA. Predicting conversion to glaucoma using standard automated perimetry and frequency doubling technology. Graefes Arch Clin Exp Ophthalmol 2017; 255:797-803. [PMID: 28110356 DOI: 10.1007/s00417-016-3573-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/12/2016] [Accepted: 12/22/2016] [Indexed: 11/25/2022] Open
Abstract
PURPOSE To test the hypothesis that development of glaucomatous visual fields can be predicted several years earlier from prior visual field information. METHODS One-hundred and seven eyes with glaucomatous optic neuropathy (n = 47 eyes) or which were suspicious for glaucoma (n = 60) were prospectively enrolled in a longitudinal study. Visual fields were evaluated on an annual basis using standard automated perimetry (SAP), the original version of frequency doubling technology (FDT) perimetry, and a custom version of FDT that used the 24-2 stimulus pattern. All SAP fields were within normal limits at the initial visit. When the SAP glaucoma hemifield test was 'outside normal limits' or the pattern standard deviation probability was worse than the lower 5th percentile or more than two clustered locations at the p < 0.05 level were present on the pattern deviation probability plot, an eye was defined as being abnormal. We used a classification tree analysis to predict which eyes would convert, using only baseline test results. RESULTS Classification trees that were constructed using only baseline data had excellent specificity (near 100%) but worse sensitivity (25-50%) for predicting which eyes would convert during follow-up. CONCLUSIONS Predictive information is present in visual field results, even when they are still within normal limits.
Collapse
Affiliation(s)
- Genichiro Takahashi
- Department of Ophthalmology, Jikei University, School of Medicine, Katsushika Medical Center, Tokyo, Japan
| | - Shaban Demirel
- Discoveries in Sight Research Labs, Devers Eye Institute, Portland, OR, USA
| | - Chris A Johnson
- Department of Ophthalmology and Visual Sciences, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242-1091, USA.
| |
Collapse
|
32
|
Schiavi C, Tassi F, Finzi A, Strobbe E, Cellini M. Steady-state pattern electroretinogram and frequency doubling technology in anisometropic amblyopia. Clin Ophthalmol 2016; 10:2061-2068. [PMID: 27799733 PMCID: PMC5077269 DOI: 10.2147/opth.s117803] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background Steady-state pattern electroretinogram (PERG) and frequency doubling technology (FDT) perimetry can be used to selectively investigate the activity of the M-Y ganglion cells in adult anisometropic amblyopes. Methods Fifteen normal subjects (mean 27.8±4.1 years) and 15 adults with anisometropic amblyopia (mean 28.7±5.9 years) were analyzed using steady-state PERG and FDT. Results The amplitude of steady-state PERG was significantly different not only among the control group and both the amblyopic eye (P=0.0001) and the sound eye group (P=0.0001), but also between the latter two groups (P=0.006). The difference in FDT mean deviation was statistically significant not only between the control group and amblyopic eye group (P=0.0002), but also between the control group and the sound eye group (P=0.0009). The FDT pattern standard deviation was significantly higher in the control group rather than in the amblyopic eye (P=0.0001) or the sound eye group (P=0.0001). A correlation was found between the reduction in PERG amplitude and the increase in FDT-pattern standard deviation index not only in amblyopic (P=0.0025) and sound (P=0.0023) eyes, but also in the healthy control group (P=0.0001). Conclusion These data demonstrate that in anisometropic amblyopia, there is an abnormal functionality of a subgroup of the magnocellular ganglion cells (M-Y), and the involvement of these cells, together with the parvocellular pathway, may play a key role in the clinical expression of the disease.
Collapse
Affiliation(s)
- Costantino Schiavi
- Department of Experimental, Diagnostic, and Specialty Medicine, Ophthalmology Service, University of Bologna, Bologna, Italy
| | - Filippo Tassi
- Department of Experimental, Diagnostic, and Specialty Medicine, Ophthalmology Service, University of Bologna, Bologna, Italy
| | - Alessandro Finzi
- Department of Experimental, Diagnostic, and Specialty Medicine, Ophthalmology Service, University of Bologna, Bologna, Italy
| | - Ernesto Strobbe
- Department of Experimental, Diagnostic, and Specialty Medicine, Ophthalmology Service, University of Bologna, Bologna, Italy
| | - Mauro Cellini
- Department of Experimental, Diagnostic, and Specialty Medicine, Ophthalmology Service, University of Bologna, Bologna, Italy
| |
Collapse
|
33
|
Simunovic MP, Moore AT, MacLaren RE. Selective Automated Perimetry Under Photopic, Mesopic, and Scotopic Conditions: Detection Mechanisms and Testing Strategies. Transl Vis Sci Technol 2016; 5:10. [PMID: 27247858 PMCID: PMC4884057 DOI: 10.1167/tvst.5.3.10] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/02/2016] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Automated scotopic, mesopic, and photopic perimetry are likely to be important paradigms in the assessment of emerging treatments of retinal diseases, yet our knowledge of the photoreceptor mechanisms detecting targets under these conditions remains largely dependent on simian data. We therefore aimed to establish the photoreceptor/postreceptoral mechanisms detecting perimetric targets in humans under photopic, mesopic, and scotopic conditions and to make recommendations for suitable clinical testing strategies for selective perimetry. METHODS Perimetric sensitivities within 30° of fixation were determined for eight wavelengths (410, 440, 480, 520, 560, 600, 640, and 680 nm) under scotopic, mesopic (1.3 cd.m-2) and photopic (10 cd.m-2) conditions. Data were fitted with vector combinations of rod, S-cone, nonopponent M+L-cone mechanism, and opponent M- versus L-cone mechanism templates. RESULTS Scotopicperimetric sensitivity was determined by rods peripherally and by a combination of rods and cones at, and immediately around, fixation. Mesopic perimetric sensitivity was mediated by M+L-cones and S-cones centrally and by M+L-cones and rods more peripherally. Photopic perimetric sensitivity was determined by an opponent M- versus L-cone, a nonopponent M+L-cone, and an S-cone mechanism centrally and by a combination of an S-cone and an M+L-cone mechanism peripherally. CONCLUSIONS Under scotopic conditions, a 480-nm stimulus provides adequate isolation (≥28 dB) of the rod mechanism. Several mechanisms contribute to mesopic sensitivity: this redundancy in detection may cause both insensitivity to broadband white targets and ambiguity in determining which mechanism is being probed with short-wavelength stimuli. M- and L-cone-derived mechanisms are well isolated at 10 cd.m-2: these may be selectively probed by a stimulus at 640 nm (≥ 20 dB isolation). TRANSLATION RELEVANCE In human observers, multiple mechanisms contribute to the detection of Goldmann size III and size V perimetric targets under scotopic, mesopic, and photopic conditions. The relative contribution of these mechanisms appears to differ from those found previously for macaques. Our results furthermore suggest that caution must be exercised when using microperimetric techniques, which are typically conducted under mesopic conditions and which are likely to be important in the assessment of emerging treatments for retinal disease. This is because mesopic background conditions maximize the redundancy of target detection. Furthermore, our results demonstrate that spectral manipulation of the stimulus alone cannot be used to reliably separate rod from cone responses under these conditions.
Collapse
Affiliation(s)
- Matthew P Simunovic
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK ; Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford OX3 9DU, UK ; Save Sight Institute, University of Sydney, 8 Macquarie St., Sydney, NSW 2000, Australia ; Retinal Unit, Sydney Eye Hospital, 8 Macquarie Street, Sydney, NSW 2000, Australia
| | - Anthony T Moore
- Department of Ophthalmology, University of California San Francisco, 533 Parnassus Avenue, San Francisco, CA, USA ; Moorfields Eye Hospital, 162 City Road, London EC1V 2PD, UK ; Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK ; Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford OX3 9DU, UK ; Moorfields Eye Hospital, 162 City Road, London EC1V 2PD, UK
| |
Collapse
|
34
|
Yucel YH, Gupta N. A framework to explore the visual brain in glaucoma with lessons from models and man. Exp Eye Res 2015; 141:171-8. [DOI: 10.1016/j.exer.2015.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 06/29/2015] [Accepted: 07/09/2015] [Indexed: 01/13/2023]
|
35
|
Masri RA, Percival KA, Koizumi A, Martin PR, Grünert U. Connectivity between the OFF bipolar type DB3a and six types of ganglion cell in the marmoset retina. J Comp Neurol 2015; 524:1839-58. [PMID: 26559914 DOI: 10.1002/cne.23925] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/12/2015] [Accepted: 11/09/2015] [Indexed: 12/31/2022]
Abstract
Parallel visual pathways originate at the first synapse in the retina, where cones make connections with cone bipolar cells that in turn contact ganglion cells. There are more ganglion cell types than bipolar types, suggesting that there must be divergence from bipolar to ganglion cells. Here we analyze the contacts between an OFF bipolar type (DB3a) and six ganglion cell types in the retina of the marmoset monkey (Callithrix jacchus). Ganglion cells were transfected via particle-mediated gene transfer of an expression plasmid for the postsynaptic density 95-green fluorescent protein (PSD95-GFP), and DB3a cells were labeled via immunohistochemistry. Ganglion cell types that fully or partially costratified with DB3a cells included OFF parasol, OFF midget, broad thorny, recursive bistratified, small bistratified, and large bistratified cells. On average, the number of DB3a contacts to parasol cells (18 contacts per axon terminal) is higher than that to other ganglion cell types (between four and seven contacts). We estimate that the DB3a output to OFF parasol cells accounts for at least 30% of the total DB3a output. Furthermore, we found that OFF parasol cells receive approximately 20% of their total bipolar input from DB3a cells, suggesting that other diffuse bipolar types also provide input to OFF parasol cells. We conclude that DB3a cells preferentially contact OFF parasol cells but also provide input to other ganglion cell types.
Collapse
Affiliation(s)
- Rania A Masri
- Department of Ophthalmology and Save Sight Institute, The University of Sydney, Sydney, New South Wales, 2000, Australia
| | - Kumiko A Percival
- Department of Ophthalmology and Save Sight Institute, The University of Sydney, Sydney, New South Wales, 2000, Australia
| | - Amane Koizumi
- National Institutes of Natural Sciences, Tokyo, Japan
| | - Paul R Martin
- Department of Ophthalmology and Save Sight Institute, The University of Sydney, Sydney, New South Wales, 2000, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, New South Wales, 2000, Australia.,School of Medical Sciences, The University of Sydney, Sydney, New South Wales, 2000, Australia
| | - Ulrike Grünert
- Department of Ophthalmology and Save Sight Institute, The University of Sydney, Sydney, New South Wales, 2000, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, New South Wales, 2000, Australia.,School of Medical Sciences, The University of Sydney, Sydney, New South Wales, 2000, Australia
| |
Collapse
|
36
|
Zhang P, Wen W, Sun X, He S. Selective reduction of fMRI responses to transient achromatic stimuli in the magnocellular layers of the LGN and the superficial layer of the SC of early glaucoma patients. Hum Brain Mapp 2015; 37:558-69. [PMID: 26526339 DOI: 10.1002/hbm.23049] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/24/2015] [Indexed: 11/07/2022] Open
Abstract
Glaucoma is now viewed not just a disease of the eye but also a disease of the brain. The prognosis of glaucoma critically depends on how early the disease can be detected. However, early glaucomatous loss of the laminar functions in the human lateral geniculate nucleus (LGN) and superior colliculus (SC) remains difficult to detect and poorly understood. Using functional MRI, we measured neural signals from different layers of the LGN and SC, as well as from the early visual cortices (V1, V2 and MT), in patients with early-stage glaucoma and normal controls. Compared to normal controls, early glaucoma patients showed more reduction of response to transient achromatic stimuli than to sustained chromatic stimuli in the magnocellular layers of the LGN, as well as in the superficial layer of the SC. Magnocellular responses in the LGN were also significantly correlated with the degree of behavioral deficits to the glaucomatous eye. Finally, early glaucoma patients showed no reduction of fMRI response in the early visual cortex. These findings demonstrate that 'large cells' in the human LGN and SC suffer selective loss of response to transient achromatic stimuli at the early stage of glaucoma. Hum Brain Mapp 37:558-569, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wen Wen
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Sheng He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
37
|
Pickard GE, So KF, Pu M. Dorsal raphe nucleus projecting retinal ganglion cells: Why Y cells? Neurosci Biobehav Rev 2015; 57:118-31. [PMID: 26363667 PMCID: PMC4646079 DOI: 10.1016/j.neubiorev.2015.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 06/30/2015] [Accepted: 08/01/2015] [Indexed: 10/23/2022]
Abstract
Retinal ganglion Y (alpha) cells are found in retinas ranging from frogs to mice to primates. The highly conserved nature of the large, fast conducting retinal Y cell is a testament to its fundamental task, although precisely what this task is remained ill-defined. The recent discovery that Y-alpha retinal ganglion cells send axon collaterals to the serotonergic dorsal raphe nucleus (DRN) in addition to the lateral geniculate nucleus (LGN), medial interlaminar nucleus (MIN), pretectum and the superior colliculus (SC) has offered new insights into the important survival tasks performed by these cells with highly branched axons. We propose that in addition to its role in visual perception, the Y-alpha retinal ganglion cell provides concurrent signals via axon collaterals to the DRN, the major source of serotonergic afferents to the forebrain, to dramatically inhibit 5-HT activity during orientation or alerting/escape responses, which dis-facilitates ongoing tonic motor activity while dis-inhibiting sensory information processing throughout the visual system. The new data provide a fresh view of these evolutionarily old retinal ganglion cells.
Collapse
Affiliation(s)
- Gary E Pickard
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, 68583, United States; Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, United States; GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Kwok-Fai So
- Department of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; Department of Ophthalmology, The University of Hong Kong, Hong Kong, China; GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China; State Key Laboratory for Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.
| | - Mingliang Pu
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China; Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, China; Key Laboratory for Visual Impairment and Restoration (Ministry of Education), Peking University, Beijing, China.
| |
Collapse
|
38
|
Layer-specific response properties of the human lateral geniculate nucleus and superior colliculus. Neuroimage 2015; 111:159-66. [DOI: 10.1016/j.neuroimage.2015.02.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/07/2015] [Accepted: 02/11/2015] [Indexed: 11/23/2022] Open
|
39
|
Abstract
In all of the mammalian species studied to date, the short-wavelength-sensitive (S) cones and the S-cone bipolar cells that receive their input are very similar, but the retinal ganglion cells that receive synapses from the S-cone bipolar cells appear to be quite different. Here, we review the literature on mammalian retinal ganglion cells that respond selectively to stimulation of S-cones and respond with opposite polarity to longer wavelength stimuli. There are at least three basic mechanisms to generate these color-opponent responses, including: (1) opponency is generated in the outer plexiform layer by horizontal cells and is conveyed to the ganglion cells via S-cone bipolar cells, (2) inputs from bipolar cells with different cone inputs and opposite response polarity converge directly on the ganglion cells, and (3) inputs from S-cone bipolar cells are inverted by S-cone amacrine cells. These are not mutually exclusive; some mammalian ganglion cells that respond selectively to S-cone stimulation seem to utilize at least two of them. Based on these findings, we suggest that the small bistratified ganglion cells described in primates are not the ancestral type, as proposed previously. Instead, the known types of ganglion cells in this pathway evolved from monostratified ancestral types and became bistratified in some mammalian lineages.
Collapse
|
40
|
A synaptic signature for ON- and OFF-center parasol ganglion cells of the primate retina. Vis Neurosci 2015; 31:57-84. [PMID: 24801624 DOI: 10.1017/s0952523813000461] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In the primate retina, parasol ganglion cells contribute to the primary visual pathway via the magnocellular division of the lateral geniculate nucleus, display ON and OFF concentric receptive field structure, nonlinear spatial summation, and high achromatic temporal-contrast sensitivity. Parasol cells may be homologous to the alpha-Y cells of nonprimate mammals where evidence suggests that N-methyl-D-aspartate (NMDA) receptor-mediated synaptic excitation as well as glycinergic disinhibition play critical roles in contrast sensitivity, acting asymmetrically in OFF- but not ON-pathways. Here, light-evoked synaptic currents were recorded in the macaque monkey retina in vitro to examine the circuitry underlying parasol cell receptive field properties. Synaptic excitation in both ON and OFF types was mediated by NMDA as well as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate glutamate receptors. The NMDA-mediated current-voltage relationship suggested high Mg2+ affinity such that at physiological potentials, NMDA receptors contributed ∼20% of the total excitatory conductance evoked by moderate stimulus contrasts and temporal frequencies. Postsynaptic inhibition in both ON and OFF cells was dominated by a large glycinergic "crossover" conductance, with a relatively small contribution from GABAergic feedforward inhibition. However, crossover inhibition was largely rectified, greatly diminished at low stimulus contrasts, and did not contribute, via disinhibition, to contrast sensitivity. In addition, attenuation of GABAergic and glycinergic synaptic inhibition left center-surround and Y-type receptive field structure and high temporal sensitivity fundamentally intact and clearly derived from modulation of excitatory bipolar cell output. Thus, the characteristic spatial and temporal-contrast sensitivity of the primate parasol cell arises presynaptically and is governed primarily by modulation of the large AMPA/kainate receptor-mediated excitatory conductance. Moreover, the negative feedback responsible for the receptive field surround must derive from a nonGABAergic mechanism.
Collapse
|
41
|
Abstract
The fovea dominates primate vision, and its anatomy and perceptual abilities are well studied, but its physiology has been little explored because of limitations of current physiological methods. In this study, we adapted a novel in vivo imaging method, originally developed in mouse retina, to explore foveal physiology in the macaque, which permits the repeated imaging of the functional response of many retinal ganglion cells (RGCs) simultaneously. A genetically encoded calcium indicator, G-CaMP5, was inserted into foveal RGCs, followed by calcium imaging of the displacement of foveal RGCs from their receptive fields, and their intensity-response functions. The spatial offset of foveal RGCs from their cone inputs makes this method especially appropriate for fovea by permitting imaging of RGC responses without excessive light adaptation of cones. This new method will permit the tracking of visual development, progression of retinal disease, or therapeutic interventions, such as insertion of visual prostheses.
Collapse
|
42
|
Hall N, Colby C. S-cone Visual Stimuli Activate Superior Colliculus Neurons in Old World Monkeys: Implications for Understanding Blindsight. J Cogn Neurosci 2014; 26:1234-56. [DOI: 10.1162/jocn_a_00555] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
The superior colliculus (SC) is thought to be unresponsive to stimuli that activate only short wavelength-sensitive cones (S-cones) in the retina. The apparent lack of S-cone input to the SC was recognized by Sumner et al. [Sumner, P., Adamjee, T., & Mollon, J. D. Signals invisible to the collicular and magnocellular pathways can capture visual attention. Current Biology, 12, 1312–1316, 2002] as an opportunity to test SC function. The idea is that visual behavior dependent on the SC should be impaired when S-cone stimuli are used because they are invisible to the SC. The SC plays a critical role in blindsight. If the SC is insensitive to S-cone stimuli blindsight behavior should be impaired when S-cone stimuli are used. Many clinical and behavioral studies have been based on the assumption that S-cone-specific stimuli do not activate neurons in the SC. Our goal was to test whether single neurons in macaque SC respond to stimuli that activate only S-cones. Stimuli were calibrated psychophysically in each animal and at each individual spatial location used in experimental testing [Hall, N. J., & Colby, C. L. Psychophysical definition of S-cone stimuli in the macaque. Journal of Vision, 13, 2013]. We recorded from 178 visually responsive neurons in two awake, behaving rhesus monkeys. Contrary to the prevailing view, we found that nearly all visual SC neurons can be activated by S-cone-specific visual stimuli. Most of these neurons were sensitive to the degree of S-cone contrast. Of 178 visual SC neurons, 155 (87%) had stronger responses to a high than to a low S-cone contrast. Many of these neurons' responses (56/178 or 31%) significantly distinguished between the high and low S-cone contrast stimuli. The latency and amplitude of responses depended on S-cone contrast. These findings indicate that stimuli that activate only S-cones cannot be used to diagnose collicular mediation.
Collapse
|
43
|
Identification of a pathway from the retina to koniocellular layer K1 in the lateral geniculate nucleus of marmoset. J Neurosci 2014; 34:3821-5. [PMID: 24623761 DOI: 10.1523/jneurosci.4491-13.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Three well characterized pathways in primate vision (midget-parvocellular, parasol-magnocellular, bistratified-koniocellular) have been traced from the first synapse in the retina, through the visual thalamus (lateral geniculate nucleus, LGN), to the visual cortex. Here we identify a pathway from the first synapse in the retina to koniocellular layer K1 in marmoset monkeys (Callithrix jacchus). Particle-mediated gene transfer of an expression plasmid for the postsynaptic density 95-green fluorescent protein (PSD95-GFP) was used to label excitatory synapses on retinal ganglion cells and combined with immunofluorescence to identify the presynaptic bipolar cells. We found that axon terminals of one type of diffuse bipolar cell (DB6) provide dominant synaptic input to the dendrites of narrow thorny ganglion cells. Retrograde tracer injections into the LGN and photofilling of retinal ganglion cells showed that narrow thorny cells were preferentially labeled when koniocellular layer K1 was targeted. Layer K1 contains cells with high sensitivity for rapid movement, and layer K1 sends projections to association visual areas as well as to primary visual cortex. We hypothesize that the DB6-narrow thorny-koniocellular pathway contributes to residual visual functions ("blindsight") that survive injury to primary visual cortex in adult or early life.
Collapse
|
44
|
NaV1.1 channels in axon initial segments of bipolar cells augment input to magnocellular visual pathways in the primate retina. J Neurosci 2013; 33:16045-59. [PMID: 24107939 DOI: 10.1523/jneurosci.1249-13.2013] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the primate visual system, the ganglion cells of the magnocellular pathway underlie motion and flicker detection and are relatively transient, while the more sustained ganglion cells of the parvocellular pathway have comparatively lower temporal resolution, but encode higher spatial frequencies. Although it is presumed that functional differences in bipolar cells contribute to the tuning of the two pathways, the properties of the relevant bipolar cells have not yet been examined in detail. Here, by making patch-clamp recordings in acute slices of macaque retina, we show that the bipolar cells within the magnocellular pathway, but not the parvocellular pathway, exhibit voltage-gated sodium (NaV), T-type calcium (CaV), and hyperpolarization-activated, cyclic nucleotide-gated (HCN) currents, and can generate action potentials. Using immunohistochemistry in macaque and human retinae, we show that NaV1.1 is concentrated in an axon initial segment (AIS)-like region of magnocellular pathway bipolar cells, a specialization not seen in transient bipolar cells of other vertebrates. In contrast, CaV3.1 channels were localized to the somatodendritic compartment and proximal axon, but were excluded from the AIS, while HCN1 channels were concentrated in the axon terminal boutons. Simulations using a compartmental model reproduced physiological results and indicate that magnocellular pathway bipolar cells initiate spikes in the AIS. Finally, we demonstrate that NaV channels in bipolar cells augment excitatory input to parasol ganglion cells of the magnocellular pathway. Overall, the results demonstrate that selective expression of voltage-gated channels contributes to the establishment of parallel processing in the major visual pathways of the primate retina.
Collapse
|
45
|
Retinal ganglion cell maps in the brain: implications for visual processing. Curr Opin Neurobiol 2013; 24:133-42. [PMID: 24492089 DOI: 10.1016/j.conb.2013.08.006] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 08/05/2013] [Indexed: 11/23/2022]
Abstract
Everything the brain knows about the content of the visual world is built from the spiking activity of retinal ganglion cells (RGCs). As the output neurons of the eye, RGCs include ∼20 different subtypes, each responding best to a specific feature in the visual scene. Here we discuss recent advances in identifying where different RGC subtypes route visual information in the brain, including which targets they connect to and how their organization within those targets influences visual processing. We also highlight examples where causal links have been established between specific RGC subtypes, their maps of central connections and defined aspects of light-mediated behavior and we suggest the use of techniques that stand to extend these sorts of analyses to circuits underlying visual perception.
Collapse
|
46
|
Abstract
It remains controversial whether and how spatial frequency (SF) is represented tangentially in cat visual cortex. Several models were proposed, but there is no consensus. Worse still, some data indicate that the SF organization previously revealed by optical imaging techniques simply reflects non-stimulus-specific responses. Instead, stimulus-specific responses arise from the homogeneous distribution of geniculo-cortical afferents representing X and Y pathways. To clarify this, we developed a new imaging method allowing rapid stimulation with a wide range of SFs covering more than 6 octaves with only 0.2 octave resolution. A benefit of this method is to avoid error of high-pass filtering methods which systematically under-represent dominant selectivity features near pinwheel centers. We show unequivocally that SF is organized into maps in cat area 17 (A17) and area 18 (A18). The SF organization in each area displays a global anteroposterior SF gradient and local patches. Its layout is constrained to that of the orientation map, and it is suggested that both maps share a common functional architecture. A17 and A18 are bound at the transition zone by another SF gradient involving the geniculo-cortical and the callosal pathways. A model based on principal component analysis shows that SF maps integrate three different SF-dependent channels. Two of these reflect the segregated excitatory input from X and Y geniculate cells to A17 and A18. The third one conveys a specific combination of excitatory and suppressive inputs to the visual cortex. In a manner coherent with anatomical and electrophysiological data, it is interpreted as originating from a subtype of Y geniculate cells.
Collapse
|
47
|
Clarke MS. Regional pathology in glaucoma--an overlooked link to neuroprotective strategies. Med Hypotheses 2013; 80:756-8. [PMID: 23557847 DOI: 10.1016/j.mehy.2013.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 03/06/2013] [Indexed: 11/26/2022]
Abstract
Primary open-angle glaucoma (POAG) is the second commonest cause of blindness in the world. It is a neurodegenerative disease characterized by retinal ganglion cell loss. The molecular mechanism leading to glaucoma damage is unclear. Understanding the pathways that favor neuronal survival plus those that predispose to neuronal demise in POAG may have direct implications for other neurodegenerative diseases. POAG is a heterogeneous disease. A small subset of POAG patients develop damage in a highly focal form with a discrete sector of the optic nerve manifesting well delineated neuronal loss. It is hypothesized that this pattern of nerve loss indicates the optic nerve is not molecularly homogeneous. Genetic analysis of patients with isolated focal forms of POAG may enable new genes to be identified in glaucoma. Finding the responsible genes in POAG is a critical first step. The potential implications are earlier disease detection with resultant optimized visual preservation. Future treatment options could develop that include altered gene regulation, gene silencing or introducing repair genes. Determining the molecular causes for regional neuronal susceptibility could lead to identification of pathways underlying disease and ultimately effective patient-specific neuroprotective strategies.
Collapse
Affiliation(s)
- Margo S Clarke
- Department of Ophthalmology and Visual Sciences, University of British Columbia, British Columbia, Canada.
| |
Collapse
|
48
|
Percival KA, Martin PR, Grünert U. Organisation of koniocellular-projecting ganglion cells and diffuse bipolar cells in the primate fovea. Eur J Neurosci 2013; 37:1072-89. [DOI: 10.1111/ejn.12117] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/26/2012] [Accepted: 11/28/2012] [Indexed: 11/28/2022]
|
49
|
Form and function of the M4 cell, an intrinsically photosensitive retinal ganglion cell type contributing to geniculocortical vision. J Neurosci 2012; 32:13608-20. [PMID: 23015450 DOI: 10.1523/jneurosci.1422-12.2012] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The photopigment melanopsin confers photosensitivity upon a minority of retinal output neurons. These intrinsically photosensitive retinal ganglion cells (ipRGCs) are more diverse than once believed, comprising five morphologically distinct types, M1 through M5. Here, in mouse retina, we provide the first in-depth characterization of M4 cells, including their structure, function, and central projections. M4 cells apparently correspond to ON α cells of earlier reports, and are easily distinguished from other ipRGCs by their very large somata. Their dendritic arbors are more radiate and highly branched than those of M1, M2, or M3 cells. The melanopsin-based intrinsic photocurrents of M4 cells are smaller than those of M1 and M2 cells, presumably because melanopsin is more weakly expressed; we can detect it immunohistochemically only with strong amplification. Like M2 cells, M4 cells exhibit robust, sustained, synaptically driven ON responses and dendritic stratification in the ON sublamina of the inner plexiform layer. However, their stratification patterns are subtly different, with M4 dendrites positioned just distal to those of M2 cells and just proximal to the ON cholinergic band. M4 receptive fields are large, with an ON center, antagonistic OFF surround and nonlinear spatial summation. Their synaptically driven photoresponses lack direction selectivity and show higher ultraviolet sensitivity in the ventral retina than in the dorsal retina, echoing the topographic gradient in S- and M-cone opsin expression. M4 cells are readily labeled by retrograde transport from the dorsal lateral geniculate nucleus and thus likely contribute to the pattern vision that persists in mice lacking functional rods and cones.
Collapse
|
50
|
Hirashima T, Hangai M, Nukada M, Nakano N, Morooka S, Akagi T, Nonaka A, Yoshimura N. Frequency-doubling technology and retinal measurements with spectral-domain optical coherence tomography in preperimetric glaucoma. Graefes Arch Clin Exp Ophthalmol 2012; 251:129-37. [DOI: 10.1007/s00417-012-2076-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/10/2012] [Accepted: 05/22/2012] [Indexed: 01/05/2023] Open
|