1
|
Dillon N, Cocanougher B, Sood C, Yuan X, Kohn AB, Moroz LL, Siegrist SE, Zlatic M, Doe CQ. Single cell RNA-seq analysis reveals temporally-regulated and quiescence-regulated gene expression in Drosophila larval neuroblasts. Neural Dev 2022; 17:7. [PMID: 36002894 PMCID: PMC9404614 DOI: 10.1186/s13064-022-00163-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/19/2022] [Indexed: 12/12/2022] Open
Abstract
The mechanisms that generate neural diversity during development remains largely unknown. Here, we use scRNA-seq methodology to discover new features of the Drosophila larval CNS across several key developmental timepoints. We identify multiple progenitor subtypes - both stem cell-like neuroblasts and intermediate progenitors - that change gene expression across larval development, and report on new candidate markers for each class of progenitors. We identify a pool of quiescent neuroblasts in newly hatched larvae and show that they are transcriptionally primed to respond to the insulin signaling pathway to exit from quiescence, including relevant pathway components in the adjacent glial signaling cell type. We identify candidate "temporal transcription factors" (TTFs) that are expressed at different times in progenitor lineages. Our work identifies many cell type specific genes that are candidates for functional roles, and generates new insight into the differentiation trajectory of larval neurons.
Collapse
Affiliation(s)
- Noah Dillon
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, OR, 97403, Eugene, USA
| | - Ben Cocanougher
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Chhavi Sood
- Department of Biology, University of Virginia, VA, 22904, Charlottesville, USA
| | - Xin Yuan
- Department of Biology, University of Virginia, VA, 22904, Charlottesville, USA
| | - Andrea B Kohn
- Whitney Laboratory for Marine Biosciences, University of Florida, FL, 32080, St. Augustine, USA
| | - Leonid L Moroz
- Whitney Laboratory for Marine Biosciences, University of Florida, FL, 32080, St. Augustine, USA
| | - Sarah E Siegrist
- Department of Biology, University of Virginia, VA, 22904, Charlottesville, USA
| | - Marta Zlatic
- MRC Laboratory of Molecular Biology, Dept of Zoology, University of Cambridge, Cambridge, UK
- Janelia Research Campus, VA, Ashburn, USA
| | - Chris Q Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, OR, 97403, Eugene, USA.
| |
Collapse
|
2
|
Bourouliti A, Skoulakis EMC. Anesthesia Resistant Memories in Drosophila, a Working Perspective. Int J Mol Sci 2022; 23:ijms23158527. [PMID: 35955662 PMCID: PMC9369046 DOI: 10.3390/ijms23158527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/10/2022] Open
Abstract
Memories are lasting representations over time of associations between stimuli or events. In general, the relatively slow consolidation of memories requires protein synthesis with a known exception being the so-called Anesthesia Resistant Memory (ARM) in Drosophila. This protein synthesis-independent memory type survives amnestic shocks after a short, sensitive window post training, and can also emerge after repeated cycles of training in a negatively reinforced olfactory conditioning task, without rest between cycles (massed conditioning—MC). We discussed operational and molecular mechanisms that mediate ARM and differentiate it from protein synthesis-dependent long-term memory (LTM) in Drosophila. Based on the notion that ARM is unlikely to specifically characterize Drosophila, we examined protein synthesis and MC-elicited memories in other species and based on intraspecies shared molecular components and proposed potential relationships of ARM with established memory types in Drosophila and vertebrates.
Collapse
Affiliation(s)
- Anna Bourouliti
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16674 Vari, Greece;
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Efthimios M. C. Skoulakis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16674 Vari, Greece;
- Correspondence:
| |
Collapse
|
3
|
Baker BM, Mokashi SS, Shankar V, Hatfield JS, Hannah RC, Mackay TFC, Anholt RRH. The Drosophila brain on cocaine at single-cell resolution. Genome Res 2021; 31:1927-1937. [PMID: 34035044 PMCID: PMC8494231 DOI: 10.1101/gr.268037.120] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/02/2021] [Indexed: 11/24/2022]
Abstract
Whereas the neurological effects of cocaine have been well documented, effects of acute cocaine consumption on genome-wide gene expression across the brain remain largely unexplored. This question cannot be readily addressed in humans but can be approached using the Drosophila melanogaster model, where gene expression in the entire brain can be surveyed at once. Flies exposed to cocaine show impaired locomotor activity, including climbing behavior and startle response (a measure of sensorimotor integration), and increased incidence of seizures and compulsive grooming. To identify specific cell populations that respond to acute cocaine exposure, we analyzed single-cell transcriptional responses in duplicate samples of flies that consumed fixed amounts of sucrose or sucrose supplemented with cocaine, in both sexes. Unsupervised clustering of the transcriptional profiles of a total of 86,224 cells yielded 36 distinct clusters. Annotation of clusters based on gene markers revealed that all major cell types (neuronal and glial) as well as neurotransmitter types from most brain regions were represented. The brain transcriptional responses to cocaine showed profound sexual dimorphism and were considerably more pronounced in males than females. Differential expression analysis within individual clusters indicated cluster-specific responses to cocaine. Clusters corresponding to Kenyon cells of the mushroom bodies and glia showed especially large transcriptional responses following cocaine exposure. Cluster specific coexpression networks and global interaction networks revealed a diverse array of cellular processes affected by acute cocaine exposure. These results provide an atlas of sexually dimorphic cocaine-modulated gene expression in a model brain.
Collapse
Affiliation(s)
- Brandon M Baker
- Center for Human Genetics, Department of Genetics and Biochemistry, Clemson University, Greenwood, South Carolina 29646, USA
| | - Sneha S Mokashi
- Center for Human Genetics, Department of Genetics and Biochemistry, Clemson University, Greenwood, South Carolina 29646, USA
| | - Vijay Shankar
- Center for Human Genetics, Department of Genetics and Biochemistry, Clemson University, Greenwood, South Carolina 29646, USA
| | - Jeffrey S Hatfield
- Center for Human Genetics, Department of Genetics and Biochemistry, Clemson University, Greenwood, South Carolina 29646, USA
| | - Rachel C Hannah
- Center for Human Genetics, Department of Genetics and Biochemistry, Clemson University, Greenwood, South Carolina 29646, USA
| | - Trudy F C Mackay
- Center for Human Genetics, Department of Genetics and Biochemistry, Clemson University, Greenwood, South Carolina 29646, USA
| | - Robert R H Anholt
- Center for Human Genetics, Department of Genetics and Biochemistry, Clemson University, Greenwood, South Carolina 29646, USA
| |
Collapse
|
5
|
Drosophila Middle-Term Memory: Amnesiac is Required for PKA Activation in the Mushroom Bodies, a Function Modulated by Neprilysin 1. J Neurosci 2020; 40:4219-4229. [PMID: 32303647 DOI: 10.1523/jneurosci.2311-19.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/30/2020] [Accepted: 04/05/2020] [Indexed: 11/21/2022] Open
Abstract
In Drosophila, the mushroom bodies (MB) constitute the central brain structure for olfactory associative memory. As in mammals, the cAMP/PKA pathway plays a key role in memory formation. In the MB, Rutabaga (Rut) adenylate cyclase acts as a coincidence detector during associative conditioning to integrate calcium influx resulting from acetylcholine stimulation and G-protein activation resulting from dopaminergic stimulation. Amnesiac encodes a secreted neuropeptide required in the MB for two phases of aversive olfactory memory. Previous sequence analysis has revealed strong homology with the mammalian pituitary adenylate cyclase-activating peptide (PACAP). Here, we examined whether amnesiac is involved in cAMP/PKA dynamics in response to dopamine and acetylcholine co-stimulation in living flies. Experiments were conducted with both sexes, or with either sex. Our data show that amnesiac is necessary for the PKA activation process that results from coincidence detection in the MB. Since PACAP peptide is cleaved by the human membrane neprilysin hNEP, we searched for an interaction between Amnesiac and Neprilysin 1 (Nep1), a fly neprilysin involved in memory. We show that when Nep1 expression is acutely knocked down in adult MB, memory deficits displayed by amn hypomorphic mutants are rescued. Consistently, Nep1 inhibition also restores normal PKA activation in amn mutant flies. Taken together, the results suggest that Nep1 targets Amnesiac degradation to terminate its signaling function. Our work thus highlights a key role for Amnesiac in establishing within the MB the PKA dynamics that sustain middle-term memory (MTM) formation, a function modulated by Nep1.SIGNIFICANCE STATEMENT The Drosophila amnesiac gene encodes a secreted neuropeptide whose expression is required for specific memory phases in the mushroom bodies (MB), the olfactory memory center. Here, we show that Amnesiac is required for PKA activation resulting from coincidence detection, a mechanism by which the MB integrate two spatially distinct stimuli to encode associative memory. Furthermore, our results uncover a functional relationship between Amnesiac and Neprilysin 1 (Nep1), a membrane peptidase involved in memory and expressed in the MB. These results suggest that Nep1 modulates Amnesiac levels. We propose that on conditioning, Amnesiac release from the MB allows, via an autocrine process, the sustaining of PKA activation-mediating memory, which subsequently is inactivated by Nep1 degradation.
Collapse
|
6
|
Lee PT, Zirin J, Kanca O, Lin WW, Schulze KL, Li-Kroeger D, Tao R, Devereaux C, Hu Y, Chung V, Fang Y, He Y, Pan H, Ge M, Zuo Z, Housden BE, Mohr SE, Yamamoto S, Levis RW, Spradling AC, Perrimon N, Bellen HJ. A gene-specific T2A-GAL4 library for Drosophila. eLife 2018; 7:35574. [PMID: 29565247 PMCID: PMC5898912 DOI: 10.7554/elife.35574] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/16/2018] [Indexed: 12/18/2022] Open
Abstract
We generated a library of ~1000 Drosophila stocks in which we inserted a construct in the intron of genes allowing expression of GAL4 under control of endogenous promoters while arresting transcription with a polyadenylation signal 3’ of the GAL4. This allows numerous applications. First, ~90% of insertions in essential genes cause a severe loss-of-function phenotype, an effective way to mutagenize genes. Interestingly, 12/14 chromosomes engineered through CRISPR do not carry second-site lethal mutations. Second, 26/36 (70%) of lethal insertions tested are rescued with a single UAS-cDNA construct. Third, loss-of-function phenotypes associated with many GAL4 insertions can be reverted by excision with UAS-flippase. Fourth, GAL4 driven UAS-GFP/RFP reports tissue and cell-type specificity of gene expression with high sensitivity. We report the expression of hundreds of genes not previously reported. Finally, inserted cassettes can be replaced with GFP or any DNA. These stocks comprise a powerful resource for assessing gene function. Determining what role newly discovered genes play in the body is an important part of genetics. This task requires a lot of extra information about each gene, such as the specific cells where the gene is active, or what happens when the gene is deleted. To answer these questions, researchers need tools and methods to manipulate genes within a living organism. The fruit fly Drosophila is useful for such experiments because a toolbox of genetic techniques is already available. Gene editing in fruit flies allows small pieces of genetic information to be removed from or added to anywhere in the animal’s DNA. Another tool, known as GAL4-UAS, is a two-part system used to study gene activity. The GAL4 component is a protein that switches on genes. GAL4 alone does very little in Drosophila cells because it only recognizes a DNA sequence called UAS. However, if a GAL4-producing cell is also engineered to contain a UAS-controlled gene, GAL4 will switch the gene on. Lee et al. used gene editing to insert a small piece of DNA, containing the GAL4 sequence followed by a ‘stop’ signal, into many different fly genes. The insertion made the cells where each gene was normally active produce GAL4, but – thanks to the stop signal – rendered the rest of the original gene non-functional. This effectively deleted the proteins encoded by each gene, giving information about the biological processes they normally control. Lee et al. went on to use their insertion approach to make a Drosophila genetic library. This is a collection of around 1,000 different strains of fly, each carrying the GAL4/stop combination in a single gene. The library allows any gene in the collection to be studied in detail simply by combining the GAL4 with different UAS-controlled genetic tools. For example, introducing a UAS-controlled marker would pinpoint where in the body the original gene was active. Alternatively, adding UAS-controlled human versions of the gene would create humanized flies, which are a valuable tool to study potential disease-causing genes in humans. This Drosophila library is a resource that contributes new experimental tools to fly genetics. Insights gained from flies can also be applied to more complex animals like humans, especially since around 65% of genes are similar across humans and Drosophila. As such, Lee et al. hope that this resource will help other researchers shed new light on the role of many different genes in health and disease.
Collapse
Affiliation(s)
- Pei-Tseng Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Jonathan Zirin
- Department of Genetics, Harvard Medical School, Boston, United States
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Wen-Wen Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Karen L Schulze
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
| | - David Li-Kroeger
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Rong Tao
- Department of Genetics, Harvard Medical School, Boston, United States
| | - Colby Devereaux
- Department of Genetics, Harvard Medical School, Boston, United States
| | - Yanhui Hu
- Department of Genetics, Harvard Medical School, Boston, United States
| | - Verena Chung
- Department of Genetics, Harvard Medical School, Boston, United States
| | - Ying Fang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Yuchun He
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
| | - Hongling Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
| | - Ming Ge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
| | | | - Stephanie E Mohr
- Department of Genetics, Harvard Medical School, Boston, United States.,Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Program in Developmental Biology, Baylor College of Medicine, Houston, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Robert W Levis
- Department of Embryology, Howard Hughes Medical Institute, Carnegie Institution for Science, Baltimore, United States
| | - Allan C Spradling
- Department of Embryology, Howard Hughes Medical Institute, Carnegie Institution for Science, Baltimore, United States
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, United States.,Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Program in Developmental Biology, Baylor College of Medicine, Houston, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States
| |
Collapse
|