1
|
Warfield R, Robinson JA, Podgorski RM, Miller AD, Burdo TH. Neuroinflammation in the Dorsal Root Ganglia and Dorsal Horn Contributes to Persistence of Nociceptor Sensitization in SIV-Infected Antiretroviral Therapy-Treated Macaques. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:2017-2030. [PMID: 37734588 PMCID: PMC10699130 DOI: 10.1016/j.ajpath.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/17/2023] [Accepted: 08/16/2023] [Indexed: 09/23/2023]
Abstract
Despite the development of antiretroviral therapy (ART), HIV-associated distal sensory polyneuropathy remains prevalent. Using SIV-infected rhesus macaques, this study examined molecular mechanisms of peripheral and central sensitization to infer chronic pain from HIV infection. Previous studies identified atrophy in nociceptive neurons during SIV infection, which was associated with monocyte infiltration into the dorsal root ganglia (DRG). However, the sensory signaling mechanism connecting this pathology to symptoms remains unclear, especially because pain persists after resolution of high viremia and inflammation with ART. We hypothesized that residual DRG and dorsal horn neuroinflammation contributes to nociceptive sensitization. Using three cohorts of macaques [uninfected (SIV-), SIV-infected (SIV+), and SIV infected with ART (SIV+/ART)], this study showed an increase in the cellular and cytokine inflammatory profiles in the DRG of SIV+/ART macaques compared with uninfected animals. It found significant increase in the expression of nociceptive ion channels, TRPV1, and TRPA1 among DRG neurons in SIV+/ART compared with uninfected animals. SIV-infected and SIV+/ART animals showed reduced innervation of the nonpeptidergic nociceptors into the dorsal horn compared with uninfected animals. Finally, there were a significantly higher number of CD68+ cells in the dorsal horn of SIV+/ART macaques compared with uninfected animals. In summary, these data demonstrate that neuroinflammation, characteristics of nociceptor sensitization, and central terminal atrophy persists in SIV+/ART animals.
Collapse
Affiliation(s)
- Rebecca Warfield
- Department of Microbiology, Immunology, and Inflammation, Center for NeuroVirology and Gene Editing, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Jake A Robinson
- Department of Microbiology, Immunology, and Inflammation, Center for NeuroVirology and Gene Editing, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Rachel M Podgorski
- Department of Microbiology, Immunology, and Inflammation, Center for NeuroVirology and Gene Editing, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Andrew D Miller
- Section of Anatomic Pathology, Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York
| | - Tricia H Burdo
- Department of Microbiology, Immunology, and Inflammation, Center for NeuroVirology and Gene Editing, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania.
| |
Collapse
|
2
|
Cathenaut L, Schlichter R, Hugel S. Short-term plasticity in the spinal nociceptive system. Pain 2023; 164:2411-2424. [PMID: 37578501 DOI: 10.1097/j.pain.0000000000002999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 06/08/2023] [Indexed: 08/15/2023]
Abstract
ABSTRACT Somatosensory information is delivered to neuronal networks of the dorsal horn (DH) of the spinal cord by the axons of primary afferent neurons that encode the intensity of peripheral sensory stimuli under the form of a code based on the frequency of action potential firing. The efficient processing of these messages within the DH involves frequency-tuned synapses, a phenomenon linked to their ability to display activity-dependent forms of short-term plasticity (STP). By affecting differently excitatory and inhibitory synaptic transmissions, these STP properties allow a powerful gain control in DH neuronal networks that may be critical for the integration of nociceptive messages before they are forwarded to the brain, where they may be ultimately interpreted as pain. Moreover, these STPs can be finely modulated by endogenous signaling molecules, such as neurosteroids, adenosine, or GABA. The STP properties of DH inhibitory synapses might also, at least in part, participate in the pain-relieving effect of nonpharmacological analgesic procedures, such as transcutaneous electrical nerve stimulation, electroacupuncture, or spinal cord stimulation. The properties of target-specific STP at inhibitory DH synapses and their possible contribution to electrical stimulation-induced reduction of hyperalgesic and allodynic states in chronic pain will be reviewed and discussed.
Collapse
Affiliation(s)
- Lou Cathenaut
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | | | | |
Collapse
|
3
|
Kozar-Gillan N, Velichkova A, Kanatouris G, Eshed-Eisenbach Y, Steel G, Jaegle M, Aunin E, Peles E, Torsney C, Meijer DN. LGI3/2-ADAM23 interactions cluster Kv1 channels in myelinated axons to regulate refractory period. J Cell Biol 2023; 222:e202211031. [PMID: 36828548 PMCID: PMC9997507 DOI: 10.1083/jcb.202211031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/18/2022] [Accepted: 01/17/2023] [Indexed: 02/26/2023] Open
Abstract
Along myelinated axons, Shaker-type potassium channels (Kv1) accumulate at high density in the juxtaparanodal region, directly adjacent to the paranodal axon-glia junctions that flank the nodes of Ranvier. However, the mechanisms that control the clustering of Kv1 channels, as well as their function at this site, are still poorly understood. Here we demonstrate that axonal ADAM23 is essential for both the accumulation and stability of juxtaparanodal Kv1 complexes. The function of ADAM23 is critically dependent on its interaction with its extracellular ligands LGI2 and LGI3. Furthermore, we demonstrate that juxtaparanodal Kv1 complexes affect the refractory period, thus enabling high-frequency burst firing of action potentials. Our findings not only reveal a previously unknown molecular pathway that regulates Kv1 channel clustering, but they also demonstrate that the juxtaparanodal Kv1 channels that are concealed below the myelin sheath, play a significant role in modifying axonal physiology.
Collapse
Affiliation(s)
- Nina Kozar-Gillan
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh. UK
| | | | - George Kanatouris
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh. UK
| | - Yael Eshed-Eisenbach
- Department of Molecular Cell Biology and Molecular Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Gavin Steel
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh. UK
| | | | - Eerik Aunin
- Biomedical Sciences, ErasmusMC, Rotterdam, Netherlands
| | - Elior Peles
- Department of Molecular Cell Biology and Molecular Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Carole Torsney
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh. UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh. UK
| | - Dies N. Meijer
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh. UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
4
|
Pathophysiology of Post-Traumatic Trigeminal Neuropathic Pain. Biomolecules 2022; 12:biom12121753. [PMID: 36551181 PMCID: PMC9775491 DOI: 10.3390/biom12121753] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/29/2022] Open
Abstract
Trigeminal nerve injury is one of the causes of chronic orofacial pain. Patients suffering from this condition have a significantly reduced quality of life. The currently available management modalities are associated with limited success. This article reviews some of the common causes and clinical features associated with post-traumatic trigeminal neuropathic pain (PTNP). A cascade of events in the peripheral and central nervous system function is involved in the pathophysiology of pain following nerve injuries. Central and peripheral processes occur in tandem and may often be co-dependent. Due to the complexity of central mechanisms, only peripheral events contributing to the pathophysiology have been reviewed in this article. Future investigations will hopefully help gain insight into trigeminal-specific events in the pathophysiology of the development and maintenance of neuropathic pain secondary to nerve injury and enable the development of new therapeutic modalities.
Collapse
|
5
|
Pre-Synaptic GABAA in NaV1.8+ Primary Afferents Is Required for the Development of Punctate but Not Dynamic Mechanical Allodynia following CFA Inflammation. Cells 2022; 11:cells11152390. [PMID: 35954234 PMCID: PMC9368720 DOI: 10.3390/cells11152390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 01/27/2023] Open
Abstract
Hypersensitivity to mechanical stimuli is a cardinal symptom of neuropathic and inflammatory pain. A reduction in spinal inhibition is generally considered a causal factor in the development of mechanical hypersensitivity after injury. However, the extent to which presynaptic inhibition contributes to altered spinal inhibition is less well established. Here, we used conditional deletion of GABAA in NaV1.8-positive sensory neurons (Scn10aCre;Gabrb3fl/fl) to manipulate selectively presynaptic GABAergic inhibition. Behavioral testing showed that the development of inflammatory punctate allodynia was mitigated in mice lacking pre-synaptic GABAA. Dorsal horn cellular circuits were visualized in single slices using stimulus-tractable dual-labelling of c-fos mRNA for punctate and the cognate c-Fos protein for dynamic mechanical stimulation. This revealed a substantial reduction in the number of cells activated by punctate stimulation in mice lacking presynaptic GABAA and an approximate 50% overlap of the punctate with the dynamic circuit, the relative percentage of which did not change following inflammation. The reduction in dorsal horn cells activated by punctate stimuli was equally prevalent in parvalbumin- and calretinin-positive cells and across all laminae I–V, indicating a generalized reduction in spinal input. In peripheral DRG neurons, inflammation following complete Freund’s adjuvant (CFA) led to an increase in axonal excitability responses to GABA, suggesting that presynaptic GABA effects in NaV1.8+ afferents switch from inhibition to excitation after CFA. In the days after inflammation, presynaptic GABAA in NaV1.8+ nociceptors constitutes an “open gate” pathway allowing mechanoreceptors responding to punctate mechanical stimulation access to nociceptive dorsal horn circuits.
Collapse
|
6
|
Kutafina E, Troglio A, de Col R, Röhrig R, Rossmanith P, Namer B. Decoding Neuropathic Pain: Can We Predict Fluctuations of Propagation Speed in Stimulated Peripheral Nerve? Front Comput Neurosci 2022; 16:899584. [PMID: 35966281 PMCID: PMC9366140 DOI: 10.3389/fncom.2022.899584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
To understand neural encoding of neuropathic pain, evoked and resting activity of peripheral human C-fibers are studied via microneurography experiments. Before different spiking patterns can be analyzed, spike sorting is necessary to distinguish the activity of particular fibers of a recorded bundle. Due to single-electrode measurements and high noise contamination, standard methods based on spike shapes are insufficient and need to be enhanced with additional information. Such information can be derived from the activity-dependent slowing of the fiber propagation speed, which in turn can be assessed by introducing continuous "background" 0.125-0.25 Hz electrical stimulation and recording the corresponding responses from the fibers. Each fiber's speed propagation remains almost constant in the absence of spontaneous firing or additional stimulation. This way, the responses to the "background stimulation" can be sorted by fiber. In this article, we model the changes in the propagation speed resulting from the history of fiber activity with polynomial regression. This is done to assess the feasibility of using the developed models to enhance the spike shape-based sorting. In addition to human microneurography data, we use animal in-vitro recordings with a similar stimulation protocol as higher signal-to-noise ratio data example for the models.
Collapse
Affiliation(s)
- Ekaterina Kutafina
- Institute of Medical Informatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Faculty of Applied Mathematics, AGH University of Science and Technology, Krakow, Poland
| | - Alina Troglio
- Junior Research Group Neuroscience, Interdisciplinary Center for Clinical Research Within the Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Roberto de Col
- Junior Research Group Neuroscience, Interdisciplinary Center for Clinical Research Within the Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer Röhrig
- Institute of Medical Informatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Peter Rossmanith
- Theoretical Computer Science, Department of Computer Science, RWTH Aachen University, Aachen, Germany
| | - Barbara Namer
- Junior Research Group Neuroscience, Interdisciplinary Center for Clinical Research Within the Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Institute of Physiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
7
|
Velichkova AN, Coleman SE, Torsney C. Postoperative pain facilitates rat C-fibre activity-dependent slowing and induces thermal hypersensitivity in a sex-dependent manner. Br J Anaesth 2022; 128:718-733. [DOI: 10.1016/j.bja.2021.10.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/05/2021] [Accepted: 10/26/2021] [Indexed: 11/02/2022] Open
|
8
|
Yang NJ, Isensee J, Neel DV, Quadros AU, Zhang HXB, Lauzadis J, Liu SM, Shiers S, Belu A, Palan S, Marlin S, Maignel J, Kennedy-Curran A, Tong VS, Moayeri M, Röderer P, Nitzsche A, Lu M, Pentelute BL, Brüstle O, Tripathi V, Foster KA, Price TJ, Collier RJ, Leppla SH, Puopolo M, Bean BP, Cunha TM, Hucho T, Chiu IM. Anthrax toxins regulate pain signaling and can deliver molecular cargoes into ANTXR2 + DRG sensory neurons. Nat Neurosci 2021; 25:168-179. [PMID: 34931070 DOI: 10.1038/s41593-021-00973-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/01/2021] [Indexed: 11/09/2022]
Abstract
Bacterial products can act on neurons to alter signaling and function. In the present study, we found that dorsal root ganglion (DRG) sensory neurons are enriched for ANTXR2, the high-affinity receptor for anthrax toxins. Anthrax toxins are composed of protective antigen (PA), which binds to ANTXR2, and the protein cargoes edema factor (EF) and lethal factor (LF). Intrathecal administration of edema toxin (ET (PA + EF)) targeted DRG neurons and induced analgesia in mice. ET inhibited mechanical and thermal sensation, and pain caused by formalin, carrageenan or nerve injury. Analgesia depended on ANTXR2 expressed by Nav1.8+ or Advillin+ neurons. ET modulated protein kinase A signaling in mouse sensory and human induced pluripotent stem cell-derived sensory neurons, and attenuated spinal cord neurotransmission. We further engineered anthrax toxins to introduce exogenous protein cargoes, including botulinum toxin, into DRG neurons to silence pain. Our study highlights interactions between a bacterial toxin and nociceptors, which may lead to the development of new pain therapeutics.
Collapse
Affiliation(s)
- Nicole J Yang
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Jörg Isensee
- Translational Pain Research, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Dylan V Neel
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Andreza U Quadros
- Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Justas Lauzadis
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, NY, USA
| | | | - Stephanie Shiers
- Department of Neuroscience, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Andreea Belu
- Translational Pain Research, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | | | | | | | - Victoria S Tong
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Mahtab Moayeri
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pascal Röderer
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany.,Cellomics Unit, LIFE & BRAIN GmbH, Bonn, Germany
| | - Anja Nitzsche
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany.,Cellomics Unit, LIFE & BRAIN GmbH, Bonn, Germany
| | - Mike Lu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.,The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany
| | | | | | - Theodore J Price
- Department of Neuroscience, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - R John Collier
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Stephen H Leppla
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michelino Puopolo
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, NY, USA
| | - Bruce P Bean
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Thiago M Cunha
- Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Tim Hucho
- Translational Pain Research, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Werland F, de Col R, Hirth M, Turnquist B, Schmelz M, Obreja O. Mechanical sensitization, increased axonal excitability, and spontaneous activity in C-nociceptors after ultraviolet B irradiation in pig skin. Pain 2021; 162:2002-2013. [PMID: 33449511 DOI: 10.1097/j.pain.0000000000002197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/30/2020] [Indexed: 11/26/2022]
Abstract
ABSTRACT Ultraviolet B (UVB) irradiation induces hyperalgesia in human and animal pain models. We investigated mechanical sensitization, increase in axonal excitability, and spontaneous activity in different C-nociceptor classes after UVB in pig skin. We focused on units with receptive fields covering both irradiated and nonirradiated skin allowing intraindividual comparisons. Thirty-five pigs were irradiated in a chessboard pattern, and extracellular single-fibre recordings were obtained 10 to 28 hours later (152 fibers). Units from the contralateral hind limb served as a control (n = 112). Irradiated and nonirradiated parts of the same innervation territory were compared in 36 neurons; low threshold C-touch fibers (n = 10) and sympathetic efferents (n = 2) were unchanged, but lower mechanical thresholds and higher discharge frequency at threshold were found in mechanosensitive nociceptors (n = 12). Half of them could be activated with nonnoxious brush stimuli in the sunburn. Four of 12 mechanoinsensitive nociceptors were found sensitized to mechanical stimulation in the irradiated part of the receptive field. Activity-dependent slowing of conduction was reduced in the irradiated and in the nonirradiated skin as compared with the control leg, whereas increased ability to follow high stimulation frequencies was restricted to the sunburn (108.5 ± 37 Hz UVB vs 6.3 ± 1 Hz control). Spontaneous activity was more frequent in the sunburn (72/152 vs 31/112). Mechanical sensitization of primary nociceptors and higher maximum after frequency are suggested to contribute to primary hyperalgesia, whereas the spontaneous activity of silent nociceptors might offer a mechanistic link contributing to ongoing pain and facilitated induction of spinal sensitization.
Collapse
Affiliation(s)
- Fiona Werland
- Department of Experimental Pain Research, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Roberto de Col
- Department of Experimental Pain Research, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Hirth
- Department of Experimental Pain Research, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Brian Turnquist
- Department of Mathematics and Computer Science, Bethel University, Saint Paul, MI, United States . Dr. Obreja is now with the Klinik für Rheumatologie und Schmerzmedizin, Bethesda Spital Basel, Basel, Switzerland
| | - Martin Schmelz
- Department of Experimental Pain Research, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Otilia Obreja
- Department of Experimental Pain Research, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
10
|
Lysophosphatidic acid activates nociceptors and causes pain or itch depending on the application mode in human skin. Pain 2021; 163:445-460. [PMID: 34166323 DOI: 10.1097/j.pain.0000000000002363] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 04/13/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Lysophosphatidic acid (LPA) is involved in the pathophysiology of cholestatic pruritus and neuropathic pain. Slowly conducting peripheral afferent C-nerve fibers are crucial in the sensations of itch and pain. In animal studies, specialized neurons ("pruriceptors") have been described, expressing specific receptors e.g. from the Mrgpr family. Human nerve fibers involved in pain signaling ("nociceptors") can elicit itch if activated by focalized stimuli such as cowhage spicules.In this study, we scrutinized the effects of LPA in humans by two different application modes on the level of psychophysics and single nerve fiber recordings (microneurography). In healthy human subjects, intracutaneous LPA microinjections elicited burning pain, whereas LPA application via inactivated cowhage spicules evoked a moderate itch sensation. LPA microinjections induced heat hyperalgesia and hypersensitivity to higher electrical stimulus frequencies. Pharmacological blockade of TRPA1 or TRPV1 reduced heat hyperalgesia but not acute chemical pain. Microneurography revealed an application mode-dependent differential activation of mechano-sensitive (CM) and mechano-insensitive (CMi) C-fibers. LPA microinjections activated a greater proportion of CMi and more strongly than CM fibers; spicule-application of LPA activated CM and CMi fibers to a similar extent but excited CM more and CMi fibers less intensely than microinjections.In conclusion, we show for the first time in humans that LPA can cause pain as well as itch dependent on the mode of application and activates afferent human C-fibers. Itch may arise from focal activation of few nerve fibers with distinct spatial contrast to unexcited surrounding afferents, and a specific combination of activated fiber subclasses might contribute.
Collapse
|
11
|
Lee JHA, Miao Z, Chen QY, Li XH, Zhuo M. Multiple synaptic connections into a single cortical pyramidal cell or interneuron in the anterior cingulate cortex of adult mice. Mol Brain 2021; 14:88. [PMID: 34082805 PMCID: PMC8173915 DOI: 10.1186/s13041-021-00793-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/18/2021] [Indexed: 11/24/2022] Open
Abstract
The ACC is an important brain area for the processing of pain-related information. Studies of synaptic connections within the ACC provide an understanding of basic cellular and molecular mechanisms for brain functions such as pain, emotion and related cognitive functions. Previous study of ACC synaptic transmission mainly focused on presumably thalamic inputs into pyramidal cells. In the present study, we developed a new mapping technique by combining single neuron whole-cell patch-clamp recording with 64 multi-channel field potential recording (MED64) to examine the properties of excitatory inputs into a single neuron in the ACC. We found that a single patched pyramidal neuron or interneuron simultaneously received heterogeneous excitatory synaptic innervations from different subregions (ventral, dorsal, deep, and superficial layers) in the ACC. Conduction velocity is faster as stimulation distance increases in pyramidal neurons. Fast-spiking interneurons (FS-IN) show slower inactivation when compared to pyramidal neurons and regular-spiking interneurons (RS-IN) while pyramidal neurons displayed the most rapid activation. Bath application of non-competitive AMPA receptor antagonist GYKI 53655 followed by CNQX revealed that both FS-INs and RS-INs have AMPA and KA mediated components. Our studies provide a new strategy and technique for studying the network of synaptic connections.
Collapse
Affiliation(s)
- Jung-Hyun Alex Lee
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Zhuang Miao
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Qi-Yu Chen
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
- Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, China
| | - Xu-Hui Li
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
- Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, China.
| | - Min Zhuo
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
- Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, China.
| |
Collapse
|
12
|
Bonet IJM, Green PG, Levine JD. Sexual dimorphism in the nociceptive effects of hyaluronan. Pain 2021; 162:1116-1125. [PMID: 33065736 PMCID: PMC7969372 DOI: 10.1097/j.pain.0000000000002116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022]
Abstract
ABSTRACT Intradermal administration of low-molecular-weight hyaluronan (LMWH) in the hind paw induced dose-dependent (0.1, 1, or 10 µg) mechanical hyperalgesia of similar magnitude in male and female rats. However, the duration of LMWH hyperalgesia was greater in females. This sexual dimorphism was eliminated by bilateral ovariectomy and by intrathecal administration of an oligodeoxynucleotide (ODN) antisense to the G-protein-coupled estrogen receptor (GPR30) mRNA in females, indicating estrogen dependence. To assess the receptors at which LMWH acts to induce hyperalgesia, LMWH was administered to groups of male and female rats that had been pretreated with ODN antisense (or mismatch) to the mRNA for 1 of 3 hyaluronan receptors, cluster of differentiation 44 (CD44), toll-like receptor 4, or receptor for hyaluronan-mediated motility (RHAMM). Although LMWH-induced hyperalgesia was attenuated in both male and female rats pretreated with ODN antisense for CD44 and toll-like receptor 4 mRNA, RHAMM antisense pretreatment only attenuated LMWH-induced hyperalgesia in males. Oligodeoxynucleotide antisense for RHAMM, however, attenuated LMWH-induced hyperalgesia in female rats treated with ODN antisense to GPR30, as well as in ovariectomized females. Low-molecular-weight hyaluronan-induced hyperalgesia was significantly attenuated by pretreatment with high-molecular-weight hyaluronan (HMWH) in male, but not in female rats. After gonadectomy or treatment with ODN antisense to GPR30 expression in females, HMWH produced similar attenuation of LMWH-induced hyperalgesia to that seen in males. These experiments identify nociceptors at which LMWH acts to produce mechanical hyperalgesia, establishes estrogen dependence in the role of RHAMM in female rats, and establishes estrogen dependence in the inhibition of LMWH-induced hyperalgesia by HMWH.
Collapse
Affiliation(s)
- Ivan J. M. Bonet
- Departments of Medicine and Oral & Maxillofacial Surgery, and Division of Neuroscience, UCSF Pain and Addiction Research Center, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Paul G. Green
- Departments of Medicine and Oral & Maxillofacial Surgery, and Division of Neuroscience, UCSF Pain and Addiction Research Center, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
- Departments of Preventative & Restorative Dental Sciences and Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Jon D. Levine
- Departments of Medicine and Oral & Maxillofacial Surgery, and Division of Neuroscience, UCSF Pain and Addiction Research Center, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
13
|
Werland F, Hirth M, Rukwied R, Ringkamp M, Turnquist B, Jorum E, Namer B, Schmelz M, Obreja O. Maximum axonal following frequency separates classes of cutaneous unmyelinated nociceptors in the pig. J Physiol 2021; 599:1595-1610. [DOI: 10.1113/jp280269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/17/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Fiona Werland
- Department of Experimental Pain Research, MCTN Medical Faculty Mannheim Heidelberg University Mannheim Germany
| | - Michael Hirth
- Department of Experimental Pain Research, MCTN Medical Faculty Mannheim Heidelberg University Mannheim Germany
| | - Roman Rukwied
- Department of Experimental Pain Research, MCTN Medical Faculty Mannheim Heidelberg University Mannheim Germany
| | - Matthias Ringkamp
- Department of Neurosurgery Johns Hopkins University Baltimore MD USA
| | - Brian Turnquist
- Faculty of Mathematics and Computer Science Bethel University MN USA
| | - Ellen Jorum
- Section of Clinical Neurophysiology, Department of Neurology Oslo University Hospital Oslo Norway
- Institute of Clinical Medicine University of Oslo Oslo Norway
| | - Barbara Namer
- IZKF Neuroscience Research Group, University Hospital RWTH Aachen and Department of Physiology and Pathophysiology University of Erlangen‐Nuremberg Erlangen Germany
| | - Martin Schmelz
- Department of Experimental Pain Research, MCTN Medical Faculty Mannheim Heidelberg University Mannheim Germany
| | - Otilia Obreja
- Department of Experimental Pain Research, MCTN Medical Faculty Mannheim Heidelberg University Mannheim Germany
| |
Collapse
|
14
|
Vianna ECB, Herkrath FJ, Martins IEB, Lopes LPB, Marques AAF, Sponchiado Júnior EC. Effect of Occlusal Adjustment on Postoperative Pain after Root Canal Treatment: A Randomized Clinical Trial. Braz Dent J 2020; 31:353-359. [PMID: 32901709 DOI: 10.1590/0103-6440202003248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/18/2020] [Indexed: 01/29/2023] Open
Abstract
The aim of this prospective, randomized, clinical study was to analyze the influence of occlusal adjustment on the prevalence of postoperative pain after endodontic treatment. Seventy-eight patients, diagnosed with symptomatic irreversible pulpitis with indication for endodontic treatment, were selected to participate in the study. The participants were randomized and divided into two groups: in the occlusal adjustment group (OAG), endodontic treatment was performed with subsequent occlusal adjustment. In the control group (CG), endodontic treatment was performed without occlusal adjustment. Treatments were performed by the same operator. Pain occurrence and intensity were recorded on two scales: the verbal rating scale (VRS) and numerical rating scale (NRS). Pain assessment was carried out by a second examiner, blinded to the experiment, 6, 24 and 72 h after endodontic treatment. Data were analyzed using Mann-Whitney, chi-squared, and Fisher's exact tests. In the occlusal adjustment group, 71.1% reported postoperative pain and 67.5% reported pain in the control group. At the 6-hour assessment, 21 individuals reported pain in the occlusal adjustment group and 24 in the control group (p=0.672). At the 24-hour assessment, 18 and 19 individuals reported pain (p=0.991) and at the 72-hour assessment, 8 and 4 reported pain (p=0.219), respectively. Occlusal adjustment did not influence the prevalence of postoperative pain of endodontically treated teeth with symptomatic irreversible pulpitis.
Collapse
|
15
|
Bree D, Mackenzie K, Stratton J, Levy D. Enhanced post-traumatic headache-like behaviors and diminished contribution of peripheral CGRP in female rats following a mild closed head injury. Cephalalgia 2020; 40:748-760. [PMID: 32077327 DOI: 10.1177/0333102420907597] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Females are thought to have increased risk of developing post-traumatic headache following a traumatic head injury or concussion. However, the processes underlying this susceptibility remain unclear. We previously demonstrated the development of post-traumatic headache-like pain behaviors in a male rat model of mild closed head injury, along with the ability of sumatriptan and an anti-calcitonin-gene-related peptide monoclonal antibody to ameliorate these behaviors. Here, we conducted a follow-up study to explore the development of post-traumatic headache-like behaviors and the effectiveness of these headache therapies in females subjected to the same head trauma protocol. METHODS Adult female Sprague Dawley rats were subjected to a mild closed head injury using a weight-drop device (n = 126), or to a sham procedure (n = 28). Characterization of headache and pain related behaviors included assessment of changes in cutaneous cephalic and extracephalic tactile pain sensitivity, using von Frey monofilaments. Sensitivity to headache/migraine triggers was tested by examining the effect of intraperitoneal administration of a low dose of glyceryl trinitrate (100 µg/kg). Treatments included acute systemic administration of sumatriptan (1 mg/kg) and repeated systemic administration of a mouse anti-calcitonin gene-related peptide monoclonal antibody (30 mg/kg). Serum levels of calcitonin gene-related peptide were measured at baseline and at various time points post head injury in new cohorts of females (n = 38) and males (n = 36). RESULTS Female rats subjected to a mild closed head injury developed cutaneous mechanical hyperalgesia, which was limited to the cephalic region and was resolved 4 weeks later. Cephalic pain hypersensitivity was ameliorated by treatment with sumatriptan but was resistant to an early and prolonged treatment with the anti-calcitonin gene-related peptide monoclonal antibody. Following the resolution of the head injury-evoked cephalic hypersensitivity, administration of glyceryl trinitrate produced a renewed and pronounced cephalic and extracephalic pain hypersensitivity that was inhibited by sumatriptan, but only partially by the anti-calcitonin gene-related peptide treatment. Calcitonin gene-related peptide serum levels were elevated in females but not in males at 7 days post head injury. CONCLUSIONS Development of post-traumatic headache-like pain behaviors following a mild closed head injury, and responsiveness to treatment in rats is sexually dimorphic. When compared to the data obtained from male rats in the previous study, female rats display a prolonged state of cephalic hyperalgesia, increased responsiveness to a headache trigger, and a poorer effectiveness of an early and prolonged anti-calcitonin gene-related peptide treatment. The increased risk of females to develop post-traumatic headache may be linked to enhanced responsiveness of peripheral and/or central pain pathways and a mechanism independent of peripheral calcitonin gene-related peptide signaling.
Collapse
Affiliation(s)
- Dara Bree
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Centre, Harvard Medical School, Boston, MA, USA
| | | | | | - Dan Levy
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Centre, Harvard Medical School, Boston, MA, USA.,Teva Biologics, Redwood City, CA, USA
| |
Collapse
|
16
|
Torsney C. Inflammatory pain neural plasticity. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Morphological and functional properties distinguish the substance P and gastrin-releasing peptide subsets of excitatory interneuron in the spinal cord dorsal horn. Pain 2019; 160:442-462. [PMID: 30247267 PMCID: PMC6330098 DOI: 10.1097/j.pain.0000000000001406] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Supplemental Digital Content is Available in the Text. Superficial dorsal horn excitatory interneuron populations, as identified by neuropeptide expression, differ in morphological, electrophysiological, and pharmacological properties. This has implications for understanding pain processing. Excitatory interneurons account for the majority of neurons in the superficial dorsal horn, but despite their presumed contribution to pain and itch, there is still limited information about their organisation and function. We recently identified 2 populations of excitatory interneuron defined by expression of gastrin-releasing peptide (GRP) or substance P (SP). Here, we demonstrate that these cells show major differences in their morphological, electrophysiological, and pharmacological properties. Based on their somatodendritic morphology and firing patterns, we propose that the SP cells correspond to radial cells, which generally show delayed firing. By contrast, most GRP cells show transient or single-spike firing, and many are likely to correspond to the so-called transient central cells. Unlike the SP cells, few of the GRP cells had long propriospinal projections, suggesting that they are involved primarily in local processing. The 2 populations also differed in responses to neuromodulators, with most SP cells, but few GRP cells, responding to noradrenaline and 5-HT; the converse was true for responses to the μ-opioid agonist DAMGO. Although a recent study suggested that GRP cells are innervated by nociceptors and are strongly activated by noxious stimuli, we found that very few GRP cells receive direct synaptic input from TRPV1-expressing afferents, and that they seldom phosphorylate extracellular signal–regulated kinases in response to noxious stimuli. These findings indicate that the SP and GRP cells differentially process somatosensory information.
Collapse
|
18
|
Price TJ, Ray PR. Recent advances toward understanding the mysteries of the acute to chronic pain transition. CURRENT OPINION IN PHYSIOLOGY 2019; 11:42-50. [PMID: 32322780 DOI: 10.1016/j.cophys.2019.05.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chronic pain affects up to a third of the population. Ongoing epidemiology studies suggest that the impact of chronic pain on the population is accelerating [1]. While advances have been made in understanding how chronic pain develops, there are still many important mysteries about how acute pain transitions to a chronic state. In this review, I summarize recent developments in the field with a focus on several areas of emerging research that are likely to have an important impact on the field. These include mechanisms of cellular plasticity that drive chronic pain, evidence of pervasive sex differential mechanisms in chronic pain and the profound impact that next generation sequencing technologies are having on this area of research.
Collapse
Affiliation(s)
- Theodore J Price
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies
| | - Pradipta R Ray
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies
| |
Collapse
|
19
|
|
20
|
Bordoni B, Marelli F, Morabito B, Cavallaro F, Lintonbon D. Fascial preadipocytes: another missing piece of the puzzle to understand fibromyalgia? Open Access Rheumatol 2018; 10:27-32. [PMID: 29750060 PMCID: PMC5935082 DOI: 10.2147/oarrr.s155919] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Fibromyalgia (FM) syndrome is a chronic condition causing pain, affecting approximately 0.5%-6% of the developed countries' population, and on average, 2% of the worldwide population. Despite the large amount of scientific literature available, the FM etiology is still uncertain. The diagnosis is based on the clinical presentation and the severity of the symptomatology. Several studies pointed out pathological alterations within the central nervous system, suggesting that FM could originate from a central sensitization of the pain processing centers. Research supports the thesis of a peripheral neuropathic component, with the finding of axonal damages. The fibromyalgia patient has many myofascial system abnormalities, such as pain and fatigue, impairing the symptomatic profile. This paper revises the myopathic compensations, highlighting the possible role of the fascia in generating symptoms, being aware of the new information about the fascia's activity in stimulating inflammation and fat cell production.
Collapse
Affiliation(s)
- Bruno Bordoni
- Foundation Don Carlo Gnocchi IRCCS, Department of Cardiology, Institute of Hospitalization and Care with Scientific, Milan, Italy
| | - Fabiola Marelli
- CRESO, School of Osteopathic Center for Research and Studies, Department of Fascial Osteopathic Research: FORe, Gorla Minore, Italy
- CRESO, School of Osteopathic Center for Research and Studies, Department of Fascial Osteopathic Research, Fano, Italy
| | - Bruno Morabito
- CRESO, School of Osteopathic Center for Research and Studies, Department of Fascial Osteopathic Research: FORe, Gorla Minore, Italy
- CRESO, School of Osteopathic Center for Research and Studies, Department of Fascial Osteopathic Research, Fano, Italy
- Sapienza University of Rome, Department of Radiological, Oncological and Anatomopathological Sciences, Rome, Italy
| | | | - David Lintonbon
- London School of Osteopathy, Department of Osteopathic Technique, London, UK
| |
Collapse
|
21
|
|
22
|
|
23
|
Galley HF, McCormick B, Wilson KL, Lowes DA, Colvin L, Torsney C. Melatonin limits paclitaxel-induced mitochondrial dysfunction in vitro and protects against paclitaxel-induced neuropathic pain in the rat. J Pineal Res 2017; 63:e12444. [PMID: 28833461 PMCID: PMC5656911 DOI: 10.1111/jpi.12444] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/18/2017] [Indexed: 12/29/2022]
Abstract
Chemotherapy-induced neuropathic pain is a debilitating and common side effect of cancer treatment. Mitochondrial dysfunction associated with oxidative stress in peripheral nerves has been implicated in the underlying mechanism. We investigated the potential of melatonin, a potent antioxidant that preferentially acts within mitochondria, to reduce mitochondrial damage and neuropathic pain resulting from the chemotherapeutic drug paclitaxel. In vitro, paclitaxel caused a 50% reduction in mitochondrial membrane potential and metabolic rate, independent of concentration (20-100 μmol/L). Mitochondrial volume was increased dose-dependently by paclitaxel (200% increase at 100 μmol/L). These effects were prevented by co-treatment with 1 μmol/L melatonin. Paclitaxel cytotoxicity against cancer cells was not affected by co-exposure to 1 μmol/L melatonin of either the breast cancer cell line MCF-7 or the ovarian carcinoma cell line A2780. In a rat model of paclitaxel-induced painful peripheral neuropathy, pretreatment with oral melatonin (5/10/50 mg/kg), given as a daily bolus dose, was protective, dose-dependently limiting development of mechanical hypersensitivity (19/43/47% difference from paclitaxel control, respectively). Melatonin (10 mg/kg/day) was similarly effective when administered continuously in drinking water (39% difference). Melatonin also reduced paclitaxel-induced elevated 8-isoprostane F2 α levels in peripheral nerves (by 22% in sciatic; 41% in saphenous) and limited paclitaxel-induced reduction in C-fibre activity-dependent slowing (by 64%). Notably, melatonin limited the development of mechanical hypersensitivity in both male and female animals (by 50/41%, respectively), and an additive effect was found when melatonin was given with the current treatment, duloxetine (75/62% difference, respectively). Melatonin is therefore a potential treatment to limit the development of painful neuropathy resulting from chemotherapy treatment.
Collapse
Affiliation(s)
- Helen F. Galley
- Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Barry McCormick
- Institute of Medical SciencesUniversity of AberdeenAberdeenUK
- Centre for Integrative PhysiologyEdinburgh Medical School: Biomedical SciencesUniversity of EdinburghEdinburghUK
| | - Kirsten L. Wilson
- Centre for Integrative PhysiologyEdinburgh Medical School: Biomedical SciencesUniversity of EdinburghEdinburghUK
| | - Damon A. Lowes
- Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Lesley Colvin
- Department of Anaesthesia, Critical Care and Pain MedicineUniversity of EdinburghEdinburghUK
| | - Carole Torsney
- Centre for Integrative PhysiologyEdinburgh Medical School: Biomedical SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|