1
|
Rostami M, Farahani P, Esmaelian S, Bahman Z, Fadel Hussein A, A Alrikabi H, Hosseini Hooshiar M, Yasamineh S. The Role of Dental-derived Stem Cell-based Therapy and Their Derived Extracellular Vesicles in Post-COVID-19 Syndrome-induced Tissue Damage. Stem Cell Rev Rep 2024; 20:2062-2103. [PMID: 39150646 DOI: 10.1007/s12015-024-10770-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
Long coronavirus disease 2019 (COVID-19) is linked to an increased risk of post-acute sequelae affecting the pulmonary and extrapulmonary organ systems. Up to 20% of COVID-19 patients may proceed to a more serious form, such as severe pneumonia, acute respiratory distress syndrome (ARDS), or pulmonary fibrosis. Still, the majority of patients may only have mild, self-limiting sickness. Of particular concern is the possibility of parenchymal fibrosis and lung dysfunction in long-term COVID-19 patients. Furthermore, it has been observed that up to 43% of individuals hospitalized with COVID-19 also had acute renal injury (AKI). Care for kidney, brain, lung, cardiovascular, liver, ocular, and tissue injuries should be included in post-acute COVID-19 treatment. As a powerful immunomodulatory tool in regenerative medicine, dental stem cells (DSCs) have drawn much interest. Numerous immune cells and cytokines are involved in the excessive inflammatory response, which also has a significant effect on tissue regeneration. A unique reservoir of stem cells (SCs) for treating acute lung injury (ALI), liver damage, neurological diseases, cardiovascular issues, and renal damage may be found in tooth tissue, according to much research. Moreover, a growing corpus of in vivo research is connecting DSC-derived extracellular vesicles (DSC-EVs), which are essential paracrine effectors, to the beneficial effects of DSCs. DSC-EVs, which contain bioactive components and therapeutic potential in certain disorders, have been shown as potentially effective therapies for tissue damage after COVID-19. Consequently, we explore the properties of DSCs in this work. Next, we'll look at how SARS-CoV-2 affects tissue damage. Lastly, we have looked at the use of DSCs and DSC-EVs in managing COVID-19 and chronic tissue damage, such as injury to the heart, brain, lung, and other tissues.
Collapse
Affiliation(s)
- Mitra Rostami
- School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouria Farahani
- Doctor of Dental Surgery, Faculty of Dentistry, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Samar Esmaelian
- Faculty of Dentistry, Islamic Azad University, Tehran Branch, Tehran, Iran
| | - Zahra Bahman
- Faculty of dentistry, Belarusian state medical university, Minsk, Belarus
| | | | - Hareth A Alrikabi
- Collage of Dentist, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
2
|
Beretti F, Gatti M, Ricchi F, Lipani F, Cortelli P, Cermelli C, Maraldi T. Neurotoxic effects of coronavirus: Potential implications in Alzheimer's onset and progression. Exp Neurol 2024; 380:114908. [PMID: 39089439 DOI: 10.1016/j.expneurol.2024.114908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/04/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
The COVID-19, caused by SARS-CoV-2, first affects the respiratory tract but evidence is emerging that the virus, reaching the central nervous system (CNS), can lead to severe neurological disorders. In particular, CoV infection could cause an acceleration of the neurodegenerative process. On the other hand, patients diagnosed with Alzheimer's disease (AD) develop more serious forms of COVID-19 with worse relapses. Therefore, understanding the connection between the two pathologies, AD and infection by coronavirus, could help in the development of new therapeutic approaches to counter them. We used the SH-SY5Y cell line differentiated into neurons, as widely used in studies of AD if supplemented with exogenous fibrillary β-amyloid (Aβ). As a glial counterpart, human microglia (HMC3) and astrocytic (D54MG) cell lines were used to create co-cultures with neurons via transwell systems. In these experimental models, we generated infection with the Human Coronavirus OC43 (HCoV-OC43), a low-risk model of SARS-CoV-2. Our results suggest that the infection by HCoV-OC43 leads to a neurotoxic effect not depending on an already present event of Aβ deposition. Indeed, unlike microglia, neurons and even more astrocytes are susceptible to CoV infection and, although the infection does not show a cytotoxic effect in the neurons in the first few days, significant alterations at a biochemical and morphological level have been observed, suggesting that the neurons are reacting to a stressful condition, including the prodromal and neurodegenerative features of AD. Interestingly, the interaction of infected astrocytes with the neurons resulted in the manifestation of signs of neurodegeneration, such as amyloid-beta deposition. By using exogenous fibrillary Aβ, as an AD in vitro model, our data suggest that there is an aggravating effect both on the infection itself and on the neurological disease progression. In conclusion, the results of this study suggest a causal interplay between HCoV-OC43 and neurological diseases and demonstrate that the co-presence of different CNS cell populations is the necessary condition to study the pathogenic effects in vitro as a whole.
Collapse
Affiliation(s)
- Francesca Beretti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Martina Gatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Francesco Ricchi
- Department of Surgery Medicine Dentistry and Morphological Sciences with an Interest in Transplant Oncology, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Lipani
- Department of Surgery Medicine Dentistry and Morphological Sciences with an Interest in Transplant Oncology, University of Modena and Reggio Emilia, Modena, Italy
| | - Pietro Cortelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences (DiBiNeM), Alma Mater Studiorum - University of Bologna, Italy
| | - Claudio Cermelli
- Department of Surgery Medicine Dentistry and Morphological Sciences with an Interest in Transplant Oncology, University of Modena and Reggio Emilia, Modena, Italy
| | - Tullia Maraldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy.
| |
Collapse
|
3
|
Rurek M. Mitochondria in COVID-19: from cellular and molecular perspective. Front Physiol 2024; 15:1406635. [PMID: 38974521 PMCID: PMC11224649 DOI: 10.3389/fphys.2024.1406635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/27/2024] [Indexed: 07/09/2024] Open
Abstract
The rapid development of the COVID-19 pandemic resulted in a closer analysis of cell functioning during β-coronavirus infection. This review will describe evidence for COVID-19 as a syndrome with a strong, albeit still underestimated, mitochondrial component. Due to the sensitivity of host mitochondria to coronavirus infection, SARS-CoV-2 affects mitochondrial signaling, modulates the immune response, modifies cellular energy metabolism, induces apoptosis and ageing, worsening COVID-19 symptoms which can sometimes be fatal. Various aberrations across human systems and tissues and their relationships with mitochondria were reported. In this review, particular attention is given to characterization of multiple alterations in gene expression pattern and mitochondrial metabolism in COVID-19; the complexity of interactions between SARS-CoV-2 and mitochondrial proteins is presented. The participation of mitogenome fragments in cell signaling and the occurrence of SARS-CoV-2 subgenomic RNA within membranous compartments, including mitochondria is widely discussed. As SARS-CoV-2 severely affects the quality system of mitochondria, the cellular background for aberrations in mitochondrial dynamics in COVID-19 is additionally characterized. Finally, perspectives on the mitigation of COVID-19 symptoms by affecting mitochondrial biogenesis by numerous compounds and therapeutic treatments are briefly outlined.
Collapse
Affiliation(s)
- Michał Rurek
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
4
|
Maiese K. Mitochondria, Mitophagy, Mitoptosis, and Programmed Cell Death: Implications from Aging to Cancer. Curr Neurovasc Res 2024; 21:1-5. [PMID: 38251666 DOI: 10.2174/1567202621999240118155618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
|
5
|
Yang L, Wu Y, Jin W, Mo N, Ye G, Su Z, Tang L, Wang Y, Li Y, Du J. The potential role of ferroptosis in COVID-19-related cardiovascular injury. Biomed Pharmacother 2023; 168:115637. [PMID: 37844358 DOI: 10.1016/j.biopha.2023.115637] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged as a global health threat in 2019. An important feature of the disease is that multiorgan symptoms of SARS-CoV-2 infection persist after recovery. Evidence indicates that people who recovered from COVID-19, even those under the age of 65 years without cardiovascular risk factors such as smoking, obesity, hypertension, and diabetes, had a significantly increased risk of cardiovascular disease for up to one year after diagnosis. Therefore, it is important to closely monitor individuals who have recovered from COVID-19 for potential cardiovascular damage that may manifest at a later stage. Ferroptosis is an iron-dependent form of non-apoptotic cell death characterized by the production of reactive oxygen species (ROS) and increased lipid peroxide levels. Several studies have demonstrated that ferroptosis plays an important role in cancer, ischemia/reperfusion injury (I/RI), and other cardiovascular diseases. Altered iron metabolism, upregulation of reactive oxygen species, and glutathione peroxidase 4 inactivation are striking features of COVID-19-related cardiovascular injury. SARS-CoV-2 can cause cardiovascular ferroptosis, leading to cardiovascular damage. Understanding the mechanism of ferroptosis in COVID-19-related cardiovascular injuries will contribute to the development of treatment regimens for preventing or reducing COVID-19-related cardiovascular complications. In this article, we go over the pathophysiological underpinnings of SARS-CoV-2-induced acute and chronic cardiovascular injury, the function of ferroptosis, and prospective treatment approaches.
Collapse
Affiliation(s)
- Lei Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunyi Wu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Weidong Jin
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Nan Mo
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Gaoqi Ye
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zixin Su
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lusheng Tang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ying Wang
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Maiese K. Cornerstone Cellular Pathways for Metabolic Disorders and Diabetes Mellitus: Non-Coding RNAs, Wnt Signaling, and AMPK. Cells 2023; 12:2595. [PMID: 37998330 PMCID: PMC10670256 DOI: 10.3390/cells12222595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Metabolic disorders and diabetes (DM) impact more than five hundred million individuals throughout the world and are insidious in onset, chronic in nature, and yield significant disability and death. Current therapies that address nutritional status, weight management, and pharmacological options may delay disability but cannot alter disease course or functional organ loss, such as dementia and degeneration of systemic bodily functions. Underlying these challenges are the onset of aging disorders associated with increased lifespan, telomere dysfunction, and oxidative stress generation that lead to multi-system dysfunction. These significant hurdles point to the urgent need to address underlying disease mechanisms with innovative applications. New treatment strategies involve non-coding RNA pathways with microRNAs (miRNAs) and circular ribonucleic acids (circRNAs), Wnt signaling, and Wnt1 inducible signaling pathway protein 1 (WISP1) that are dependent upon programmed cell death pathways, cellular metabolic pathways with AMP-activated protein kinase (AMPK) and nicotinamide, and growth factor applications. Non-coding RNAs, Wnt signaling, and AMPK are cornerstone mechanisms for overseeing complex metabolic pathways that offer innovative treatment avenues for metabolic disease and DM but will necessitate continued appreciation of the ability of each of these cellular mechanisms to independently and in unison influence clinical outcome.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
7
|
Maiese K. The impact of aging and oxidative stress in metabolic and nervous system disorders: programmed cell death and molecular signal transduction crosstalk. Front Immunol 2023; 14:1273570. [PMID: 38022638 PMCID: PMC10663950 DOI: 10.3389/fimmu.2023.1273570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Life expectancy is increasing throughout the world and coincides with a rise in non-communicable diseases (NCDs), especially for metabolic disease that includes diabetes mellitus (DM) and neurodegenerative disorders. The debilitating effects of metabolic disorders influence the entire body and significantly affect the nervous system impacting greater than one billion people with disability in the peripheral nervous system as well as with cognitive loss, now the seventh leading cause of death worldwide. Metabolic disorders, such as DM, and neurologic disease remain a significant challenge for the treatment and care of individuals since present therapies may limit symptoms but do not halt overall disease progression. These clinical challenges to address the interplay between metabolic and neurodegenerative disorders warrant innovative strategies that can focus upon the underlying mechanisms of aging-related disorders, oxidative stress, cell senescence, and cell death. Programmed cell death pathways that involve autophagy, apoptosis, ferroptosis, and pyroptosis can play a critical role in metabolic and neurodegenerative disorders and oversee processes that include insulin resistance, β-cell function, mitochondrial integrity, reactive oxygen species release, and inflammatory cell activation. The silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), AMP activated protein kinase (AMPK), and Wnt1 inducible signaling pathway protein 1 (WISP1) are novel targets that can oversee programmed cell death pathways tied to β-nicotinamide adenine dinucleotide (NAD+), nicotinamide, apolipoprotein E (APOE), severe acute respiratory syndrome (SARS-CoV-2) exposure with coronavirus disease 2019 (COVID-19), and trophic factors, such as erythropoietin (EPO). The pathways of programmed cell death, SIRT1, AMPK, and WISP1 offer exciting prospects for maintaining metabolic homeostasis and nervous system function that can be compromised during aging-related disorders and lead to cognitive impairment, but these pathways have dual roles in determining the ultimate fate of cells and organ systems that warrant thoughtful insight into complex autofeedback mechanisms.
Collapse
Affiliation(s)
- Kenneth Maiese
- Innovation and Commercialization, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
8
|
Proust A, Queval CJ, Harvey R, Adams L, Bennett M, Wilkinson RJ. Differential effects of SARS-CoV-2 variants on central nervous system cells and blood-brain barrier functions. J Neuroinflammation 2023; 20:184. [PMID: 37537664 PMCID: PMC10398935 DOI: 10.1186/s12974-023-02861-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Although mainly causing a respiratory syndrome, numerous neurological symptoms have been identified following of SARS-CoV-2 infection. However, how the virus affects the brain and how the mutations carried by the different variants modulate those neurological symptoms remain unclear. METHODS We used primary human pericytes, foetal astrocytes, endothelial cells and a microglial cell line to investigate the effect of several SARS-CoV-2 variants of concern or interest on their functional activities. Cells and a 3D blood-brain barrier model were infected with the wild-type form of SARS-CoV-2, Alpha, Beta, Delta, Eta, or Omicron (BA.1) variants at various MOI. Cells and supernatant were used to evaluate cell susceptibility to the virus using a microscopic assay as well as effects of infection on (i) cell metabolic activity using a colorimetric MTS assay; (ii) viral cytopathogenicity using the xCELLigence system; (iii) extracellular glutamate concentration by fluorometric assay; and (iv) modulation of blood-brain barrier permeability. RESULTS We demonstrate that productive infection of brain cells is SARS-CoV-2 variant dependent and that all the variants induce stress to CNS cells. The wild-type virus was cytopathic to all cell types except astrocytes, whilst Alpha and Beta variants were only cytopathic for pericytes, and the Omicron variant cytopathic for endothelial cells and pericytes. Lastly wild-type virus increases blood-brain barrier permeability and all variants, except Beta, modulate extracellular glutamate concentration, which can lead to excitotoxicity or altered neurotransmission. CONCLUSIONS These results suggest that SARS-CoV-2 is neurotropic, with deleterious consequences for the blood-brain barrier integrity and central nervous system cells, which could underlie neurological disorders following SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Alizé Proust
- Tuberculosis Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| | - Christophe J Queval
- High Throughput Screening Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Ruth Harvey
- Worldwide Influenza Centre, The Francis Crick Institute, London, NW1 1AT, UK
| | - Lorin Adams
- Worldwide Influenza Centre, The Francis Crick Institute, London, NW1 1AT, UK
| | - Michael Bennett
- Worldwide Influenza Centre, The Francis Crick Institute, London, NW1 1AT, UK
| | - Robert J Wilkinson
- Tuberculosis Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
- Department of Infectious Diseases, Imperial College London, London, W12 0NN, UK
- Institute of Infectious Disease and Molecular Medicine and Department of Medicine, Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, Cape Town, 7925, Republic of South Africa
| |
Collapse
|
9
|
Maiese K. Innovative therapeutic strategies for cardiovascular disease. EXCLI JOURNAL 2023; 22:690-715. [PMID: 37593239 PMCID: PMC10427777 DOI: 10.17179/excli2023-6306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023]
Abstract
As a significant non-communicable disease, cardiovascular disease is the leading cause of death for both men and women, comprises almost twenty percent of deaths in most racial and ethnic groups, can affect greater than twenty-five million individuals worldwide over the age of twenty, and impacts global economies with far-reaching financial challenges. Multiple factors can affect the onset of cardiovascular disease that include high serum cholesterol levels, elevated blood pressure, tobacco consumption and secondhand smoke exposure, poor nutrition, physical inactivity, obesity, and concurrent diabetes mellitus. Yet, addressing any of these factors cannot completely eliminate the onset or progression of cardiovascular disorders. Novel strategies are necessary to target underlying cardiovascular disease mechanisms. The silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), a histone deacetylase, can limit cardiovascular injury, assist with stem cell development, oversee metabolic homeostasis through nicotinamide adenine dinucleotide (NAD+) pathways, foster trophic factor protection, and control cell senescence through the modulation of telomere function. Intimately tied to SIRT1 pathways are mammalian forkhead transcription factors (FoxOs) which can modulate cardiac disease to reduce oxidative stress, repair microcirculation disturbances, and reduce atherogenesis through pathways of autophagy, apoptosis, and ferroptosis. AMP activated protein kinase (AMPK) also is critical among these pathways for the oversight of cardiac cellular metabolism, insulin sensitivity, mitochondrial function, inflammation, and the susceptibility to viral infections such as severe acute respiratory syndrome coronavirus that can impact cardiovascular disease. Yet, the relationship among these pathways is both intricate and complex and requires detailed insight to successfully translate these pathways into clinical care for cardiovascular disorders.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
10
|
Ghotbi Z, Estakhr M, Hosseini M, Shahripour RB. Cerebral Vasomotor Reactivity in COVID-19: A Narrative Review. Life (Basel) 2023; 13:1614. [PMID: 37511989 PMCID: PMC10381148 DOI: 10.3390/life13071614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/09/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) primarily affects the respiratory system but can also lead to neurological complications. Among COVID-19 patients, the endothelium is considered the Achilles heel. A variety of endothelial dysfunctions may result from SARS-CoV-2 infection and subsequent endotheliitis, such as altered vascular tone, oxidative stress, and cytokine storms. The cerebral hemodynamic impairment that is caused is associated with a higher probability of severe disease and poor outcomes in patients with COVID-19. This review summarizes the most relevant literature on the role of vasomotor reactivity (VMR) in COVID-19 patients. An overview of the research articles is presented. Most of the studies have supported the hypothesis that endothelial dysfunction and cerebral VMR impairment occur in COVID-19 patients. Researchers believe these alterations may be due to direct viral invasion of the brain or indirect effects, such as inflammation and cytokines. Recently, researchers have concluded that viruses such as the Human Herpes Virus 8 and the Hantavirus predominantly affect endothelial cells and, therefore, affect cerebral hemodynamics. Especially in COVID-19 patients, impaired VMR is associated with a higher risk of severe disease and poor outcomes. Using VMR, one can gain valuable insight into a patient's disease progression and make more informed decisions regarding appropriate treatment options. A new pandemic may develop with the COVID-19 virus or other viruses, making it essential that healthcare providers and researchers remain focused on developing new strategies for improving survival in such patients, particularly those with cerebrovascular risk factors.
Collapse
Affiliation(s)
- Zahra Ghotbi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz P.O. Box 71348-14336, Iran
| | - Mehrdad Estakhr
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz P.O. Box 71348-14336, Iran
| | - Melika Hosseini
- Comprehensive Stroke Center, Department of Neurosciences, Loma Linda University, Loma Linda, CA 92354, USA
| | - Reza Bavarsad Shahripour
- Comprehensive Stroke Center, Department of Neurosciences, Loma Linda University, Loma Linda, CA 92354, USA
- UCSD Comprehensive Stroke Center, Department of Neurosciences, University of California, San Diego, CA 92093, USA
| |
Collapse
|
11
|
Maiese K. Cognitive Impairment in Multiple Sclerosis. Bioengineering (Basel) 2023; 10:871. [PMID: 37508898 PMCID: PMC10376413 DOI: 10.3390/bioengineering10070871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Almost three million individuals suffer from multiple sclerosis (MS) throughout the world, a demyelinating disease in the nervous system with increased prevalence over the last five decades, and is now being recognized as one significant etiology of cognitive loss and dementia. Presently, disease modifying therapies can limit the rate of relapse and potentially reduce brain volume loss in patients with MS, but unfortunately cannot prevent disease progression or the onset of cognitive disability. Innovative strategies are therefore required to address areas of inflammation, immune cell activation, and cell survival that involve novel pathways of programmed cell death, mammalian forkhead transcription factors (FoxOs), the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), and associated pathways with the apolipoprotein E (APOE-ε4) gene and severe acute respiratory syndrome coronavirus (SARS-CoV-2). These pathways are intertwined at multiple levels and can involve metabolic oversight with cellular metabolism dependent upon nicotinamide adenine dinucleotide (NAD+). Insight into the mechanisms of these pathways can provide new avenues of discovery for the therapeutic treatment of dementia and loss in cognition that occurs during MS.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
12
|
Maiese K. Cellular Metabolism: A Fundamental Component of Degeneration in the Nervous System. Biomolecules 2023; 13:816. [PMID: 37238686 PMCID: PMC10216724 DOI: 10.3390/biom13050816] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
It is estimated that, at minimum, 500 million individuals suffer from cellular metabolic dysfunction, such as diabetes mellitus (DM), throughout the world. Even more concerning is the knowledge that metabolic disease is intimately tied to neurodegenerative disorders, affecting both the central and peripheral nervous systems as well as leading to dementia, the seventh leading cause of death. New and innovative therapeutic strategies that address cellular metabolism, apoptosis, autophagy, and pyroptosis, the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), growth factor signaling with erythropoietin (EPO), and risk factors such as the apolipoprotein E (APOE-ε4) gene and coronavirus disease 2019 (COVID-19) can offer valuable insights for the clinical care and treatment of neurodegenerative disorders impacted by cellular metabolic disease. Critical insight into and modulation of these complex pathways are required since mTOR signaling pathways, such as AMPK activation, can improve memory retention in Alzheimer's disease (AD) and DM, promote healthy aging, facilitate clearance of β-amyloid (Aß) and tau in the brain, and control inflammation, but also may lead to cognitive loss and long-COVID syndrome through mechanisms that can include oxidative stress, mitochondrial dysfunction, cytokine release, and APOE-ε4 if pathways such as autophagy and other mechanisms of programmed cell death are left unchecked.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
13
|
Righetto I, Gasparotto M, Casalino L, Vacca M, Filippini F. Exogenous Players in Mitochondria-Related CNS Disorders: Viral Pathogens and Unbalanced Microbiota in the Gut-Brain Axis. Biomolecules 2023; 13:biom13010169. [PMID: 36671555 PMCID: PMC9855674 DOI: 10.3390/biom13010169] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Billions of years of co-evolution has made mitochondria central to the eukaryotic cell and organism life playing the role of cellular power plants, as indeed they are involved in most, if not all, important regulatory pathways. Neurological disorders depending on impaired mitochondrial function or homeostasis can be caused by the misregulation of "endogenous players", such as nuclear or cytoplasmic regulators, which have been treated elsewhere. In this review, we focus on how exogenous agents, i.e., viral pathogens, or unbalanced microbiota in the gut-brain axis can also endanger mitochondrial dynamics in the central nervous system (CNS). Neurotropic viruses such as Herpes, Rabies, West-Nile, and Polioviruses seem to hijack neuronal transport networks, commandeering the proteins that mitochondria typically use to move along neurites. However, several neurological complications are also associated to infections by pandemic viruses, such as Influenza A virus and SARS-CoV-2 coronavirus, representing a relevant risk associated to seasonal flu, coronavirus disease-19 (COVID-19) and "Long-COVID". Emerging evidence is depicting the gut microbiota as a source of signals, transmitted via sensory neurons innervating the gut, able to influence brain structure and function, including cognitive functions. Therefore, the direct connection between intestinal microbiota and mitochondrial functions might concur with the onset, progression, and severity of CNS diseases.
Collapse
Affiliation(s)
- Irene Righetto
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, via Ugo Bassi, 58/B, 35131 Padua, Italy
| | - Matteo Gasparotto
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, via Ugo Bassi, 58/B, 35131 Padua, Italy
| | - Laura Casalino
- Institute of Genetics and Biophysics “A. Buzzati Traverso”, CNR, via Pietro Castellino, 111, 80131 Naples, Italy
| | - Marcella Vacca
- Institute of Genetics and Biophysics “A. Buzzati Traverso”, CNR, via Pietro Castellino, 111, 80131 Naples, Italy
- Correspondence: (M.V.); (F.F.)
| | - Francesco Filippini
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, via Ugo Bassi, 58/B, 35131 Padua, Italy
- Correspondence: (M.V.); (F.F.)
| |
Collapse
|
14
|
Maiese K. The Metabolic Basis for Nervous System Dysfunction in Alzheimer's Disease, Parkinson's Disease, and Huntington's Disease. Curr Neurovasc Res 2023; 20:314-333. [PMID: 37488757 PMCID: PMC10528135 DOI: 10.2174/1567202620666230721122957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/10/2023] [Accepted: 06/19/2023] [Indexed: 07/26/2023]
Abstract
Disorders of metabolism affect multiple systems throughout the body but may have the greatest impact on both central and peripheral nervous systems. Currently available treatments and behavior changes for disorders that include diabetes mellitus (DM) and nervous system diseases are limited and cannot reverse the disease burden. Greater access to healthcare and a longer lifespan have led to an increased prevalence of metabolic and neurodegenerative disorders. In light of these challenges, innovative studies into the underlying disease pathways offer new treatment perspectives for Alzheimer's Disease, Parkinson's Disease, and Huntington's Disease. Metabolic disorders are intimately tied to neurodegenerative diseases and can lead to debilitating outcomes, such as multi-nervous system disease, susceptibility to viral pathogens, and long-term cognitive disability. Novel strategies that can robustly address metabolic disease and neurodegenerative disorders involve a careful consideration of cellular metabolism, programmed cell death pathways, the mechanistic target of rapamycin (mTOR) and its associated pathways of mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP-activated protein kinase (AMPK), growth factor signaling, and underlying risk factors such as the apolipoprotein E (APOE-ε4) gene. Yet, these complex pathways necessitate comprehensive understanding to achieve clinical outcomes that target disease susceptibility, onset, and progression.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
15
|
Vakili K, Fathi M, Yaghoobpoor S, Sayehmiri F, Nazerian Y, Nazerian A, Mohamadkhani A, Khodabakhsh P, Réus GZ, Hajibeygi R, Rezaei-Tavirani M. The contribution of gut-brain axis to development of neurological symptoms in COVID-19 recovered patients: A hypothesis and review of literature. Front Cell Infect Microbiol 2022; 12:983089. [PMID: 36619768 PMCID: PMC9815719 DOI: 10.3389/fcimb.2022.983089] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/25/2022] [Indexed: 12/24/2022] Open
Abstract
The gut microbiota undergoes significant alterations in response to viral infections, particularly the novel SARS-CoV-2. As impaired gut microbiota can trigger numerous neurological disorders, we suggest that the long-term neurological symptoms of COVID-19 may be related to intestinal microbiota disorders in these patients. Thus, we have gathered available information on how the virus can affect the microbiota of gastrointestinal systems, both in the acute and the recovery phase of the disease, and described several mechanisms through which this gut dysbiosis can lead to long-term neurological disorders, such as Guillain-Barre syndrome, chronic fatigue, psychiatric disorders such as depression and anxiety, and even neurodegenerative diseases such as Alzheimer's and Parkinson's disease. These mechanisms may be mediated by inflammatory cytokines, as well as certain chemicals such as gastrointestinal hormones (e.g., CCK), neurotransmitters (e.g., 5-HT), etc. (e.g., short-chain fatty acids), and the autonomic nervous system. In addition to the direct influences of the virus, repurposed medications used for COVID-19 patients can also play a role in gut dysbiosis. In conclusion, although there are many dark spots in our current knowledge of the mechanism of COVID-19-related gut-brain axis disturbance, based on available evidence, we can hypothesize that these two phenomena are more than just a coincidence and highly recommend large-scale epidemiologic studies in the future.
Collapse
Affiliation(s)
- Kimia Vakili
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Yaghoobpoor
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sayehmiri
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Nazerian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ashraf Mohamadkhani
- Digestive Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Pariya Khodabakhsh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gislaine Z. Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Ramtin Hajibeygi
- Department of Cardiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Neurological disorders of COVID-19: insights to applications of natural products from plants and microorganisms. Arch Pharm Res 2022; 45:909-937. [PMCID: PMC9702705 DOI: 10.1007/s12272-022-01420-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
In addition to the typical respiratory manifestations, various disorders including involvement of the nerve system have been detected in COVID-19 ranging from 22 to 36%. Although growing records are focusing on neurological aspects of COVID-19, the pathophysiological mechanisms and related therapeutic methods remain obscure. Considering the increased concerns of SARS-CoV-2 potential for more serious neuroinvasion conditions, the present review attempts to focus on the neuroprotective effects of natural compounds as the principle source of therapeutics inhibiting multiple steps of the SARS-CoV-2 infection cycle. The great majority of the natural products with anti-SARS-CoV-2 activity mainly inhibit the attachment, entry and gene expression rather than the replication, assembly, or release. Although microbial-derived natural products comprise 38.5% of the known natural products with neuroprotective effects following viral infection, the neuroprotective potential of the majority of microorganisms is still undiscovered. Among natural products, chrysin, huperzine A, ginsenoside Rg1, pterostilbene, and terrein have shown potent in vitro neuroprotective activity and can be promising for new or repurpose drugs for neurological complications of SARS-CoV-2.
Collapse
|
17
|
Chen F, Chen Y, Wang Y, Ke Q, Cui L. The COVID-19 pandemic and Alzheimer's disease: mutual risks and mechanisms. Transl Neurodegener 2022; 11:40. [PMID: 36089575 PMCID: PMC9464468 DOI: 10.1186/s40035-022-00316-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/02/2022] [Indexed: 11/10/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a life-threatening disease, especially in elderly individuals and those with comorbidities. The predominant clinical manifestation of COVID-19 is respiratory dysfunction, while neurological presentations are increasingly being recognized. SARS-CoV-2 invades host cells primarily via attachment of the spike protein to the angiotensin-converting enzyme 2 (ACE2) receptor expressed on cell membranes. Patients with Alzheimer's disease (AD) are more susceptible to SARS-CoV-2 infection and prone to severe clinical outcomes. Recent studies have revealed some common risk factors for AD and COVID-19. An understanding of the association between COVID-19 and AD and the potential related mechanisms may lead to the development of novel approaches to treating both diseases. In the present review, we first summarize the mechanisms by which SARS-CoV-2 invades the central nervous system (CNS) and then discuss the associations and potential shared key factors between COVID-19 and AD, with a focus on the ACE2 receptor, apolipoprotein E (APOE) genotype, age, and neuroinflammation.
Collapse
Affiliation(s)
- Feng Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province Kunming Institute of Zoology Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yanting Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yongxiang Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qiongwei Ke
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
18
|
Jamoulle M, Kazeneza-Mugisha G, Zayane A. Follow-Up of a Cohort of Patients with Post-Acute COVID-19 Syndrome in a Belgian Family Practice. Viruses 2022; 14:2000. [PMID: 36146806 PMCID: PMC9505954 DOI: 10.3390/v14092000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/18/2022] Open
Abstract
Fifty-five patients who suffered from COVID-19, who were still very ill after several months, with extreme fatigue, effort exhaustion, brain fog, anomia, memory disorder, anosmia, dysgeusia, and other multi-systemic health problems have been followed in a family practice setting between May 2021 and July 2022. Data extracted from the medical records of the 55 patients (40 women), mean age 42.4 (12 to 79 years), and a qualitative study of 6 of them using a semi-open-ended questionnaire allowed to highlight the clinical picture described by WHO as post-acute COVID-19 syndrome (PACS) also known as long COVID. We used brain single-photon emission computed tomography (SPECT-CT) in thirty-two patients with a high severity index and a highly impaired functional status, demonstrating vascular encephalopathy in twenty nine patients and supporting the hypothesis of a persistent cerebral vascular flow disorder in post COVID-19 condition. The patients will benefit from the consortium COVID Human Genetic Effort (covidhge.com) to explore the genetic and immunological basis of their problem, as 23/55 cases don't have immunological certainty of a COVID-19 infection. There is no known verified treatment. Analyzing the data from the first 52 patients, three categories of patients emerged over time: 16 patients made a full recovery after 6-8 months, 15 patients were able to return to life and work after 12-18 months with some sequelae, both groups being considered cured. In the third group, 21 patients are still very ill and unable to resume their work and life after 18 months. The biopsychosocial consequences on patients' lives are severe and family doctors are left out in the cold. It is necessary to test the reproducibility of this description, conducted on a small number of patients. Nevertheless, identifying, monitoring and supporting these patients is a necessity in family medicine.
Collapse
Affiliation(s)
- Marc Jamoulle
- HEC Information Sciences, University of Liège, 4000 Liege, Belgium
| | | | | |
Collapse
|
19
|
Boussuges A, Habert P, Chaumet G, Rouibah R, Delorme L, Menard A, Million M, Bartoli A, Guedj E, Gouitaa M, Zieleskiewicz L, Finance J, Coiffard B, Delliaux S, Brégeon F. Diaphragm dysfunction after severe COVID-19: An ultrasound study. Front Med (Lausanne) 2022; 9:949281. [PMID: 36091672 PMCID: PMC9448976 DOI: 10.3389/fmed.2022.949281] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundSARS-CoV-2 infection can impair diaphragm function at the acute phase but the frequency of diaphragm dysfunction after recovery from COVID-19 remains unknown.Materials and methodsThis study was carried out on patients reporting persistent respiratory symptoms 3–4 months after severe COVID-19 pneumonia. The included patients were selected from a medical consultation designed to screen for recovery after acute infection. Respiratory function was assessed by a pulmonary function test, and diaphragm function was studied by ultrasonography.ResultsIn total, 132 patients (85M, 47W) were recruited from the medical consultation. During the acute phase of the infection, the severity of the clinical status led to ICU admission for 58 patients (44%). Diaphragm dysfunction (DD) was detected by ultrasonography in 13 patients, two of whom suffered from hemidiaphragm paralysis. Patients with DD had more frequently muscle pain complaints and had a higher frequency of prior cardiothoracic or upper abdominal surgery than patients with normal diaphragm function. Pulmonary function testing revealed a significant decrease in lung volumes and DLCO and the dyspnea scores (mMRC and Borg10 scores) were significantly increased in patients with DD. Improvement in respiratory function was recorded in seven out of nine patients assessed 6 months after the first ultrasound examination.ConclusionAssessment of diaphragm function by ultrasonography after severe COVID-19 pneumonia revealed signs of dysfunction in 10% of our population. In some cases, ultrasound examination probably discovered an un-recognized pre-existing DD. COVID-19 nonetheless contributed to impairment of diaphragm function. Prolonged respiratory physiotherapy led to improvement in respiratory function in most patients.Clinical trial registration[www.cnil.fr], identifier [#PADS20-207].
Collapse
Affiliation(s)
- Alain Boussuges
- Faculté de Médecine, Center for Cardiovascular and Nutrition Research, C2VN, INSERM 1263, INRAE 1260, Aix-Marseille University, Marseille, France
- Explorations Fonctionnelles Respiratoires, Hôpital Nord, APHM, Marseille, France
- *Correspondence: Alain Boussuges, ,
| | - Paul Habert
- Département d’Imagerie, Hôpital Nord, APHM, LIIE, Aix-Marseille University, Marseille, France
| | | | - Rawah Rouibah
- Explorations Fonctionnelles Respiratoires, Hôpital Nord, APHM, Marseille, France
| | - Lea Delorme
- IRD, IHU-Méditerranée Infection, Marseille, France
| | - Amelie Menard
- Unité Post COVID, Service de Médecine Interne, Hôpital Nord, APHM, Marseille, France
| | - Matthieu Million
- Microbes Evolution Phylogeny and Infections (MEPHI), IHU-Méditerranée Infection, APHM, Aix-Marseille University, Marseille, France
| | - Axel Bartoli
- Département de Radiologie, CNRS, CRMBM, Hôpital Timone, APHM, Aix-Marseille University, Marseille, France
| | - Eric Guedj
- Department of Nuclear Medicine, CNRS, Centrale Marseille, Institut Fresnel, Hôpital Timone, CERIMED, APHM, Aix-Marseille University, Marseille, France
| | - Marion Gouitaa
- Clinique des Bronches, Allergie et Sommeil, Hôpital Nord, APHM, Marseille, France
| | - Laurent Zieleskiewicz
- Faculté de Médecine, Center for Cardiovascular and Nutrition Research, C2VN, INSERM 1263, INRAE 1260, Aix-Marseille University, Marseille, France
- Service d’Anesthésie et Réanimation, Hôpital Nord, Marseille, France
| | - Julie Finance
- Explorations Fonctionnelles Respiratoires, Hôpital Nord, APHM, Marseille, France
| | - Benjamin Coiffard
- Département des Maladies Respiratoire et Transplantation Pulmonaire, Hôpital Nord, APHM, Aix-Marseille University, Marseille, France
| | - Stephane Delliaux
- Faculté de Médecine, Center for Cardiovascular and Nutrition Research, C2VN, INSERM 1263, INRAE 1260, Aix-Marseille University, Marseille, France
- Explorations Fonctionnelles Respiratoires, Hôpital Nord, APHM, Marseille, France
| | - Fabienne Brégeon
- Explorations Fonctionnelles Respiratoires, Hôpital Nord, APHM, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), IHU-Méditerranée Infection, APHM, Aix-Marseille University, Marseille, France
| |
Collapse
|
20
|
Pelizzari L, Cazzoli M, Lipari S, Laganà MM, Cabinio M, Isernia S, Pirastru A, Clerici M, Baglio F. Mid-term MRI evaluation reveals microstructural white matter alterations in COVID-19 fully recovered subjects with anosmia presentation. Ther Adv Neurol Disord 2022; 15:17562864221111995. [PMID: 35899101 PMCID: PMC9310254 DOI: 10.1177/17562864221111995] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/18/2022] [Indexed: 12/11/2022] Open
Abstract
Background Little is still known about the mid/long-term effects of coronavirus disease 2019 (COVID-19) on the brain, especially in subjects who have never been hospitalized due to the infection. In this neuroimaging exploratory study, we analyzed the medium-term effect of COVID-19 on the brain of people who recovered from COVID-19, experienced anosmia during the acute phase of the disease, and have never been hospitalized due to SARS-Co-V-2 infection. Methods Forty-three individuals who had (COV+, n = 22) or had not (COV-, n = 21) been infected with SARS-Co-V-2 were included in the study; the two groups were age- and sex-matched and were investigated using 3T magnetic resonance imaging (MRI). Gray matter (GM) volume, white matter (WM) hyperintensity volume, WM microstrutural integrity (i.e. fractional anisotropy [FA], mean diffusivity [MD], axial diffusivity [AD], radial diffusivity [RD]) and cerebral blood flow (CBF) differences between the two groups were tested with either analysis of covariance or voxel-wise analyses. Results were family wise error (FWE) corrected. Results No significant differences between COV+ and COV- groups were observed in terms of GM volume, WM hyperintensity volume, and CBF. Conversely, local WM microstructural alterations were detected in COV+ when compared with COV- with tract-based spatial statistics. Specifically, COV+ showed lower FA (pFWE-peak = 0.035) and higher RD (pFWE-peak = 0.038) than COV- in several WM regions. Conclusion COVID-19 may produce mid/long-term microstructural effect on the brain, even in case of mild-to-moderate disease not requiring hospitalization. Further investigation and additional follow-ups are warranted to assess if the alterations reported in this study totally recover over time. As brain alterations could increase the risk of cognitive decline, greater knowledge of their trajectories is crucial to aid neurorehabilitation treatments.
Collapse
Affiliation(s)
| | - Marta Cazzoli
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | | | | | - Monia Cabinio
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Sara Isernia
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | | | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro 66, 20148, Milano, Italy
| | | |
Collapse
|
21
|
Stafstrom CE. Neurological effects of COVID-19 in infants and children. Dev Med Child Neurol 2022; 64:818-829. [PMID: 35243616 PMCID: PMC9111795 DOI: 10.1111/dmcn.15185] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/13/2022]
Abstract
Neurological manifestations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in children are becoming increasingly apparent as the coronavirus disease (COVID-19) pandemic continues. While children manifest relatively milder features of the disease, accumulating evidence warrants concern that COVID-19 exacts both acute- and long-term effects on the developing central and peripheral nervous systems. This review focuses on the relatively underinvestigated topic of the effects of SARS-CoV-2 on the brain in infancy and childhood, concluding that clinicians should be attentive to both the acute effects and long-term consequences of COVID-19 from a neurological perspective.
Collapse
Affiliation(s)
- Carl E. Stafstrom
- Division of Pediatric NeurologyDepartments of Neurology and PediatricsThe Johns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
22
|
Kong H, Xu LM, Wang DX. Perioperative neurocognitive disorders: A narrative review focusing on diagnosis, prevention, and treatment. CNS Neurosci Ther 2022; 28:1147-1167. [PMID: 35652170 PMCID: PMC9253756 DOI: 10.1111/cns.13873] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 12/13/2022] Open
Abstract
Perioperative neurocognitive disorders (NCDs) refer to neurocognitive abnormalities detected during the perioperative periods, including preexisting cognitive impairment, preoperative delirium, delirium occurring up to 7 days after surgery, delayed neurocognitive recovery, and postoperative NCD. The Diagnostic and Statistical Manual of Mental Disorders‐5th edition (DSM‐5) is the golden standard for diagnosing perioperative NCDs. Given the impracticality of using the DSM‐5 by non‐psychiatric practitioners, many diagnostic tools have been developed and validated for different clinical scenarios. The etiology of perioperative NCDs is multifactorial and includes predisposing and precipitating factors. Identifying these risk factors is conducive to preoperative risk stratification and perioperative risk reduction. Prevention for perioperative NCDs should include avoiding possible contributors and implementing nonpharmacologic and pharmacological interventions. The former generally includes avoiding benzodiazepines, anticholinergics, prolonged liquid fasting, deep anesthesia, cerebral oxygen desaturation, and intraoperative hypothermia. Nonpharmacologic measures include preoperative cognitive prehabilitation, comprehensive geriatric assessment, implementing fast‐track surgery, combined use of regional block, and sleep promotion. Pharmacological measures including dexmedetomidine, nonsteroidal anti‐inflammatory drugs, and acetaminophen are found to have beneficial effects. Nonpharmacological treatments are the first‐line measures for established perioperative NCDs. Pharmacological treatments are still limited to severely agitated or distressed patients.
Collapse
Affiliation(s)
- Hao Kong
- Department of Anesthesiology and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Long-Ming Xu
- Department of Anesthesiology and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Dong-Xin Wang
- Department of Anesthesiology and Critical Care Medicine, Peking University First Hospital, Beijing, China.,Outcomes Research Consortium, Cleveland, Ohio, USA
| |
Collapse
|
23
|
Therapeutic potential of induced iron depletion using iron chelators in Covid-19. Saudi J Biol Sci 2022; 29:1947-1956. [PMID: 34924800 PMCID: PMC8666385 DOI: 10.1016/j.sjbs.2021.11.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/24/2021] [Accepted: 11/28/2021] [Indexed: 01/09/2023] Open
Abstract
Ferritin, which includes twenty-four light and heavy chains in varying proportions in different tissues, is primarily responsible for maintaining the body's iron metabolism. Its normal value is between 10 and 200 ngmL-1 in men and between 30 and 300 ngmL-1 in women. Iron is delivered to the tissue via them, and they act as immunomodulators, signaling molecules, and inflammatory markers. When ferritin level exceeds 1000 µgL-1, the patient is categorized as having hyperferritinemia. Iron chelators such as deferiprone, deferirox, and deferoxamine are currently FDA approved to treat iron overload. The inflammation cascade and poor prognosis of COVID-19 may be attributed to high ferritin levels. Critically ill patients can benefit from deferasirox, an iron chelator administered orally at 20-40 mgkg-1 once daily, as well as intravenous deferoxamine at 1000 mg initially followed by 500 mg every 4 to 12 h. It can be combined with monoclonal antibodies, antioxidants, corticosteroids, and lactoferrin to make iron chelation therapy effective for COVID-19 victims. In this article, we analyze the antiviral and antifibrotic activity of iron chelators, thereby promoting iron depletion therapy as a potentially innovative treatment strategy for COVID-19.
Collapse
|
24
|
Melatonin: highlighting its use as a potential treatment for SARS-CoV-2 infection. Cell Mol Life Sci 2022; 79:143. [PMID: 35187603 PMCID: PMC8858600 DOI: 10.1007/s00018-021-04102-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/29/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023]
Abstract
Numerous pharmaceutical drugs have been repurposed for use as treatments for COVID-19 disease. These drugs have not consistently demonstrated high efficacy in preventing or treating this serious condition and all have side effects to differing degrees. We encourage the continued consideration of the use of the antioxidant and anti-inflammatory agent, melatonin, as a countermeasure to a SARS-CoV-2 infection. More than 140 scientific publications have identified melatonin as a likely useful agent to treat this disease. Moreover, the publications cited provide the rationale for the use of melatonin as a prophylactic agent against this condition. Melatonin has pan-antiviral effects and it diminishes the severity of viral infections and reduces the death of animals infected with numerous different viruses, including three different coronaviruses. Network analyses, which compared drugs used to treat SARS-CoV-2 in humans, also predicted that melatonin would be the most effective agent for preventing/treating COVID-19. Finally, when seriously infected COVID-19 patients were treated with melatonin, either alone or in combination with other medications, these treatments reduced the severity of infection, lowered the death rate, and shortened the duration of hospitalization. Melatonin’s ability to arrest SARS-CoV-2 infections may reduce health care exhaustion by limiting the need for hospitalization. Importantly, melatonin has a high safety profile over a wide range of doses and lacks significant toxicity. Some molecular processes by which melatonin resists a SARS-CoV-2 infection are summarized. The authors believe that all available, potentially beneficial drugs, including melatonin, that lack toxicity should be used in pandemics such as that caused by SARS-CoV-2.
Collapse
|
25
|
Maiese K. A Common Link in Neurovascular Regenerative Pathways: Protein Kinase B (Akt). Curr Neurovasc Res 2022; 19:1-4. [PMID: 35139797 DOI: 10.2174/1567202619666220209111655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Kohut AO, Chaban OS, Burdeinyi AO, Dolynskyi RG, Bursa AI, Bobryk MI, Gershanov A. POST-COVID COGNITIVE IMPAIRMENT IN PATIENTS WITH TYPE 2 DIABETES MELLITUS. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2022; 75:1895-1899. [PMID: 36089875 DOI: 10.36740/wlek202208113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
OBJECTIVE The aim: The revealing of the consequences of the long-term postcovid effects on the particular cognitive domains in patients with diabetes mellitus type 2 (DM 2) by comparing the characteristics of patients with DM 2 without postcovid disorders and the characteristics of cognitive impairment in patients with long-therm postcovid without DM 2 by forming the research hypothesis to improve the adherence to treatment of patients. PATIENTS AND METHODS Materials and methods: Literature search was performed using PubMed search criteria "covid AND cognitive AND domain" 217 articles, as a result, and separately "diabetes mellitus 2 type AND cognitive impairment AND domain" with the result of 164 articles. There were 26 remaining studies included in this review. The hypothesis about the relationships between the particular cause factors and the defeating of specific cognitive domains in patients with DM 2 in the long-term postcovid period has been formed. CONCLUSION Conclusions: This is important in the terms of the influence of cognitive impairment on the concordance to treatment process and quality of life level in patients with DM 2 in general. So, involving specialists of different profiles in a multidisciplinary approach is the solution to this issue.
Collapse
Affiliation(s)
- Anna O Kohut
- BOGOMOLETS NATIONAL MEDICAL UNIVERSITY, KYIV, UKRAINE
| | - Oleg S Chaban
- BOGOMOLETS NATIONAL MEDICAL UNIVERSITY, KYIV, UKRAINE
| | | | | | | | | | | |
Collapse
|
27
|
Leite ADOF, Bento Torres Neto J, dos Reis RR, Sobral LL, de Souza ACP, Trévia N, de Oliveira RB, Lins NADA, Diniz DG, Diniz JAP, Vasconcelos PFDC, Anthony DC, Brites D, Picanço Diniz CW. Unwanted Exacerbation of the Immune Response in Neurodegenerative Disease: A Time to Review the Impact. Front Cell Neurosci 2021; 15:749595. [PMID: 34744633 PMCID: PMC8570167 DOI: 10.3389/fncel.2021.749595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/23/2021] [Indexed: 11/13/2022] Open
Abstract
The COVID-19 pandemic imposed a series of behavioral changes that resulted in increased social isolation and a more sedentary life for many across all age groups, but, above all, for the elderly population who are the most vulnerable to infections and chronic neurodegenerative diseases. Systemic inflammatory responses are known to accelerate neurodegenerative disease progression, which leads to permanent damage, loss of brain function, and the loss of autonomy for many aged people. During the COVID-19 pandemic, a spectrum of inflammatory responses was generated in affected individuals, and it is expected that the elderly patients with chronic neurodegenerative diseases who survived SARSCoV-2 infection, it will be found, sooner or later, that there is a worsening of their neurodegenerative conditions. Using mouse prion disease as a model for chronic neurodegeneration, we review the effects of social isolation, sedentary living, and viral infection on the disease progression with a focus on sickness behavior and on the responses of microglia and astrocytes. Focusing on aging, we discuss the cellular and molecular mechanisms related to immunosenescence in chronic neurodegenerative diseases and how infections may accelerate their progression.
Collapse
Affiliation(s)
- Amanda de Oliveira Ferreira Leite
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - João Bento Torres Neto
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Renata Rodrigues dos Reis
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Luciane Lobato Sobral
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Aline Cristine Passos de Souza
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Nonata Trévia
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Roseane Borner de Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Nara Alves de Almeida Lins
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Daniel Guerreiro Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, Brazil
| | | | | | | | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
28
|
Finsterer J, Scorza FA. Mental compromise in SARS-CoV-2 infected patients is multicausal, organic or inorganic. Brain Commun 2021; 3:fcab218. [PMID: 34557670 PMCID: PMC8456520 DOI: 10.1093/braincomms/fcab218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 11/24/2022] Open
Affiliation(s)
| | - Fulvio A Scorza
- Disciplina de Neurociência. Universidade Federal de São Paulo/Escola Paulista de Medicina (UNIFESP/EPM), São Paulo-SP 04039-00, Brazil
| |
Collapse
|
29
|
Gugliandolo A, Chiricosta L, Calcaterra V, Biasin M, Cappelletti G, Carelli S, Zuccotti G, Avanzini MA, Bramanti P, Pelizzo G, Mazzon E. SARS-CoV-2 Infected Pediatric Cerebral Cortical Neurons: Transcriptomic Analysis and Potential Role of Toll-like Receptors in Pathogenesis. Int J Mol Sci 2021; 22:8059. [PMID: 34360824 PMCID: PMC8347089 DOI: 10.3390/ijms22158059] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/21/2021] [Accepted: 07/25/2021] [Indexed: 02/07/2023] Open
Abstract
Different mechanisms were proposed as responsible for COVID-19 neurological symptoms but a clear one has not been established yet. In this work we aimed to study SARS-CoV-2 capacity to infect pediatric human cortical neuronal HCN-2 cells, studying the changes in the transcriptomic profile by next generation sequencing. SARS-CoV-2 was able to replicate in HCN-2 cells, that did not express ACE2, confirmed also with Western blot, and TMPRSS2. Looking for pattern recognition receptor expression, we found the deregulation of scavenger receptors, such as SR-B1, and the downregulation of genes encoding for Nod-like receptors. On the other hand, TLR1, TLR4 and TLR6 encoding for Toll-like receptors (TLRs) were upregulated. We also found the upregulation of genes encoding for ERK, JNK, NF-κB and Caspase 8 in our transcriptomic analysis. Regarding the expression of known receptors for viral RNA, only RIG-1 showed an increased expression; downstream RIG-1, the genes encoding for TRAF3, IKKε and IRF3 were downregulated. We also found the upregulation of genes encoding for chemokines and accordingly we found an increase in cytokine/chemokine levels in the medium. According to our results, it is possible to speculate that additionally to ACE2 and TMPRSS2, also other receptors may interact with SARS-CoV-2 proteins and mediate its entry or pathogenesis in pediatric cortical neurons infected with SARS-CoV-2. In particular, TLRs signaling could be crucial for the neurological involvement related to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Agnese Gugliandolo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.G.); (L.C.); (P.B.)
| | - Luigi Chiricosta
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.G.); (L.C.); (P.B.)
| | - Valeria Calcaterra
- Department of Pediatrics, Ospedale dei Bambini “Vittore Buzzi”, 20154 Milano, Italy; (V.C.); (G.Z.)
- Pediatrics and Adolescentology Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences–L. Sacco, University of Milan, 20157 Milan, Italy; (M.B.); (G.C.); (G.P.)
| | - Gioia Cappelletti
- Department of Biomedical and Clinical Sciences–L. Sacco, University of Milan, 20157 Milan, Italy; (M.B.); (G.C.); (G.P.)
| | - Stephana Carelli
- Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20157 Milan, Italy;
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Ospedale dei Bambini “Vittore Buzzi”, 20154 Milano, Italy; (V.C.); (G.Z.)
- Department of Biomedical and Clinical Sciences–L. Sacco, University of Milan, 20157 Milan, Italy; (M.B.); (G.C.); (G.P.)
| | - Maria Antonietta Avanzini
- Cell Factory, Pediatric Hematology Oncology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Placido Bramanti
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.G.); (L.C.); (P.B.)
| | - Gloria Pelizzo
- Department of Biomedical and Clinical Sciences–L. Sacco, University of Milan, 20157 Milan, Italy; (M.B.); (G.C.); (G.P.)
- Pediatric Surgery Unit, Ospedale dei Bambini “Vittore Buzzi”, 20154 Milano, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.G.); (L.C.); (P.B.)
| |
Collapse
|