1
|
Long H, Wu H, Sun C, Xu X, Yang XH, Xiao J, Lv M, Chen Q, Fan M. Biological mechanism of sex differences in mental rotation: Evidence from multimodal MRI, transcriptomic and receptor/transporter data. Neuroimage 2024; 304:120955. [PMID: 39586343 DOI: 10.1016/j.neuroimage.2024.120955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024] Open
Abstract
Sex differences in mental rotation are a well-documented phenomenon in cognitive research, with implications for the differing prevalence of neuropsychiatric disorders such as autism spectrum disorder (ASD), Alzheimer's disease (AD) and major depressive disorder (MDD) between the sexes. Despite extensive documentation, the biological mechanism underpinning these differences remain elusive. This study aimed to elucidate neural, genetic, and molecular bases of these disparities in mental rotation by integrating data from multimodal magnetic resonance imaging (MRI), transcriptomic and receptor/transporter. We first calculated the dynamic regional homogeneity (dReHo), gray matter volume (GMV) and fractional anisotropy (FA) in voxel-wise manner and parceled them into 246 brain regions based on Brainnetome Atlas. Subsequent analyses involved Pearson Correlations to examine the association between mental rotation performance and dReHo/GMV/FA and two-sample t-tests to delineate gender differences in these indices. Based on the above results, further mediation analysis was conducted to explore the relationship between sex, brain biomarkers and mental rotation. In addition, transcriptome-neuroimaging association analysis and correlation analysis between brain biomarkers and neurotransmitter receptor/transporter distribution were also performed to uncover genetic and molecular mechanisms contributing to the observed sex differences in mental rotation. We found correlations between mental rotation performance and dReHo, GMV and FA of the inferior parietal lobule (IPL) and superior temporal gyrus (STG) and sex effects on these brain biomarkers. Notably, the dReHo of the left IPL mediated the relationship between sex and mental rotation. Further correlation analysis revealed that the proton-coupled oligopeptide transporter PEPT2 (SLC15A2) and interleukin 17 receptor D (IL17RD) were associated with sex-related t-statistic maps and mental rotation-related r-statistic maps of dReHo. Moreover, γ-aminobutyric acid subtype A (GABAA) receptor availability was correlated with the r-statistic of dReHo, while norepinephrine transporter (NET) availability was correlated with its t-statistic. Serial mediation models revealed the indirect effect of these genes on the r-statistic maps through the transporter/receptor and t-statistic maps. Our findings provide novel insights into the biological mechanism underlying sex differences in mental rotation, identifying potential biomarkers for cognitive impairment and explaining variations in prevalence of certain mental disorders between the sexes. These results highlight the necessity of considering sex in research on mental health disorders.
Collapse
Affiliation(s)
- Haixia Long
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Hao Wu
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Chaoliang Sun
- Zhejiang Lab, Zhongtai Street, Yuhang District, Hangzhou 311100, China
| | - Xinli Xu
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xu-Hua Yang
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Jie Xiao
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Mingqi Lv
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Qiuju Chen
- School of Design and Architecture, Zhejiang University of Technology, Hangzhou 310023, China
| | - Ming Fan
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou 310018, China.
| |
Collapse
|
2
|
Hidalgo-Sánchez M, Sánchez-Guardado L, Rodríguez-León J, Francisco-Morcillo J. The role of FGF15/FGF19 in the development of the central nervous system, eyes and inner ears in vertebrates. Tissue Cell 2024; 91:102619. [PMID: 39579736 DOI: 10.1016/j.tice.2024.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
Fibroblast growth factor 19 (FGF19), and its rodent ortholog FGF15, is a member of a FGF subfamily directly involved in metabolism, acting in an endocrine way. During embryonic development, FGF15/FGF19 also functions as a paracrine or autocrine factor, regulating key events in a large number of organs. In this sense, the Fgf15/Fgf19 genes control the correct development of the brain, eye, inner ear, heart, pharyngeal pouches, tail bud and limbs, among other organs, as well as muscle growth in adulthood. These growth factors show relevant differences according to molecular structures, signalling pathway and function. Moreover, their expression patterns are highly dynamic at different stages of development, in particular in the central nervous system. The difficulty in understanding the action of these genes increases when comparing their expression patterns and regulatory mechanisms between different groups of vertebrates. The present review will address the expression patterns and functions of the Fgf15/Fgf19 genes at different stages of vertebrate embryonic development, with special attention to the regulation of the early specification, cell differentiation, and morphogenesis of the central nervous system and some sensory organs such as eye and inner ear. The most relevant anatomical aspects related to the structures analysed have also been considered in detail to provide an understandable context for the molecular and cellular studies shown.
Collapse
Affiliation(s)
- Matías Hidalgo-Sánchez
- Área de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain.
| | - Luis Sánchez-Guardado
- Área de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain
| | - Joaquín Rodríguez-León
- Área de Anatomía Humana, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain
| | - Javier Francisco-Morcillo
- Área de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain
| |
Collapse
|
3
|
Pande S, Vary C, Yang X, Liaw L, Gower L, Friesel R, Prudovsky I, Ryzhov S. Endothelial IL17RD promotes Western diet-induced aortic myeloid cell infiltration. Biochem Biophys Res Commun 2024; 701:149552. [PMID: 38335918 PMCID: PMC10936543 DOI: 10.1016/j.bbrc.2024.149552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
The Interleukin-17 (IL17) family is a group of cytokines implicated in the etiology of several inflammatory diseases. Interleukin-17 receptor D (IL17RD), also known as Sef (similar expression to fibroblast growth factor) belonging to the family of IL17 receptors, has been shown to modulate IL17A-associated inflammatory phenotypes. The objective of this study was to test the hypothesis that IL17RD promotes endothelial cell activation and consequent leukocyte adhesion. We utilized primary human aortic endothelial cells and demonstrated that RNAi targeting of IL17RD suppressed transcript levels by 83 % compared to non-targeted controls. Further, RNAi knockdown of IL17RD decreased the adhesion of THP-1 monocytic cells onto a monolayer of aortic endothelial cells in response to IL17A. Additionally, we determined that IL17A did not significantly enhance the activation of canonical MAPK and NFκB pathways in endothelial cells, and further did not significantly affect the expression of VCAM-1 and ICAM-1 in aortic endothelial cells, which is contrary to previous findings. We also determined the functional relevance of our findings in vivo by comparing the expression of endothelial VCAM-1 and ICAM-1 and leukocyte infiltration in the aorta in Western diet-fed Il17rd null versus wild-type mice. Our results showed that although Il17rd null mice do not have significant alteration in aortic expression of VCAM-1 and ICAM-1 in endothelial cells, they exhibit decreased accumulation of proinflammatory monocytes and neutrophils, suggesting that endothelial IL17RD induced in vivo myeloid cell accumulation is not dependent on upregulation of VCAM-1 and ICAM-1 expression. We further performed proteomics analysis to identify potential molecular mediators of the IL17A/IL17RD signaling axis. Collectively, our results underscore a critical role for Il17rd in the regulation of aortic myeloid cell infiltration in the context of Western diet feeding.
Collapse
Affiliation(s)
- Shivangi Pande
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, 81 Research Drive, Scarborough, ME, 04074, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, 04496, USA
| | - Calvin Vary
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, 81 Research Drive, Scarborough, ME, 04074, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, 04496, USA
| | - Xuehui Yang
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, 81 Research Drive, Scarborough, ME, 04074, USA
| | - Lucy Liaw
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, 81 Research Drive, Scarborough, ME, 04074, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, 04496, USA
| | - Lindsey Gower
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, 81 Research Drive, Scarborough, ME, 04074, USA
| | - Robert Friesel
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, 81 Research Drive, Scarborough, ME, 04074, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, 04496, USA.
| | - Igor Prudovsky
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, 81 Research Drive, Scarborough, ME, 04074, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, 04496, USA.
| | - Sergey Ryzhov
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, 81 Research Drive, Scarborough, ME, 04074, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, 04496, USA.
| |
Collapse
|
4
|
Girondel C, Meloche S. Interleukin-17 Receptor D in Physiology, Inflammation and Cancer. Front Oncol 2021; 11:656004. [PMID: 33833999 PMCID: PMC8021910 DOI: 10.3389/fonc.2021.656004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/09/2021] [Indexed: 12/15/2022] Open
Abstract
Interleukin-17 receptor D (IL-17RD) is an evolutionarily conserved member of the IL-17 receptor family. Originally identified as a negative regulator of fibroblast growth factor (FGF) signaling under the name of Sef (Similar expression to FGF genes), IL-17RD was subsequently reported to regulate other receptor tyrosine kinase signaling pathways. In addition, recent studies have shown that IL-17RD also modulates IL-17 and Toll-like receptor (TLR) signaling. Combined genetic and cell biology studies have implicated IL-17RD in the control of cell proliferation and differentiation, cell survival, lineage specification, and inflammation. Accumulating evidence also suggest a role for IL-17RD in tumorigenesis. Expression of IL-17RD is down-regulated in various human cancers and recent work has shown that loss of IL-17RD promotes tumor formation in mice. However, the exact mechanisms underlying the tumor suppressor function of IL-17RD remain unclear and some studies have proposed that IL-17RD may exert pro-tumorigenic effects in certain contexts. Here, we provide an overview of the signaling functions of IL-17RD and review the evidence for its involvement in cancer.
Collapse
Affiliation(s)
- Charlotte Girondel
- Institute for Research in Immunology and Cancer, Montreal, QC, Canada.,Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer, Montreal, QC, Canada.,Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Molecular Biology Program, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
5
|
Pande S, Yang X, Friesel R. Interleukin-17 receptor D (Sef) is a multi-functional regulator of cell signaling. Cell Commun Signal 2021; 19:6. [PMID: 33436016 PMCID: PMC7805053 DOI: 10.1186/s12964-020-00695-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022] Open
Abstract
Interleukin-17 receptor D (IL17RD or IL-17RD) also known as Sef (similar expression to fibroblast growth factor), is a single pass transmembrane protein that is reported to regulate several signaling pathways . IL17RD was initially described as a feedback inhibitor of fibroblast growth factor (FGF) signaling during zebrafish and frog development. It was subsequently determined to regulate other receptor tyrosine kinase signaling cascades as well as several proinflammatory signaling pathways including Interleukin-17A (IL17A), Toll-like receptors (TLR) and Interleukin-1α (IL1α) in several vertebrate species including humans. This review will provide an overview of IL17RD regulation of signaling pathways and functions with emphasis on regulation of development and pathobiological conditions. We will also discuss gaps in our knowledge about IL17RD function to provide insight into opportunities for future investigation. Video Abstract.
Collapse
Affiliation(s)
- Shivangi Pande
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074 USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04496 USA
| | - Xuehui Yang
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074 USA
| | - Robert Friesel
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074 USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04496 USA
| |
Collapse
|
6
|
Su Y, Huang J, Zhao X, Lu H, Wang W, Yang XO, Shi Y, Wang X, Lai Y, Dong C. Interleukin-17 receptor D constitutes an alternative receptor for interleukin-17A important in psoriasis-like skin inflammation. Sci Immunol 2020; 4:4/36/eaau9657. [PMID: 31175175 DOI: 10.1126/sciimmunol.aau9657] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/28/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022]
Abstract
T helper 17 (TH17) cells and interleukin-17A (IL-17A) produced by them are critical in autoinflammatory diseases, such as psoriasis. IL-17A has been shown to signal through IL-17 receptor A/IL-17 receptor C (IL-17RA/IL-17RC) complex to drive inflammatory responses. However, in a psoriasis model, we found that Il17rc deficiency did not completely ameliorate the disease, suggesting another receptor. In search for another IL-17A-interacting receptor, we found that IL-17RD directly bound IL-17A but not IL-17F or IL-17A/F heterodimer and formed a heterodimer with IL-17RA. IL-17A-, but not IL-17F- or IL-17A/F-, mediated gene expression was defective in Il17rd-deficient keratinocytes. Il17rd deficiency in nonhemopoietic cells attenuated imiquimod-induced psoriasis-like skin inflammation. Although IL-17RC and IL-17RD differentially activated IL-17A-dependent signaling and gene expression, their compound mutation led to complete deficits in keratinocytes. IL-23 was found induced by IL-17A in keratinocytes, dependent on both IL-17RC and IL-17RD, suggesting feed-forward regulation of IL-23/IL-17 axis in psoriasis. Together, IL-17RD constitutes a second functional receptor for IL-17A and, together with IL-17RC, mediates the proinflammatory gene expression downstream of IL-17A.
Collapse
Affiliation(s)
- Yang Su
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China.,Center for Life Sciences, Tsinghua University, Beijing, China
| | - Jinling Huang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaohong Zhao
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Huiping Lu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wang Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xuexian O Yang
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Yuling Shi
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiaohu Wang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yuping Lai
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Chen Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China. .,Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing 100084, China
| |
Collapse
|
7
|
Cho HJ, Shan Y, Whittington NC, Wray S. Nasal Placode Development, GnRH Neuronal Migration and Kallmann Syndrome. Front Cell Dev Biol 2019; 7:121. [PMID: 31355196 PMCID: PMC6637222 DOI: 10.3389/fcell.2019.00121] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022] Open
Abstract
The development of Gonadotropin releasing hormone-1 (GnRH) neurons is important for a functional reproduction system in vertebrates. Disruption of GnRH results in hypogonadism and if accompanied by anosmia is termed Kallmann Syndrome (KS). From their origin in the nasal placode, GnRH neurons migrate along the olfactory-derived vomeronasal axons to the nasal forebrain junction and then turn caudally into the developing forebrain. Although research on the origin of GnRH neurons, their migration and genes associated with KS has identified multiple factors that influence development of this system, several aspects still remain unclear. This review discusses development of the olfactory system, factors that regulate GnRH neuron formation and development of the olfactory system, migration of the GnRH neurons from the nose into the brain, and mutations in humans with KS that result from disruption of normal GnRH/olfactory systems development.
Collapse
Affiliation(s)
- Hyun-Ju Cho
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Yufei Shan
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Niteace C Whittington
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Susan Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
8
|
Neben CL, Lo M, Jura N, Klein OD. Feedback regulation of RTK signaling in development. Dev Biol 2017; 447:71-89. [PMID: 29079424 DOI: 10.1016/j.ydbio.2017.10.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023]
Abstract
Precise regulation of the amplitude and duration of receptor tyrosine kinase (RTK) signaling is critical for the execution of cellular programs and behaviors. Understanding these control mechanisms has important implications for the field of developmental biology, and in recent years, the question of how augmentation or attenuation of RTK signaling via feedback loops modulates development has become of increasing interest. RTK feedback regulation is also important for human disease research; for example, germline mutations in genes that encode RTK signaling pathway components cause numerous human congenital syndromes, and somatic alterations contribute to the pathogenesis of diseases such as cancers. In this review, we survey regulators of RTK signaling that tune receptor activity and intracellular transduction cascades, with a focus on the roles of these genes in the developing embryo. We detail the diverse inhibitory mechanisms utilized by negative feedback regulators that, when lost or perturbed, lead to aberrant increases in RTK signaling. We also discuss recent biochemical and genetic insights into positive regulators of RTK signaling and how these proteins function in tandem with negative regulators to guide embryonic development.
Collapse
Affiliation(s)
- Cynthia L Neben
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA
| | - Megan Lo
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco 94143, USA.
| |
Collapse
|
9
|
Regulation of FGF signaling: Recent insights from studying positive and negative modulators. Semin Cell Dev Biol 2016; 53:101-14. [DOI: 10.1016/j.semcdb.2016.01.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/19/2016] [Indexed: 11/19/2022]
|
10
|
Yang X, Liaw L, Prudovsky I, Brooks PC, Vary C, Oxburgh L, Friesel R. Fibroblast growth factor signaling in the vasculature. Curr Atheroscler Rep 2015; 17:509. [PMID: 25813213 DOI: 10.1007/s11883-015-0509-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite their discovery as angiogenic factors and mitogens for endothelial cells more than 30 years ago, much remains to be determined about the role of fibroblast growth factors (FGFs) and their receptors in vascular development, homeostasis, and disease. In vitro studies show that members of the FGF family stimulate growth, migration, and sprouting of endothelial cells, and growth, migration, and phenotypic plasticity of vascular smooth muscle cells. Recent studies have revealed important roles for FGFs and their receptors in the regulation of endothelial cell sprouting and vascular homeostasis in vivo. Furthermore, recent work has revealed roles for FGFs in atherosclerosis, vascular calcification, and vascular dysfunction. The large number of FGFs and their receptors expressed in endothelial and vascular smooth muscle cells complicates these studies. In this review, we summarize recent studies in which new and unanticipated roles for FGFs and their receptors in the vasculature have been revealed.
Collapse
Affiliation(s)
- Xuehui Yang
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Mechanisms of FGF gradient formation during embryogenesis. Semin Cell Dev Biol 2015; 53:94-100. [PMID: 26454099 DOI: 10.1016/j.semcdb.2015.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/05/2015] [Indexed: 12/17/2022]
Abstract
Fibroblast growth factors (FGFs) have long been attributed to influence morphogenesis in embryonic development. Signaling by FGF morphogen encodes positional identity of tissues by creating a concentration gradient over the developing embryo. Various mechanisms that influence the development of such gradient have been elucidated in the recent past. These mechanisms of FGF gradient formation present either as an extracellular control over FGF ligand diffusion or as a subcellular control of FGF propagation and signaling. In this review, we describe our current understanding of FGF as a morphogen, the extracellular control of FGF gradient formation by heparan sulfate proteoglycans (HSPGs) and mechanisms of intracellular regulation of FGF signaling that influence gradient formation.
Collapse
|
12
|
Fuentes-Santamaría V, Alvarado JC, Rodríguez-de la Rosa L, Murillo-Cuesta S, Contreras J, Juiz JM, Varela-Nieto I. IGF-1 deficiency causes atrophic changes associated with upregulation of VGluT1 and downregulation of MEF2 transcription factors in the mouse cochlear nuclei. Brain Struct Funct 2014; 221:709-34. [PMID: 25378055 DOI: 10.1007/s00429-014-0934-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 10/28/2014] [Indexed: 02/08/2023]
Abstract
Insulin-like growth factor 1 (IGF-1) is a neurotrophic protein that plays a crucial role in modulating neuronal function and synaptic plasticity in the adult brain. Mice lacking the Igf1 gene exhibit profound deafness and multiple anomalies in the inner ear and spiral ganglion. An issue that remains unknown is whether, in addition to these peripheral abnormalities, IGF-1 deficiency also results in structural changes along the central auditory pathway that may contribute to an imbalance between excitation and inhibition, which might be reflected in abnormal auditory brainstem responses (ABR). To assess such a possibility, we evaluated the morphological and physiological alterations in the cochlear nucleus complex of the adult mouse. The expression and distribution of the vesicular glutamate transporter 1 (VGluT1) and the vesicular inhibitory transporter (VGAT), which were used as specific markers for labeling excitatory and inhibitory terminals, and the involvement of the activity-dependent myocyte enhancer factor 2 (MEF2) transcription factors in regulating excitatory synapses were assessed in a 4-month-old mouse model of IGF-1 deficiency and neurosensorial deafness (Igf1 (-/-) homozygous null mice). The results demonstrate decreases in the cochlear nucleus area and cell size along with cell loss in the cochlear nuclei of the deficient mouse. Additionally, our results demonstrate that there is upregulation of VGluT1, but not VGAT, immunostaining and downregulation of MEF2 transcription factors together with increased wave II amplitude in the ABR recording. Our observations provide evidence of an abnormal neuronal cytoarchitecture in the cochlear nuclei of Igf1 (-/-) null mice and suggest that the increased efficacy of glutamatergic synapses might be mediated by MEF2 transcription factors.
Collapse
Affiliation(s)
- V Fuentes-Santamaría
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Albacete, Spain.
| | - J C Alvarado
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Albacete, Spain
| | - L Rodríguez-de la Rosa
- Facultad de Medicina, Universidad de Castilla-La Mancha, Campus de Albacete. C/Almansa, 14, 02006, Albacete, Spain
| | - S Murillo-Cuesta
- Grupo de Neurobiología de la Audición, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.,Centro Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,IdiPAZ Instituto de Investigación en Salud, Madrid, Spain
| | - J Contreras
- Grupo de Neurobiología de la Audición, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.,Centro Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,IdiPAZ Instituto de Investigación en Salud, Madrid, Spain.,Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - J M Juiz
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Albacete, Spain
| | - I Varela-Nieto
- Grupo de Neurobiología de la Audición, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.,Centro Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,IdiPAZ Instituto de Investigación en Salud, Madrid, Spain
| |
Collapse
|
13
|
Zhang J, Wright KD, Mahoney Rogers AA, Barrett MM, Shim K. Compensatory regulation of the size of the inner ear in response to excess induction of otic progenitors by fibroblast growth factor signaling. Dev Dyn 2014; 243:1317-27. [PMID: 24847848 DOI: 10.1002/dvdy.24148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/28/2014] [Accepted: 05/05/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The otic placode comprises the progenitors of the inner ear and the neurons that convey hearing and balance information to the brain. Transplantation studies in birds and amphibians demonstrate that when the otic placode is morphologically visible as a thickened patch of ectoderm, it is first committed to an otic fate. Fibroblast growth factor (FGF) signaling initiates induction of the otic placode, and levels of FGF signaling are fine-tuned by the Sprouty family of antagonists of receptor tyrosine kinase signaling. RESULTS Here, we examined the size of the otic placode and cup by combinatorial inactivation of the Sprouty1 and Sprouty2 genes. Interestingly, in a Sprouty gene dosage series, early enlargement of the otic placode was progressively restored to normal. Restoration of otic size was preceded by normal levels of FGF signaling, reduced cell proliferation and reduced cell death. CONCLUSIONS Our study demonstrates that excess otic placode cells, which form in response to increased FGF signaling, are not maintained in mammals. This suggests that growth plasticity exists in the mammalian otic placode and cup, and that FGF signaling may not be sufficient to induce the genetic program that maintains otic fate.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Pediatrics, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | | | | | | |
Collapse
|
14
|
He Q, Yang X, Gong Y, Kovalenko D, Canalis E, Rosen CJ, Friesel RE. Deficiency of Sef is associated with increased postnatal cortical bone mass by regulating Runx2 activity. J Bone Miner Res 2014; 29:1217-31. [PMID: 24127237 PMCID: PMC3984377 DOI: 10.1002/jbmr.2114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 09/13/2013] [Accepted: 10/07/2013] [Indexed: 11/06/2022]
Abstract
Sef (similar expression to fgf genes) is a feedback inhibitor of fibroblast growth factor (FGF) signaling and functions in part by binding to FGF receptors and inhibiting their activation. Genetic studies in mice and humans indicate an important role for fibroblast growth factor signaling in bone growth and homeostasis. We, therefore, investigated whether Sef had a function role in skeletal acquisition and remodeling. Sef expression is increased during osteoblast differentiation in vitro, and LacZ staining of Sef+/- mice showed high expression of Sef in the periosteum and chondro-osseous junction of neonatal and adult mice. Mice with a global deletion of Sef showed increased cortical bone thickness, bone volume, and increased periosteal perimeter by micro-computed tomography (micro-CT). Histomorphometric analysis of cortical bone revealed a significant increase in osteoblast number. Interestingly, Sef-/- mice showed very little difference in trabecular bone by micro-CT and histomorphometry compared with wild-type mice. Bone marrow cells from Sef-/- mice grown in osteogenic medium showed increased proliferation and increased osteoblast differentiation compared with wild-type bone marrow cells. Bone marrow cells from Sef-/- mice showed enhanced FGF2-induced activation of the ERK pathway, whereas bone marrow cells from Sef transgenic mice showed decreased FGF2-induced signaling. FGF2-induced acetylation and stability of Runx2 was enhanced in Sef-/- bone marrow cells, whereas overexpression of Sef inhibited Runx2-responsive luciferase reporter activity. Bone marrow from Sef-/- mice showed enhanced hematopoietic lineage-dependent and osteoblast-dependent osteoclastogenesis and increased bone resorptive activity relative to wild-type controls in in vitro assays, whereas overexpression of Sef inhibited osteoclast differentiation. Taken together, these studies indicate that Sef has specific roles in osteoblast and osteoclast lineages and that its absence results in increased osteoblast and osteoclast activity with a net increase in cortical bone mass.
Collapse
Affiliation(s)
- Qing He
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Peng W, Lei Q, Jiang Z, Hu Z. Characterization of Golgi scaffold proteins and their roles in compartmentalizing cell signaling. J Mol Histol 2013; 45:435-45. [PMID: 24337566 DOI: 10.1007/s10735-013-9560-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 12/02/2013] [Indexed: 12/21/2022]
Abstract
Subcellular compartmentalization has become an important theme in cell signaling. In particular, the Golgi apparatus (GA) plays a prominent role in compartmentalizing signaling cascades that originate at the plasma membrane or other organelles. To precisely regulate this process, cells have evolved a unique class of organizer proteins, termed "scaffold proteins". Sef, PAQR3, PAQR10 and PAQR11 are scaffold proteins that have recently been identified on the GA and are referred to as Golgi scaffolds. The major cell growth signaling pathways, such as Ras/MAPK, PI3K/AKT, insulin and VEGF (vascular endothelial growth factor), are tightly regulated spatially and temporally by these Golgi scaffolds to ensure a physiologically appropriate outcome. Here, we discuss the subcellular localization and characterization of the topology and functional domains of these Golgi scaffolds and summarize their roles in the compartmentalization of cell signaling. We also highlight the physiological and pathological roles of these Golgi scaffolds in tumorigenesis and developmental disorders.
Collapse
Affiliation(s)
- Wenna Peng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | | | | | | |
Collapse
|
16
|
Miraoui H, Dwyer AA, Sykiotis GP, Plummer L, Chung W, Feng B, Beenken A, Clarke J, Pers TH, Dworzynski P, Keefe K, Niedziela M, Raivio T, Crowley WF, Seminara SB, Quinton R, Hughes VA, Kumanov P, Young J, Yialamas MA, Hall JE, Van Vliet G, Chanoine JP, Rubenstein J, Mohammadi M, Tsai PS, Sidis Y, Lage K, Pitteloud N. Mutations in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 are identified in individuals with congenital hypogonadotropic hypogonadism. Am J Hum Genet 2013; 92:725-43. [PMID: 23643382 DOI: 10.1016/j.ajhg.2013.04.008] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/14/2013] [Accepted: 04/10/2013] [Indexed: 12/22/2022] Open
Abstract
Congenital hypogonadotropic hypogonadism (CHH) and its anosmia-associated form (Kallmann syndrome [KS]) are genetically heterogeneous. Among the >15 genes implicated in these conditions, mutations in FGF8 and FGFR1 account for ~12% of cases; notably, KAL1 and HS6ST1 are also involved in FGFR1 signaling and can be mutated in CHH. We therefore hypothesized that mutations in genes encoding a broader range of modulators of the FGFR1 pathway might contribute to the genetics of CHH as causal or modifier mutations. Thus, we aimed to (1) investigate whether CHH individuals harbor mutations in members of the so-called "FGF8 synexpression" group and (2) validate the ability of a bioinformatics algorithm on the basis of protein-protein interactome data (interactome-based affiliation scoring [IBAS]) to identify high-quality candidate genes. On the basis of sequence homology, expression, and structural and functional data, seven genes were selected and sequenced in 386 unrelated CHH individuals and 155 controls. Except for FGF18 and SPRY2, all other genes were found to be mutated in CHH individuals: FGF17 (n = 3 individuals), IL17RD (n = 8), DUSP6 (n = 5), SPRY4 (n = 14), and FLRT3 (n = 3). Independently, IBAS predicted FGF17 and IL17RD as the two top candidates in the entire proteome on the basis of a statistical test of their protein-protein interaction patterns to proteins known to be altered in CHH. Most of the FGF17 and IL17RD mutations altered protein function in vitro. IL17RD mutations were found only in KS individuals and were strongly linked to hearing loss (6/8 individuals). Mutations in genes encoding components of the FGF pathway are associated with complex modes of CHH inheritance and act primarily as contributors to an oligogenic genetic architecture underlying CHH.
Collapse
Affiliation(s)
- Hichem Miraoui
- Faculty of Biology and Medicine, University of Lausanne in collaboration with Service of Endocrinology, Diabetology, and Metabolism, Centre Hospitalier Universitaire Vaudois, Rue du Bugnon 7, Lausanne CH-1005, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Orphan receptor IL-17RD tunes IL-17A signalling and is required for neutrophilia. Nat Commun 2013; 3:1119. [PMID: 23047677 DOI: 10.1038/ncomms2127] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/07/2012] [Indexed: 12/14/2022] Open
Abstract
Interleukin-17A, the prototypical member of the interleukin-17 cytokine family, coordinates local tissue inflammation by recruiting neutrophils to sites of infection. Dysregulation of interleukin-17 signalling has been linked to the pathogenesis of inflammatory diseases and autoimmunity. The interleukin-17 receptor family members (A-E) have a broad range of functional effects in immune signalling yet no known role has been described for the remaining orphan receptor, interleukin-17 receptor D, in regulating interleukin-17A-induced signalling pathways. Here we demonstrate that interleukin-17 receptor D can differentially regulate the various pathways employed by interleukin-17A. Neutrophil recruitment, in response to in vivo administration of interleukin-17A, is abolished in interleukin-17 receptor D-deficient mice, correlating with reduced interleukin-17A-induced activation of p38 mitogen-activated protein kinase and expression of the neutrophil chemokine MIP-2. In contrast, interleukin-17 receptor D deficiency results in enhanced interleukin-17A-induced activation of nuclear factor-kappa B and interleukin-6 and keratinocyte chemoattractant expression. Interleukin-17 receptor D disrupts the interaction of Act1 and TRAF6 causing differential regulation of nuclear factor-kappa B and p38 mitogen-activated protein kinase signalling pathways.
Collapse
|
18
|
Alsina FC, Ledda F, Paratcha G. New insights into the control of neurotrophic growth factor receptor signaling: implications for nervous system development and repair. J Neurochem 2012; 123:652-61. [PMID: 22994539 DOI: 10.1111/jnc.12021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/12/2012] [Accepted: 09/16/2012] [Indexed: 11/28/2022]
Abstract
Neurotrophic growth factors control neuronal development by activating specific receptor tyrosine kinase positive signaling pathways, such as Ras-MAPK and PI3K-Akt cascades. Once activated, neurotrophic factor receptors also trigger a cascade of molecular events, named negative receptor signaling, that restricts the intensity of the positive signals and modulates cellular behavior. Thus, to avoid signaling errors that ultimately could lead to aberrant neuronal physiology and disease, negative signaling mechanisms have evolved to ensure that suitable thresholds of neuronal stimulation are achieved and maintained during right periods of time. Recent findings have revealed that neurotrophic factor receptor signaling is tightly modulated through the coordinated action of many different protein regulators that limit or potentiate signal propagation in spatially and temporally controlled manners, acting at specific points after receptor engagement. In this review, we discuss progress in this field, highlighting the importance of these modulators in axonal growth, guidance, neural connectivity, and nervous system regeneration.
Collapse
Affiliation(s)
- Fernando C Alsina
- Division of Molecular and Cellular Neuroscience, Institute of Cellular Biology and Neuroscience Prof. Dr. E. De Robertis (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Buenos Aires, Argentina
| | | | | |
Collapse
|
19
|
Laux A, Delalande F, Mouheiche J, Stuber D, Van Dorsselaer A, Bianchi E, Bezard E, Poisbeau P, Goumon Y. Localization of endogenous morphine-like compounds in the mouse spinal cord. J Comp Neurol 2012; 520:1547-61. [DOI: 10.1002/cne.22811] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Laux A, Muller AH, Miehe M, Dirrig-Grosch S, Deloulme JC, Delalande F, Stuber D, Sage D, Van Dorsselaer A, Poisbeau P, Aunis D, Goumon Y. Mapping of endogenous morphine-like compounds in the adult mouse brain: Evidence of their localization in astrocytes and GABAergic cells. J Comp Neurol 2011; 519:2390-416. [PMID: 21456021 DOI: 10.1002/cne.22633] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Endogenous morphine, morphine-6-glucuronide, and codeine, which are structurally identical to vegetal alkaloids, can be synthesized by mammalian cells from dopamine. However, the role of brain endogenous morphine and its derivative compounds is a matter of debate, and knowledge about its distribution is lacking. In this study, by using a validated antibody, we describe a precise mapping of endogenous morphine-like compounds (morphine and/or its glucuronides and/or codeine) in the mouse brain. First, a mass spectrometry approach confirmed the presence of morphine and codeine in mouse brain, but also, of morphine-6-glucuronide and morphine-3-glucuronide representing two metabolites of morphine. Second, light microscopy allowed us to observe immunopositive cell somas and cytoplasmic processes throughout the mouse brain. Morphine-like immunoreactivity was present in various structures including the hippocampus, olfactory bulb, band of Broca, basal ganglia, and cerebellum. Third, by using confocal microscopy and immunofluroscence co-localization, we characterized cell types containing endogenous opiates. Interestingly, we observed that morphine-like immunoreactivity throughout the encephalon is mainly present in γ-aminobutyric acid (GABA)ergic neurons. Astrocytes were also labeled throughout the entire brain, in the cell body, in the cytoplasmic processes, and in astrocytic feet surrounding blood vessels. Finally, ultrastructural localization of morphine-like immunoreactivity was determined by electron microscopy and showed the presence of morphine-like label in presynaptic terminals in the cerebellum and postsynaptic terminals in the rest of the mouse brain. In conclusion, the presence of endogenous morphine-like compounds in brain regions not usually involved in pain modulation opens the exciting opportunity to extend the role and function of endogenous alkaloids far beyond their analgesic functions.
Collapse
Affiliation(s)
- Alexis Laux
- Nociception and Pain Department, Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, F-67084 Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Nakamura PA, Cramer KS. Formation and maturation of the calyx of Held. Hear Res 2010; 276:70-8. [PMID: 21093567 DOI: 10.1016/j.heares.2010.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 11/03/2010] [Accepted: 11/10/2010] [Indexed: 11/24/2022]
Abstract
Sound localization requires precise and specialized neural circuitry. A prominent and well-studied specialization is found in the mammalian auditory brainstem. Globular bushy cells of the ventral cochlear nucleus (VCN) project contralaterally to neurons of the medial nucleus of the trapezoid body (MNTB), where their large axons terminate on cell bodies of MNTB principal neurons, forming the calyces of Held. The VCN-MNTB pathway is necessary for the accurate computation of interaural intensity and time differences; MNTB neurons provide inhibitory input to the lateral superior olive, which compares levels of excitation from the ipsilateral ear to levels of tonotopically matched inhibition from the contralateral ear, and to the medial superior olive, where precise inhibition from MNTB neurons tunes the delays of binaural excitation. Here we review the morphological and physiological aspects of the development of the VCN-MNTB pathway and its calyceal termination, along with potential mechanisms that give rise to its precision. During embryonic development, VCN axons grow towards the midline, cross the midline into the region of the presumptive MNTB and then form collateral branches that will terminate in calyces of Held. In rodents, immature calyces of Held appear in MNTB during the first few days of postnatal life. These calyces mature morphologically and physiologically over the next three postnatal weeks, enabling fast, high fidelity transmission in the VCN-MNTB pathway.
Collapse
Affiliation(s)
- Paul A Nakamura
- Department of Neurobiology and Behavior, University of California, Irvine, 2205 McGaugh Hall, Irvine, CA 92697-4550, USA
| | | |
Collapse
|
22
|
Sef is a negative regulator of fiber cell differentiation in the ocular lens. Differentiation 2010; 80:53-67. [PMID: 20542628 DOI: 10.1016/j.diff.2010.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 05/18/2010] [Accepted: 05/20/2010] [Indexed: 02/03/2023]
Abstract
Growth factor signaling, mediated via receptor tyrosine kinases (RTKs), needs to be tightly regulated in many developmental systems to ensure a physiologically appropriate biological outcome. At one level this regulation may involve spatially and temporally ordered patterns of expression of specific RTK signaling antagonists, such as Sef (similar expression to fgfs). Growth factors, notably FGFs, play important roles in development of the vertebrate ocular lens. FGF induces lens cell proliferation and differentiation at progressively higher concentrations and there is compelling evidence that a gradient of FGF signaling in the eye determines lens polarity and growth patterns. We have recently identified the presence of Sef in the lens, with strongest expression in the epithelial cells. Given the important role for FGFs in lens developmental biology, we employed transgenic mouse strategies to determine if Sef could be involved in regulating lens cell behaviour. Over-expressing Sef specifically in the lens of transgenic mice led to impaired lens and eye development that resulted in microphthalmia. Sef inhibited primary lens fiber cell elongation and differentiation, as well as increased apoptosis, consistent with a block in FGFR-mediated signaling during lens morphogenesis. These results are consistent with growth factor antagonists, such as Sef, being important negative regulators of growth factor signaling. Moreover, the lens provides a useful paradigm as to how opposing gradients of a growth factor and its antagonist could work together to determine and stabilise tissue patterning during development and growth.
Collapse
|
23
|
Molina G, Vogt A, Bakan A, Dai W, Queiroz de Oliveira P, Znosko W, Smithgall TE, Bahar I, Lazo JS, Day BW, Tsang M. Zebrafish chemical screening reveals an inhibitor of Dusp6 that expands cardiac cell lineages. Nat Chem Biol 2009; 5:680-7. [PMID: 19578332 PMCID: PMC2771339 DOI: 10.1038/nchembio.190] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 04/30/2009] [Indexed: 11/09/2022]
Abstract
The dual specificity phosphatase 6 (Dusp6) functions as a feedback regulator of fibroblast growth factor (FGF) signaling to limit the activity of extracellular signal regulated kinase (ERK) 1 and 2. We have identified a small molecule inhibitor of Dusp6, (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI), using a transgenic zebrafish chemical screen. BCI treatment blocked Dusp6 activity and enhanced FGF target gene expression in zebrafish embryos. Docking simulations predicted an allosteric binding site for BCI within the phosphatase domain. In vitro studies supported a model that BCI inhibits Dusp6 catalytic activation by ERK2 substrate binding. A temporal role for Dusp6 in restricting cardiac progenitors and controlling heart organ size was uncovered with BCI treatment at varying developmental stages. This study highlights the power of in vivo zebrafish chemical screens to identify novel compounds targeting Dusp6, a component of the FGF signaling pathway that has eluded traditional high-throughput in vitro screens.
Collapse
Affiliation(s)
- Gabriela Molina
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Toyoshima M, Sakurai K, Shimazaki K, Takeda Y, Nakamoto M, Serizawa S, Shimoda Y, Watanabe K. Preferential localization of neural cell recognition molecule NB-2 in developing glutamatergic neurons in the rat auditory brainstem. J Comp Neurol 2009; 513:349-62. [PMID: 19177518 DOI: 10.1002/cne.21972] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
NB-2 is a neuronal cell recognition molecule that is preferentially expressed in auditory pathways. Mice deficient in the NB-2 gene exhibit aberrant responses to acoustic stimuli. Here we examined the expression and localization of NB-2 in the auditory brainstem during development in the rat. NB-2 was strongly expressed in the ventral cochlear nucleus (VCN), ventral acoustic stria, lateral and medial superior olivary complex (SOC), superior paraolivary nucleus, medial nucleus of the trapezoid body (MNTB), ventrolateral lemniscus, and central nucleus of the inferior colliculus (CIC). In the VCN and CIC, NB-2 was expressed in the regions that are known to respond to high frequencies. In situ hybridization combined with immunohistochemistry suggested that NB-2 is expressed only in neurons. NB-2 was colocalized with glutamatergic elements in the neuropil and the calyces of Held but not with glycinergic or GABAergic elements. NB-2 expression in the SOC was first detected at embryonic day (E)19, reached a maximum level at postnatal day (P)7, and declined thereafter. Immunolabeling with VGLUT1 and VGLUT2, markers for mature and premature glutamatergic synapses, respectively, in combination with NB-2 immunolabeling revealed that NB-2 is expressed at glutamatergic synapses. Collectively, our findings suggest that NB-2 plays a key role in maturation of glutamatergic synapses in the brainstem during the final stages of auditory development.
Collapse
Affiliation(s)
- Manabu Toyoshima
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Warchol ME, Richardson GP. Expression of the Pax2 transcription factor is associated with vestibular phenotype in the avian inner ear. Dev Neurobiol 2009; 69:191-202. [PMID: 19130600 DOI: 10.1002/dneu.20684] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The paired-domain transcription factor Pax2 is involved in many facets of inner ear development, but relatively little is known about the expression or function of Pax2 in the mature ear. In this study, we have used immunohistochemical methods to characterize the expression patterns of Pax2 in the sensory organs of inner ears from posthatch chicks. Immunoreactivity for Pax2 was observed in the nuclei of most hair cells and supporting cells in the vestibular organs. In contrast, Pax2 expression in the chick cochlea was limited to hair cells located in the very distal (low frequency) region. We then used organotypic cultures of the chick utricle to examine changes in Pax2 expression in response to ototoxic injury and during hair cell regeneration. Treatment with streptomycin resulted in the loss of most Pax2 immunoreactivity from the lumenal (hair cell) stratum of the utricle. During the early phases of regeneration, moderate Pax2 expression was maintained in the nuclei of proliferating supporting cells. Expression of Pax2 in the hair cell stratum recovered in parallel with hair cell regeneration. The results indicate that Pax2 continues to be expressed in the mature avian ear, and that its expression pattern is correlated with a vestibular phenotype.
Collapse
Affiliation(s)
- Mark E Warchol
- Fay and Carl Simons Center for the Biology of Hearing and Deafness, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
26
|
Abraira VE, Del Rio T, Tucker AF, Slonimsky J, Keirnes HL, Goodrich LV. Cross-repressive interactions between Lrig3 and netrin 1 shape the architecture of the inner ear. Development 2008; 135:4091-9. [PMID: 19004851 DOI: 10.1242/dev.029330] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The sense of balance depends on the intricate architecture of the inner ear, which contains three semicircular canals used to detect motion of the head in space. Changes in the shape of even one canal cause drastic behavioral deficits, highlighting the need to understand the cellular and molecular events that ensure perfect formation of this precise structure. During development, the canals are sculpted from pouches that grow out of a simple ball of epithelium, the otic vesicle. A key event is the fusion of two opposing epithelial walls in the center of each pouch, thereby creating a hollow canal. During the course of a gene trap mutagenesis screen to find new genes required for canal morphogenesis, we discovered that the Ig superfamily protein Lrig3 is necessary for lateral canal development. We show that this phenotype is due to ectopic expression of the axon guidance molecule netrin 1 (Ntn1), which regulates basal lamina integrity in the fusion plate. Through a series of genetic experiments, we show that mutually antagonistic interactions between Lrig3 and Ntn1 create complementary expression domains that define the future shape of the lateral canal. Remarkably, removal of one copy of Ntn1 from Lrig3 mutants rescues both the circling behavior and the canal malformation. Thus, the Lrig3/Ntn1 feedback loop dictates when and where basement membrane breakdown occurs during canal development, revealing a new mechanism of complex tissue morphogenesis.
Collapse
Affiliation(s)
- Victoria E Abraira
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
27
|
Know thy Sef: A novel class of feedback antagonists of receptor tyrosine kinase signaling. Int J Biochem Cell Biol 2008; 40:2040-52. [DOI: 10.1016/j.biocel.2008.03.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 03/06/2008] [Accepted: 03/06/2008] [Indexed: 02/06/2023]
|
28
|
Miko IJ, Henkemeyer M, Cramer KS. Auditory brainstem responses are impaired in EphA4 and ephrin-B2 deficient mice. Hear Res 2007; 235:39-46. [PMID: 17967521 DOI: 10.1016/j.heares.2007.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 09/20/2007] [Accepted: 09/21/2007] [Indexed: 11/15/2022]
Abstract
The Eph receptor tyrosine kinases and their membrane-anchored ligands, ephrins, are signaling proteins that act as axon guidance molecules during chick auditory brainstem development. We recently showed that Eph proteins also affect patterns of neural activation in the mammalian brainstem. However, functional deficits in the brainstems of mutant mice have not been assessed physiologically. The present study characterizes neural activation in Eph protein deficient mice in the auditory brainstem response (ABR). We recorded the ABR of EphA4 and ephrin-B2 mutant mice, aged postnatal day 18-20, and compared them to wild type controls. The peripheral hearing threshold of EphA4(-/-) mice was 75% higher than that of controls. Waveform amplitudes of peak 1 (P1) were 54% lower in EphA4(-/-) mice than in controls. The peripheral hearing thresholds in ephrin-B2(lacZ/)(+) mice were also elevated, with a mean value 20% higher than that of controls. These ephrin-B2(lacZ/)(+) mice showed a 38% smaller P1 amplitude. Significant differences in latency to waveform peaks were also observed. These elevated thresholds and reduced peak amplitudes provide evidence for hearing deficits in both of these mutant mouse lines, and further emphasize an important role for Eph family proteins in the formation of functional auditory circuitry.
Collapse
Affiliation(s)
- Ilona J Miko
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4550, USA
| | | | | |
Collapse
|