1
|
Sawamura H, Asaoka R, Murata H, Ando E, Gillebert CR. Extraction of three-dimensional shapes in glaucoma patients in response to monocular depth cues. Jpn J Ophthalmol 2024; 68:183-191. [PMID: 38598144 PMCID: PMC11087329 DOI: 10.1007/s10384-024-01054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/31/2024] [Indexed: 04/11/2024]
Abstract
PURPOSE To assess the impact of glaucoma on perceiving three-dimensional (3D) shapes based on monocular depth cues. STUDY DESIGN Clinical observational study. METHODS Twenty glaucoma patients, subjected to binocular visual-field sensitivity (binocular-VFS) tests using a Humphrey Visual Field Analyzer, and 20 age-matched healthy volunteers, underwent two tasks: identifying the nearest vertex of a 3D shape using monocular shading (3D-SfS), texture (3D-SfT), or motion (3D-SfM) cues, and distinguishing elementary one-dimensional (1D) features of these cues. The association of the visual-field index (VFI) of binocular-VFS with 3D shape perception in glaucoma patients was also examined. RESULTS Glaucoma patients demonstrated reduced accuracy in distinguishing 1D luminance brightness and a larger "error-in-depth" between the perceived and actual depths for 3D-SfM and 3D-SfS compared to healthy volunteers. Six glaucoma patients with a 100% VFI for binocular-VFS exhibited a similar error-in-depth to the other fourteen glaucoma patients; they had a larger error-in-depth for 3D-SfM compared to healthy volunteers. No correlation between the error-in-depth values and the VFI values of binocular-VFS was observed. CONCLUSIONS The 3D shape perception in glaucoma patients varies based on the depth cue's characteristics. Impaired 1D discrimination and larger thresholds for 3D-SfM in glaucoma patients with a 100% VFI for binocular-VFS indicate more pronounced perceptual deficits of lower-level elementary features for 3D-SfS and higher-level visual processing of 3D shapes for 3D-SfM. The effects of the location and degree of binocular visual-field defects on 3D shape perception remain to be elucidated. Our research provides insights into the 3D shape extraction mechanism in glaucoma.
Collapse
Affiliation(s)
- Hiromasa Sawamura
- Department of Ophthalmology, The University of Tokyo Graduate School of Medicine, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Ryo Asaoka
- Department of Ophthalmology, The University of Tokyo Graduate School of Medicine, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Department of Ophthalmology, Seirei Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan
- Seirei Christopher University, Hamamatsu, Shizuoka, Japan
- Nanovision Research Division, Research Institute of Electronics, Shizuoka University, Shizuoka, Japan
- The Graduate School for the Creation of New Photonics Industries, Shizuoka, Japan
| | - Hiroshi Murata
- Department of Ophthalmology, The University of Tokyo Graduate School of Medicine, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Eriko Ando
- Department of Ophthalmology, The University of Tokyo Graduate School of Medicine, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | | |
Collapse
|
2
|
Anderson DC, Kota SS, Yeh L, Budson AE. Built Environment Design Interventions at the Exits of Secured Dementia Care Units: A Review of the Empirical Literature. HERD-HEALTH ENVIRONMENTS RESEARCH & DESIGN JOURNAL 2023; 16:251-269. [PMID: 36214202 DOI: 10.1177/19375867221125930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
PURPOSE To review evidence around design interventions that influence exiting attempts in dementia care units, informing architectural and clinical practice. BACKGROUND Built environment design is recognized as important in the care and management of responsive behaviors for those living with Alzheimer's disease and other dementias in secured dementia care units (e.g., exiting attempts, agitation). The repetitious behavior of "walking with purpose" (previously termed wandering) in those with dementia has influenced safety-related architectural design components of dementia care units that decrease exiting attempts. Empirical literature addressing design interventions to prevent exiting for those with dementia is lacking and outdated. METHODS We sought to describe known design techniques through a topical analysis of experimental studies. A thorough search for empirical studies that assessed interior design interventions at exit doors within dementia care units was undertaken. The review included an extensive search for existing literature and a screening of each study identified for its relevance, quality, and applicability. RESULTS The experimental studies included in the review collectively assessed five interior design interventions at egress doorways: implementing horizontal and vertical floor grid patterns, mirrors, murals, conditioning responses to color cues, and camouflaging door hardware or vision panels. Why empirical studies have not continued more recently as built environment trends have shifted toward promoting meaningful and purposeful movement through design are considered. Advances in our understanding around the pathophysiology of dementia which might affect future design interventions related to egress are also identified. CONCLUSION The built environment is an important part of dementia care, and further prospective research is needed on the role of design interventions in the context of exiting attempts within secured units and subsequent behavior outcomes.
Collapse
Affiliation(s)
- Diana C Anderson
- Center for Translational Cognitive Neuroscience, VA Boston Healthcare System, Boston, MA, USA; Boston University Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA
| | - Shalini S Kota
- University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | | | - Andrew E Budson
- Center for Translational Cognitive Neuroscience, VA Boston Healthcare System, Boston, MA, USA; Boston University Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
3
|
Ayzenberg V, Behrmann M. The Dorsal Visual Pathway Represents Object-Centered Spatial Relations for Object Recognition. J Neurosci 2022; 42:4693-4710. [PMID: 35508386 PMCID: PMC9186804 DOI: 10.1523/jneurosci.2257-21.2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/21/2022] Open
Abstract
Although there is mounting evidence that input from the dorsal visual pathway is crucial for object processes in the ventral pathway, the specific functional contributions of dorsal cortex to these processes remain poorly understood. Here, we hypothesized that dorsal cortex computes the spatial relations among an object's parts, a process crucial for forming global shape percepts, and transmits this information to the ventral pathway to support object categorization. Using fMRI with human participants (females and males), we discovered regions in the intraparietal sulcus (IPS) that were selectively involved in computing object-centered part relations. These regions exhibited task-dependent functional and effective connectivity with ventral cortex, and were distinct from other dorsal regions, such as those representing allocentric relations, 3D shape, and tools. In a subsequent experiment, we found that the multivariate response of posterior (p)IPS, defined on the basis of part-relations, could be used to decode object category at levels comparable to ventral object regions. Moreover, mediation and multivariate effective connectivity analyses further suggested that IPS may account for representations of part relations in the ventral pathway. Together, our results highlight specific contributions of the dorsal visual pathway to object recognition. We suggest that dorsal cortex is a crucial source of input to the ventral pathway and may support the ability to categorize objects on the basis of global shape.SIGNIFICANCE STATEMENT Humans categorize novel objects rapidly and effortlessly. Such categorization is achieved by representing an object's global shape structure, that is, the relations among object parts. Yet, despite their importance, it is unclear how part relations are represented neurally. Here, we hypothesized that object-centered part relations may be computed by the dorsal visual pathway, which is typically implicated in visuospatial processing. Using fMRI, we identified regions selective for the part relations in dorsal cortex. We found that these regions can support object categorization, and even mediate representations of part relations in the ventral pathway, the region typically thought to support object categorization. Together, these findings shed light on the broader network of brain regions that support object categorization.
Collapse
Affiliation(s)
- Vladislav Ayzenberg
- Neuroscience Institute and Psychology Department, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Marlene Behrmann
- Neuroscience Institute and Psychology Department, Carnegie Mellon University, Pittsburgh, PA 15213
| |
Collapse
|
4
|
Gurariy G, Mruczek REB, Snow JC, Caplovitz GP. Using High-Density Electroencephalography to Explore Spatiotemporal Representations of Object Categories in Visual Cortex. J Cogn Neurosci 2022; 34:967-987. [PMID: 35286384 PMCID: PMC9169880 DOI: 10.1162/jocn_a_01845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Visual object perception involves neural processes that unfold over time and recruit multiple regions of the brain. Here, we use high-density EEG to investigate the spatiotemporal representations of object categories across the dorsal and ventral pathways. In , human participants were presented with images from two animate object categories (birds and insects) and two inanimate categories (tools and graspable objects). In , participants viewed images of tools and graspable objects from a different stimulus set, one in which a shape confound that often exists between these categories (elongation) was controlled for. To explore the temporal dynamics of object representations, we employed time-resolved multivariate pattern analysis on the EEG time series data. This was performed at the electrode level as well as in source space of two regions of interest: one encompassing the ventral pathway and another encompassing the dorsal pathway. Our results demonstrate shape, exemplar, and category information can be decoded from the EEG signal. Multivariate pattern analysis within source space revealed that both dorsal and ventral pathways contain information pertaining to shape, inanimate object categories, and animate object categories. Of particular interest, we note striking similarities obtained in both ventral stream and dorsal stream regions of interest. These findings provide insight into the spatio-temporal dynamics of object representation and contribute to a growing literature that has begun to redefine the traditional role of the dorsal pathway.
Collapse
|
5
|
Jin H, Chen RB, Zhong YL, Lai PH, Huang X. Effect of Impaired Stereoscopic Vision on Large-Scale Resting-State Functional Network Connectivity in Comitant Exotropia Patients. Front Neurosci 2022; 16:833937. [PMID: 35350559 PMCID: PMC8957945 DOI: 10.3389/fnins.2022.833937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/31/2022] [Indexed: 12/27/2022] Open
Abstract
Background Comitant exotropia (CE) is a common eye movement disorder, characterized by impaired eye movements and stereoscopic vision. CE patients reportedly exhibit changes in the central nervous system. However, it remains unclear whether large-scale brain network changes occur in CE patients. Purpose This study investigated the effects of exotropia and stereoscopic vision dysfunction on large-scale brain networks in CE patients via independent component analysis (ICA). Methods Twenty-eight CE patients (mean age, 15.80 ± 2.46 years) and 27 healthy controls (HCs; mean age, 16.00 ± 2.68 years; closely matched for age, sex, and education) underwent resting-state magnetic resonance imaging. ICA was applied to extract resting-state networks (RSNs) in both groups. Two-sample’s t-tests were conducted to investigate intranetwork functional connectivity (FC) within RSNs and interactions among RSNs between the two groups. Results Compared with the HC group, the CE group showed increased intranetwork FC in the bilateral postcentral gyrus of the sensorimotor network (SMN). The CE group also showed decreased intranetwork FC in the right cerebellum_8 of the cerebellum network (CER), the right superior temporal gyrus of the auditory network (AN), and the right middle occipital gyrus of the visual network (VN). Moreover, functional network connectivity (FNC) analysis showed that CER-AN, SMN-VN, SN-DMN, and DMN-VN connections were significantly altered between the two groups. Conclusion Comitant exotropia patients had abnormal brain networks related to the CER, SMN, AN, and VN. Our results offer important insights into the neural mechanisms of eye movements and stereoscopic vision dysfunction in CE patients.
Collapse
Affiliation(s)
- Han Jin
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Ri-Bo Chen
- Department of Radiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Yu-Lin Zhong
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Ping-Hong Lai
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Xin Huang
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- *Correspondence: Xin Huang,
| |
Collapse
|
6
|
Shea YF, Pan Y, Mak HKF, Bao Y, Lee SC, Chiu PKC, Chan HWF. A systematic review of atypical Alzheimer's disease including behavioural and psychological symptoms. Psychogeriatrics 2021; 21:396-406. [PMID: 33594793 DOI: 10.1111/psyg.12665] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/06/2021] [Accepted: 01/25/2021] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is the commonest cause of dementia, characterized by the clinical presentation of progressive anterograde episodic memory impairment. However, atypical presentation of patients is increasingly recognized. These atypical AD include logopenic aphasia, behavioural variant AD, posterior cortical atrophy, and corticobasal syndrome. These atypical AD are more common in patients with young onset AD before the age of 65 years old. Since medical needs (including the behavioural and psychological symptoms of dementia) of atypical AD patients could be different from typical AD patients, it is important for clinicians to be aware of these atypical forms of AD. In addition, disease modifying treatment may be available in the future. This review aims at providing an update on various important subtypes of atypical AD including behavioural and psychological symptoms.
Collapse
Affiliation(s)
- Yat-Fung Shea
- Department of Medicine, LKS Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Pok Fu Lam, Hong Kong
| | - Yining Pan
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Henry Ka-Fung Mak
- Department of Diagnostic Radiology, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yiwen Bao
- Department of Diagnostic Radiology, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Shui-Ching Lee
- Department of Medicine, LKS Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Pok Fu Lam, Hong Kong
| | - Patrick Ka-Chun Chiu
- Department of Medicine, LKS Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Pok Fu Lam, Hong Kong
| | - Hon-Wai Felix Chan
- Department of Medicine, LKS Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Pok Fu Lam, Hong Kong
| |
Collapse
|
7
|
Weisberg SM, Chatterjee A. Spatial direction comprehension in images, arrows, and words in two patients with posterior cortical atrophy. Neuropsychologia 2020; 151:107697. [PMID: 33278421 DOI: 10.1016/j.neuropsychologia.2020.107697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 11/17/2022]
Abstract
To successfully move through the world, the brain constructs spatial representations that situate the body within the environment. Communicating spatial directions poses specific challenges to this process, in part because the format through which the information is communicated must be interpreted to match the visual scene the navigator is viewing while traversing that space. For example, if a navigator needs to turn left to reach a goal, the information may be presented in the form of words ("turn left"), schemas (arrows pointing left), or images of the specific left turn. Previous research has suggested unique representations exist for spatial directions within and across modalities. Behavioral data reveal, for instance, that interpreting images seems to require spatial information, whereas words or schemas can be processed using a visual-matching strategy. In the current pre-registered study, we tested two patients with posterior cortical atrophy, who did not have spatial neglect, to determine whether they had general impairments interpreting spatial directions across formats, or specific impairments in particular formats. Our results are consistent with the specific impairment prediction, supporting the idea that interpreting spatial directions in images requires action-relevant spatial processing. We conducted single-case analyses for the patients we tested in comparison to a group of non-clinically diagnosed older adults. Of the two patients, one showed a classical dissociation between a color control task and spatial directions across all modalities. This patient also showed a classical dissociation between images (most impaired) and schemas, and between schemas and words (least impaired). Our findings lend support for a hypothesized hub in the spatial navigation network, which converts format-specific information into actionable spatial directions, and has implications for designing the built environment to optimize for spatial behavior.
Collapse
Affiliation(s)
- Steven M Weisberg
- Department of Psychology, University of Florida, 945 Center Dr., Gainesville, FL, 32611, USA.
| | - Anjan Chatterjee
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
8
|
de Best PB, Abulafia R, McKyton A, Levin N. Convergence Along the Visual Hierarchy Is Altered in Posterior Cortical Atrophy. Invest Ophthalmol Vis Sci 2020; 61:8. [PMID: 32897377 PMCID: PMC7488212 DOI: 10.1167/iovs.61.11.8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose Posterior cortical atrophy (PCA) is a rare neurodegenerative syndrome manifesting with visuospatial processing impairment. We recently suggested that abnormal population receptive field properties are associated with the symptoms of PCA patients. Specifically, simultanagnosia, the inability to perceive multiple items simultaneously, can be explained by smaller peripheral population receptive fields, and foveal crowding, in which nearby distractors interfere with object perception, may result from larger foveal population receptive fields. These effects occurred predominantly in V1, even though atrophy mainly involves high-order areas. In this study, we used connective field modeling to better understand these inter-area interactions. Methods We used functional magnetic resonance imaging to scan six PCA patients and eight controls while they viewed drifting bar stimuli. Resting-state data were also collected. Connective field modeling was applied for both conditions: once when the source was V1 and the targets were extrastriate areas and once for the opposite direction. The difference between the two was defined as convergence magnitude. Results With stimulus, the convergence magnitude of the controls increased along the visual pathway, suggesting that spatial integration from V1 becomes larger up the visual hierarchy. No such slope was found in the PCA patients. The difference between the groups originated mainly from the dorsal pathway. Without stimulus, the convergence magnitude was negative, slightly more so for the PCA patients, with no slope, suggesting constant divergence along the visual hierarchy. Conclusions Atrophy in one part of the visual system can affect other areas within the network through complex intervisual area interactions, resulting in modulation of population receptive field properties and an ensemble of visuocognitive function impairments.
Collapse
Affiliation(s)
- Pieter B. de Best
- fMRI Unit, Neurology Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ruth Abulafia
- fMRI Unit, Neurology Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ayelet McKyton
- fMRI Unit, Neurology Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Netta Levin
- fMRI Unit, Neurology Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
9
|
Visual texture agnosia influences object identification in dementia with Lewy bodies and Alzheimer's disease. Cortex 2020; 129:23-32. [DOI: 10.1016/j.cortex.2020.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/02/2020] [Accepted: 04/01/2020] [Indexed: 11/19/2022]
|
10
|
Chen Y, Liu P, Wang Y, Peng G. Neural Mechanisms of Visual Dysfunction in Posterior Cortical Atrophy. Front Neurol 2019; 10:670. [PMID: 31293507 PMCID: PMC6603128 DOI: 10.3389/fneur.2019.00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/07/2019] [Indexed: 11/13/2022] Open
Abstract
Posterior cortical atrophy (PCA) is characterized predominantly by visual dysfunction that arises from bilateral impairments in occipital, parietal, and temporal regions of the brain. PCA is clinically identified based primarily on visual symptoms and neuroimaging findings. Region-specific gray and white matter deficits have been discussed in detail, and are associated with clinical manifestations that present with similar patterns of perfusion and metabolic findings. Here, we discuss both structural and functional changes in the ventral and dorsal visual streams along with their underlying relationships. We also discuss the most recent developments in neuroimaging characteristics and summarize correlations between distinct neuroimaging presentations.
Collapse
Affiliation(s)
- Yi Chen
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Liu
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunyun Wang
- Department of Neurology, Shengzhou People's Hospital, Shengzhou, China
| | - Guoping Peng
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Guoping Peng
| |
Collapse
|
11
|
McCarthy I, Suzuki T, Holloway C, Poole T, Frost C, Carton A, Tyler N, Crutch S, Yong K. Detection and localisation of hesitant steps in people with Alzheimer's disease navigating routes of varying complexity. Healthc Technol Lett 2019; 6:42-47. [PMID: 31119037 PMCID: PMC6498402 DOI: 10.1049/htl.2018.5034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 12/19/2018] [Accepted: 01/03/2019] [Indexed: 12/11/2022] Open
Abstract
People with Alzheimer's disease (AD) have characteristic problems navigating everyday environments. While patients may exhibit abnormal gait parameters, adaptive gait irregularities when navigating environments are little explored or understood. The aim of this study was to assess adaptive locomotor responses of AD subjects in a complex environment requiring spatial navigation. A controlled environment of three corridors was set up: straight (I), U-shaped (U) and dog-leg (S). Participants were asked to walk along corridors as part of a counterbalanced repeated-measures design. Three groups were studied: 11 people with posterior cortical atrophy (PCA), 10 with typical Alzheimer's disease (tAD) and 13 controls. Spatio-temporal gait parameters and position within the corridors were monitored with shoe-mounted inertial measurement units (IMUs). Hesitant steps were identified from statistical analysis of the distribution of step time data. Walking paths were generated from position data calculated by double integration of IMU acceleration. People with PCA and tAD had similar gait characteristics, having shorter steps and longer step times than controls. Hesitant steps tended to be clustered within certain regions of the walking paths. IMUs enabled identification of key gait characteristics in this clinical population (step time, length and step hesitancy) and environmental conditions (route complexity) modifying their expression.
Collapse
Affiliation(s)
- Ian McCarthy
- Pedestrian Accessibility and Movement Environment Laboratory, Department of Civil Environmental and Geomatic Engineering, University College London, London N19 5UN, UK
| | - Tatsuto Suzuki
- Pedestrian Accessibility and Movement Environment Laboratory, Department of Civil Environmental and Geomatic Engineering, University College London, London N19 5UN, UK
| | - Catherine Holloway
- UCL Interaction Centre, Department of Computer Science, University College London, London, UK
| | - Teresa Poole
- Department of Medical Statistics, Faculty of Epidemiology and Public Health, London School of Hygiene & Tropical Medicine, London, UK.,Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Chris Frost
- Department of Medical Statistics, Faculty of Epidemiology and Public Health, London School of Hygiene & Tropical Medicine, London, UK.,Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Amelia Carton
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Nick Tyler
- Pedestrian Accessibility and Movement Environment Laboratory, Department of Civil Environmental and Geomatic Engineering, University College London, London N19 5UN, UK
| | - Sebastian Crutch
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Keir Yong
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| |
Collapse
|
12
|
Babiloni C, Del Percio C, Lizio R, Noce G, Lopez S, Soricelli A, Ferri R, Pascarelli MT, Catania V, Nobili F, Arnaldi D, Famà F, Aarsland D, Orzi F, Buttinelli C, Giubilei F, Onofrj M, Stocchi F, Vacca L, Stirpe P, Fuhr P, Gschwandtner U, Ransmayr G, Garn H, Fraioli L, Pievani M, Frisoni GB, D'Antonio F, De Lena C, Güntekin B, Hanoğlu L, Başar E, Yener G, Emek-Savaş DD, Triggiani AI, Franciotti R, Taylor JP, De Pandis MF, Bonanni L. Abnormalities of Resting State Cortical EEG Rhythms in Subjects with Mild Cognitive Impairment Due to Alzheimer's and Lewy Body Diseases. J Alzheimers Dis 2019; 62:247-268. [PMID: 29439335 DOI: 10.3233/jad-170703] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The present study tested the hypothesis that cortical sources of resting state eyes-closed electroencephalographic (rsEEG) rhythms reveal different abnormalities in cortical neural synchronization in groups of patients with mild cognitive impairment due to Alzheimer's disease (ADMCI) and dementia with Lewy bodies (DLBMCI) as compared to cognitively normal elderly (Nold) subjects. Clinical and rsEEG data in 30 ADMCI, 23 DLBMCI, and 30 Nold subjects were available in an international archive. Age, gender, and education were carefully matched in the three groups. The Mini-Mental State Evaluation (MMSE) score was matched between the ADMCI and DLBMCI groups. Individual alpha frequency peak (IAF) was used to determine the delta, theta, alpha1, alpha2, and alpha3 frequency band ranges. Fixed beta1, beta2, and gamma bands were also considered. eLORETA estimated the rsEEG cortical sources. Receiver operating characteristic curve (ROCC) classified these sources across individuals. Compared to Nold, IAF showed marked slowing in DLBMCI and moderate in ADMCI. Furthermore, the posterior alpha 2 and alpha 3 source activities were more abnormal in the ADMCI than the DLBMCI group, while widespread delta source activities were more abnormal in the DLBMCI than the ADMCI group. The posterior delta and alpha sources correlated with the MMSE score and correctly classified the Nold and MCI individuals (area under the ROCC >0.85). In conclusion, the ADMCI and DLBMCI patients showed different features of cortical neural synchronization at delta and alpha frequencies underpinning brain arousal and vigilance in the quiet wakefulness. Future prospective cross-validation studies will have to test the clinical validity of these rsEEG markers.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", University of Rome "La Sapienza", Rome, Italy.,Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy
| | | | - Roberta Lizio
- Department of Physiology and Pharmacology "Vittorio Erspamer", University of Rome "La Sapienza", Rome, Italy.,Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy
| | - Giuseppe Noce
- Department of Integrated Imaging, IRCCS SDN, Naples, Italy
| | - Susanna Lopez
- Department of Physiology and Pharmacology "Vittorio Erspamer", University of Rome "La Sapienza", Rome, Italy
| | - Andrea Soricelli
- Department of Integrated Imaging, IRCCS SDN, Naples, Italy.,Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | - Raffaele Ferri
- Department of Neurology, IRCCS Oasi Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy
| | - Maria Teresa Pascarelli
- Department of Neurology, IRCCS Oasi Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy
| | - Valentina Catania
- Department of Neurology, IRCCS Oasi Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy
| | - Flavio Nobili
- Department of Neuroscience (DiNOGMI), Clinical Neurology, University of Genoa and IRCCS AOU S Martino-IST, Genoa, Italy
| | - Dario Arnaldi
- Department of Neuroscience (DiNOGMI), Clinical Neurology, University of Genoa and IRCCS AOU S Martino-IST, Genoa, Italy
| | - Francesco Famà
- Department of Neuroscience (DiNOGMI), Clinical Neurology, University of Genoa and IRCCS AOU S Martino-IST, Genoa, Italy
| | - Dag Aarsland
- Department of Old Age Psychiatry, King's College University, London, UK
| | - Francesco Orzi
- Department of Neuroscience, Mental Health and Sensory Organs, University of Rome "La Sapienza", Rome, Italy
| | - Carla Buttinelli
- Department of Neuroscience, Mental Health and Sensory Organs, University of Rome "La Sapienza", Rome, Italy
| | - Franco Giubilei
- Department of Neuroscience, Mental Health and Sensory Organs, University of Rome "La Sapienza", Rome, Italy
| | - Marco Onofrj
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Fabrizio Stocchi
- Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy
| | - Laura Vacca
- Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy
| | - Paola Stirpe
- Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy
| | - Peter Fuhr
- Universitätsspital Basel, Abteilung Neurophysiologie, Basel, Switzerland
| | - Ute Gschwandtner
- Universitätsspital Basel, Abteilung Neurophysiologie, Basel, Switzerland
| | - Gerhard Ransmayr
- Department of Neurology 2, Med Campus III, Kepler University Hospital, Medical Faculty of the Johannes Kepler University, Linz, Austria
| | - Heinrich Garn
- AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | | | - Michela Pievani
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giovanni B Frisoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Fabrizia D'Antonio
- Department of Neurology and Psychiatry, Sapienza, University of Rome, Italy
| | - Carlo De Lena
- Department of Neurology and Psychiatry, Sapienza, University of Rome, Italy
| | - Bahar Güntekin
- Department of Biophysics, Istanbul Medipol University, Istanbul, Turkey
| | - Lutfu Hanoğlu
- Department of Neurology, University of Istanbul-Medipol, Istanbul, Turkey
| | - Erol Başar
- IBG, Departments of Neurology and Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | - Görsev Yener
- IBG, Departments of Neurology and Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | - Derya Durusu Emek-Savaş
- Department of Psychology and Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | | | - Raffaella Franciotti
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| | | | | | - Laura Bonanni
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
13
|
Schaeverbeke J, Gille B, Adamczuk K, Vanderstichele H, Chassaing E, Bruffaerts R, Neyens V, Stoops E, Tournoy J, Vandenberghe R, Poesen K. Cerebrospinal fluid levels of synaptic and neuronal integrity correlate with gray matter volume and amyloid load in the precuneus of cognitively intact older adults. J Neurochem 2019; 149:139-157. [PMID: 30720873 DOI: 10.1111/jnc.14680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/10/2018] [Accepted: 02/01/2019] [Indexed: 12/18/2022]
Abstract
The main pathophysiological alterations of Alzheimer's disease (AD) include loss of neuronal and synaptic integrity, amyloidogenic processing, and neuroinflammation. Similar alterations can, however, also be observed in cognitively intact older subjects and may prelude the clinical manifestation of AD. The objectives of this prospective cross-sectional study in a cohort of 38 cognitively intact older adults were twofold: (i) to investigate the latent relationship among cerebrospinal fluid (CSF) biomarkers reflecting the main pathophysiological processes of AD, and (ii) to assess the correlation between these biomarkers and gray matter volume as well as amyloid load. All subjects underwent extensive neuropsychological examinations, CSF sampling, [18 F]-flutemetamol amyloid positron emission tomography, and T1 -weighted magnetic resonance imaging. A factor analysis revealed one factor that explained most of the variance in the CSF biomarker dataset clustering t-tau, α-synuclein, p-tau181 , neurogranin, BACE1, visinin-like protein 1, chitinase-3-like protein 1 (YKL-40), Aβ1-40 and Aβ1-38 . Higher scores on this factor correlated with lower gray matter volume and with higher amyloid load in the precuneus. At the level of individual CSF biomarkers, levels of visinin-like protein 1, neurogranin, BACE1, Aβ1-40 , Aβ1-38, and YKL-40 all correlated inversely with gray matter volume of the precuneus. These findings demonstrate that in cognitively intact older subjects, CSF levels of synaptic and neuronal integrity biomarkers, amyloidogenic processing and measures of innate immunity (YKL-40) display a latent structure of common variance, which is associated with loss of structural integrity of brain regions implicated in the earliest stages of AD. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript, and for *Preregistration* because the study was pre-registered at https://osf.io/7qm9t/. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Jolien Schaeverbeke
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium.,Alzheimer Research Centre KU Leuven, Leuven Institute of Neuroscience and Disease, Leuven, Belgium
| | - Benjamin Gille
- Laboratory for Molecular Neurobiomarker Research, Department of Neurosciences, KU Leuven, Leuven, Belgium.,Department of Chronic disease, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Katarzyna Adamczuk
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium.,Alzheimer Research Centre KU Leuven, Leuven Institute of Neuroscience and Disease, Leuven, Belgium.,Bioclinica LAB, Newark, California, USA
| | | | | | - Rose Bruffaerts
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Veerle Neyens
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium.,Alzheimer Research Centre KU Leuven, Leuven Institute of Neuroscience and Disease, Leuven, Belgium
| | | | - Jos Tournoy
- Alzheimer Research Centre KU Leuven, Leuven Institute of Neuroscience and Disease, Leuven, Belgium.,Department of Chronic disease, Metabolism and Ageing, KU Leuven, Leuven, Belgium.,Department of Geriatric Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium.,Alzheimer Research Centre KU Leuven, Leuven Institute of Neuroscience and Disease, Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Koen Poesen
- Laboratory for Molecular Neurobiomarker Research, Department of Neurosciences, KU Leuven, Leuven, Belgium.,Department of Chronic disease, Metabolism and Ageing, KU Leuven, Leuven, Belgium.,Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Risacher SL, Saykin AJ. Neuroimaging in aging and neurologic diseases. HANDBOOK OF CLINICAL NEUROLOGY 2019; 167:191-227. [PMID: 31753134 DOI: 10.1016/b978-0-12-804766-8.00012-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neuroimaging biomarkers for neurologic diseases are important tools, both for understanding pathology associated with cognitive and clinical symptoms and for differential diagnosis. This chapter explores neuroimaging measures, including structural and functional measures from magnetic resonance imaging (MRI) and molecular measures primarily from positron emission tomography (PET), in healthy aging adults and in a number of neurologic diseases. The spectrum covers neuroimaging measures from normal aging to a variety of dementias: late-onset Alzheimer's disease [AD; including mild cognitive impairment (MCI)], familial and nonfamilial early-onset AD, atypical AD syndromes, posterior cortical atrophy (PCA), logopenic aphasia (lvPPA), cerebral amyloid angiopathy (CAA), vascular dementia (VaD), sporadic and familial behavioral-variant frontotemporal dementia (bvFTD), semantic dementia (SD), progressive nonfluent aphasia (PNFA), frontotemporal dementia with motor neuron disease (FTD-MND), frontotemporal dementia with amyotrophic lateral sclerosis (FTD-ALS), corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), dementia with Lewy bodies (DLB), Parkinson's disease (PD) with and without dementia, and multiple systems atrophy (MSA). We also include a discussion of the appropriate use criteria (AUC) for amyloid imaging and conclude with a discussion of differential diagnosis of neurologic dementia disorders in the context of neuroimaging.
Collapse
Affiliation(s)
- Shannon L Risacher
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
15
|
Microstructural properties of the vertical occipital fasciculus explain the variability in human stereoacuity. Proc Natl Acad Sci U S A 2018; 115:12289-12294. [PMID: 30429321 PMCID: PMC6275509 DOI: 10.1073/pnas.1804741115] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Seeing in the three-dimensional world—stereopsis—is an innate human ability, but it varies substantially among individuals. The neurobiological basis of this variability is not understood. We combined diffusion and quantitative MRI imaging with a psychophysical measurements, and found that variability in stereoacuity is associated with microstructural differences in the right vertical occipital fasciculus, a white matter tract connecting dorsal and ventral visual cortex. This result suggests that the microstructure of the pathways that support information transmission across dorsal and ventral visual areas plays an important role human stereopsis. Stereopsis is a fundamental visual function that has been studied extensively. However, it is not clear why depth discrimination (stereoacuity) varies more significantly among people than other modalities. Previous studies have reported the involvement of both dorsal and ventral visual areas in stereopsis, implying that not only neural computations in cortical areas but also the anatomical properties of white matter tracts connecting those areas can impact stereopsis. Here, we studied how human stereoacuity relates to white matter properties by combining psychophysics, diffusion MRI (dMRI), and quantitative MRI (qMRI). We performed a psychophysical experiment to measure stereoacuity and, in the same participants, we analyzed the microstructural properties of visual white matter tracts on the basis of two independent measurements, dMRI (fractional anisotropy, FA) and qMRI (macromolecular tissue volume; MTV). Microstructural properties along the right vertical occipital fasciculus (VOF), a major tract connecting dorsal and ventral visual areas, were highly correlated with measures of stereoacuity. This result was consistent for both FA and MTV, suggesting that the behavioral–structural relationship reflects differences in neural tissue density, rather than differences in the morphological configuration of fibers. fMRI confirmed that binocular disparity stimuli activated the dorsal and ventral visual regions near VOF endpoints. No other occipital tracts explained the variance in stereoacuity. In addition, the VOF properties were not associated with differences in performance on a different psychophysical task (contrast detection). These series of experiments suggest that stereoscopic depth discrimination performance is, at least in part, constrained by dorso-ventral communication through the VOF.
Collapse
|
16
|
Schaeverbeke J, Gabel S, Meersmans K, Bruffaerts R, Liuzzi AG, Evenepoel C, Dries E, Van Bouwel K, Sieben A, Pijnenburg Y, Peeters R, Bormans G, Van Laere K, Koole M, Dupont P, Vandenberghe R. Single-word comprehension deficits in the nonfluent variant of primary progressive aphasia. Alzheimers Res Ther 2018; 10:68. [PMID: 30021613 PMCID: PMC6052568 DOI: 10.1186/s13195-018-0393-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/30/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND A subset of patients with the nonfluent variant of primary progressive aphasia (PPA) exhibit concomitant single-word comprehension problems, constituting a 'mixed variant' phenotype. This phenotype is rare and currently not fully characterized. The aim of this study was twofold: to assess the prevalence and nature of single-word comprehension problems in the nonfluent variant and to study multimodal imaging characteristics of atrophy, tau, and amyloid burden associated with this mixed phenotype. METHODS A consecutive memory-clinic recruited series of 20 PPA patients (12 nonfluent, five semantic, and three logopenic variants) were studied on neurolinguistic and neuropsychological domains relative to 64 cognitively intact healthy older control subjects. The neuroimaging battery included high-resolution volumetric magnetic resonance imaging processed with voxel-based morphometry, and positron emission tomography with the tau-tracer [18F]-THK5351 and amyloid-tracer [11C]-Pittsburgh Compound B. RESULTS Seven out of 12 subjects who had been classified a priori with nonfluent variant PPA showed deficits on conventional single-word comprehension tasks along with speech apraxia and agrammatism, corresponding to a mixed variant phenotype. These mixed variant cases included three females and four males, with a mean age at onset of 65 years (range 44-77 years). Object knowledge and object recognition were additionally affected, although less severely compared with the semantic variant. The mixed variant was characterized by a distributed atrophy pattern in frontal and temporoparietal regions. A more focal pattern of elevated [18F]-THK5351 binding was present in the supplementary motor area, the left premotor cortex, midbrain, and basal ganglia. This pattern was closely similar to that seen in pure nonfluent variant PPA. At the individual patient level, elevated [18F]-THK5351 binding in the supplementary motor area and premotor cortex was present in six out of seven mixed variant cases and in five and four of these cases, respectively, in the thalamus and midbrain. Amyloid biomarker positivity was present in two out of seven mixed variant cases, compared with none of the five pure nonfluent cases. CONCLUSIONS A substantial proportion of PPA patients with speech apraxia and agrammatism also have single-word comprehension deficits. At the neurobiological level, the mixed variant shows a high degree of similarity with the pure nonfluent variant of PPA. TRIAL REGISTRATION EudraCT, 2014-002976-10 . Registered on 13-01-2015.
Collapse
Affiliation(s)
- Jolien Schaeverbeke
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Alzheimer Research Centre KU Leuven, Leuven Research Institute for Neuroscience & Disease, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Silvy Gabel
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Alzheimer Research Centre KU Leuven, Leuven Research Institute for Neuroscience & Disease, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Karen Meersmans
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Rose Bruffaerts
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Alzheimer Research Centre KU Leuven, Leuven Research Institute for Neuroscience & Disease, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Neurology Department, University Hospitals Leuven, Herestraat 49 - box 7003, 3000 Leuven, Belgium
| | - Antonietta Gabriella Liuzzi
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Charlotte Evenepoel
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Alzheimer Research Centre KU Leuven, Leuven Research Institute for Neuroscience & Disease, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Eva Dries
- Neurology Department, University Hospitals Leuven, Herestraat 49 - box 7003, 3000 Leuven, Belgium
| | - Karen Van Bouwel
- Neurology Department, University Hospitals Leuven, Herestraat 49 - box 7003, 3000 Leuven, Belgium
| | - Anne Sieben
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Universiteitsplein 1, 2610 Antwerp, Belgium
- Institute Born-Bunge, Neuropathology and Laboratory of Neurochemistry and Behavior, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
- Neurology Department, University Hospitals Ghent, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Yolande Pijnenburg
- Old Age Psychiatry Department, GGZinGeest, Van Hilligaertstraat 21, 1072 JX Amsterdam, The Netherlands
- Alzheimer Center & Department of Neurology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Ronald Peeters
- Radiology Department, University Hospitals Leuven, Herestraat 49, Leuven, 30000 Belgium
| | - Guy Bormans
- Laboratory of Radiopharmaceutical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Nuclear Medicine and Molecular Imaging, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Koen Van Laere
- Alzheimer Research Centre KU Leuven, Leuven Research Institute for Neuroscience & Disease, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Nuclear Medicine and Molecular Imaging, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Patrick Dupont
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Alzheimer Research Centre KU Leuven, Leuven Research Institute for Neuroscience & Disease, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Alzheimer Research Centre KU Leuven, Leuven Research Institute for Neuroscience & Disease, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Neurology Department, University Hospitals Leuven, Herestraat 49 - box 7003, 3000 Leuven, Belgium
| |
Collapse
|
17
|
Erlikhman G, Caplovitz GP, Gurariy G, Medina J, Snow JC. Towards a unified perspective of object shape and motion processing in human dorsal cortex. Conscious Cogn 2018; 64:106-120. [PMID: 29779844 DOI: 10.1016/j.concog.2018.04.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 01/06/2023]
Abstract
Although object-related areas were discovered in human parietal cortex a decade ago, surprisingly little is known about the nature and purpose of these representations, and how they differ from those in the ventral processing stream. In this article, we review evidence for the unique contribution of object areas of dorsal cortex to three-dimensional (3-D) shape representation, the localization of objects in space, and in guiding reaching and grasping actions. We also highlight the role of dorsal cortex in form-motion interaction and spatiotemporal integration, possible functional relationships between 3-D shape and motion processing, and how these processes operate together in the service of supporting goal-directed actions with objects. Fundamental differences between the nature of object representations in the dorsal versus ventral processing streams are considered, with an emphasis on how and why dorsal cortex supports veridical (rather than invariant) representations of objects to guide goal-directed hand actions in dynamic visual environments.
Collapse
Affiliation(s)
| | | | - Gennadiy Gurariy
- Department of Psychology, University of Nevada, Reno, USA; Department of Psychology, University of Wisconsin, Milwaukee, USA
| | - Jared Medina
- Department of Psychological and Brain Sciences, University of Delaware, USA
| | | |
Collapse
|
18
|
Sawamura H, Gillebert CR, Todd JT, Orban GA. Binocular stereo acuity affects monocular three-dimensional shape perception in patients with strabismus. Br J Ophthalmol 2018; 102:1413-1418. [PMID: 29306865 PMCID: PMC6173821 DOI: 10.1136/bjophthalmol-2017-311393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/27/2017] [Accepted: 12/20/2017] [Indexed: 11/10/2022]
Abstract
Background/aims To evaluate the perception of three-dimensional (3D) shape in patients with strabismus and the contributions of stereopsis and monocular cues to this perception. Methods Twenty-one patients with strabismus with and 20 without stereo acuity as well as 25 age-matched normal volunteers performed two tasks: (1) identifying the closest vertices of 3D shapes from monocular shading (3D-SfS), texture (3D-SfT) or motion cues (3D-SfM) and from binocular disparity (3D-SfD), (2) discriminating 1D elementary features of these cues. Results Discrimination of the elementary features of luminance, texture and motion did not differ across groups. When the distances between reported and actual closest vertices were resolved into sagittal and frontoparallel plane components, sagittal components in 3D-SfS and frontoparallel components in 3D-SfT indicated larger errors in patients with strabismus without stereo acuity than in normal subjects. These patients could not discriminate one-dimensional elementary features of binocular disparity. Patients with strabismus with stereo acuity performed worse for both components of 3D-SfD and frontoparallel components of 3D-SfT compared with normal subjects. No differences were observed in the perception of 3D-SfM across groups. A comparison between normal subjects and patients with strabismus with normal stereopsis revealed no deficit in 3D shape perception from any cue. Conclusions Binocular stereopsis is essential for fine perception of 3D shape, even when 3D shape is defined by monocular static cues. Interaction between these cues may occur in ventral occipitotemporal regions, where 3D-SfS, 3D-SfT and 3D-SfD are processed in the same or neighbouring cortical regions. Our findings demonstrate the perceptual benefit of binocular stereopsis in patients with strabismus.
Collapse
Affiliation(s)
- Hiromasa Sawamura
- Department of Ophthalmology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Céline R Gillebert
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,Department of Brain and Cognition, KU Leuven, Leuven, Belgium
| | - James T Todd
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Guy A Orban
- Department of Neuroscience, University of Parma, Parma, Italy
| |
Collapse
|
19
|
Phillips JS, Das SR, McMillan CT, Irwin DJ, Roll EE, Da Re F, Nasrallah IM, Wolk DA, Grossman M. Tau PET imaging predicts cognition in atypical variants of Alzheimer's disease. Hum Brain Mapp 2017; 39:691-708. [PMID: 29105977 DOI: 10.1002/hbm.23874] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 09/15/2017] [Accepted: 10/23/2017] [Indexed: 12/26/2022] Open
Abstract
Accumulation of paired helical filament tau contributes to neurodegeneration in Alzheimer's disease (AD). 18 F-flortaucipir is a positron emission tomography (PET) radioligand sensitive to tau in AD, but its clinical utility will depend in part on its ability to predict cognitive symptoms in diverse dementia phenotypes associated with selective, regional uptake. We examined associations between 18 F-flortaucipir and cognition in 14 mildly-impaired patients (12 with cerebrospinal fluid analytes consistent with AD pathology) who had amnestic (n = 5) and non-amnestic AD syndromes, including posterior cortical atrophy (PCA, n = 5) and logopenic-variant primary progressive aphasia (lvPPA, n = 4). Amnestic AD patients had deficits in memory; lvPPA in language; and both amnestic AD and PCA patients in visuospatial function. Associations with cognition were tested using sparse regression and compared to associations in anatomical regions-of-interest (ROIs). 18 F-flortaucipir uptake was expected to show regionally-specific correlations with each domain. In multivariate analyses, uptake was elevated in neocortical areas specifically associated with amnestic and non-amnestic syndromes. Uptake in left anterior superior temporal gyrus accounted for 67% of the variance in language performance. Uptake in right lingual gyrus predicted 85% of the variance in visuospatial performance. Memory was predicted by uptake in right fusiform gyrus and cuneus as well as a cluster comprising right anterior hippocampus and amygdala; this eigenvector explained 57% of the variance in patients' scores. These results provide converging evidence for associations between 18 F-flortaucipir uptake, tau pathology, and patients' cognitive symptoms.
Collapse
Affiliation(s)
- Jeffrey S Phillips
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Sandhitsu R Das
- Penn Image Computing and Science Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Corey T McMillan
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - David J Irwin
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Emily E Roll
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Fulvio Da Re
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104.,PhD Program in Neuroscience, University of Milano-Bicocca, Milan, Italy.,School of Medicine and Surgery, Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy
| | - Ilya M Nasrallah
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - David A Wolk
- Penn Memory Center, Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Murray Grossman
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| |
Collapse
|
20
|
Bridge H. Effects of cortical damage on binocular depth perception. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0254. [PMID: 27269597 PMCID: PMC4901448 DOI: 10.1098/rstb.2015.0254] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2015] [Indexed: 12/20/2022] Open
Abstract
Stereoscopic depth perception requires considerable neural computation, including the initial correspondence of the two retinal images, comparison across the local regions of the visual field and integration with other cues to depth. The most common cause for loss of stereoscopic vision is amblyopia, in which one eye has failed to form an adequate input to the visual cortex, usually due to strabismus (deviating eye) or anisometropia. However, the significant cortical processing required to produce the percept of depth means that, even when the retinal input is intact from both eyes, brain damage or dysfunction can interfere with stereoscopic vision. In this review, I examine the evidence for impairment of binocular vision and depth perception that can result from insults to the brain, including both discrete damage, temporal lobectomy and more systemic diseases such as posterior cortical atrophy. This article is part of the themed issue ‘Vision in our three-dimensional world’.
Collapse
Affiliation(s)
- Holly Bridge
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
21
|
Impact of Visual Corticostriatal Loop Disruption on Neural Processing within the Parahippocampal Place Area. J Neurosci 2017; 36:10456-10471. [PMID: 27707978 DOI: 10.1523/jneurosci.0741-16.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 08/24/2016] [Indexed: 01/20/2023] Open
Abstract
The caudate nucleus is a part of the visual corticostriatal loop (VCSL), receiving input from different visual areas and projecting back to the same cortical areas via globus pallidus, substantia nigra, and thalamus. Despite perceptual and navigation impairments in patients with VCSL disruption due to caudate atrophy (e.g., Huntington's disease, HD), the relevance of the caudate nucleus and VCSL on cortical visual processing is not fully understood. In a series of fMRI experiments, we found that the caudate showed a stronger functional connection to parahippocampal place area (PPA) compared with adjacent regions (e.g., fusiform face area, FFA) within the temporal visual cortex. Consistent with this functional link, the caudate showed a higher response to scenes compared with faces, similar to the PPA. Testing the impact of VCSL disruption on neural processes within PPA, HD patients showed reduced scene-selective activity within PPA compared with healthy matched controls. In contrast, the level of selective activity in adjacent cortical and subcortical face-selective areas (i.e., FFA and amygdala) remained intact. These results show some of the first evidence for the direct impact and potential clinical significance of VCSL on the generation of "selective" activity within PPA. SIGNIFICANCE STATEMENT Visual perception is often considered the product of a multistage feedforward neural processing between visual cortical areas, ignoring the likely impact of corticosubcortical loops on this process. Here, we provide evidence for the contribution of visual corticostriatal loop and the caudate nucleus on generating selective response within parahippocampal place area (PPA). Our results show that disruption of this loop in Huntington's disease patients reduces the level of selective activity within PPA, which may lead to related perceptual impairments in these patients.
Collapse
|
22
|
Millington RS, James-Galton M, Maia Da Silva MN, Plant GT, Bridge H. Lateralized occipital degeneration in posterior cortical atrophy predicts visual field deficits. NEUROIMAGE-CLINICAL 2017; 14:242-249. [PMID: 28180083 PMCID: PMC5288489 DOI: 10.1016/j.nicl.2017.01.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/19/2016] [Accepted: 01/15/2017] [Indexed: 11/21/2022]
Abstract
Background Posterior cortical atrophy (PCA), the visual variant of Alzheimer's disease, leads to high-level visual deficits such as alexia or agnosia. Visual field deficits have also been identified, but often inconsistently reported. Little is known about the pattern of visual field deficits or the underlying cortical changes leading to this visual loss. Methods Multi-modal magnetic resonance imaging was used to investigate differences in gray matter volume, cortical thickness, white matter microstructure and functional activity in patients with PCA compared to age-matched controls. Additional analyses investigated hemispheric asymmetries in these metrics according to the visual field most affected by the disease. Results Analysis of structural data indicated considerable loss of gray matter in the occipital and parietal cortices, lateralized to the hemisphere contralateral to the visual loss. This lateralized pattern of gray matter loss was also evident in the hippocampus and parahippocampal gyrus. Diffusion-weighted imaging showed considerable effects of PCA on white matter microstructure in the occipital cortex, and in the corpus callosum. The change in white matter was only lateralized in the occipital lobe, however, with greatest change in the optic radiation contralateral to the visual field deficit. Indeed, there was a significant correlation between the laterality of the optic radiation microstructure and visual field loss. Conclusions Detailed brain imaging shows that the asymmetric visual field deficits in patients with PCA reflect the pattern of degeneration of both white and gray matter in the occipital lobe. Understanding the nature of both visual field deficits and the neurodegenerative brain changes in PCA may improve diagnosis and understanding of this disease. Patients with posterior cortical atrophy show asymmetric visual field deficits manifesting as hemianopia. Both gray and white matter show lateralized degeneration corresponding to the most affected visual field. Laterality of microstructure in the optic radiation correlates with visual field loss.
Collapse
Affiliation(s)
- Rebecca S Millington
- Oxford Centre for fMRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | | | - Gordon T Plant
- National Hospital for Neurology and Neurosurgery, London, UK; Moorfields Eye Hospital, London, UK
| | - Holly Bridge
- Oxford Centre for fMRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
23
|
Cholinergic depletion and basal forebrain volume in primary progressive aphasia. NEUROIMAGE-CLINICAL 2016; 13:271-279. [PMID: 28018854 PMCID: PMC5176031 DOI: 10.1016/j.nicl.2016.11.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/21/2016] [Accepted: 11/26/2016] [Indexed: 12/30/2022]
Abstract
Primary progressive aphasia (PPA) is a heterogeneous syndrome with various neuropathological causes for which no medical treatment with proven efficacy exists. Basal forebrain (BF) volume loss has been reported in PPA but its relation to cholinergic depletion is still unclear. The primary objective of this study was to investigate whether cholinergic alterations occur in PPA variants and how this relates to BF volume loss. An academic memory clinic based consecutive series of 11 PPA patients (five with the semantic variant (SV), four with the logopenic variant (LV) and two with the nonfluent variant (NFV)) participated in this cross-sectional in vivo PET imaging study together with 10 healthy control subjects. Acetylcholinesterase (AChE) activity was quantitatively measured in the neo- and allocortex using N-[11C]-Methylpiperidin-4-yl propionate (PMP)-PET with arterial sampling and metabolite correction. Whole brain and BF volumes were quantified using voxel-based morphometry on high-resolution magnetic resonance imaging (MRI) scans. In the PPA group, only LV cases showed decreases in AChE activity levels compared to controls. Surprisingly, a substantial number of SV cases showed significant AChE activity increases compared to controls. BF volume did not correlate with AChE activity levels in PPA. To conclude, in our sample of PPA patients, LV but not SV was associated with cholinergic depletion. BF atrophy in PPA does not imply cholinergic depletion. Using PET we examined cholinesterase activity in PPA. Cholinergic depletion occurred in the logopenic variant. Basal forebrain atrophy mainly occurred in the semantic variant. Cholinergic depletion did not correlate with basal forebrain atrophy. Unexpectedly, semantic variant was associated with cholinergic activity increases.
Collapse
|
24
|
Affiliation(s)
- Andrew E. Welchman
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom;
| |
Collapse
|
25
|
Freud E, Plaut DC, Behrmann M. 'What' Is Happening in the Dorsal Visual Pathway. Trends Cogn Sci 2016; 20:773-784. [PMID: 27615805 DOI: 10.1016/j.tics.2016.08.003] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 01/01/2023]
Abstract
The cortical visual system is almost universally thought to be segregated into two anatomically and functionally distinct pathways: a ventral occipitotemporal pathway that subserves object perception, and a dorsal occipitoparietal pathway that subserves object localization and visually guided action. Accumulating evidence from both human and non-human primate studies, however, challenges this binary distinction and suggests that regions in the dorsal pathway contain object representations that are independent of those in ventral cortex and that play a functional role in object perception. We review here the evidence implicating dorsal object representations, and we propose an account of the anatomical organization, functional contributions, and origins of these representations in the service of perception.
Collapse
Affiliation(s)
- Erez Freud
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, Carnegie Mellon University and the University of Pittsburgh, Pittsburgh, PA, USA.
| | - David C Plaut
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, Carnegie Mellon University and the University of Pittsburgh, Pittsburgh, PA, USA
| | - Marlene Behrmann
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, Carnegie Mellon University and the University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|