1
|
Ferro D, Cash-Padgett T, Wang MZ, Hayden BY, Moreno-Bote R. Gaze-centered gating, reactivation, and reevaluation of economic value in orbitofrontal cortex. Nat Commun 2024; 15:6163. [PMID: 39039055 PMCID: PMC11263430 DOI: 10.1038/s41467-024-50214-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/03/2024] [Indexed: 07/24/2024] Open
Abstract
During economic choice, options are often considered in alternation, until commitment. Nonetheless, neuroeconomics typically ignores the dynamic aspects of deliberation. We trained two male macaques to perform a value-based decision-making task in which two risky offers were presented in sequence at the opposite sides of the visual field, each followed by a delay epoch where offers were invisible. Surprisingly, during the two delays, subjects tend to look at empty locations where the offers had previously appeared, with longer fixations increasing the probability of choosing the associated offer. Spiking activity in orbitofrontal cortex reflects the value of the gazed offer, or of the offer associated with the gazed empty spatial location, even if it is not the most recent. This reactivation reflects a reevaluation process, as fluctuations in neural spiking correlate with upcoming choice. Our results suggest that look-at-nothing gazing triggers the reactivation of a previously seen offer for further evaluation.
Collapse
Affiliation(s)
- Demetrio Ferro
- Center for Brain and Cognition, Universitat Pompeu Fabra, 08002, Barcelona, Spain.
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08002, Barcelona, Spain.
| | - Tyler Cash-Padgett
- Department of Neuroscience, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN55455, USA
| | - Maya Zhe Wang
- Department of Neuroscience, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN55455, USA
| | - Benjamin Y Hayden
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rubén Moreno-Bote
- Center for Brain and Cognition, Universitat Pompeu Fabra, 08002, Barcelona, Spain
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08002, Barcelona, Spain
- Serra Húnter Fellow Programme, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
2
|
Lee H, Kim HF, Hikosaka O. Implication of regional selectivity of dopamine deficits in impaired suppressing of involuntary movements in Parkinson's disease. Neurosci Biobehav Rev 2024; 162:105719. [PMID: 38759470 PMCID: PMC11167649 DOI: 10.1016/j.neubiorev.2024.105719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
To improve the initiation and speed of intended action, one of the crucial mechanisms is suppressing unwanted movements that interfere with goal-directed behavior, which is observed relatively aberrant in Parkinson's disease patients. Recent research has highlighted that dopamine deficits in Parkinson's disease predominantly occur in the caudal lateral part of the substantia nigra pars compacta (SNc) in human patients. We previously found two parallel circuits within the basal ganglia, primarily divided into circuits mediated by the rostral medial part and caudal lateral part of the SNc dopamine neurons. We have further discovered that the indirect pathway in caudal basal ganglia circuits, facilitated by the caudal lateral part of the SNc dopamine neurons, plays a critical role in suppressing unnecessary involuntary movements when animals perform voluntary goal-directed actions. We thus explored recent research in humans and non-human primates focusing on the distinct functions and networks of the caudal lateral part of the SNc dopamine neurons to elucidate the mechanisms involved in the impairment of suppressing involuntary movements in Parkinson's disease patients.
Collapse
Affiliation(s)
- Hyunchan Lee
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-4435, USA.
| | - Hyoung F Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Okihide Hikosaka
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-4435, USA
| |
Collapse
|
3
|
Kunimatsu J, Amita H, Hikosaka O. Neuronal response of the primate striatum tail to face of socially familiar persons. iScience 2024; 27:110043. [PMID: 38868184 PMCID: PMC11167483 DOI: 10.1016/j.isci.2024.110043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/21/2024] [Accepted: 05/17/2024] [Indexed: 06/14/2024] Open
Abstract
Recent studies have suggested that the basal ganglia, the center of stimulus-reward associative learning, are involved in social behavior. However, the role of the basal ganglia in social information processing remains unclear. Here, we demonstrate that the striatum tail (STRt) in macaque monkeys, which is sensitive to visual objects with long-term reward history (i.e., stable object value), is also sensitive to socially familiar persons. Many STRt neurons responded to face images of persons, especially those who took daily care of the subject monkeys. These face-responsive neurons also encoded stable object value. The strength of the neuronal modulation of social familiarity and stable object value biases were positively correlated. These results suggest that both social familiarity and stable object value information are mediated by a common neuronal mechanism. Thus, the representation of social information is linked to reward information in the STRt, not in the dedicated social information circuit.
Collapse
Affiliation(s)
- Jun Kunimatsu
- Labortory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Division of Biomedical Science, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Hidetoshi Amita
- Labortory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Systems Neuroscience Section, Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Okihide Hikosaka
- Labortory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Ataei A, Amini A, Ghazizadeh A. Robust memory of face moral values is encoded in the human caudate tail: a simultaneous EEG-fMRI study. Sci Rep 2024; 14:12629. [PMID: 38824168 PMCID: PMC11144224 DOI: 10.1038/s41598-024-63085-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/24/2024] [Indexed: 06/03/2024] Open
Abstract
Moral judgements about people based on their actions is a key component that guides social decision making. It is currently unknown how positive or negative moral judgments associated with a person's face are processed and stored in the brain for a long time. Here, we investigate the long-term memory of moral values associated with human faces using simultaneous EEG-fMRI data acquisition. Results show that only a few exposures to morally charged stories of people are enough to form long-term memories a day later for a relatively large number of new faces. Event related potentials (ERPs) showed a significant differentiation of remembered good vs bad faces over centerofrontal electrode sites (value ERP). EEG-informed fMRI analysis revealed a subcortical cluster centered on the left caudate tail (CDt) as a correlate of the face value ERP. Importantly neither this analysis nor a conventional whole-brain analysis revealed any significant coding of face values in cortical areas, in particular the fusiform face area (FFA). Conversely an fMRI-informed EEG source localization using accurate subject-specific EEG head models also revealed activation in the left caudate tail. Nevertheless, the detected caudate tail region was found to be functionally connected to the FFA, suggesting FFA to be the source of face-specific information to CDt. A further psycho-physiological interaction analysis also revealed task-dependent coupling between CDt and dorsomedial prefrontal cortex (dmPFC), a region previously identified as retaining emotional working memories. These results identify CDt as a main site for encoding the long-term value memories of faces in humans suggesting that moral value of faces activates the same subcortical basal ganglia circuitry involved in processing reward value memory for objects in primates.
Collapse
Affiliation(s)
- Ali Ataei
- EE Department, Sharif University of Technology, Azadi Avenue, Tehran, 1458889694, Iran
- Sharif Brain Center, Sharif University of Technology, Tehran, Iran
| | - Arash Amini
- EE Department, Sharif University of Technology, Azadi Avenue, Tehran, 1458889694, Iran
| | - Ali Ghazizadeh
- EE Department, Sharif University of Technology, Azadi Avenue, Tehran, 1458889694, Iran.
- Sharif Brain Center, Sharif University of Technology, Tehran, Iran.
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Phillips JM, Afrasiabi M, Kambi NA, Redinbaugh MJ, Steely S, Johnson ER, Cheng X, Fayyad M, Mohanta S, Carís A, Mikell CB, Mofakham S, Saalmann YB. Primate thalamic nuclei select abstract rules and shape prefrontal dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584871. [PMID: 38559142 PMCID: PMC10980052 DOI: 10.1101/2024.03.13.584871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Flexible behavior depends on abstract rules to generalize beyond specific instances, and outcome monitoring to adjust actions. Cortical circuits are posited to read out rules from high-dimensional representations of task-relevant variables in prefrontal cortex (PFC). We instead hypothesized that converging inputs from PFC, directly or via basal ganglia (BG), enable primate-specific thalamus to select rules. To test this, we simultaneously measured spiking activity across PFC and two connected thalamic nuclei of monkeys applying rules. Abstract rule information first appeared in the ventroanterior thalamus (VA) - the main thalamic hub between BG and PFC. The mediodorsal thalamus (MD) also represented rule information before PFC, which persisted after rule cues were removed, to help maintain activation of relevant posterior PFC cell ensembles. MD, a major recipient of midbrain dopamine input, was first to represent information about behavioral outcomes. This persisted after the trial (also in PFC). A PFC-BG-thalamus model reproduced key findings, and thalamic-lesion modeling disrupted PFC rule representations. These results suggest a revised view of the neural basis of flexible behavior in primates, featuring a central role for thalamus in selecting high-level cognitive information from PFC and implementing post-error behavioral adjustments, and of the functional organization of PFC along its anterior-posterior dimension.
Collapse
|
6
|
Narmashiri A, Abbaszadeh M, Nadian MH, Ghazizadeh A. Value-Based Search Efficiency Is Encoded in the Substantia Nigra Reticulata Firing Rate, Spiking Irregularity and Local Field Potential. J Neurosci 2024; 44:e1033232023. [PMID: 38124002 PMCID: PMC10860616 DOI: 10.1523/jneurosci.1033-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Recent results show that valuable objects can pop out in visual search, yet its neural mechanisms remain unexplored. Given the role of substantia nigra reticulata (SNr) in object value memory and control of gaze, we recorded its single-unit activity while male macaque monkeys engaged in efficient or inefficient search for a valuable target object among low-value objects. The results showed that efficient search was concurrent with stronger inhibition and higher spiking irregularity in the target-present (TP) compared with the target-absent (TA) trials in SNr. Importantly, the firing rate differentiation of TP and TA trials happened within ∼100 ms of display onset, and its magnitude was significantly correlated with the search times and slopes (search efficiency). Time-frequency analyses of local field potential (LFP) after display onset revealed significant modulations of the gamma band power with search efficiency. The greater reduction of SNr firing in TP trials in efficient search can create a stronger disinhibition of downstream superior colliculus, which in turn can facilitate saccade to obtain valuable targets in competitive environments.
Collapse
Affiliation(s)
- Abdolvahed Narmashiri
- Bio-intelligence Research Unit, Sharif Brain Center, Electrical Engineering Department, Sharif University of Technology, Tehran 1458889694, Iran
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran 1956836484, Iran
| | - Mojtaba Abbaszadeh
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran 1956836484, Iran
| | - Mohammad Hossein Nadian
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran 1956836484, Iran
| | - Ali Ghazizadeh
- Bio-intelligence Research Unit, Sharif Brain Center, Electrical Engineering Department, Sharif University of Technology, Tehran 1458889694, Iran
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran 1956836484, Iran
| |
Collapse
|
7
|
Farmani S, Sharifi K, Ghazizadeh A. Cortical and subcortical substrates of minutes and days-long object value memory in humans. Cereb Cortex 2024; 34:bhae006. [PMID: 38244576 DOI: 10.1093/cercor/bhae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/22/2024] Open
Abstract
Obtaining valuable objects motivates many of our daily decisions. However, the neural underpinnings of object processing based on human value memory are not yet fully understood. Here, we used whole-brain functional magnetic resonance imaging (fMRI) to examine activations due to value memory as participants passively viewed objects before, minutes after, and 1-70 days following value training. Significant value memory for objects was evident in the behavioral performance, which nevertheless faded over the days following training. Minutes after training, the occipital, ventral temporal, interparietal, and frontal areas showed strong value discrimination. Days after training, activation in the frontal, temporal, and occipital regions decreased, whereas the parietal areas showed sustained activation. In addition, days-long value responses emerged in certain subcortical regions, including the caudate, ventral striatum, and thalamus. Resting-state analysis revealed that these subcortical areas were functionally connected. Furthermore, the activation in the striatal cluster was positively correlated with participants' performance in days-long value memory. These findings shed light on the neural basis of value memory in humans with implications for object habit formation and cross-species comparisons.
Collapse
Affiliation(s)
- Sepideh Farmani
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5746, Iran
| | - Kiomars Sharifi
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5746, Iran
- Bio-Intelligence Unit, Electrical Engineering Department, Sharif University of Technology, Tehran 11365-11155, Iran
| | - Ali Ghazizadeh
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5746, Iran
- Bio-Intelligence Unit, Electrical Engineering Department, Sharif University of Technology, Tehran 11365-11155, Iran
| |
Collapse
|
8
|
Abbaszadeh M, Panjehpour A, Amin Alemohammad SM, Ghavampour A, Ghazizadeh A. Prefrontal cortex encodes value pop-out in visual search. iScience 2023; 26:107521. [PMID: 37680488 PMCID: PMC10481287 DOI: 10.1016/j.isci.2023.107521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/28/2023] [Accepted: 07/31/2023] [Indexed: 09/09/2023] Open
Abstract
Recent evidence demonstrates that long-term object value association can enhance visual search efficiency, a phenomenon known as value pop-out. However, the neural mechanism underlying this effect is not fully understood. Given the known role of the ventrolateral prefrontal cortex (vlPFC) in visual search and value memory, we recorded its single-unit activity (n = 526) in two macaque monkeys while they engaged in the value-driven search. Monkeys had to determine whether a high-value target was present within a variable number of low-value objects. Differential neural firing, as well as gamma-band power, indicated the presence of a target within ∼150ms of display onset. Notably, this differential activity was negatively correlated with search time and had reduced set-size dependence during efficient search. On the other hand, neural firing and its variability were higher in inefficient search. These findings implicate vlPFC in rapid detection of valuable targets which would be a crucial skill in competitive environments.
Collapse
Affiliation(s)
- Mojtaba Abbaszadeh
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Armin Panjehpour
- Bio-intelligence Research Unit, Sharif Brain Center, Electrical Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Seyyed Mohammad Amin Alemohammad
- Bio-intelligence Research Unit, Sharif Brain Center, Electrical Engineering Department, Sharif University of Technology, Tehran, Iran
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Ali Ghavampour
- Bio-intelligence Research Unit, Sharif Brain Center, Electrical Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Ali Ghazizadeh
- Bio-intelligence Research Unit, Sharif Brain Center, Electrical Engineering Department, Sharif University of Technology, Tehran, Iran
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| |
Collapse
|
9
|
Kojima Y, Koketsu D, May PJ. Activity of the Substantia Nigra Pars Reticulata during Saccade Adaptation. eNeuro 2023; 10:ENEURO.0092-23.2023. [PMID: 37596048 PMCID: PMC10500979 DOI: 10.1523/eneuro.0092-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023] Open
Abstract
When movements become inaccurate, the resultant error induces motor adaptation to improve accuracy. This error-based motor learning is regarded as a cerebellar function. However, the influence of the other brain areas on adaptation is poorly understood. During saccade adaptation, a type of error-based motor learning, the superior colliculus (SC) sends a postsaccadic error signal to the cerebellum to drive adaptation. Since the SC is directly inhibited by the substantia nigra pars reticulata (SNr), we hypothesized that the SNr might influence saccade adaptation by affecting the SC error signal. In fact, previous studies indicated that the SNr encodes motivation and motivation influences saccade adaptation. In this study, we first established that the SNr projects to the rostral SC, where small error signals are generated, in nonhuman primates. Then, we examined SNr activity while the animal underwent adaptation. SNr neurons paused their activity in association with the error. This pause was shallower and delayed compared with those of no-error trial saccades. The pause at the end of the adaptation was shallower and delayed compared with that at the beginning of the adaptation. The change in the intertrial interval, an indicator of motivation, and adaptation speed had a positive correlation with the changes in the error-related pause. These results suggest that (1) the SNr exhibits a unique activity pattern during the error interval; (2) SNr activity increases during adaptation, consistent with the decrease in SC activity; and (3) motivational decay during the adaptation session might increase SNr activity and influence the adaptation speed.
Collapse
Affiliation(s)
- Yoshiko Kojima
- Department of Otolaryngology-Head and Neck Surgery, Washington National Primate Research Center, University of Washington, Seattle, WA 98195
| | - Daisuke Koketsu
- Division of System Neurophysiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Paul J May
- Department of Advanced Biomedical Education, University of Mississippi Medical Center, Jackson, MS 39216
| |
Collapse
|
10
|
Kunimatsu J, Amita H, Hikosaka O. Neuronal mechanism of the encoding of socially familiar faces in the striatum tail. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540108. [PMID: 37425892 PMCID: PMC10327190 DOI: 10.1101/2023.05.10.540108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Although we can quickly locate a familiar person even in a crowd, the underlying neuronal mechanism remains unclear. Recently, we found that the striatum tail (STRt), which is part of the basal ganglia, is sensitive to long-term reward history. Here, we show that long-term value-coding neurons are involved in the detection of socially familiar faces. Many STRt neurons respond to facial images, especially to those of socially familiar persons. Additionally, we found that these face-responsive neurons also encode the stable values of many objects based on long-term reward experiences. Interestingly, the strength of neuronal modulation of social familiarity bias (familiar or unfamiliar) and object value bias (high-valued or low-valued) were positively correlated. These results suggest that both social familiarity and stable object-value information are mediated by a common neuronal mechanism. This mechanism may contribute to the rapid detection of familiar faces in real-world contexts.
Collapse
Affiliation(s)
- Jun Kunimatsu
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Division of Biomedical Science, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Hidetoshi Amita
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Systems Neuroscience Section, Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Okihide Hikosaka
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Knowledge generalization and the costs of multitasking. Nat Rev Neurosci 2023; 24:98-112. [PMID: 36347942 DOI: 10.1038/s41583-022-00653-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2022] [Indexed: 11/10/2022]
Abstract
Humans are able to rapidly perform novel tasks, but show pervasive performance costs when attempting to do two things at once. Traditionally, empirical and theoretical investigations into the sources of such multitasking interference have largely focused on multitasking in isolation to other cognitive functions, characterizing the conditions that give rise to performance decrements. Here we instead ask whether multitasking costs are linked to the system's capacity for knowledge generalization, as is required to perform novel tasks. We show how interrogation of the neurophysiological circuitry underlying these two facets of cognition yields further insights for both. Specifically, we demonstrate how a system that rapidly generalizes knowledge may induce multitasking costs owing to sharing of task contingencies between contexts in neural representations encoded in frontoparietal and striatal brain regions. We discuss neurophysiological insights suggesting that prolonged learning segregates such representations by refining the brain's model of task-relevant contingencies, thereby reducing information sharing between contexts and improving multitasking performance while reducing flexibility and generalization. These proposed neural mechanisms explain why the brain shows rapid task understanding, multitasking limitations and practice effects. In short, multitasking limits are the price we pay for behavioural flexibility.
Collapse
|
12
|
Kaskan PM, Nicholas MA, Dean AM, Murray EA. Attention to Stimuli of Learned versus Innate Biological Value Relies on Separate Neural Systems. J Neurosci 2022; 42:9242-9252. [PMID: 36319119 PMCID: PMC9761678 DOI: 10.1523/jneurosci.0925-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/25/2022] [Accepted: 10/20/2022] [Indexed: 01/07/2023] Open
Abstract
The neural bases of attention, a set of neural processes that promote behavioral selection, is a subject of intense investigation. In humans, rewarded cues influence attention, even when those cues are irrelevant to the current task. Because the amygdala plays a role in reward processing, and the activity of amygdala neurons has been linked to spatial attention, we reasoned that the amygdala may be essential for attending to rewarded images. To test this possibility, we used an attentional capture task, which provides a quantitative measure of attentional bias. Specifically, we compared reaction times (RTs) of adult male rhesus monkeys with bilateral amygdala lesions and unoperated controls as they made a saccade away from a high- or low-value rewarded image to a peripheral target. We predicted that: (1) RTs will be longer for high- compared with low-value images, revealing attentional capture by rewarded stimuli; and (2) relative to controls, monkeys with amygdala lesions would exhibit shorter RT for high-value images. For comparison, we assessed the same groups of monkeys for attentional capture by images of predators and conspecifics, categories thought to have innate biological value. In performing the attentional capture task, all monkeys were slowed more by high-value relative to low-value rewarded images. Contrary to our prediction, amygdala lesions failed to disrupt this effect. When presented with images of predators and conspecifics, however, monkeys with amygdala lesions showed significantly diminished attentional capture relative to controls. Thus, separate neural pathways are responsible for allocating attention to stimuli with learned versus innate value.SIGNIFICANCE STATEMENT Valuable objects attract attention. The amygdala is known to contribute to reward processing and the encoding of object reward value. We therefore examined whether the amygdala is necessary for allocating attention to rewarded objects. For comparison, we assessed the amygdala's contribution to attending to objects with innate biological value: predators and conspecifics. We found that the macaque amygdala is necessary for directing attention to images with innate biological value, but not for directing attention to recently learned reward-predictive images. These findings indicate that the amygdala makes selective contributions to attending to valuable objects. The data are relevant to mental health disorders, such as social anxiety disorders and small animal phobias, that arise from biased attention to select categories of objects.
Collapse
Affiliation(s)
- Peter M Kaskan
- Leo M. Davidoff Department of Neurological Surgery, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Mark A Nicholas
- Section on Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Aaron M Dean
- Section on Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Elisabeth A Murray
- Section on Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
13
|
Salience memories formed by value, novelty and aversiveness jointly shape object responses in the prefrontal cortex and basal ganglia. Nat Commun 2022; 13:6338. [PMID: 36284107 PMCID: PMC9596424 DOI: 10.1038/s41467-022-33514-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 09/20/2022] [Indexed: 12/25/2022] Open
Abstract
Ecological fitness depends on maintaining object histories to guide future interactions. Recent evidence shows that value memory changes passive visual responses to objects in ventrolateral prefrontal cortex (vlPFC) and substantia nigra reticulata (SNr). However, it is not known whether this effect is limited to reward history and if not how cross-domain representations are organized within the same or different neural populations in this corticobasal circuitry. To address this issue, visual responses of the same neurons across appetitive, aversive and novelty domains were recorded in vlPFC and SNr. Results showed that changes in visual responses across domains happened in the same rather than separate populations and were related to salience rather than valence of objects. Furthermore, while SNr preferentially encoded outcome related salience memory, vlPFC encoded salience memory across all domains in a correlated fashion, consistent with its role as an information hub to guide behavior.
Collapse
|
14
|
Hwang SH, Ra Y, Paeng S, Kim HF. Motivational salience drives habitual gazes during value memory retention and facilitates relearning of forgotten value. iScience 2022; 25:105104. [PMID: 36185371 PMCID: PMC9519605 DOI: 10.1016/j.isci.2022.105104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/08/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
A habitual gaze is critical to efficiently identify and exploit valuable objects. However, it is unclear what salience components drive the habitual gaze choice. Here, we trained subjects to assign positive, neutral, and negative values to objects and found that motivational salience guided habitual gaze choices over 30 days of memory retention. The habitual preference for negatively valued objects emerged during memory retention. This habitual choice was not explained by a general model with salience components driven by physical features of objects and the rank of learned values. Instead, this is better explained by a model that contains an additional component driven by motivational salience. In a simulated value-forgotten condition, these motivational salience-based habitual choices facilitated re-learning. Our data indicate that after long-term retention, habitual gaze results from increased motivational salience, potentially facilitating the re-learning of forgotten values.
Collapse
Affiliation(s)
- Seong-Hwan Hwang
- School of Biological Sciences, Seoul National University (SNU), Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yongsoo Ra
- School of Biological Sciences, Seoul National University (SNU), Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Somang Paeng
- School of Biological Sciences, Seoul National University (SNU), Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyoung F Kim
- School of Biological Sciences, Seoul National University (SNU), Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
15
|
Zhang K, Bromberg-Martin ES, Sogukpinar F, Kocher K, Monosov IE. Surprise and recency in novelty detection in the primate brain. Curr Biol 2022; 32:2160-2173.e6. [DOI: 10.1016/j.cub.2022.03.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/28/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022]
|
16
|
Traner MR, Bromberg-Martin ES, Monosov IE. How the value of the environment controls persistence in visual search. PLoS Comput Biol 2021; 17:e1009662. [PMID: 34905548 PMCID: PMC8714092 DOI: 10.1371/journal.pcbi.1009662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 12/28/2021] [Accepted: 11/21/2021] [Indexed: 11/18/2022] Open
Abstract
Classic foraging theory predicts that humans and animals aim to gain maximum reward per unit time. However, in standard instrumental conditioning tasks individuals adopt an apparently suboptimal strategy: they respond slowly when the expected value is low. This reward-related bias is often explained as reduced motivation in response to low rewards. Here we present evidence this behavior is associated with a complementary increased motivation to search the environment for alternatives. We trained monkeys to search for reward-related visual targets in environments with different values. We found that the reward-related bias scaled with environment value, was consistent with persistent searching after the target was already found, and was associated with increased exploratory gaze to objects in the environment. A novel computational model of foraging suggests that this search strategy could be adaptive in naturalistic settings where both environments and the objects within them provide partial information about hidden, uncertain rewards.
Collapse
Affiliation(s)
- Michael R. Traner
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States of America
| | - Ethan S. Bromberg-Martin
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ilya E. Monosov
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States of America
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Neurosurgery, Washington University, St. Louis, Missouri, United States of America
- Pain Center, Washington University, St. Louis, Missouri, United States of America
- Department of Electrical Engineering, Washington University, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
17
|
Kim HF. Brain substrates for automatic retrieval of value memory in the primate basal ganglia. Mol Brain 2021; 14:168. [PMID: 34784931 PMCID: PMC8597290 DOI: 10.1186/s13041-021-00871-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/22/2021] [Indexed: 12/20/2022] Open
Abstract
Our behavior is often carried out automatically. Automatic behavior can be guided by past experiences, such as learned values associated with objects. Passive-viewing and free-viewing tasks with no immediate outcomes provide a testable condition in which monkeys and humans automatically retrieve value memories and perform habitual searching. Interestingly, in these tasks, caudal regions of the basal ganglia structures are involved in automatic retrieval of learned object values and habitual gaze. In contrast, rostral regions do not participate in these activities but instead monitor the changes in outcomes. These findings indicate that automatic behaviors based on the value memories are processed selectively by the caudal regions of the primate basal ganglia system. Understanding the distinct roles of the caudal basal ganglia may provide insight into finding selective causes of behavioral disorders in basal ganglia disease.
Collapse
Affiliation(s)
- Hyoung F Kim
- School of Biological Sciences, Seoul National University (SNU), Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
18
|
Woolrych A, Vautrelle N, Reynolds JNJ, Parr-Brownlie LC. Throwing open the doors of perception: The role of dopamine in visual processing. Eur J Neurosci 2021; 54:6135-6146. [PMID: 34340265 DOI: 10.1111/ejn.15408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 07/05/2021] [Accepted: 07/18/2021] [Indexed: 01/11/2023]
Abstract
Animals form associations between visual cues and behaviours. Although dopamine is known to be critical in many areas of the brain to bind sensory information with appropriate responses, dopamine's role in the visual system is less well understood. Visual signals, which indicate the likely occurrence of a rewarding or aversive stimulus or indicate the context within which such stimuli may arrive, modulate activity in the superior colliculus and alter behaviour. However, such signals primarily originate in cortical and basal ganglia circuits, and evidence of direct signalling from midbrain dopamine neurons to superior colliculus is lacking. Instead, hypothalamic A13 dopamine neurons innervate the superior colliculus, and dopamine receptors are differentially expressed in the superior colliculus, with D1 receptors in superficial layers and D2 receptors in deep layers. However, it remains unknown if A13 dopamine neurons control behaviours through their effect on afferents within the superior colliculus. We propose that A13 dopamine neurons may play a critical role in processing information in the superior colliculus, modifying behavioural responses to visual cues, and propose some testable hypotheses regarding dopamine's effect on visual perception.
Collapse
Affiliation(s)
- Alexander Woolrych
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Nicolas Vautrelle
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - John N J Reynolds
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Louise C Parr-Brownlie
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
19
|
Ghazizadeh A, Hikosaka O. Common coding of expected value and value uncertainty memories in the prefrontal cortex and basal ganglia output. SCIENCE ADVANCES 2021; 7:eabe0693. [PMID: 33980480 PMCID: PMC8115923 DOI: 10.1126/sciadv.abe0693] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 03/23/2021] [Indexed: 05/12/2023]
Abstract
Recent evidence implicates both basal ganglia and ventrolateral prefrontal cortex (vlPFC) in encoding value memories. However, comparative roles of cortical and basal nodes in value memory are not well understood. Here, single-unit recordings in vlPFC and substantia nigra reticulata (SNr), within macaque monkeys, revealed a larger value signal in SNr that was nevertheless correlated with and had a comparable onset to the vlPFC value signal. The value signal was maintained for many objects (>90) many weeks after reward learning and was resistant to extinction in both regions and to repetition suppression in vlPFC. Both regions showed comparable granularity in encoding expected value and value uncertainty, which was paralleled by enhanced gaze bias during free viewing. The value signal dynamics in SNr could be predicted by combining responses of vlPFC neurons according to their value preferences consistent with a scheme in which cortical neurons reached SNr via direct and indirect pathways.
Collapse
Affiliation(s)
- Ali Ghazizadeh
- Bio-intelligence Research Unit, Electrical Engineering Department, Sharif University of Technology, Tehran 11365-11155, Iran.
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran 19395-5746, Iran
| | - Okihide Hikosaka
- Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, MD 20892, USA
- National Institute on Drug Abuse, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
20
|
Primate ventral striatum maintains neural representations of the value of previously rewarded objects for habitual seeking. Nat Commun 2021; 12:2100. [PMID: 33833228 PMCID: PMC8032767 DOI: 10.1038/s41467-021-22335-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 03/10/2021] [Indexed: 11/08/2022] Open
Abstract
The ventral striatum (VS) is considered a key region that flexibly updates recent changes in reward values for habit learning. However, this update process may not serve to maintain learned habitual behaviors, which are insensitive to value changes. Here, using fMRI in humans and single-unit electrophysiology in macaque monkeys we report another role of the primate VS: that the value memory subserving habitual seeking is stably maintained in the VS. Days after object-value associative learning, human and monkey VS continue to show increased responses to previously rewarded objects, even when no immediate reward outcomes are expected. The similarity of neural response patterns to each rewarded object increases after learning among participants who display habitual seeking. Our data show that long-term memory of high-valued objects is retained as a single representation in the VS and may be utilized to evaluate visual stimuli automatically to guide habitual behavior.
Collapse
|
21
|
The Substantia Nigra Pars Reticulata Modulates Error-Based Saccadic Learning in Monkeys. eNeuro 2021; 8:ENEURO.0519-20.2021. [PMID: 33707204 PMCID: PMC8114898 DOI: 10.1523/eneuro.0519-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 11/21/2022] Open
Abstract
The basal ganglia have long been considered crucial for associative learning, but whether they also are involved in another type of learning, error-based motor learning, is not clear. Error-based learning has been considered the province of the cerebellum. However, learning to use a robotic arm and saccade adaptation, which use error-based learning, are facilitated by motivation, which is a function of the basal ganglia. Additionally, patients with Parkinson’s disease, a basal ganglia deficit, show slower saccade adaptation than age matched controls. To further investigate whether the basal ganglia actually influence error-based learning, we reversibly inactivated the oculomotor portion of the substantia nigra pars reticulata (SNr) in two monkeys and tested saccade adaptation. Here, we show that nigral inactivation affected saccade adaptation. In particular, the inactivation facilitated the amplitude decrease adaptation of ipsiversive saccades. Consistent with previous studies, no effect was seen on the amplitude of the ipsiversive saccades when we did not induce adaptation. Therefore, the facilitated adaptation was not caused by inactivation directly modulating ipsiversive saccades. On the other hand, the kinematics of corrective saccades, which represent error processing, were changed after the inactivation. Thus, our data suggest that the oculomotor SNr assists saccade adaptation by strengthening the error signal. This effect indicates the basal ganglia influence error-based motor learning, a previously unrecognized function.
Collapse
|
22
|
Abstract
Choosing good objects is a fundamental behavior for all animals, to which the basal ganglia (BG) contribute extensively. However, the object choice needs to be changed in different environments. The mechanism of object choice is based on the neuronal circuits originating from output neurons (MSNs) in the striatum. We found that the environment information is provided by fast-spiking interneurons (FSIs) connecting to the MSN circuit. More critically, the experimental reduction of the FSI-input to MSNs disabled the monkey to learn the environment-based object choice. This proved that the object choice controlled by the downstream BG circuit is modulated by the environmental context controlled by the internal circuits in the top of BG circuit. This is important for our flexible decision. Basal ganglia contribute to object-value learning, which is critical for survival. The underlying neuronal mechanism is the association of each object with its rewarding outcome. However, object values may change in different environments and we then need to choose different objects accordingly. The mechanism of this environment-based value learning is unknown. To address this question, we created an environment-based value task in which the value of each object was reversed depending on the two scene-environments (X and Y). After experiencing this task repeatedly, the monkeys became able to switch the choice of object when the scene-environment changed unexpectedly. When we blocked the inhibitory input from fast-spiking interneurons (FSIs) to medium spiny projection neurons (MSNs) in the striatum tail by locally injecting IEM-1460, the monkeys became unable to learn scene-selective object values. We then studied the mechanism of the FSI-MSN connection. Before and during this learning, FSIs responded to the scenes selectively, but were insensitive to object values. In contrast, MSNs became able to discriminate the objects (i.e., stronger response to good objects), but this occurred clearly in one of the two scenes (X or Y). This was caused by the scene-selective inhibition by FSI. As a whole, MSNs were divided into two groups that were sensitive to object values in scene X or in scene Y. These data indicate that the local network of striatum tail controls the learning of object values that are selective to the scene-environment. This mechanism may support our flexible switching behavior in various environments.
Collapse
|
23
|
Abstract
Why do we run toward people we love, but only walk toward others? Why do people in New York seem to walk faster than other cities? Why do our eyes linger longer on things we value more? There is a link between how the brain assigns value to things, and how it controls our movements. This link is an ancient one, developed through shared neural circuits that on one hand teach us how to value things, and on the other hand control the vigor with which we move. As a result, when there is damage to systems that signal reward, like dopamine and serotonin, that damage not only affects our mood and patterns of decision making, but how we move. In this book, we first ask why in principle evolution should have developed a shared system of control between valuation and vigor. We then focus on the neural basis of vigor, synthesizing results from experiments that have measured activity in various brain structures and neuromodulators, during tasks in which animals decide how patiently they should wait for reward, and how vigorously they should move to acquire it. Thus, the way we move unmasks one of our well-guarded secrets: how much we value the thing we are moving toward.
Collapse
|
24
|
Kim HF, Griggs WS, Hikosaka O. Long-Term Value Memory in the Primate Posterior Thalamus for Fast Automatic Action. Curr Biol 2020; 30:2901-2911.e3. [PMID: 32531286 DOI: 10.1016/j.cub.2020.05.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/22/2020] [Accepted: 05/13/2020] [Indexed: 11/29/2022]
Abstract
The thalamus is known to process information from various brain regions and relay it to other brain regions, serving an essential role in sensory perception and motor execution. The thalamus also receives inputs from basal ganglia nuclei (BG) involved in value-based decision making, suggesting a role in the value process. We found that neurons in a particular area of the rhesus macaque posterior thalamus encoded the historical value memory of visual objects. Many of these value-coding neurons were located in the suprageniculate nucleus (SGN). This thalamic area directly received anatomical input from the superior colliculus (SC), and the neurons showed visual responses with contralateral preferences. Notably, the value discrimination activity of these thalamic neurons increased during learning, with the learned values stably retained even more than 200 days after learning. Our data indicate that single neurons in the posterior thalamus not only processed simple visual information but also represented historical values. Furthermore, our data suggest an SC-posterior thalamus-BG-SC subcortical loop circuit that encodes the historical value, enabling a quick automatic gaze by bypassing the visual cortex.
Collapse
Affiliation(s)
- Hyoung F Kim
- School of Biological Sciences, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Whitney S Griggs
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Okihide Hikosaka
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
25
|
Ghazizadeh A, Fakharian MA, Amini A, Griggs W, Leopold DA, Hikosaka O. Brain Networks Sensitive to Object Novelty, Value, and Their Combination. Cereb Cortex Commun 2020; 1:tgaa034. [PMID: 32984816 PMCID: PMC7503454 DOI: 10.1093/texcom/tgaa034] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 11/12/2022] Open
Abstract
Novel and valuable objects are motivationally attractive for animals including primates. However, little is known about how novelty and value processing is organized across the brain. We used fMRI in macaques to map brain responses to visual fractal patterns varying in either novelty or value dimensions and compared the results with the structure of functionally connected brain networks determined at rest. The results show that different brain networks possess unique combinations of novelty and value coding. One network identified in the ventral temporal cortex preferentially encoded object novelty, whereas another in the parietal cortex encoded the learned value. A third network, broadly composed of temporal and prefrontal areas (TP network), along with functionally connected portions of the striatum, amygdala, and claustrum, encoded both dimensions with similar activation dynamics. Our results support the emergence of a common currency signal in the TP network that may underlie the common attitudes toward novel and valuable objects.
Collapse
Affiliation(s)
- Ali Ghazizadeh
- Bio-intelligence Research Unit, Electrical Engineering Department, Sharif University of Technology, Tehran 11365-11155, Iran.,School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran 19395-5746, Iran
| | - Mohammad Amin Fakharian
- Bio-intelligence Research Unit, Electrical Engineering Department, Sharif University of Technology, Tehran 11365-11155, Iran
| | - Arash Amini
- Bio-intelligence Research Unit, Electrical Engineering Department, Sharif University of Technology, Tehran 11365-11155, Iran
| | - Whitney Griggs
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David A Leopold
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.,Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Okihide Hikosaka
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.,National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
26
|
Primate Amygdalo-Nigral Pathway for Boosting Oculomotor Action in Motivating Situations. iScience 2020; 23:101194. [PMID: 32516719 PMCID: PMC7281789 DOI: 10.1016/j.isci.2020.101194] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/12/2020] [Accepted: 05/19/2020] [Indexed: 12/26/2022] Open
Abstract
A primary function of the primate amygdala is to modulate behavior based on emotional cues. To study the underlying neural mechanism, we first inactivated the amygdala locally and temporarily by injecting a GABA agonist. Then, saccadic eye movements and gaze were suppressed only on the contralateral side. Next, we performed optogenetic activation after injecting a viral vector into the amygdala. Optical stimulation in the amygdala excited amygdala neurons, whereas optical stimulation of axon terminals in the substantia nigra pars reticulata inhibited nigra neurons. Optical stimulation in either structure facilitated saccades to the contralateral side. These data suggest that the amygdala controls saccades and gaze through the basal ganglia output to the superior colliculus. Importantly, this amygdala-derived circuit mediates emotional context information, whereas the internal basal ganglia circuit mediates object value information. This finding demonstrates a basic mechanism whereby basal ganglia output can be modulated by other areas conveying distinct information.
Collapse
|
27
|
Yoon T, Jaleel A, Ahmed AA, Shadmehr R. Saccade vigor and the subjective economic value of visual stimuli. J Neurophysiol 2020; 123:2161-2172. [PMID: 32374201 DOI: 10.1152/jn.00700.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Decisions are made based on the subjective value that the brain assigns to options. However, subjective value is a mathematical construct that cannot be measured directly, but rather is inferred from choices. Recent results have demonstrated that reaction time, amplitude, and velocity of movements are modulated by reward, raising the possibility that there is a link between how the brain evaluates an option and how it controls movements toward that option. Here, we asked people to choose among risky options represented by abstract stimuli, some associated with gain (points in a game), and others with loss. From their choices we estimated the subjective value that they assigned to each stimulus. In probe trials, a single stimulus appeared at center, instructing subjects to make a saccade to a peripheral target. We found that the reaction time, peak velocity, and amplitude of the peripherally directed saccade varied roughly linearly with the subjective value that the participant had assigned to the central stimulus: reaction time was shorter, velocity was higher, and amplitude was larger for stimuli that the participant valued more. Naturally, participants differed in how much they valued a given stimulus. Remarkably, those who valued a stimulus more, as evidenced by their choices in decision trials, tended to move with shorter reaction time and greater velocity in response to that stimulus in probe trials. Overall, the reaction time of the saccade in response to a stimulus partly predicted the subjective value that the brain assigned to that stimulus.NEW & NOTEWORTHY Behavioral economics relies on subjective evaluation, an abstract quantity that cannot be measured directly but must be inferred by fitting decision models to the choice patterns. Here, we present a new approach to estimate subjective value: with nothing to fit, we show that it is possible to estimate subjective value based on movement kinematics, providing a modest ability to predict a participant's preferences without prior measurement of their choice patterns.
Collapse
Affiliation(s)
- Tehrim Yoon
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Afareen Jaleel
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Alaa A Ahmed
- Departments of Integrative Physiology and Mechanical Engineering University of Colorado, Boulder, Colorado
| | - Reza Shadmehr
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
28
|
Amita H, Kim HF, Inoue KI, Takada M, Hikosaka O. Optogenetic manipulation of a value-coding pathway from the primate caudate tail facilitates saccadic gaze shift. Nat Commun 2020; 11:1876. [PMID: 32312986 PMCID: PMC7171130 DOI: 10.1038/s41467-020-15802-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/10/2020] [Indexed: 12/20/2022] Open
Abstract
In the primate basal ganglia, the caudate tail (CDt) encodes the historical values (good or bad) of visual objects (i.e., stable values), and electrical stimulation of CDt evokes saccadic eye movements. However, it is still unknown how output from CDt conveys stable value signals to govern behavior. Here, we apply a pathway-selective optogenetic manipulation to elucidate how such value information modulates saccades. We express channelrhodopsin-2 in CDt delivered by viral vector injections. Selective optical activation of CDt-derived terminals in the substantia nigra pars reticulata (SNr) inhibits SNr neurons. Notably, these SNr neurons show inhibitory responses to good objects. Furthermore, the optical stimulation causes prolonged excitation of visual-saccadic neurons in the superior colliculus (SC), and induces contralateral saccades. These SC neurons respond more strongly to good than to bad objects in the contralateral hemifield. The present results demonstrate that CDt facilitates saccades toward good objects by serial inhibitory pathways through SNr.
Collapse
Affiliation(s)
- Hidetoshi Amita
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan.
| | - Hyoung F Kim
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ken-Ichi Inoue
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan
| | - Masahiko Takada
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Okihide Hikosaka
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
29
|
Multiple neuronal circuits for variable object-action choices based on short- and long-term memories. Proc Natl Acad Sci U S A 2019; 116:26313-26320. [PMID: 31871157 DOI: 10.1073/pnas.1902283116] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
At each time in our life, we choose one or few behaviors, while suppressing many other behaviors. This is the basic mechanism in the basal ganglia, which is done by tonic inhibition and selective disinhibition. Dysfunctions of the basal ganglia then cause 2 types of disorders (difficulty in initiating necessary actions and difficulty in suppressing unnecessary actions) that occur in Parkinson's disease. The basal ganglia generate such opposite outcomes through parallel circuits: The direct pathway for initiation and indirect pathway for suppression. Importantly, the direct pathway processes good information and the indirect pathway processes bad information, which enables the choice of good behavior and the rejection of bad behavior. This is mainly enabled by dopaminergic inputs to these circuits. However, the value judgment is complex because the world is complex. Sometimes, the value must be based on recent events, thus is based on short-term memories. Or, the value must be based on historical events, thus is based on long-term memories. Such memory-based value judgment is generated by another parallel circuit originating from the caudate head and caudate tail. These circuit-information mechanisms allow other brain areas (e.g., prefrontal cortex) to contribute to decisions by sending information to these basal ganglia circuits. Moreover, the basal ganglia mechanisms (i.e., what to choose) are associated with cerebellum mechanisms (i.e., when to choose). Overall, multiple levels of parallel circuits in and around the basal ganglia are essential for coordinated behaviors. Understanding these circuits is useful for creating clinical treatments of disorders resulting from the failure of these circuits.
Collapse
|
30
|
Visual fixation patterns during economic choice reflect covert valuation processes that emerge with learning. Proc Natl Acad Sci U S A 2019; 116:22795-22801. [PMID: 31636178 PMCID: PMC6842638 DOI: 10.1073/pnas.1906662116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Where we direct our gaze can have a big impact on what we choose. However, where we choose to gaze during the decision process is not well-characterized, despite the important role it plays. In our study, monkeys performed a simple decision-making experiment where they were free to look around a computer screen showing choice options. They then indicated their economic choice with a joystick movement. When choice options appeared, monkeys rapidly gazed toward more valuable and novel stimuli—suggesting there is a system that orients gaze toward important information. However, despite the gaze preference for novel stimuli, subjects did not prefer to choose them. This suggests the mechanisms governing value-guided attentional capture and value-guided choice are dissociable. Visual fixations play a vital role in decision making. Recent studies have demonstrated that the longer subjects fixate an option, the more likely they are to choose it. However, the role of evaluating stimuli covertly (i.e., without fixating them), and how covert evaluations determine where to subsequently fixate, remains relatively unexplored. Here, we trained monkeys to perform a decision-making task where they made binary choices between reward-predictive stimuli which were well-learned (“overtrained”), recently learned (“novel”), or a combination of both (“mixed”). Subjects were free to saccade around the screen and make a choice (via joystick response) at any time. Subjects rarely fixated both options, yet choice behavior was better explained by assuming the values of both stimuli governed choices. The first fixation latency was fast (∼150 ms) but, surprisingly, its direction was value-driven. This suggests covert evaluation of stimulus values prior to first saccade. This was particularly evident for overtrained stimuli. For novel stimuli, first fixations became increasingly value-driven throughout a behavioral session. However, this improvement lagged behind learning of accurate economic choices, suggesting separate processes governed their learning. Finally, mixed trials revealed a strong bias toward fixating the novel stimulus first but no bias toward choosing it. Our results suggest that the primate brain contains fast covert evaluation mechanisms for guiding fixations toward highly valuable and novel information. By employing such covert mechanisms, fixation behavior becomes dissociable from the value comparison processes that drive final choice. This implies that primates use separable decision systems for value-guided fixations and value-guided choice.
Collapse
|
31
|
Amita H, Hikosaka O. Indirect pathway from caudate tail mediates rejection of bad objects in periphery. SCIENCE ADVANCES 2019; 5:eaaw9297. [PMID: 31457095 PMCID: PMC6685718 DOI: 10.1126/sciadv.aaw9297] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/27/2019] [Indexed: 06/10/2023]
Abstract
The essential everyday task of making appropriate choices is a process controlled mainly by the basal ganglia. To this end, subjects need not only to find "good" objects in their environment but also to reject "bad" objects. To reveal this rejection mechanism, we created a sequential saccade choice task for monkeys and studied the role of the indirect pathway from the CDt (tail of the caudate nucleus) mediated by cvGPe (caudal-ventral globus pallidus externus). Neurons in cvGPe were typically inhibited by the appearance of bad objects; however, this inhibition was reduced on trials when the monkeys made undesired saccades to the bad objects. Moreover, disrupting the inhibitory influence of CDt on cvGPe by local injection of bicuculline (GABAA receptor antagonist) impaired the monkeys' ability to suppress saccades to bad objects. Thus, the indirect pathway mediates the rejection of bad choices, a crucial component of goal-directed behavior.
Collapse
|
32
|
Reward Prediction Error Modulates Saccade Vigor. J Neurosci 2019; 39:5010-5017. [PMID: 31015343 DOI: 10.1523/jneurosci.0432-19.2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 11/21/2022] Open
Abstract
Movement vigor, defined as the reciprocal of the latency from availability of reward to its acquisition, changes with reward magnitude: movements exhibit shorter reaction time and increased velocity when they are directed toward more rewarding stimuli. This invigoration may be due to release of dopamine before movement onset, which has been shown to be modulated by events that signal reward prediction error (RPE). Here, we generated an RPE event in the milliseconds before movement onset and tested whether there was a relationship between RPE and vigor. Human subjects (both sexes) made saccades toward an image. During execution of the primary saccade, we probabilistically changed the position and content of that image, encouraging a secondary saccade. On some trials, the content of the secondary image was more valuable than the first image, resulting in a positive RPE (+RPE) event that preceded the secondary saccade. On other trials, this content was less valuable (-RPE event). We found that reaction time of the secondary saccade was affected in an orderly fashion by the magnitude and direction of the preceding RPE event: the most vigorous saccades followed the largest +RPE, whereas the least vigorous saccades followed the largest -RPE. Presence of the secondary saccade indicated that the primary saccade had experienced a movement error, inducing trial-to-trial adaptation. However, this learning from movement error was not modulated by the RPE event. The data suggest that RPE events, which are thought to transiently alter the release of dopamine, modulate the vigor of the ensuing movement.SIGNIFICANCE STATEMENT Does dopamine release in response to a stimulus serve to invigorate the ensuing movement? To test this hypothesis, we relied on the fact that reward prediction error (RPE) is a strong modulator of dopamine. Our innovation was a task in which an RPE event occurred precisely before onset of a stimulus-driven movement. We probabilistically produced a combination of large or small, negative or positive RPE events and observed that saccade vigor carried a robust signature of the preceding RPE event: high vigor saccades followed +RPE events, whereas low vigor saccades followed -RPE events. This suggests that in humans, vigor is partly controlled through release of dopamine in the moments before onset of a movement.
Collapse
|
33
|
Shadmehr R, Reppert TR, Summerside EM, Yoon T, Ahmed AA. Movement Vigor as a Reflection of Subjective Economic Utility. Trends Neurosci 2019; 42:323-336. [PMID: 30878152 DOI: 10.1016/j.tins.2019.02.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/28/2019] [Accepted: 02/18/2019] [Indexed: 01/08/2023]
Abstract
To understand subjective evaluation of an option, various disciplines have quantified the interaction between reward and effort during decision making, producing an estimate of economic utility, namely the subjective 'goodness' of an option. However, variables that affect utility of an option also influence the vigor of movements toward that option. For example, expectation of reward increases speed of saccadic eye movements, whereas expectation of effort decreases this speed. These results imply that vigor may serve as a new, real-time metric with which to quantify subjective utility, and that the control of movements may be an implicit reflection of the brain's economic evaluation of the expected outcome.
Collapse
Affiliation(s)
- Reza Shadmehr
- Department of Biomedical Engineering, Johns Hopkins School of Medicine Baltimore MD 21205, USA.
| | - Thomas R Reppert
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
| | - Erik M Summerside
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80309, USA
| | - Tehrim Yoon
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Alaa A Ahmed
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80309, USA; Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
34
|
Amita H, Kim HF, Smith MK, Gopal A, Hikosaka O. Neuronal connections of direct and indirect pathways for stable value memory in caudal basal ganglia. Eur J Neurosci 2019; 49:712-725. [PMID: 29737578 PMCID: PMC6492451 DOI: 10.1111/ejn.13936] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 12/25/2022]
Abstract
Direct and indirect pathways in the basal ganglia work together for controlling behavior. However, it is still a controversial topic whether these pathways are segregated or merged with each other. To address this issue, we studied the connections of these two pathways in the caudal parts of the basal ganglia of rhesus monkeys using anatomical tracers. Our previous studies showed that the caudal basal ganglia control saccades by conveying long-term values (stable values) of many visual objects toward the superior colliculus. In experiment 1, we injected a tracer in the caudate tail (CDt), and found local dense plexuses of axon terminals in the caudal-dorsal-lateral part of substantia nigra pars reticulata (cdlSNr) and the caudal-ventral part of globus pallidus externus (cvGPe). These anterograde projections may correspond to the direct and indirect pathways, respectively. To verify this in experiment 2, we injected different tracers into cdlSNr and cvGPe, and found many retrogradely labeled neurons in CDt and, in addition, the caudal-ventral part of the putamen (cvPut). These cdlSNr-projecting and cvGPe-projecting neurons were found intermingled in both CDt and cvPut (which we call "striatum tail"). A small but significant proportion of neurons (<15%) were double-labeled, indicating that they projected to both cdlSNr and cvGPe. These anatomical results suggest that stable value signals (good vs. bad) are sent from the striatum tail to cdlSNr and cvGPe in a biased (but not exclusive) manner. These connections may play an important role in biasing saccades toward higher valued objects and away from lower valued objects.
Collapse
Affiliation(s)
- Hidetoshi Amita
- Laboratory of Sensorimotor ResearchNational Eye InstituteNational Institutes of HealthBethesdaMaryland
| | - Hyoung F. Kim
- Department of Biomedical EngineeringSungkyunkwan University (SKKU)SuwonKorea
- Center for Neuroscience Imaging ResearchInstitute for Basic Science (IBS)SuwonKorea
| | - Mitchell K. Smith
- Laboratory of Sensorimotor ResearchNational Eye InstituteNational Institutes of HealthBethesdaMaryland
| | - Atul Gopal
- Laboratory of Sensorimotor ResearchNational Eye InstituteNational Institutes of HealthBethesdaMaryland
| | - Okihide Hikosaka
- Laboratory of Sensorimotor ResearchNational Eye InstituteNational Institutes of HealthBethesdaMaryland
| |
Collapse
|
35
|
The Caudal Part of Putamen Represents the Historical Object Value Information. J Neurosci 2018; 39:1709-1719. [PMID: 30573645 DOI: 10.1523/jneurosci.2534-18.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/26/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022] Open
Abstract
The basal ganglia, especially the circuits originating from the putamen, are essential for controlling normal body movements. Notably, the putamen receives inputs not only from motor cortical areas but also from multiple sensory cortices. However, how these sensory signals are processed in the putamen remains unclear. We recorded the activity of tentative medium spiny neurons in the caudal part of the putamen when the monkey viewed many fractal objects. We found many neurons that responded to these objects, mostly in the ventral region. We called this region "putamen tail" (PUTt), as it is dorsally adjacent to "caudate tail" (CDt). Although PUTt and CDt are mostly separated by a thin layer of white matter, their neurons shared several features. Almost all of them had receptive fields in the contralateral hemifield. Moreover, their responses were object selective (i.e., variable across objects). The object selectivity was higher in the ventral region (i.e., CDt > PUTt). Some neurons above PUTt, which we called the caudal-dorsal putamen (cdPUT), also responded to objects, but less selectively than PUTt. Next, we examined whether these visual neurons changed their responses based on the reward outcome. We found that many neurons encoded the values of many objects based on long-term memory, but not based on short-term memory. Such stable value responses were stronger in PUTt and CDt than in cdPUT. These results suggest that PUTt, together with CDt, controls saccade/attention among objects with different historical values, and may control other motor actions as well.SIGNIFICANCE STATEMENT Although the putamen receives inputs not only from motor cortical areas but also from sensory cortical areas, how these sensory signals are processed remains unclear. Here we found that neurons in the caudal-ventral part of the putamen (putamen tail) process visual information including spatial and object features. These neurons discriminate many objects, first by their visual features and later by their reward values as well. Importantly, the value discrimination was based on long-term memory, but not on short-term memory. These results suggest that the putamen tail controls saccade/attention among objects with different historical values and might control other motor actions as well.
Collapse
|
36
|
Yasuda M, Hikosaka O. Medial thalamus in the territory of oculomotor basal ganglia represents stable object value. Eur J Neurosci 2018; 49:672-686. [PMID: 30307646 PMCID: PMC6426671 DOI: 10.1111/ejn.14202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 09/11/2018] [Accepted: 10/04/2018] [Indexed: 12/15/2022]
Abstract
Many visual objects are attached with values which were created by our long rewarding history. Such stable object values attract gaze. We previously found that the output pathway of basal ganglia from caudal‐dorsal‐lateral portion of substantia nigra pars reticulata (cdlSNr) to superior colliculus (SC) carries robust stable value signal to execute the automatic choice of valuable objects. An important question here is whether stable value signal in basal ganglia can influence on other inner processing such as perception, attention, emotion, or arousal than motor execution. The key brain circuit is another output path of basal ganglia: the pathway from SNr to temporal and frontal lobes through thalamus. To examine the existence of stable value signal in this pathway, we explored thalamus in a wide range. We found that many neurons in the medial thalamus represented stable value. Histological examination showed that the recorded sites of those neurons included ventral anterior nucleus, pars magnocellularis (VAmc) which is the main target of nigrothalamic projection. Consistent with the SNr GABArgic projection, the latency of value signal in the medial thalamus was later than cdlSNr, and the sign of value coding in the medial thalamus was opposite to cdlSNr. As is the case with cdlSNr neurons, the medial thalamus neurons showed no sensitivity to frequently updated value (flexible value). These results suggest that the pathway from cdlSNr to the medial thalamus influences on various aspects of cognitive processing by propagating stable value signal to the wide cortical area.
Collapse
Affiliation(s)
- Masaharu Yasuda
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.,Department of Physiology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka, 573-0101, Japan
| | - Okihide Hikosaka
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
37
|
Gluth S, Spektor MS, Rieskamp J. Value-based attentional capture affects multi-alternative decision making. eLife 2018; 7:e39659. [PMID: 30394874 PMCID: PMC6218187 DOI: 10.7554/elife.39659] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/01/2018] [Indexed: 12/23/2022] Open
Abstract
Humans and other animals often violate economic principles when choosing between multiple alternatives, but the underlying neurocognitive mechanisms remain elusive. A robust finding is that adding a third option can alter the relative preference for the original alternatives, but studies disagree on whether the third option's value decreases or increases accuracy. To shed light on this controversy, we used and extended the paradigm of one study reporting a positive effect. However, our four experiments with 147 human participants and a reanalysis of the original data revealed that the positive effect is neither replicable nor reproducible. In contrast, our behavioral and eye-tracking results are best explained by assuming that the third option's value captures attention and thereby impedes accuracy. We propose a computational model that accounts for the complex interplay of value, attention, and choice. Our theory explains how choice sets and environments influence the neurocognitive processes of multi-alternative decision making.
Collapse
Affiliation(s)
| | - Mikhail S Spektor
- Department of PsychologyUniversity of BaselBaselSwitzerland
- Department of PsychologyUniversity of FreiburgFreiburgGermany
| | - Jörg Rieskamp
- Department of PsychologyUniversity of BaselBaselSwitzerland
| |
Collapse
|
38
|
Ghazizadeh A, Hong S, Hikosaka O. Prefrontal Cortex Represents Long-Term Memory of Object Values for Months. Curr Biol 2018; 28:2206-2217.e5. [PMID: 30056855 PMCID: PMC11323977 DOI: 10.1016/j.cub.2018.05.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/05/2018] [Accepted: 05/08/2018] [Indexed: 11/19/2022]
Abstract
As a central hub for cognitive control, prefrontal cortex (PFC) is thought to utilize memories. However, unlike working or short-term memory, the neuronal representation of long-term memory in PFC has not been systematically investigated. Using single-unit recordings in macaques, we show that PFC neurons rapidly update and maintain responses to objects based on short-term reward history. Interestingly, after repeated object-reward association, PFC neurons continue to show value-biased responses to objects even in the absence of reward. This value-biased response is retained for several months after training and is resistant to extinction and to interference from new object-reward learning for many complex objects (>90). Accordingly, the monkeys remember the values of the learned objects for several months in separate testing. These findings reveal that in addition to flexible short-term and low-capacity memories, primate PFC represents stable long-term and high-capacity memories, which could prioritize valuable objects far into the future.
Collapse
Affiliation(s)
- Ali Ghazizadeh
- Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, MD 20892, USA; Electrical Engineering Department, Sharif University of Technology, Tehran 11365-11155, Iran; Brain Engineering Center and School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran 19395-5746, Iran.
| | - Simon Hong
- Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, MD 20892, USA; Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Okihide Hikosaka
- Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, MD 20892, USA; National Institute on Drug Abuse, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
39
|
Griggs WS, Amita H, Gopal A, Hikosaka O. Visual Neurons in the Superior Colliculus Discriminate Many Objects by Their Historical Values. Front Neurosci 2018; 12:396. [PMID: 29942248 PMCID: PMC6004417 DOI: 10.3389/fnins.2018.00396] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/23/2018] [Indexed: 11/13/2022] Open
Abstract
The superior colliculus (SC) is an important structure in the mammalian brain that orients the animal toward distinct visual events. Visually responsive neurons in SC are modulated by visual object features, including size, motion, and color. However, it remains unclear whether SC activity is modulated by non-visual object features, such as the reward value associated with the object. To address this question, three monkeys were trained (>10 days) to saccade to multiple fractal objects, half of which were consistently associated with large rewards while other half were associated with small rewards. This created historically high-valued (‘good’) and low-valued (‘bad’) objects. During the neuronal recordings from the SC, the monkeys maintained fixation at the center while the objects were flashed in the receptive field of the neuron without any reward. We found that approximately half of the visual neurons responded more strongly to the good than bad objects. In some neurons, this value-coding remained intact for a long time (>1 year) after the last object-reward association learning. Notably, the neuronal discrimination of reward values started about 100 ms after the appearance of visual objects and lasted for more than 100 ms. These results provide evidence that SC neurons can discriminate objects by their historical (long-term) values. This object value information may be provided by the basal ganglia, especially the circuit originating from the tail of the caudate nucleus. The information may be used by the neural circuits inside SC for motor (saccade) output or may be sent to the circuits outside SC for future behavior.
Collapse
Affiliation(s)
- Whitney S Griggs
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Hidetoshi Amita
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Atul Gopal
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Okihide Hikosaka
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, United States.,National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
40
|
Maeda K, Kunimatsu J, Hikosaka O. Amygdala activity for the modulation of goal-directed behavior in emotional contexts. PLoS Biol 2018; 16:e2005339. [PMID: 29870524 PMCID: PMC5988268 DOI: 10.1371/journal.pbio.2005339] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/02/2018] [Indexed: 11/30/2022] Open
Abstract
Choosing valuable objects and rewarding actions is critical for survival. While such choices must be made in a way that suits the animal’s circumstances, the neural mechanisms underlying such context-appropriate behavior are unclear. To address this question, we devised a context-dependent reward-seeking task for macaque monkeys. Each trial started with the appearance of one of many visual scenes containing two or more objects, and the monkey had to choose the good object by saccade to get a reward. These scenes were categorized into two dimensions of emotional context: dangerous versus safe and rich versus poor. We found that many amygdala neurons were more strongly activated by dangerous scenes, by rich scenes, or by both. Furthermore, saccades to target objects occurred more quickly in dangerous than in safe scenes and were also quicker in rich than in poor scenes. Thus, amygdala neuronal activity and saccadic reaction times were negatively correlated in each monkey. These results suggest that amygdala neurons facilitate targeting saccades predictably based on aspects of emotional context, as is necessary for goal-directed and social behavior. The amygdala is known to control passive fear responses (e.g., freezing), but it is unclear if it also contributes to active behaviors. To reach certain goals, we (humans and animals) often need to go through fearful environments. We hypothesized that the amygdala contributes to such an active behavior and devised a new foraging task for macaque monkeys in which various emotional contexts changed across many environments. This “exciting” task provoked extremely fast learning and high-capacity memory of objects and environments, and thereby caused extremely fast goal-directed behaviors. We found that the goal-directed behavior was affected by the emotional context in two dimensions (dangerous–safe and rich–poor) separately from the object values. Then, many neurons in the amygdala responded to the environments before any object appeared and did so selectively, depending on the emotional context of the environment. The neuronal activity was tightly correlated with the reaction time of goal-directed behavior across the contexts: faster behavior in dangerous or rich context. These results suggest that the amygdala facilitates goal-directed behavior by focusing on emotional contexts. Such a function is also important for emotional–social behavior and its disorder, including averted eye gaze in autism.
Collapse
Affiliation(s)
- Kazutaka Maeda
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | - Jun Kunimatsu
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Okihide Hikosaka
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
41
|
Matthis JS, Yates JL, Hayhoe MM. Gaze and the Control of Foot Placement When Walking in Natural Terrain. Curr Biol 2018; 28:1224-1233.e5. [PMID: 29657116 PMCID: PMC5937949 DOI: 10.1016/j.cub.2018.03.008] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/24/2018] [Accepted: 03/05/2018] [Indexed: 12/04/2022]
Abstract
Human locomotion through natural environments requires precise coordination between the biomechanics of the bipedal gait cycle and the eye movements that gather the information needed to guide foot placement. However, little is known about how the visual and locomotor systems work together to support movement through the world. We developed a system to simultaneously record gaze and full-body kinematics during locomotion over different outdoor terrains. We found that not only do walkers tune their gaze behavior to the specific information needed to traverse paths of varying complexity but that they do so while maintaining a constant temporal look-ahead window across all terrains. This strategy allows walkers to use gaze to tailor their energetically optimal preferred gait cycle to the upcoming path in order to balance between the drive to move efficiently and the need to place the feet in stable locations. Eye movements and locomotion are intimately linked in a way that reflects the integration of energetic costs, environmental uncertainty, and momentary informational demands of the locomotor task. Thus, the relationship between gaze and gait reveals the structure of the sensorimotor decisions that support successful performance in the face of the varying demands of the natural world.
Collapse
Affiliation(s)
| | - Jacob L Yates
- Center for Visual Science, University of Rochester, Rochester, NY, USA; Brain and Cognitive Science, University of Rochester, Rochester, NY, USA
| | - Mary M Hayhoe
- Center for Perceptual Systems, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
42
|
Hayhoe MM. Davida Teller Award Lecture 2017: What can be learned from natural behavior? J Vis 2018; 18:10. [PMID: 29710300 PMCID: PMC5895074 DOI: 10.1167/18.4.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/05/2018] [Indexed: 11/25/2022] Open
Abstract
The essentially active nature of vision has long been acknowledged but has been difficult to investigate because of limitations in the available instrumentation, both for measuring eye and body movements and for presenting realistic stimuli in the context of active behavior. These limitations have been substantially reduced in recent years, opening up a wider range of contexts where experimental control is possible. Given this, it is important to examine just what the benefits are for exploring natural vision, with its attendant disadvantages. Work over the last two decades provides insights into these benefits. Natural behavior turns out to be a rich domain for investigation, as it is remarkably stable and opens up new questions, and the behavioral context helps specify the momentary visual computations and their temporal evolution.
Collapse
Affiliation(s)
- Mary M Hayhoe
- Center for Perceptual Systems, University of Texas Austin, Austin, TX, USA
| |
Collapse
|
43
|
Hikosaka O, Kim HF, Amita H, Yasuda M, Isoda M, Tachibana Y, Yoshida A. Direct and indirect pathways for choosing objects and actions. Eur J Neurosci 2018; 49:637-645. [PMID: 29473660 DOI: 10.1111/ejn.13876] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/16/2018] [Accepted: 02/19/2018] [Indexed: 01/23/2023]
Abstract
A prominent target of the basal ganglia is the superior colliculus (SC) which controls gaze orientation (saccadic eye movement in primates) to an important object. This 'object choice' is crucial for choosing an action on the object. SC is innervated by the substantia nigra pars reticulata (SNr) which is controlled mainly by the caudate nucleus (CD). This CD-SNr-SC circuit is sensitive to the values of individual objects and facilitates saccades to good objects. The object values are processed differently in two parallel circuits: flexibly by the caudate head (CDh) and stably by the caudate tail (CDt). To choose good objects, we need to reject bad objects. In fact, these contrasting functions are accomplished by the circuit originating from CDt: The direct pathway focuses on good objects and facilitates saccades to them; the indirect pathway focuses on bad objects and suppresses saccades to them. Inactivation of CDt deteriorated the object choice, because saccades to bad objects were no longer suppressed. This suggests that the indirect pathway is important for object choice. However, the direct and indirect pathways for 'object choice', which aim at the same action (i.e., saccade), may not work for 'action choice'. One possibility is that circuits controlling different actions are connected through the indirect pathway. Additional connections of the indirect pathway with brain areas outside the basal ganglia may also provide a wider range of behavioral choice. In conclusion, basal ganglia circuits are composed of the basic direct/indirect pathways and additional connections and thus have acquired multiple functions.
Collapse
Affiliation(s)
- Okihide Hikosaka
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, 49 Convent Drive, Bldg. 49, Rm. 2A50, Bethesda, MD, 20892-4435, USA
| | - Hyoung F Kim
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, Korea.,Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea
| | - Hidetoshi Amita
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, 49 Convent Drive, Bldg. 49, Rm. 2A50, Bethesda, MD, 20892-4435, USA
| | - Masaharu Yasuda
- Department of Physiology, Kansai Medical University, Hirakata, Japan
| | - Masaki Isoda
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Yoshihisa Tachibana
- Division of System Neuroscience, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Atsushi Yoshida
- Functional Architecture Imaging team, RIKEN Center for Life Science Technologies, Kobe, Hyogo, Japan
| |
Collapse
|
44
|
Temporal-prefrontal cortical network for discrimination of valuable objects in long-term memory. Proc Natl Acad Sci U S A 2018; 115:E2135-E2144. [PMID: 29437980 DOI: 10.1073/pnas.1707695115] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Remembering and discriminating objects based on their previously learned values are essential for goal-directed behaviors. While the cerebral cortex is known to contribute to object recognition, surprisingly little is known about its role in retaining long-term object-value associations. To address this question, we trained macaques to arbitrarily associate small or large rewards with many random fractal objects (>100) and then used fMRI to study the long-term retention of value-based response selectivity across the brain. We found a pronounced long-term value memory in core subregions of temporal and prefrontal cortex where, several months after training, fractals previously associated with high reward ("good" stimuli) elicited elevated fMRI responses compared with those associated with low reward ("bad" stimuli). Similar long-term value-based modulation was also observed in subregions of the striatum, amygdala, and claustrum, but not in the hippocampus. The value-modulated temporal-prefrontal subregions showed strong resting-state functional connectivity to each other. Moreover, for areas outside this core, the magnitude of long-term value responses was predicted by the strength of resting-state functional connectivity to the core subregions. In separate testing, free-viewing gaze behavior indicated that the monkeys retained stable long-term memory of object value. These results suggest an implicit and high-capacity memory mechanism in the temporal-prefrontal circuitry and its associated subcortical regions for long-term retention of object-value memories that can guide value-oriented behavior.
Collapse
|
45
|
Colas JT, Lu J. Learning Where to Look for High Value Improves Decision Making Asymmetrically. Front Psychol 2017; 8:2000. [PMID: 29187831 PMCID: PMC5695242 DOI: 10.3389/fpsyg.2017.02000] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/31/2017] [Indexed: 01/22/2023] Open
Abstract
Decision making in any brain is imperfect and costly in terms of time and energy. Operating under such constraints, an organism could be in a position to improve performance if an opportunity arose to exploit informative patterns in the environment being searched. Such an improvement of performance could entail both faster and more accurate (i.e., reward-maximizing) decisions. The present study investigated the extent to which human participants could learn to take advantage of immediate patterns in the spatial arrangement of serially presented foods such that a region of space would consistently be associated with greater subjective value. Eye movements leading up to choices demonstrated rapidly induced biases in the selective allocation of visual fixation and attention that were accompanied by both faster and more accurate choices of desired goods as implicit learning occurred. However, for the control condition with its spatially balanced reward environment, these subjects exhibited preexisting lateralized biases for eye and hand movements (i.e., leftward and rightward, respectively) that could act in opposition not only to each other but also to the orienting biases elicited by the experimental manipulation, producing an asymmetry between the left and right hemifields with respect to performance. Potentially owing at least in part to learned cultural conventions (e.g., reading from left to right), the findings herein particularly revealed an intrinsic leftward bias underlying initial saccades in the midst of more immediate feedback-directed processes for which spatial biases can be learned flexibly to optimize oculomotor and manual control in value-based decision making. The present study thus replicates general findings of learned attentional biases in a novel context with inherently rewarding stimuli and goes on to further elucidate the interactions between endogenous and exogenous biases.
Collapse
Affiliation(s)
- Jaron T. Colas
- Computation and Neural Systems Program, California Institute of Technology, Pasadena, CA, United States
| | - Joy Lu
- Computation and Neural Systems Program, California Institute of Technology, Pasadena, CA, United States
- The Wharton School, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
46
|
McCoy B, Theeuwes J. Overt and covert attention to location-based reward. Vision Res 2017; 142:27-39. [PMID: 29100871 PMCID: PMC5773241 DOI: 10.1016/j.visres.2017.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 11/15/2022]
Abstract
Recent research on the impact of location-based reward on attentional orienting has indicated that reward factors play an influential role in spatial priority maps. The current study investigated whether and how reward associations based on spatial location translate from overt eye movements to covert attention. If reward associations can be tied to locations in space, and if overt and covert attention rely on similar overlapping neuronal populations, then both overt and covert attentional measures should display similar spatial-based reward learning. Our results suggest that location- and reward-based changes in one attentional domain do not lead to similar changes in the other. Specifically, although we found similar improvements at differentially rewarded locations during overt attentional learning, this translated to the least improvement at a highly rewarded location during covert attention. We interpret this as the result of an increased motivational link between the high reward location and the trained eye movement response acquired during learning, leading to a relative slowing during covert attention when the eyes remained fixated and the saccade response was suppressed. In a second experiment participants were not required to keep fixated during the covert attention task and we no longer observed relative slowing at the high reward location. Furthermore, the second experiment revealed no covert spatial priority of rewarded locations. We conclude that the transfer of location-based reward associations is intimately linked with the reward-modulated motor response employed during learning, and alternative attentional and task contexts may interfere with learned spatial priorities.
Collapse
Affiliation(s)
- Brónagh McCoy
- Department of Experimental and Applied Psychology, VU University Amsterdam, Amsterdam, The Netherlands.
| | - Jan Theeuwes
- Department of Experimental and Applied Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
47
|
Connections between the zona incerta and superior colliculus in the monkey and squirrel. Brain Struct Funct 2017; 223:371-390. [PMID: 28852862 DOI: 10.1007/s00429-017-1503-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/18/2017] [Indexed: 12/18/2022]
Abstract
The zona incerta contains GABAergic neurons that project to the superior colliculus in the cat and rat, suggesting that it plays a role in gaze changes. However, whether this incertal connection represents a general mammalian pattern remains to be determined. We used neuronal tracers to examine the zona incerta connections with the midbrain tectum in the gray squirrel and macaque monkey. Collicular injections in both species revealed that most incertotectal neurons lay in the ventral layer, but anterogradely labeled tectoincertal terminals were found in both the dorsal and ventral layers. In the monkey, injections of the pretectum also produced retrograde labeling, but mainly in the dorsal layer. The dendritic fields of incertotectal and incertopretectal cells were generally contained within the layer inhabited by their somata. The macaque, but not the squirrel, zona incerta extended dorsolaterally, within the external medullary lamina. Zona incerta injections produced retrogradely labeled neurons in the superior colliculus of both species. In the squirrel, most cells inhabited the lower sublamina of the intermediate gray layer, but in the monkey, they were scattered throughout the deeper layers. Labeled cells were present among the pretectal nuclei in both species. Labeled terminals were concentrated in the lower sublamina of the intermediate gray layer of both species, but were dispersed among the pretectal nuclei. In summary, an incertal projection that is concentrated on the collicular motor output layers and that originates in the ventral layer of the ipsilateral zona incerta is a common mammalian feature, suggesting an important role in collicular function.
Collapse
|
48
|
Kim HF, Amita H, Hikosaka O. Indirect Pathway of Caudal Basal Ganglia for Rejection of Valueless Visual Objects. Neuron 2017; 94:920-930.e3. [PMID: 28521141 DOI: 10.1016/j.neuron.2017.04.033] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/15/2017] [Accepted: 04/21/2017] [Indexed: 02/03/2023]
Abstract
The striatum controls behavior in two ways: facilitation and suppression through the direct and indirect pathways, respectively. However, it is still unclear what information is processed in these pathways. To address this question, we studied two pathways originating from the primate caudate tail (CDt). We found that the CDt innervated the caudal-dorsal-lateral part of the substantia nigra pars reticulata (cdlSNr), directly or indirectly through the caudal-ventral part of the globus pallidus externus (cvGPe). Notably, cvGPe neurons receiving inputs from the CDt were mostly visual neurons that encoded stable reward values of visual objects based on long-past experiences. Their dominant response was inhibition by valueless objects, which generated disinhibition of cdlSNr neurons and inhibition of superior colliculus neurons. Our data suggest that low-value signals are sent by the CDt-indirect pathway to suppress saccades to valueless objects, whereas high-value signals are sent by the CDt-direct pathway to facilitate saccades to valuable objects.
Collapse
Affiliation(s)
- Hyoung F Kim
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea.
| | - Hidetoshi Amita
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Okihide Hikosaka
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
49
|
Abstract
Investigation of natural behavior has contributed a number of insights to our understanding of visual guidance of actions by highlighting the importance of behavioral goals and focusing attention on how vision and action play out in time. In this context, humans make continuous sequences of sensory-motor decisions to satisfy current behavioral goals, and the role of vision is to provide the relevant information for making good decisions in order to achieve those goals. This conceptualization of visually guided actions as a sequence of sensory-motor decisions has been formalized within the framework of statistical decision theory, which structures the problem and provides the context for much recent progress in vision and action. Components of a good decision include the task, which defines the behavioral goals, the rewards and costs associated with those goals, uncertainty about the state of the world, and prior knowledge.
Collapse
Affiliation(s)
- Mary M Hayhoe
- Center for Perceptual Systems, University of Texas at Austin, Texas 78712;
| |
Collapse
|
50
|
Yasuda M, Hikosaka O. To Wait or Not to Wait-Separate Mechanisms in the Oculomotor Circuit of Basal Ganglia. Front Neuroanat 2017; 11:35. [PMID: 28443002 PMCID: PMC5387073 DOI: 10.3389/fnana.2017.00035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/30/2017] [Indexed: 12/04/2022] Open
Abstract
We reach a goal immediately after detecting the target, or later by withholding the immediate action. Each time, we choose one of these actions by suppressing the other. How does the brain control these antagonistic actions? We hypothesized that the output of basal ganglia (BG), substantia nigra pars reticulata (SNr), suppresses antagonistic oculomotor signals by sending strong inhibitory output to superior colliculus (SC). To test this hypothesis, we trained monkeys to perform two kinds of saccade task: Immediate (visually guided) and delayed (visually-withheld but memory-guided) saccade tasks. In both tasks, we applied one-direction-reward (1DR) procedure to modify the level of goal-reaching motivation. We identified SNr neurons that projected to SC by their antidromic activation from SC. We stimulated SC on both sides because SNr neurons projecting to the ipsilateral SC (ipsiSC) and those projecting to the contralateral SC (contraSC) might have antagonistic functions. First, we found that ipsiSC-projecting neurons were about 10 times more than contraSC-projecting neurons. More importantly, ipsiSC-projecting SNr neurons were roughly divided into two groups which would control immediate and delayed saccades separately. The immediate-type SNr neurons were clearly inhibited by a visual target on the contralateral side in both visual- and memory-1DR tasks. The inhibition would disinhibit SC neurons and facilitate a saccade to the contralateral target. This is goal-directed in visual-1DR task, but is erroneous in memory-1DR task. In contrast, the delayed-type SNr neurons tended to be excited by a visual target (especially on the contralateral side), which would suppress the immediate saccade to the target. Instead, they were inhibited before a delayed (memory-guided) saccade directed to the contralateral side, which would facilitate the saccade. ContraSC-projecting SNr neurons were more variable with no grouped features, although some of them may contribute to the saccade to the ipsilateral target. Finally, we found that some ipsiSC-projecting SNr neurons were inhibited more strongly when reward was expected, which was associated with shortened saccade reaction times. However, many SNr neurons showed no reward-expectation effect. These results suggest that two separate oculomotor circuits exist in BG, both of which contribute to goal-directed behavior, but in different temporal contexts.
Collapse
Affiliation(s)
- Masaharu Yasuda
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of HealthBethesda, MD, USA
| | - Okihide Hikosaka
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of HealthBethesda, MD, USA
| |
Collapse
|