1
|
Sharma P, Sharma B, Ghildiyal S, Kharkwal H. ML218 modulates calcium binding protein, oxidative stress, and inflammation during ischemia-reperfusion brain injury in mice. Eur J Pharmacol 2024; 982:176919. [PMID: 39179092 DOI: 10.1016/j.ejphar.2024.176919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024]
Abstract
Cerebral ischemia disrupts calcium homeostasis in the brain causing excitotoxicity, oxidative stress, inflammation, and neuronal cell apoptosis. During ischemic conditions, T-type calcium channel channels contribute to increase in intracellular calcium ions in both neurons and glial cells therefore, the current study hypothesizes the antagonism of these channels using ML218, a novel specific T-Type inhibitor in experimental model of cerebral ischemia-reperfusion (CI/R) brain injury. CI/R injury was induced in Swiss Albino mice by occlusion of common carotid arteries followed by reperfusion. Animals were assessed for learning and memory (MWM), motor coordination (Rota rod), neurological function (neurological deficit score), cerebral infarction, edema, and histopathological alterations. Biochemical assessments were made for calcium binding proteins (Calmodulin- CaM, calcium/calmodulin-dependent protein kinase II-CaMKII, S100B), oxidative stress (4-hydroxy 2-nonenal-4-HNE, glutathione-GSH, inflammation (nuclear factor kappa-light-chain-enhancer of activated B-p65-NF-kB, tumor necrosis factor-TNF-α, interleukin-IL-10) inducible nitric oxide synthase (iNOS) levels, and acetylcholinesterase activity (AChE) in brain supernatants. Furthermore, serum levels of NF-kB, iNOS, and S100B were also assessed. CI/R animals showed impairment in learning, memory, motor coordination, and neurological function along with increase in cerebral infarction, edema, and histopathological alterations. Furthermore, increase in brain calcium binding proteins, oxidative stress, inflammation, and AChE activity along with serum NF-kB, iNOS, and S100B levels were recorded in CI/R animals. Administration of ML218 (5 mg/kg and 10 mg/kg; i.p.) was observed to recuperate CI/R induced impairments in behavioral, biochemical, and histopathological analysis. Hence, it may be concluded that ML218 mediates neuroprotection during CI/R via decreasing brain and serum calcium binding proteins, inflammation, iNOS, and oxidative stress markers.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India.
| | - Bhupesh Sharma
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, Gurugram University (A State Govt. University), Gurugram, Haryana, India.
| | - Shivani Ghildiyal
- Department of DravyaGuna, All India Institute of Ayurveda, An autonomous organization under Ministry of Ayush, Government of India, Sarita Vihar, New Delhi, India
| | - Harsha Kharkwal
- Amity Natural and Herbal Product Research, Amity Institute of Phytochemistry and Phytomedicine, Amity University Uttar Pradesh, India
| |
Collapse
|
2
|
Arulkandarajah KH, Osterstock G, Lafont A, Le Corronc H, Escalas N, Corsini S, Le Bras B, Chenane L, Boeri J, Czarnecki A, Mouffle C, Bullier E, Hong E, Soula C, Legendre P, Mangin JM. Neuroepithelial progenitors generate and propagate non-neuronal action potentials across the spinal cord. Curr Biol 2021; 31:4584-4595.e4. [PMID: 34478646 DOI: 10.1016/j.cub.2021.08.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/29/2021] [Accepted: 08/05/2021] [Indexed: 11/30/2022]
Abstract
In the developing central nervous system, electrical signaling is thought to rely exclusively on differentiating neurons as they acquire the ability to generate and propagate action potentials. Accordingly, neuroepithelial progenitors (NEPs), which give rise to all neurons and glial cells during development, have been reported to remain electrically passive. Here, we investigated the physiological properties of NEPs at the onset of spontaneous neural activity (SNA) initiating motor behavior in mouse embryonic spinal cord. Using patch-clamp recordings, we discovered that spinal NEPs exhibit spontaneous membrane depolarizations during episodes of SNA. These rhythmic depolarizations exhibited a ventral-to-dorsal gradient with the highest amplitude located in the floor plate, the ventral-most part of the neuroepithelium. Paired recordings revealed that NEPs are coupled via gap junctions and form an electrical syncytium. Although other NEPs were electrically passive, we discovered that floor-plate NEPs generated large Na+/Ca2+ action potentials. Unlike in neurons, floor-plate action potentials relied primarily on the activation of voltage-gated T-type calcium channels (TTCCs). In situ hybridization showed that all 3 known subtypes of TTCCs are predominantly expressed in the floor plate. During SNA, we found that acetylcholine released by motoneurons rhythmically triggers floor-plate action potentials by acting through nicotinic acetylcholine receptors. Finally, by expressing the genetically encoded calcium indicator GCaMP6f in the floor plate, we demonstrated that neuroepithelial action potentials are associated with calcium waves and propagate along the entire length of the spinal cord. Our work reveals a novel physiological mechanism to generate and propagate electrical signals across a neural structure independently from neurons.
Collapse
Affiliation(s)
- Kalaimakan Hervé Arulkandarajah
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Guillaume Osterstock
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Agathe Lafont
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Hervé Le Corronc
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France; Université d'Angers, 49000 Angers, France
| | - Nathalie Escalas
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, 31000 Toulouse, France
| | - Silvia Corsini
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Barbara Le Bras
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Linda Chenane
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Juliette Boeri
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Antonny Czarnecki
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Christine Mouffle
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Erika Bullier
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Elim Hong
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Cathy Soula
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, 31000 Toulouse, France
| | - Pascal Legendre
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Jean-Marie Mangin
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France.
| |
Collapse
|
3
|
Whitaker-Fornek JR, Nelson JK, Lybbert CW, Pilarski JQ. Development and regulation of breathing rhythms in embryonic and hatchling birds. Respir Physiol Neurobiol 2019; 269:103246. [DOI: 10.1016/j.resp.2019.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/19/2019] [Accepted: 06/23/2019] [Indexed: 11/28/2022]
|
4
|
Gavello D, Calorio C, Franchino C, Cesano F, Carabelli V, Carbone E, Marcantoni A. Early Alterations of Hippocampal Neuronal Firing Induced by Abeta42. Cereb Cortex 2019; 28:433-446. [PMID: 27999123 DOI: 10.1093/cercor/bhw377] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Indexed: 12/11/2022] Open
Abstract
We studied the effect of Amyloid β 1-42 oligomers (Abeta42) on Ca2+ dependent excitability profile of hippocampal neurons. Abeta42 is one of the Amyloid beta peptides produced by the proteolytic processing of the amyloid precursor protein and participates in the initiating event triggering the progressive dismantling of synapses and neuronal circuits. Our experiments on cultured hippocampal network reveal that Abeta42 increases intracellular Ca2+ concentration by 46% and inhibits firing discharge by 19%. More precisely, Abeta42 differently regulates ryanodine (RyRs), NMDA receptors (NMDARs), and voltage gated calcium channels (VGCCs) by increasing Ca2+ release through RyRs and inhibiting Ca2+ influx through NMDARs and VGCCs. The overall increased intracellular Ca2+ concentration causes stimulation of K+ current carried by big conductance Ca2+ activated potassium (BK) channels and hippocampal network firing inhibition. We conclude that Abeta42 alters neuronal function by means of at least 4 main targets: RyRs, NMDARs, VGCCs, and BK channels. The development of selective modulators of these channels may in turn be useful for developing effective therapies that could enhance the quality of life of AD patients during the early onset of the pathology.
Collapse
Affiliation(s)
- Daniela Gavello
- Department of Drug Science and Technology, Torino University, Corso Raffaello 30, 10125 Torino, Italy
| | - Chiara Calorio
- Department of Drug Science and Technology, Torino University, Corso Raffaello 30, 10125 Torino, Italy
| | - Claudio Franchino
- Department of Drug Science and Technology, Torino University, Corso Raffaello 30, 10125 Torino, Italy
| | - Federico Cesano
- Department of Chemistry Via Pietro Giuria 7, Torino University, 10125 Torino, Italy
| | - Valentina Carabelli
- Department of Drug Science and Technology, Torino University, Corso Raffaello 30, 10125 Torino, Italy
| | - Emilio Carbone
- Department of Drug Science and Technology, Torino University, Corso Raffaello 30, 10125 Torino, Italy
| | - Andrea Marcantoni
- Department of Drug Science and Technology, Torino University, Corso Raffaello 30, 10125 Torino, Italy
| |
Collapse
|
5
|
T-type calcium channels: From molecule to therapeutic opportunities. Int J Biochem Cell Biol 2019; 108:34-39. [DOI: 10.1016/j.biocel.2019.01.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 12/27/2022]
|
6
|
Mendis GDC, Berecki G, Morrisroe E, Pachernegg S, Li M, Varney M, Osborne PB, Reid CA, Halgamuge S, Petrou S. Discovering the pharmacodynamics of conolidine and cannabidiol using a cultured neuronal network based workflow. Sci Rep 2019; 9:121. [PMID: 30644434 PMCID: PMC6333801 DOI: 10.1038/s41598-018-37138-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/15/2018] [Indexed: 12/29/2022] Open
Abstract
Determining the mechanism of action (MOA) of novel or naturally occurring compounds mostly relies on assays tailored for individual target proteins. Here we explore an alternative approach based on pattern matching response profiles obtained using cultured neuronal networks. Conolidine and cannabidiol are plant-derivatives with known antinociceptive activity but unknown MOA. Application of conolidine/cannabidiol to cultured neuronal networks altered network firing in a highly reproducible manner and created similar impact on network properties suggesting engagement with a common biological target. We used principal component analysis (PCA) and multi-dimensional scaling (MDS) to compare network activity profiles of conolidine/cannabidiol to a series of well-studied compounds with known MOA. Network activity profiles evoked by conolidine and cannabidiol closely matched that of ω-conotoxin CVIE, a potent and selective Cav2.2 calcium channel blocker with proposed antinociceptive action suggesting that they too would block this channel. To verify this, Cav2.2 channels were heterologously expressed, recorded with whole-cell patch clamp and conolidine/cannabidiol was applied. Remarkably, conolidine and cannabidiol both inhibited Cav2.2, providing a glimpse into the MOA that could underlie their antinociceptive action. These data highlight the utility of cultured neuronal network-based workflows to efficiently identify MOA of drugs in a highly scalable assay.
Collapse
Affiliation(s)
- G D C Mendis
- Department of Mechanical Engineering, University of Melbourne, Parkville, VIC, 3010, Australia
| | - G Berecki
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - E Morrisroe
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - S Pachernegg
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - M Li
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - M Varney
- Neurolixis, Inc, Dana Point, CA, 92629, USA
| | - P B Osborne
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia
| | - C A Reid
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - S Halgamuge
- Department of Mechanical Engineering, University of Melbourne, Parkville, VIC, 3010, Australia.,Research School of Engineering, College of Engineering and Computer Science, Australian National University, Canberra, ACT, 0200, Australia
| | - S Petrou
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia. .,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
7
|
The Midline Axon Crossing Decision Is Regulated through an Activity-Dependent Mechanism by the NMDA Receptor. eNeuro 2018; 5:eN-NWR-0389-17. [PMID: 29766040 PMCID: PMC5952305 DOI: 10.1523/eneuro.0389-17.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/03/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023] Open
Abstract
Axon guidance in vertebrates is controlled by genetic cascades as well as by intrinsic activity-dependent refinement of connections. Midline axon crossing is one of the best studied pathfinding models and is fundamental to the establishment of bilaterally symmetric nervous systems. However, it is not known whether crossing requires intrinsic activity in axons, and what controls that activity. Further, a mechanism linking neuronal activity and gene expression has not been identified for axon pathfinding. Using embryonic zebrafish, we found that the NMDA receptor (NMDAR) NR1.1 subunit (grin1a) is expressed in commissural axons. Pharmacological inhibition of grin1a, hypoxia exposure reduction of grin1a expression, or CRISPR knock-down of grin1a leads to defects in midline crossing. Inhibition of neuronal activity phenocopies the effects of grin1a loss on midline crossing. By combining pharmacological inhibition of the NMDAR with optogenetic stimulation to precisely restore neuronal activity, we observed rescue of midline crossing. This suggests that the NMDAR controls pathfinding by an activity-dependent mechanism. We further show that the NMDAR may act, via modulating activity, on the transcription factor arxa (mammalian Arx), a known regulator of midline pathfinding. These findings uncover a novel role for the NMDAR in controlling activity to regulate commissural pathfinding and identify arxa as a key link between the genetic and activity-dependent regulation of midline axon guidance.
Collapse
|
8
|
Dombert B, Balk S, Lüningschrör P, Moradi M, Sivadasan R, Saal-Bauernschubert L, Jablonka S. BDNF/trkB Induction of Calcium Transients through Ca v2.2 Calcium Channels in Motoneurons Corresponds to F-actin Assembly and Growth Cone Formation on β2-Chain Laminin (221). Front Mol Neurosci 2017; 10:346. [PMID: 29163025 PMCID: PMC5670157 DOI: 10.3389/fnmol.2017.00346] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/12/2017] [Indexed: 12/11/2022] Open
Abstract
Spontaneous Ca2+ transients and actin dynamics in primary motoneurons correspond to cellular differentiation such as axon elongation and growth cone formation. Brain-derived neurotrophic factor (BDNF) and its receptor trkB support both motoneuron survival and synaptic differentiation. However, in motoneurons effects of BDNF/trkB signaling on spontaneous Ca2+ influx and actin dynamics at axonal growth cones are not fully unraveled. In our study we addressed the question how neurotrophic factor signaling corresponds to cell autonomous excitability and growth cone formation. Primary motoneurons from mouse embryos were cultured on the synapse specific, β2-chain containing laminin isoform (221) regulating axon elongation through spontaneous Ca2+ transients that are in turn induced by enhanced clustering of N-type specific voltage-gated Ca2+ channels (Cav2.2) in axonal growth cones. TrkB-deficient (trkBTK-/-) mouse motoneurons which express no full-length trkB receptor and wildtype motoneurons cultured without BDNF exhibited reduced spontaneous Ca2+ transients that corresponded to altered axon elongation and defects in growth cone morphology which was accompanied by changes in the local actin cytoskeleton. Vice versa, the acute application of BDNF resulted in the induction of spontaneous Ca2+ transients and Cav2.2 clustering in motor growth cones, as well as the activation of trkB downstream signaling cascades which promoted the stabilization of β-actin via the LIM kinase pathway and phosphorylation of profilin at Tyr129. Finally, we identified a mutual regulation of neuronal excitability and actin dynamics in axonal growth cones of embryonic motoneurons cultured on laminin-221/211. Impaired excitability resulted in dysregulated axon extension and local actin cytoskeleton, whereas upon β-actin knockdown Cav2.2 clustering was affected. We conclude from our data that in embryonic motoneurons BDNF/trkB signaling contributes to axon elongation and growth cone formation through changes in the local actin cytoskeleton accompanied by increased Cav2.2 clustering and local calcium transients. These findings may help to explore cellular mechanisms which might be dysregulated during maturation of embryonic motoneurons leading to motoneuron disease.
Collapse
Affiliation(s)
- Benjamin Dombert
- Institute of Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Stefanie Balk
- Institute of Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | | | - Mehri Moradi
- Institute of Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Rajeeve Sivadasan
- Institute of Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | | | - Sibylle Jablonka
- Institute of Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
9
|
Montague K, Lowe AS, Uzquiano A, Knüfer A, Astick M, Price SR, Guthrie S. The assembly of developing motor neurons depends on an interplay between spontaneous activity, type II cadherins and gap junctions. Development 2017; 144:830-836. [PMID: 28246212 DOI: 10.1242/dev.144063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/10/2017] [Indexed: 01/12/2023]
Abstract
A core structural and functional motif of the vertebrate central nervous system is discrete clusters of neurons or 'nuclei'. Yet the developmental mechanisms underlying this fundamental mode of organisation are largely unknown. We have previously shown that the assembly of motor neurons into nuclei depends on cadherin-mediated adhesion. Here, we demonstrate that the emergence of mature topography among motor nuclei involves a novel interplay between spontaneous activity, cadherin expression and gap junction communication. We report that nuclei display spontaneous calcium transients, and that changes in the activity patterns coincide with the course of nucleogenesis. We also find that these activity patterns are disrupted by manipulating cadherin or gap junction expression. Furthermore, inhibition of activity disrupts nucleogenesis, suggesting that activity feeds back to maintain integrity among motor neurons within a nucleus. Our study suggests that a network of interactions between cadherins, gap junctions and spontaneous activity governs neuron assembly, presaging circuit formation.
Collapse
Affiliation(s)
- Karli Montague
- Wolfson Centre for Age-related Diseases, King's College London, Guy's Hospital Campus, London SE1 1UL, UK
| | - Andrew S Lowe
- Department of Developmental Neurobiology, King's College London, Guy's Hospital Campus, London SE1 1UL, UK
| | - Ana Uzquiano
- École de Neuroscience-Paris Île-de-France, ENP-DIM, 15 Rue de L'École de Médécine, Paris 75006, France
| | - Athene Knüfer
- Department of Developmental Neurobiology, King's College London, Guy's Hospital Campus, London SE1 1UL, UK
| | - Marc Astick
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université de Bruxelles, Route de Lennik 808, Bruxelles B1070, Belgium
| | - Stephen R Price
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Sarah Guthrie
- Department of Developmental Neurobiology, King's College London, Guy's Hospital Campus, London SE1 1UL, UK
| |
Collapse
|
10
|
Schreiner B, Ankarcrona M. Isolation of Mitochondria-Associated Membranes (MAM) from Mouse Brain Tissue. Methods Mol Biol 2017; 1567:53-68. [PMID: 28276013 DOI: 10.1007/978-1-4939-6824-4_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
During the last decades, increasing evidence indicated that subcellular organelles do not exist as autarkic units but instead communicate constantly and extensively with each other in various ways. Some communication, for example, the exchange of small molecules, requires the marked convergence of two distinct organelles for a certain period of time. The cross talk between endoplasmic reticulum (ER) and mitochondria, two subcellular organelles of utmost importance for cellular bioenergetics and protein homeostasis, has been increasingly investigated under the last years. This development was significantly driven by the establishment of optimized subcellular fractionation techniques. In this chapter, we will describe and critically discuss the currently used protocol for the isolation of the membrane fraction containing mitochondria-associated membranes (MAM).
Collapse
Affiliation(s)
- Bernadette Schreiner
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society,, Karolinska Institutet, SE, -141 57, Huddinge, Sweden.
| | - Maria Ankarcrona
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society,, Karolinska Institutet, SE, -141 57, Huddinge, Sweden
| |
Collapse
|
11
|
Normal Molecular Specification and Neurodegenerative Disease-Like Death of Spinal Neurons Lacking the SNARE-Associated Synaptic Protein Munc18-1. J Neurosci 2016; 36:561-76. [PMID: 26758845 DOI: 10.1523/jneurosci.1964-15.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED The role of synaptic activity during early formation of neural circuits is a topic of some debate; genetic ablation of neurotransmitter release by deletion of the Munc18-1 gene provides an excellent model to answer the question of whether such activity is required for early circuit formation. Previous analysis of Munc18-1(-/-) mouse mutants documented their grossly normal nervous system, but its molecular differentiation has not been assessed. Munc18-1 deletion in mice also results in widespread neurodegeneration that remains poorly characterized. In this study, we demonstrate that the early stages of spinal motor circuit formation, including motor neuron specification, axon growth and pathfinding, and mRNA expression, are unaffected in Munc18-1(-/-) mice, demonstrating that synaptic activity is dispensable for early nervous system development. Furthermore, we show that the neurodegeneration caused by Munc18-1 loss is cell autonomous, consistent with apparently normal expression of several neurotrophic factors and normal GDNF signaling. Consistent with cell-autonomous degeneration, we demonstrate defects in the trafficking of the synaptic proteins Syntaxin1a and PSD-95 and the TrkB and DCC receptors in Munc18-1(-/-) neurons; these defects do not appear to cause ER stress, suggesting other mechanisms for degeneration. Finally, we demonstrate pathological similarities to Alzheimer's disease, such as altered Tau phosphorylation, neurofibrillary tangles, and accumulation of insoluble protein plaques. Together, our results shed new light upon the neurodegeneration observed in Munc18-1(-/-) mice and argue that this phenomenon shares parallels with neurodegenerative diseases. SIGNIFICANCE STATEMENT In this work, we demonstrate the absence of a requirement for regulated neurotransmitter release in the assembly of early neuronal circuits by assaying transcriptional identity, axon growth and guidance, and mRNA expression in Munc18-1-null mice. Furthermore, we characterize the neurodegeneration observed in Munc18-1 mutants and demonstrate that this cell-autonomous process does not appear to be a result of defects in growth factor signaling or ER stress caused by protein trafficking defects. However, we find the presence of various pathological hallmarks of Alzheimer's disease that suggest parallels between the degeneration in these mutants and neurodegenerative conditions.
Collapse
|
12
|
Vincen-Brown MA, Revill AL, Pilarski JQ. Activity-dependent plasticity in the isolated embryonic avian brainstem following manipulations of rhythmic spontaneous neural activity. Respir Physiol Neurobiol 2016; 229:24-33. [PMID: 27025229 DOI: 10.1016/j.resp.2016.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 02/20/2016] [Accepted: 03/22/2016] [Indexed: 02/06/2023]
Abstract
When rhythmic spontaneous neural activity (rSNA) first appears in the embryonic chick brainstem and cranial nerve motor axons it is principally driven by nicotinic neurotransmission (NT). At this early age, the nicotinic acetylcholine receptor (nAChR) agonist nicotine is known to critically disrupt rSNA at low concentrations (0.1-0.5μM), which are levels that mimic the blood plasma levels of a fetus following maternal cigarette smoking. Thus, we quantified the effect of persistent exposure to exogenous nicotine on rSNA using an in vitro developmental model. We found that rSNA was eliminated by continuous bath application of exogenous nicotine, but rSNA recovered activity within 6-12h despite the persistent activation and desensitization of nAChRs. During the recovery period rSNA was critically driven by chloride-mediated membrane depolarization instead of nicotinic NT. To test whether this observed compensation was unique to the antagonism of nicotinic NT or whether the loss of spiking behavior also played a role, we eliminated rSNA by lowering overall excitatory drive with a low [K(+)]o superfusate. In this context, rSNA again recovered, although the recovery time was much quicker, and exhibited a lower frequency, higher duration, and an increase in the number of bursts per episode when compared to control embryos. Importantly, we show that the main compensatory response to lower overall excitatory drive, similar to nicotinergic block, is a result of potentiated chloride mediated membrane depolarization. These results support increasing evidence that early neural circuits sense spiking behavior to maintain primordial bioelectric rhythms. Understanding the nature of developmental plasticity in the nervous system, especially versions that preserve rhythmic behaviors following clinically meaningful environmental stimuli, both normal and pathological, will require similar studies to determine the consequences of feedback compensation at more mature chronological ages.
Collapse
Affiliation(s)
| | - Ann L Revill
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - Jason Q Pilarski
- Department of Biological Sciences, Idaho State University, Pocatello, ID, United states; Department of Dental Sciences, Idaho State University, Pocatello, ID, United states.
| |
Collapse
|
13
|
Vincen-Brown MA, Whitesitt KC, Quick FG, Pilarski JQ. Studying respiratory rhythm generation in a developing bird: Hatching a new experimental model using the classic in vitro brainstem-spinal cord preparation. Respir Physiol Neurobiol 2015; 224:62-70. [PMID: 26310580 DOI: 10.1016/j.resp.2015.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 01/17/2023]
Abstract
It has been more than thirty years since the in vitro brainstem-spinal cord preparation was first presented as a method to study automatic breathing behaviors in the neonatal rat. This straightforward preparation has led to an incredible burst of information about the location and coordination of several spontaneously active microcircuits that form the ventrolateral respiratory network of the brainstem. Despite these advances, our knowledge of the mechanisms that regulate central breathing behaviors is still incomplete. Investigations into the nature of spontaneous breathing rhythmicity have almost exclusively focused on mammals, and there is a need for comparative experimental models to evaluate several unresolved issues from a different perspective. With this in mind, we sought to develop a new avian in vitro model with the long term goal to better understand questions associated with the ontogeny of respiratory rhythm generation, neuroplasticity, and whether multiple, independent oscillators drive the major phases of breathing. The fact that birds develop in ovo provides unparalleled access to central neuronal networks throughout the prenatal period - from embryo to hatchling - that are free from confounding interactions with mother. Previous studies using in vitro avian models have been strictly limited to the early embryonic period. Consequently, the details and even the presence of brainstem derived breathing-related rhythmogenesis in birds have never been described. In the present study, we used the altricial zebra finch (Taeniopygia guttata) and show robust spontaneous motor outflow through cranial motor nerve IX, which is first detectable on embryonic day four and continues through prenatal and early postnatal development without interruption. We also show that brainstem oscillations change dramatically over the course of prenatal development, sometimes within hours, which suggests rapid maturational modifications in growth and connectivity. We propose that this experimental preparation will be useful for a variety of studies aimed at testing the biophysical and synaptic properties of neurons that participate in the unique spatiotemporal patterns of avian breathing behaviors, especially in the context of early development.
Collapse
Affiliation(s)
| | - Kaitlyn C Whitesitt
- Department of Biological Sciences, Idaho State University, Pocatello, ID, 83 209, USA
| | - Forrest G Quick
- Department of Biological Sciences, Idaho State University, Pocatello, ID, 83 209, USA
| | - Jason Q Pilarski
- Department of Biological Sciences, Idaho State University, Pocatello, ID, 83 209, USA; Department of Dental Sciences, Idaho State University, Pocatello, ID, 83 209 USA.
| |
Collapse
|
14
|
Menelaou E, Paul LT, Perera SN, Svoboda KR. Motoneuron axon pathfinding errors in zebrafish: differential effects related to concentration and timing of nicotine exposure. Toxicol Appl Pharmacol 2015; 284:65-78. [PMID: 25668718 PMCID: PMC4567840 DOI: 10.1016/j.taap.2015.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/27/2015] [Accepted: 01/28/2015] [Indexed: 12/12/2022]
Abstract
Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMNs). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15-30 μM). Previous work showed that the paralytic mutant zebrafish known as sofa potato exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at different developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window.
Collapse
Affiliation(s)
- Evdokia Menelaou
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Latoya T Paul
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Surangi N Perera
- Joseph J. Zilber School of Public Health, University of Wisconsin - Milwaukee, Milwaukee, WI 53205, USA
| | - Kurt R Svoboda
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; Joseph J. Zilber School of Public Health, University of Wisconsin - Milwaukee, Milwaukee, WI 53205, USA.
| |
Collapse
|
15
|
Abstract
In the developing nervous system, ordered neuronal activity patterns can occur even in the absence of sensory input and to investigate how these arise, we have used the model system of the embryonic chicken spinal motor circuit, focusing on motor neurons of the lateral motor column (LMC). At the earliest stages of their molecular differentiation, we can detect differences between medial and lateral LMC neurons in terms of expression of neurotransmitter receptor subunits, including CHRNA5, CHRNA7, GRIN2A, GRIK1, HTR1A and HTR1B, as well as the KCC2 transporter. Using patch-clamp recordings we also demonstrate that medial and lateral LMC motor neurons have subtly different activity patterns that reflect the differential expression of neurotransmitter receptor subunits. Using a combination of patch-clamp recordings in single neurons and calcium-imaging of motor neuron populations, we demonstrate that inhibition of nicotinic, muscarinic or GABA-ergic activity, has profound effects of motor circuit activity during the initial stages of neuromuscular junction formation. Finally, by analysing the activity of large populations of motor neurons at different developmental stages, we show that the asynchronous, disordered neuronal activity that occurs at early stages of circuit formation develops into organised, synchronous activity evident at the stage of LMC neuron muscle innervation. In light of the considerable diversity of neurotransmitter receptor expression, activity patterns in the LMC are surprisingly similar between neuronal types, however the emergence of patterned activity, in conjunction with the differential expression of transmitter systems likely leads to the development of near-mature patterns of locomotor activity by perinatal ages.
Collapse
Affiliation(s)
- Chris Law
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Canada
| | - Michel Paquet
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Canada
| | - Artur Kania
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Canada
- Departments of Anatomy and Cell Biology, and Biology, Division of Experimental Medicine, McGill University Montréal, Montréal, Canada, and Faculté de Médecine, Université de Montréal, Montréal, Canada
- * E-mail:
| |
Collapse
|
16
|
Optogenetic-mediated increases in in vivo spontaneous activity disrupt pool-specific but not dorsal-ventral motoneuron pathfinding. Proc Natl Acad Sci U S A 2013; 110:17528-33. [PMID: 24101487 DOI: 10.1073/pnas.1316457110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Rhythmic waves of spontaneous electrical activity are widespread in the developing nervous systems of birds and mammals, and although many aspects of neural development are activity-dependent, it has been unclear if rhythmic waves are required for in vivo motor circuit development, including the proper targeting of motoneurons to muscles. We show here that electroporated channelrhodopsin-2 can be activated in ovo with light flashes to drive waves at precise intervals of approximately twice the control frequency in intact chicken embryos. Optical monitoring of associated axial movements ensured that the altered frequency was maintained. In embryos thus stimulated, motor axons correctly executed the binary dorsal-ventral pathfinding decision but failed to make the subsequent pool-specific decision to target to appropriate muscles. This observation, together with the previous demonstration that slowing the frequency by half perturbed dorsal-ventral but not pool-specific pathfinding, shows that modest changes in frequency differentially disrupt these two major pathfinding decisions. Thus, many drugs known to alter early rhythmic activity have the potential to impair normal motor circuit development, and given the conservation between mouse and avian spinal cords, our observations are likely relevant to mammals, where such studies would be difficult to carry out.
Collapse
|
17
|
GABAA receptor-mediated tonic depolarization in developing neural circuits. Mol Neurobiol 2013; 49:702-23. [PMID: 24022163 DOI: 10.1007/s12035-013-8548-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/27/2013] [Indexed: 12/25/2022]
Abstract
The activation of GABAA receptors (the type A receptors for γ-aminobutyric acid) produces two distinct forms of responses, phasic (i.e., transient) and tonic (i.e., persistent), that are mediated by synaptic and extrasynaptic GABAA receptors, respectively. During development, the intracellular chloride levels are high so activation of these receptors causes a net outward flow of anions that leads to neuronal depolarization rather than hyperpolarization. Therefore, in developing neural circuits, tonic activation of GABAA receptors may provide persistent depolarization. Recently, it became evident that GABAA receptor-mediated tonic depolarization alters the structure of patterned spontaneous activity, a feature that is common in developing neural circuits and is important for neural circuit refinement. Thus, this persistent depolarization may lead to a long-lasting increase in intracellular calcium level that modulates network properties via calcium-dependent signaling cascades. This article highlights the features of GABAA receptor-mediated tonic depolarization, summarizes the principles for discovery, reviews the current findings in diverse developing circuits, examines the underlying molecular mechanisms and modulation systems, and discusses their functional specializations for each developing neural circuit.
Collapse
|
18
|
Baez MV, Oberholzer MV, Cercato MC, Snitcofsky M, Aguirre AI, Jerusalinsky DA. NMDA receptor subunits in the adult rat hippocampus undergo similar changes after 5 minutes in an open field and after LTP induction. PLoS One 2013; 8:e55244. [PMID: 23383317 PMCID: PMC3562335 DOI: 10.1371/journal.pone.0055244] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 12/21/2012] [Indexed: 01/09/2023] Open
Abstract
NMDA receptor subunits change during development and their synaptic expression is modified rapidly after synaptic plasticity induction in hippocampal slices. However, there is scarce information on subunits expression after synaptic plasticity induction or memory acquisition, particularly in adults. GluN1, GluN2A and GluN2B NMDA receptor subunits were assessed by western blot in 1) adult rats that had explored an open field (OF) for 5 minutes, a time sufficient to induce habituation, 2) mature rat hippocampal neuron cultures depolarized by KCl and 3) hippocampal slices from adult rats where long term potentiation (LTP) was induced by theta-burst stimulation (TBS). GluN1 and GluN2A, though not GluN2B, were significantly higher 70 minutes –but not 30 minutes- after a 5 minutes session in an OF. GluN1 and GluN2A total immunofluorescence and puncta in neurites increased in cultures, as evaluated 70 minutes after KCl stimulation. Similar changes were found in hippocampal slices 70 minutes after LTP induction. To start to explore underlying mechanisms, hippocampal slices were treated either with cycloheximide (a translation inhibitor) or actinomycin D (a transcription inhibitor) during electrophysiological assays. It was corroborated that translation was necessary for LTP induction and expression. The rise in GluN1 depends on transcription and translation, while the increase in GluN2A appears to mainly depend on translation, though a contribution of some remaining transcriptional activity during actinomycin D treatment could not be rouled out. LTP effective induction was required for the subunits to increase. Although in the three models same subunits suffered modifications in the same direction, within an apparently similar temporal course, further investigation is required to reveal if they are related processes and to find out whether they are causally related with synaptic plasticity, learning and memory.
Collapse
Affiliation(s)
- Maria Veronica Baez
- Instituto de Biología Celular y Neurociencia (IBCN) “Prof. Eduardo De Robertis” CONICET – UBA, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria Victoria Oberholzer
- Instituto de Biología Celular y Neurociencia (IBCN) “Prof. Eduardo De Robertis” CONICET – UBA, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Magali Cecilia Cercato
- Instituto de Biología Celular y Neurociencia (IBCN) “Prof. Eduardo De Robertis” CONICET – UBA, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marina Snitcofsky
- Instituto de Biología Celular y Neurociencia (IBCN) “Prof. Eduardo De Robertis” CONICET – UBA, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandra Ines Aguirre
- Instituto de Biología Celular y Neurociencia (IBCN) “Prof. Eduardo De Robertis” CONICET – UBA, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Diana Alicia Jerusalinsky
- Instituto de Biología Celular y Neurociencia (IBCN) “Prof. Eduardo De Robertis” CONICET – UBA, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- CBC, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
19
|
Watari H, Tose AJ, Bosma MM. Hyperpolarization of resting membrane potential causes retraction of spontaneous Ca(i)²⁺ transients during mouse embryonic circuit development. J Physiol 2012; 591:973-83. [PMID: 23165771 DOI: 10.1113/jphysiol.2012.244954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Abstract Spontaneous activity supports developmental processes in many brain regions during embryogenesis, and the spatial extent and frequency of the spontaneous activity are tightly regulated by stage. In the developing mouse hindbrain, spontaneous activity propagates widely and the waves can cover the entire hindbrain at E11.5. The activity then retracts to waves that are spatially restricted to the rostral midline at E13.5, before disappearing altogether by E15.5. However, the mechanism of retraction is unknown. We studied passive membrane properties of cells that are spatiotemporally relevant to the pattern of retraction in mouse embryonic hindbrain using whole-cell patch clamp and imaging techniques. We find that membrane excitability progressively decreases due to hyperpolarization of resting membrane potential and increased resting conductance density between E11.5 and E15.5, in a spatiotemporal pattern correlated with the retraction sequence. Retraction can be acutely reversed by membrane depolarization at E15.5, and the induced events propagate similarly to spontaneous activity at earlier stages, though without involving gap junctional coupling. Manipulation of [K(+)](o) or [Cl(-)](o) reveals that membrane potential follows E(K) more closely than E(Cl), suggesting a dominant role for K(+) conductance in the membrane hyperpolarization. Reducing membrane excitability by hyperpolarization of the resting membrane potential and increasing resting conductance are effective mechanisms to desynchronize spontaneous activity in a spatiotemporal manner, while allowing information processing to occur at the synaptic and cellular level.
Collapse
Affiliation(s)
- Hirofumi Watari
- Graduate Program in Neurobiology & Behavior, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
20
|
Dehorter N, Vinay L, Hammond C, Ben-Ari Y. Timing of developmental sequences in different brain structures: physiological and pathological implications. Eur J Neurosci 2012; 35:1846-56. [PMID: 22708595 DOI: 10.1111/j.1460-9568.2012.08152.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The developing brain is not a small adult brain. Voltage- and transmitter-gated currents, like network-driven patterns, follow a developmental sequence. Studies initially performed in cortical structures and subsequently in subcortical structures have unravelled a developmental sequence of events in which intrinsic voltage-gated calcium currents are followed by nonsynaptic calcium plateaux and synapse-driven giant depolarising potentials, orchestrated by depolarizing actions of GABA and long-lasting NMDA receptor-mediated currents. The function of these early patterns is to enable heterogeneous neurons to fire and wire together rather than to code specific modalities. However, at some stage, behaviourally relevant activities must replace these immature patterns, implying the presence of programmed stop signals. Here, we show that the developing striatum follows a developmental sequence in which immature patterns are silenced precisely when the pup starts locomotion. This is mediated by a loss of the long-lasting NMDA-NR2C/D receptor-mediated current and the expression of a voltage-gated K(+) current. At the same time, the descending inputs to the spinal cord become fully functional, accompanying a GABA/glycine polarity shift and ending the expression of developmental patterns. Therefore, although the timetable of development differs in different brain structures, the g sequence is quite similar, relying first on nonsynaptic events and then on synaptic oscillations that entrain large neuronal populations. In keeping with the 'neuroarcheology' theory, genetic mutations or environmental insults that perturb these developmental sequences constitute early signatures of developmental disorders. Birth dating developmental disorders thus provides important indicators of the event that triggers the pathological cascade leading ultimately to disease.
Collapse
Affiliation(s)
- N Dehorter
- INMED, INSERM UMR901 and Aix-Marseille Université, Marseille, France
| | | | | | | |
Collapse
|
21
|
Fu R, Wang LQ, Chu GL, Zhou LH. Involvement of phospholipase C-γ in the pro-survival role of glial cell line-derived neurotrophic factor in developing motoneurons in rat spinal cords. Mol Med Rep 2012; 6:805-10. [PMID: 22825309 DOI: 10.3892/mmr.2012.990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 07/11/2012] [Indexed: 11/05/2022] Open
Abstract
The glial cell line-derived neurotrophic factor (GDNF) has been proven to be the most powerful neurotrophic factor in neuronal development. However, it remains uncertain as to which intracellular signaling pathway interacting with GDNF is invovlved in motoneuron (MN) development. In this study, we investigated whether phosphoinositide phospholipase C-γ (PLC-γ) is involved in GDNF-promoted MN development. The primary spinal MNs from 12- to 14-day-old embryos of Sprague-Dawley rats were cultured and survival was sustained by GDNF. A specific inhibitor of PLC-γ, 1-[6-((17b-3-methoxyestra-1,3,5(10)-trien-17-yl) amino)hexyl]-1H-pyrrole-2,5-dione (U73122), was used to block the pro-survival effect of GDNF. Our results showed that MN-like cells appeared at 72 h after initial implantation and were sustained for a period of up to seven days under GDNF treatment. These cultured MNs expressed neuron-specific enolase, SMI-32, 75-kDa low-affinity neurotrophic receptor and choline acetyltransferase. The survival rate of the cultured MNs at 24 h was significantly lower in the GDNF + U73122-treated group (31.87±2.17%), compared either with that of the GDNF- (81.38±1.13%) or GDNF + DMSO (79.39±1.22%)-treated groups. The present data suggest that PLC-γ may be one of the intracellular signals that play a role in the survival-promoting effects of GDNF in developing spinal MNs.
Collapse
Affiliation(s)
- Rao Fu
- Zhong Shan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China
| | | | | | | |
Collapse
|
22
|
Subramanian N, Wetzel A, Dombert B, Yadav P, Havlicek S, Jablonka S, Nassar MA, Blum R, Sendtner M. Role of Nav1.9 in activity-dependent axon growth in motoneurons. Hum Mol Genet 2012; 21:3655-67. [DOI: 10.1093/hmg/dds195] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
23
|
|
24
|
Borodinsky LN, Belgacem YH, Swapna I. Electrical activity as a developmental regulator in the formation of spinal cord circuits. Curr Opin Neurobiol 2012; 22:624-30. [PMID: 22370142 DOI: 10.1016/j.conb.2012.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 02/04/2012] [Accepted: 02/06/2012] [Indexed: 10/28/2022]
Abstract
Spinal cord development is a complex process involving generation of the appropriate number of cells, acquisition of distinctive phenotypes and establishment of functional connections that enable execution of critical functions such as sensation and locomotion. Here we review the basic cellular events occurring during spinal cord development, highlighting studies that demonstrate the roles of electrical activity in this process. We conclude that the participation of different forms of electrical activity is evident from the beginning of spinal cord development and intermingles with other developmental cues and programs to implement dynamic and integrated control of spinal cord function.
Collapse
Affiliation(s)
- Laura N Borodinsky
- Department of Physiology & Membrane Biology, and Shriners Hospital for Children Northern California, University of California Davis School of Medicine, Sacramento, CA 95819, United States.
| | | | | |
Collapse
|
25
|
Bender KJ, Uebele VN, Renger JJ, Trussell LO. Control of firing patterns through modulation of axon initial segment T-type calcium channels. J Physiol 2011; 590:109-18. [PMID: 22063631 DOI: 10.1113/jphysiol.2011.218768] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Spontaneously active neurons typically fire either in a regular pattern or in bursts. While much is known about the subcellular location and biophysical properties of conductances that underlie regular spontaneous activity, less is known about those that underlie bursts. Here, we show that T-type Ca(2+) channels localized to the site of action potential initiation in the axon initial segment play a pivotal role in spontaneous burst generation. In auditory brainstem interneurons, axon initial segment Ca(2+) influx is selectively downregulated by dopaminergic signalling. This regulation has marked effects on spontaneous activity, converting the predominant mode of spontaneous activity from bursts to regular spiking. Thus, the axon initial segment is a key site, and dopamine a key regulator, of spontaneous bursting activity.
Collapse
Affiliation(s)
- Kevin J Bender
- Oregon Hearing Research Centre and Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| | | | | | | |
Collapse
|
26
|
Kao TJ, Law C, Kania A. Eph and ephrin signaling: lessons learned from spinal motor neurons. Semin Cell Dev Biol 2011; 23:83-91. [PMID: 22040916 DOI: 10.1016/j.semcdb.2011.10.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 10/17/2011] [Indexed: 12/23/2022]
Abstract
In nervous system assembly, Eph/ephrin signaling mediates many axon guidance events that shape the formation of precise neuronal connections. However, due to the complexity of interactions between Ephs and ephrins, the molecular logic of their action is still being unraveled. Considerable advances have been made by studying the innervation of the limb by spinal motor neurons, a series of events governed by Eph/ephrin signaling. Here, we discuss the contributions of different Eph/ephrin modes of interaction, downstream signaling and electrical activity, and how these systems may interact both with each other and with other guidance molecules in limb muscle innervation. This simple model system has emerged as a very powerful tool to study this set of molecules, and will continue to be so by virtue of its simplicity, accessibility and the wealth of pioneering cellular studies.
Collapse
Affiliation(s)
- Tzu-Jen Kao
- Institut de recherches cliniques de Montréal, Montréal, QC, H2W 1R7, Canada
| | | | | |
Collapse
|
27
|
Ahmed Z. Trans-spinal direct current stimulation modulates motor cortex-induced muscle contraction in mice. J Appl Physiol (1985) 2011; 110:1414-24. [PMID: 21350028 DOI: 10.1152/japplphysiol.01390.2010] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The present study investigated the effect of trans-spinal direct current (tsDC) on the firing rate, pattern, and amplitude of spontaneous activity of the tibial nerve and on the magnitude of cortically elicited triceps surae (TS) muscle contractions. The effect of combined tsDC and repetitive cortical electrical stimulation (rCES) on the amplitude of cortically elicited TS twitches was also investigated. Stimulation was applied by two disk electrodes (0.79 cm(2)): one was located subcutaneously over the vertebral column (T(10)-L(1)) and was used to deliver anodal DC (a-tsDC) or cathodal DC (c-tsDC) (density range: ± 0.64 to ± 38.2 A/m(2)), whereas the other was located subcutaneously on the lateral aspect of the abdomen and served as a reference. While the application of a-tsDC significantly increased the spike frequency and amplitude of spontaneous discharges compared with c-tsDC, c-tsDC made the spontaneous discharges more rhythmic. Cortically elicited TS twitches were depressed during a-tsDC and potentiated after termination. Conversely, cortically elicited TS twitches were enhanced during c-tsDC and depressed after termination. While combined a-tsDC and rCES produced similar effects as a-tsDC alone, combined c-tsDC and rCES showed the greatest increase in cortically elicited TS twitches. tsDC appears to be a powerful neurostimulation tool that can differentially modulate spinal cord excitability and corticospinal transmission.
Collapse
Affiliation(s)
- Zaghloul Ahmed
- Department of Physical Therapy and Neuroscience Program, The College of Staten Island/City University of New York, Staten Island, NY, USA.
| |
Collapse
|
28
|
In vivo activation of channelrhodopsin-2 reveals that normal patterns of spontaneous activity are required for motoneuron guidance and maintenance of guidance molecules. J Neurosci 2010; 30:10575-85. [PMID: 20686000 DOI: 10.1523/jneurosci.2773-10.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Spontaneous, highly rhythmic episodes of propagating bursting activity are present early during the development of chick and mouse spinal cords. Acetylcholine, and GABA and glycine, which are both excitatory at this stage, provide the excitatory drive. It was previously shown that a moderate decrease in the frequency of bursting activity, caused by in ovo application of the GABA(A) receptor blocker, picrotoxin, resulted in motoneurons making dorsal-ventral (D-V) pathfinding errors in the limb and in the altered expression of guidance molecules associated with this decision. To distinguish whether the pathfinding errors were caused by perturbation of the normal frequency of bursting activity or interference with GABA(A) receptor signaling, chick embryos were chronically treated in ovo with picrotoxin to block GABA(A) receptors, while light activation by channelrhodopsin-2 was used to restore bursting activity to the control frequency. The restoration of normal patterns of neural activity in the presence of picrotoxin prevented the D-V pathfinding errors in the limb and maintained the normal expression levels of EphA4, EphB1, and polysialic acid on neural cell adhesion molecule, three molecules previously shown to be necessary for this pathfinding choice. These observations demonstrate that developing spinal motor circuits are highly sensitive to the precise frequency and pattern of spontaneous activity, and that any drugs that alter this activity could result in developmental defects.
Collapse
|
29
|
Foxp1 and lhx1 coordinate motor neuron migration with axon trajectory choice by gating Reelin signalling. PLoS Biol 2010; 8:e1000446. [PMID: 20711475 PMCID: PMC2919418 DOI: 10.1371/journal.pbio.1000446] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 06/24/2010] [Indexed: 11/19/2022] Open
Abstract
During embryonic development of the vertebrate motor system, the same transcription factors that regulate axonal trajectories can also regulate cell body migration, thereby controlling topographic map formation. Topographic neuronal maps arise as a consequence of axon trajectory choice correlated with the localisation of neuronal soma, but the identity of the pathways coordinating these processes is unknown. We addressed this question in the context of the myotopic map formed by limb muscles innervated by spinal lateral motor column (LMC) motor axons where the Eph receptor signals specifying growth cone trajectory are restricted by Foxp1 and Lhx1 transcription factors. We show that the localisation of LMC neuron cell bodies can be dissociated from axon trajectory choice by either the loss or gain of function of the Reelin signalling pathway. The response of LMC motor neurons to Reelin is gated by Foxp1- and Lhx1-mediated regulation of expression of the critical Reelin signalling intermediate Dab1. Together, these observations point to identical transcription factors that control motor axon guidance and soma migration and reveal the molecular hierarchy of myotopic organisation. Many areas of our nervous system are organized in a topographic manner, such that the location of a neuron relative to its neighbors is often spatially correlated with its axonal trajectory and therefore target identity. In this study, we focus on the spinal myotopic map, which is characterized by the stereotyped organization of motor neuron cell bodies that is correlated with the trajectory of their axons to limb muscles. An open question for how this map forms is the identity of the molecules that coordinate the expression of effectors of neuronal migration and axonal guidance. Here, we first show that Dab1, a key protein that relays signals directing neuronal migration, is expressed at different concentrations in specific populations of limb-innervating motor neurons and determines the position of their cell bodies in the spinal cord. We then demonstrate that Foxp1 and Lhx1, the same transcription factors that regulate the expression of receptors for motor axon guidance signals, also modulate Dab1 expression. The significance of our findings is that we identify a molecular hierarchy linking effectors of both neuronal migration and axonal projections, and therefore coordinating neuronal soma position with choice of axon trajectory. In general, our findings provide a framework in which to address the general question of how the nervous system is organized.
Collapse
|