1
|
Chen H, Noor MS, Bingham CS, McIntyre CC. Optimization of an anatomically and electrically detailed rodent subthalamic nucleus neuron model. J Neurophysiol 2024; 132:136-146. [PMID: 38863430 PMCID: PMC11383608 DOI: 10.1152/jn.00287.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 06/05/2024] [Indexed: 06/13/2024] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for Parkinson's disease, but its mechanisms of action remain unclear. Detailed multicompartment computational models of STN neurons are often used to study how DBS electric fields modulate the neurons. However, currently available STN neuron models have some limitations in their biophysical realism. In turn, the goal of this study was to update a detailed rodent STN neuron model originally developed by Gillies and Willshaw in 2006. Our design requirements consisted of explicitly representing an axon connected to the neuron and updating the ion channel distributions based on the experimental literature to match established electrophysiological features of rodent STN neurons. We found that adding an axon to the STN neuron model substantially altered its firing characteristics. We then used a genetic algorithm to optimize biophysical parameters of the model. The updated model exhibited spontaneous firing, action potential shape, hyperpolarization response, and frequency-current curve that aligned well with experimental recordings from STN neurons. Subsequently, we evaluated the general compatibility of the updated biophysics by applying them to 26 different STN neuron morphologies derived from three-dimensional anatomical reconstructions. The different morphologies affected the firing behavior of the model, but the updated biophysics were robustly capable of maintaining the desired electrophysiological features. The new STN neuron model developed in this work offers a valuable tool for studying STN neuron firing properties and may find application in simulating STN local field potentials and analyzing the effects of STN DBS.NEW & NOTEWORTHY This study presents an anatomically and biophysically realistic rodent STN neuron model. The work showcases the use of a genetic algorithm to optimize the model parameters. We noted a substantial influence of the axon on the electrophysiological characteristics of STN neurons. The updated model offers a valuable tool to investigate the firing of STN neurons and their modulation by intrinsic and/or extrinsic factors.
Collapse
Affiliation(s)
- Hengji Chen
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | - M Sohail Noor
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | - Clayton S Bingham
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | - Cameron C McIntyre
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
- Department of Neurosurgery, Duke University, Durham, North Carolina, United States
| |
Collapse
|
2
|
Tiryaki ES, Arslan G, Günaydın C, Ayyıldız M, Ağar E. The role of HCN channels on the effects of T-type calcium channels and GABA A receptors in the absence epilepsy model of WAG/Rij rats. Pflugers Arch 2024; 476:337-350. [PMID: 38159130 DOI: 10.1007/s00424-023-02900-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
In this study we used ivabradine (IVA), a hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blocker, to identify its effect on spike-wave discharges (SWDs); and aimed to determine the role of IVA on the effects of T-type calcium channel blocker NNC 55-0396, GABAA receptor agonist muscimol and antagonist bicuculline in male WAG/Rij rats. After tripolar electrodes for electrocorticogram (ECoG) recordings were placed on the WAG/Rij rats' skulls, 5, 10, and 20 mg/kg IVA were intraperitoneally administered for 7 consecutive days and ECoG recordings were obtained on days 0th, 3rd, 6th, and 7th for three hours before and after injections. While acute injection of 5, 10, and 20 mg/kg IVA did not affect the total number and the mean duration of SWDs, subacute administration (7 days) of IVA decreased the SWDs parameters 24 hours after the 7th injection. Interestingly, when IVA was administered again 24 hours after the 6th IVA injection, it increased the SWDs parameters. Western-blot analyses showed that HCN1 and HCN2 expressions decreased and HCN4 increased in the 5-month-old WAG/Rij rats compared to the 1-month-old WAG/Rij and 5-month-old native Wistar rats, while subacute IVA administration increased the levels of HCN1 and HCN2 channels, except HCN4. Subacute administration of IVA reduced the antiepileptic activity of NNC, while the proepileptic activity of muscimol and the antiepileptic activity of bicuculline were abolished. It might be suggested that subacute IVA administration reduces absence seizures by changing the HCN channel expressions in WAG/Rij rats, and this affects the T-type calcium channels and GABAA receptors.
Collapse
Affiliation(s)
- Emre Soner Tiryaki
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayıs, Samsun, Türkiye
| | - Gökhan Arslan
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayıs, Samsun, Türkiye.
| | - Caner Günaydın
- Department of Pharmacology, Faculty of Medicine, University of Samsun, Samsun, Türkiye
| | - Mustafa Ayyıldız
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayıs, Samsun, Türkiye
| | - Erdal Ağar
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayıs, Samsun, Türkiye
| |
Collapse
|
3
|
Xu W, Wang J, Li XN, Liang J, Song L, Wu Y, Liu Z, Sun B, Li WG. Neuronal and synaptic adaptations underlying the benefits of deep brain stimulation for Parkinson's disease. Transl Neurodegener 2023; 12:55. [PMID: 38037124 PMCID: PMC10688037 DOI: 10.1186/s40035-023-00390-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/19/2023] [Indexed: 12/02/2023] Open
Abstract
Deep brain stimulation (DBS) is a well-established and effective treatment for patients with advanced Parkinson's disease (PD), yet its underlying mechanisms remain enigmatic. Optogenetics, primarily conducted in animal models, provides a unique approach that allows cell type- and projection-specific modulation that mirrors the frequency-dependent stimulus effects of DBS. Opto-DBS research in animal models plays a pivotal role in unraveling the neuronal and synaptic adaptations that contribute to the efficacy of DBS in PD treatment. DBS-induced neuronal responses rely on a complex interplay between the distributions of presynaptic inputs, frequency-dependent synaptic depression, and the intrinsic excitability of postsynaptic neurons. This orchestration leads to conversion of firing patterns, enabling both antidromic and orthodromic modulation of neural circuits. Understanding these mechanisms is vital for decoding position- and programming-dependent effects of DBS. Furthermore, patterned stimulation is emerging as a promising strategy yielding long-lasting therapeutic benefits. Research on the neuronal and synaptic adaptations to DBS may pave the way for the development of more enduring and precise modulation patterns. Advanced technologies, such as adaptive DBS or directional electrodes, can also be integrated for circuit-specific neuromodulation. These insights hold the potential to greatly improve the effectiveness of DBS and advance PD treatment to new levels.
Collapse
Affiliation(s)
- Wenying Xu
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jie Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xin-Ni Li
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Jingxue Liang
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Lu Song
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhenguo Liu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Wei-Guang Li
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
- Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
4
|
Peng JY, Shen KL, Fan XJ, Qi ZX, Huang HW, Jiang JL, Lu JH, Wang XQ, Fang XX, Yuan WR, Deng QX, Chen S, Chen L, Zhuang QX. Receptor and Ionic Mechanism of Histamine on Mouse Dorsolateral Striatal Neurons. Mol Neurobiol 2023; 60:183-202. [PMID: 36245064 DOI: 10.1007/s12035-022-03076-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/08/2022] [Indexed: 12/30/2022]
Abstract
The dorsolateral striatum (DLS) is the critical neural substrate that plays a role in motor control and motor learning. Our past study revealed a direct histaminergic projection from the tuberomammillary nucleus (TMN) of the hypothalamus to the rat striatum. However, the afferent of histaminergic fibers in the mouse DLS, the effect of histamine on DLS neurons, and the underlying receptor and ionic mechanisms remain unclear. Here, we demonstrated a direct histaminergic innervation from the TMN in the mouse DLS, and histamine excited both the direct-pathway spiny projection neurons (d-SPNs) and the indirect-pathway spiny projection neurons (i-SPNs) of DLS via activation of postsynaptic H1R and H2R, albeit activation of presynaptic H3R suppressed neuronal activity by inhibiting glutamatergic synaptic transmission on d-SPNs and i-SPNs in DLS. Moreover, sodium-calcium exchanger 3 (NCX3), potassium-leak channels linked to H1R, and hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) coupled to H2R co-mediated the excitatory effect induced by histamine on d-SPNs and i-SPNs in DLS. These results demonstrated the pre- and postsynaptic receptors and their downstream multiple ionic mechanisms underlying the inhibitory and excitatory effects of histamine on d-SPNs and i-SPNs in DLS, suggesting a potential modulatory effect of the central histaminergic system on the DLS as well as its related motor control and motor learning.
Collapse
Affiliation(s)
- Jian-Ya Peng
- Department of Physiology, School of Medicine, and Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Kang-Li Shen
- Department of Physiology, School of Medicine, and Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Xiu-Juan Fan
- Department of Physiology, School of Medicine, and Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Zeng-Xin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200030, China.,National Center for Neurological Disorders, Shanghai, 200030, China.,Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200030, China
| | - Hui-Wei Huang
- Department of Physiology, School of Medicine, and Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Jian-Lan Jiang
- Department of Physiology, School of Medicine, and Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Jian-Hua Lu
- Department of Physiology, School of Medicine, and Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Xiao-Qin Wang
- Department of Physiology, School of Medicine, and Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Xiao-Xia Fang
- Department of Physiology, School of Medicine, and Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Wang-Rui Yuan
- Department of Physiology, School of Medicine, and Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Qiao-Xuan Deng
- Department of Physiology, School of Medicine, and Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Shu Chen
- Department of Physiology, School of Medicine, and Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200030, China. .,National Center for Neurological Disorders, Shanghai, 200030, China. .,Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200030, China. .,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200030, China.
| | - Qian-Xing Zhuang
- Department of Physiology, School of Medicine, and Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
5
|
Qi ZX, Shen KL, Peng JY, Fan XJ, Huang HW, Jiang JL, Lu JH, Wang XQ, Fang XX, Chen L, Zhuang QX. Histamine bidirectionally regulates the intrinsic excitability of parvalbumin-positive neurons in the lateral globus pallidus and promotes motor behaviour. Br J Pharmacol 2022; 180:1379-1407. [PMID: 36512485 DOI: 10.1111/bph.16010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Parvalbumin (PV)-positive neurons are a type of neuron in the lateral globus pallidus (LGP) which plays an important role in motor control. The present study investigated the effect of histamine on LGPPV neurons and motor behaviour. EXPERIMENTAL APPROACH Histamine levels in LGP as well as its histaminergic innervation were determined through brain stimulation, microdialysis, anterograde tracing and immunostaining. Mechanisms of histamine action were detected by immunostaining, single-cell qPCR, whole-cell patch-clamp recording, optogenetic stimulation and CRISPR/Cas9 gene-editing techniques. The effect of histamine on motor behaviour was detected by animal behavioural tests. KEY RESULTS A direct histaminergic innervation in LGP from the tuberomammillary nucleus (TMN) and a histamine-induced increase in the intrinsic excitability of LGPPV neurons were determined by pharmacological blockade or by genetic knockout of the histamine H1 receptor (H1 R)-coupled TWIK-related potassium channel-1 (TREK-1) and the small-conductance calcium-activated potassium channel (SK3), as well as by activation or overexpression of the histamine H2 receptor (H2 R)-coupled hyperpolarization-activated cyclic nucleotide-gated channel (HCN2). Histamine negatively regulated the STN → LGPGlu transmission in LGPPV neurons via the histamine H3 receptor (H3 R), whereas blockage or knockout of H3 R increased the intrinsic excitability of LGPPV neurons. CONCLUSIONS AND IMPLICATIONS Our results indicated that the endogenous histaminergic innervation in the LGP can bidirectionally promote motor control by increasing the intrinsic excitability of LGPPV neurons through postsynaptic H1 R and H2 R, albeit its action was negatively regulated by the presynaptic H3 R, thereby suggesting possible role of histamine in motor deficits manifested in Parkinson's disease (PD).
Collapse
Affiliation(s)
- Zeng-Xin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Kang-Li Shen
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Jian-Ya Peng
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xiu-Juan Fan
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Hui-Wei Huang
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Jian-Lan Jiang
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Jian-Hua Lu
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xiao-Qin Wang
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xiao-Xia Fang
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Qian-Xing Zhuang
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
6
|
Xiao C, Ji YW, Luan YW, Jia T, Yin C, Zhou CY. Differential modulation of subthalamic projection neurons by short-term and long-term electrical stimulation in physiological and parkinsonian conditions. Acta Pharmacol Sin 2022; 43:1928-1939. [PMID: 34880404 PMCID: PMC9343451 DOI: 10.1038/s41401-021-00811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/31/2021] [Indexed: 11/09/2022] Open
Abstract
The subthalamic nucleus (STN) is one of the best targets for therapeutic deep brain stimulation (DBS) to control motor symptoms in Parkinson's disease. However, the precise circuitry underlying the effects of STN-DBS remains unclear. To understand how electrical stimulation affects STN projection neurons, we used a retrograde viral vector (AAV-retro-hSyn-eGFP) to label STN neurons projecting to the substantia nigra pars reticulata (SNr) (STN-SNr neurons) or the globus pallidus interna (GPi) (STN-GPi neurons) in mice, and performed whole-cell patch-clamp recordings from these projection neurons in ex vivo brain slices. We found that STN-SNr neurons exhibited stronger responses to depolarizing stimulation than STN-GPi neurons. In most STN-SNr and STN-GPi neurons, inhibitory synaptic inputs predominated over excitatory inputs and electrical stimulation at 20-130 Hz inhibited these neurons in the short term; its longer-term effects varied. 6-OHDA lesion of the nigrostriatal dopaminergic pathway significantly reduced inhibitory synaptic inputs in STN-GPi neurons, but did not change synaptic inputs in STN-SNr neurons; it enhanced short-term electrical-stimulation-induced inhibition in STN-SNr neurons but reversed the effect of short-term electrical stimulation on the firing rate in STN-GPi neurons from inhibitory to excitatory; in both STN-SNr and STN-GPi neurons, it increased the inhibition but attenuated the enhancement of firing rate induced by long-term electrical stimulation. Our results suggest that STN-SNr and STN-GPi neurons differ in their synaptic inputs, their responses to electrical stimulation, and their modification under parkinsonian conditions; STN-GPi neurons may play important roles in both the pathophysiology and therapeutic treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Cheng Xiao
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China. .,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China. .,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Ya-wei Ji
- grid.417303.20000 0000 9927 0537Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004 China
| | - Yi-wen Luan
- grid.417303.20000 0000 9927 0537Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004 China ,grid.460176.20000 0004 1775 8598Department of Anesthesiology, Wuxi People’s Hospital, Wuxi, 214023 China
| | - Tao Jia
- grid.417303.20000 0000 9927 0537Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004 China
| | - Cui Yin
- grid.417303.20000 0000 9927 0537Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004 China ,grid.417303.20000 0000 9927 0537Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004 China ,grid.417303.20000 0000 9927 0537NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004 China
| | - Chun-yi Zhou
- grid.417303.20000 0000 9927 0537Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004 China ,grid.417303.20000 0000 9927 0537Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004 China ,grid.417303.20000 0000 9927 0537NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004 China
| |
Collapse
|
7
|
Park C, Rubchinsky LL, Ahn S. Mathematical model of subthalamic nucleus neuron: Characteristic activity patterns and bifurcation analysis. CHAOS (WOODBURY, N.Y.) 2021; 31:113121. [PMID: 34881610 DOI: 10.1063/5.0059773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
The subthalamic nucleus (STN) has an important role in the pathophysiology of the basal ganglia in Parkinson's disease. The ability of STN cells to generate bursting rhythms under either transient or sustained hyperpolarization may underlie the excessively synchronous beta rhythms observed in Parkinson's disease. In this study, we developed a conductance-based single compartment model of an STN neuron, which is able to generate characteristic activity patterns observed in experiments including hyperpolarization-induced bursts and post-inhibitory rebound bursts. This study focused on the role of three currents in rhythm generation: T-type calcium (CaT) current, L-type calcium (CaL) current, and hyperpolarization-activated cyclic nucleotide-gated (HCN) current. To investigate the effects of these currents in rhythm generation, we performed a bifurcation analysis using slow variables in these currents. Bifurcation analysis showed that the HCN current promotes single-spike activity patterns rather than bursting in agreement with experimental results. It also showed that the CaT current is necessary for characteristic bursting activity patterns. In particular, the CaT current enables STN neurons to generate these activity patterns under hyperpolarizing stimuli. The CaL current enriches and reinforces these characteristic activity patterns. In hyperpolarization-induced bursts or post-inhibitory rebound bursts, the CaL current allows STN neurons to generate long bursting patterns. Thus, the bifurcation analysis explained the synergistic interaction of the CaT and CaL currents, which enables STN neurons to respond to hyperpolarizing stimuli in a salient way. The results of this study implicate the importance of CaT and CaL currents in the pathophysiology of the basal ganglia in Parkinson's disease.
Collapse
Affiliation(s)
- Choongseok Park
- Department of Mathematics and Statistics, North Carolina A&T State University, Greensboro, North Carolina 27411, USA
| | - Leonid L Rubchinsky
- Department of Mathematical Sciences, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, USA
| | - Sungwoo Ahn
- Department of Mathematics, East Carolina University, Greenville, North Carolina 27858, USA
| |
Collapse
|
8
|
Combe CL, Gasparini S. I h from synapses to networks: HCN channel functions and modulation in neurons. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 166:119-132. [PMID: 34181891 DOI: 10.1016/j.pbiomolbio.2021.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 01/16/2023]
Abstract
Hyperpolarization-activated cyclic nucleotide gated (HCN) channels and the current they carry, Ih, are widely and diversely distributed in the central nervous system (CNS). The distribution of the four subunits of HCN channels is variable within the CNS, within brain regions, and often within subcellular compartments. The precise function of Ih can depend heavily on what other channels are co-expressed. In this review, we give an overview of HCN channel structure, distribution, and modulation by cyclic adenosine monophosphate (cAMP). We then discuss HCN channel and Ih functions, where we have parsed the roles into two main effects: a steady effect on maintaining the resting membrane potential at relatively depolarized values, and slow channel dynamics. Within this framework, we discuss Ih involvement in resonance, synaptic integration, transmitter release, plasticity, and point out a special case, where the effects of Ih on the membrane potential and its slow channel dynamics have dual roles in thalamic neurons.
Collapse
Affiliation(s)
- Crescent L Combe
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Sonia Gasparini
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
9
|
Sciamanna G, Ponterio G, Vanni V, Laricchiuta D, Martella G, Bonsi P, Meringolo M, Tassone A, Mercuri NB, Pisani A. Optogenetic Activation of Striatopallidal Neurons Reveals Altered HCN Gating in DYT1 Dystonia. Cell Rep 2021; 31:107644. [PMID: 32433955 DOI: 10.1016/j.celrep.2020.107644] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 12/10/2019] [Accepted: 04/20/2020] [Indexed: 12/30/2022] Open
Abstract
Firing activity of external globus pallidus (GPe) is crucial for motor control and is severely perturbed in dystonia, a movement disorder characterized by involuntary, repetitive muscle contractions. Here, we show that GPe projection neurons exhibit a reduction of firing frequency and an irregular pattern in a DYT1 dystonia model. Optogenetic activation of the striatopallidal pathway fails to reset pacemaking activity of GPe neurons in mutant mice. Abnormal firing is paralleled by alterations in motor learning. We find that loss of dopamine D2 receptor-dependent inhibition causes increased GABA input at striatopallidal synapses, with subsequent downregulation of hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels. Accordingly, enhancing in vivo HCN channel activity or blocking GABA release restores both the ability of striatopallidal inputs to pause ongoing GPe activity and motor coordination deficits. Our findings demonstrate an impaired striatopallidal connectivity, supporting the central role of GPe in motor control and, more importantly, identifying potential pharmacological targets for dystonia.
Collapse
Affiliation(s)
- Giuseppe Sciamanna
- Department of Systems Medicine, University of Rome "Tor Vergata," Rome, Italy; Lab of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giulia Ponterio
- Department of Systems Medicine, University of Rome "Tor Vergata," Rome, Italy
| | - Valentina Vanni
- Lab of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Daniela Laricchiuta
- Department of Psychology, Faculty of Medicine and Psychology, University of Rome Sapienza, Rome, Italy; Lab of Behavioural and Experimental Neurophysiology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppina Martella
- Lab of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Paola Bonsi
- Lab of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Maria Meringolo
- Department of Systems Medicine, University of Rome "Tor Vergata," Rome, Italy
| | - Annalisa Tassone
- Lab of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome "Tor Vergata," Rome, Italy; Lab of Experimental Neurology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Antonio Pisani
- Department of Systems Medicine, University of Rome "Tor Vergata," Rome, Italy; Lab of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
10
|
Changes in Excitability Properties of Ventromedial Motor Thalamic Neurons in 6-OHDA Lesioned Mice. eNeuro 2021; 8:ENEURO.0436-20.2021. [PMID: 33509950 PMCID: PMC7920540 DOI: 10.1523/eneuro.0436-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 12/12/2022] Open
Abstract
The activity of basal ganglia input receiving motor thalamus (BGMT) makes a critical impact on motor cortical processing, but modification in BGMT processing with Parkinsonian conditions has not be investigated at the cellular level. Such changes may well be expected because of homeostatic regulation of neural excitability in the presence of altered synaptic drive with dopamine depletion. We addressed this question by comparing BGMT properties in brain slice recordings between control and unilaterally 6-hydroxydopamine hydrochloride (6-OHDA)-treated adult mice. At a minimum of one month after 6-OHDA treatment, BGMT neurons showed a highly significant increase in intrinsic excitability, which was primarily because of a decrease in M-type potassium current. BGMT neurons after 6-OHDA treatment also showed an increase in T-type calcium rebound spikes following hyperpolarizing current steps. Biophysical computer modeling of a thalamic neuron demonstrated that an increase in rebound spiking can also be accounted for by a decrease in the M-type potassium current. Modeling also showed that an increase in sag with hyperpolarizing steps found after 6-OHDA treatment could in part but not fully be accounted for by the decrease in M-type current. These findings support the hypothesis that homeostatic changes in BGMT neural properties following 6-OHDA treatment likely influence the signal processing taking place in the BG thalamocortical network in Parkinson’s disease.
Collapse
|
11
|
Santoro B, Shah MM. Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels as Drug Targets for Neurological Disorders. Annu Rev Pharmacol Toxicol 2020; 60:109-131. [PMID: 31914897 DOI: 10.1146/annurev-pharmtox-010919-023356] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are voltage-gated ion channels that critically modulate neuronal activity. Four HCN subunits (HCN1-4) have been cloned, each having a unique expression profile and distinctive effects on neuronal excitability within the brain. Consistent with this, the expression and function of these subunits are altered in diverse ways in neurological disorders. Here, we review current knowledge on the structure and distribution of the individual HCN channel isoforms, their effects on neuronal activity under physiological conditions, and how their expression and function are altered in neurological disorders, particularly epilepsy, neuropathic pain, and affective disorders. We discuss the suitability of HCN channels as therapeutic targets and how drugs might be strategically designed to specifically act on particular isoforms. We conclude that medicines that target individual HCN isoforms and/or their auxiliary subunit, TRIP8b, may provide valuable means of treating distinct neurological conditions.
Collapse
Affiliation(s)
- Bina Santoro
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Mala M Shah
- Department of Pharmacology, School of Pharmacy, University College London, London WC1N 1AX, United Kingdom;
| |
Collapse
|
12
|
Trompoukis G, Rigas P, Leontiadis LJ, Papatheodoropoulos C. I h, GIRK, and KCNQ/Kv7 channels differently modulate sharp wave - ripples in the dorsal and ventral hippocampus. Mol Cell Neurosci 2020; 107:103531. [PMID: 32711112 DOI: 10.1016/j.mcn.2020.103531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/11/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022] Open
Abstract
Sharp waves and ripples (SPW-Rs) are endogenous transient patterns of hippocampus local network activity implicated in several functions including memory consolidation, and they are diversified between the dorsal and the ventral hippocampus. Ion channels in the neuronal membrane play important roles in cell and local network function. In this study, using transverse slices and field potential recordings from the CA1 field of rat hippocampus we show that GIRK and KCNQ2/3 potassium channels play a higher role in modulating SPW-Rs in the dorsal hippocampus, while Ih and other KCNQ (presumably KCNQ5) channels, contribute to shaping SPW-R activity more in the ventral than in dorsal hippocampus. Specifically, blockade of Ih channels by ZD 7288 reduced the rate of occurrence of SPW-Rs and increased the generation of SPW-Rs in the form of clusters in both hippocampal segments, while enhanced the amplitude of SPW-Rs only in the ventral hippocampus. Most effects of ZD 7288 appeared to be independent of NMDA receptors' activity. However, the effects of blockade of NMDA receptors depended on the functional state of Ih channels in both hippocampal segments. Blockade of GIRK channels by Tertiapin-Q increased the rate of occurrence of SPW-Rs only in the dorsal hippocampus and the probability of clusters in both segments of the hippocampus. Blockade of KCNQ2/3 channels by XE 991 increased the rate of occurrence of SPW-Rs and the probability of clusters in the dorsal hippocampus, and only reduced the clustered generation of SPW-Rs in the ventral hippocampus. The blocker of KCNQ1/2 channels, that also enhances KCNQ5 channels, UCL 2077, increased the probability of clusters and the power of the ripple oscillation in the ventral hippocampus only. These results suggest that GIRK, KCNQ and Ih channels represent a key mechanism for modulation of SPW-R activity which act differently in the dorsal and ventral hippocampus, fundamentally supporting functional diversification along the dorsal-ventral axis of the hippocampus.
Collapse
Affiliation(s)
- George Trompoukis
- Laboratory of Physiology, Department of Medicine, University of Patras, Rion, Greece
| | - Pavlos Rigas
- Laboratory of Physiology, Department of Medicine, University of Patras, Rion, Greece
| | - Leonidas J Leontiadis
- Laboratory of Physiology, Department of Medicine, University of Patras, Rion, Greece
| | | |
Collapse
|
13
|
Hao XM, Xu R, Chen AQ, Sun FJ, Wang Y, Liu HX, Chen H, Xue Y, Chen L. Endogenous HCN Channels Modulate the Firing Activity of Globus Pallidus Neurons in Parkinsonian Animals. Front Aging Neurosci 2019; 11:190. [PMID: 31402860 PMCID: PMC6670024 DOI: 10.3389/fnagi.2019.00190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/11/2019] [Indexed: 11/13/2022] Open
Abstract
The globus pallidus occupies a critical position in the indirect pathway of the basal ganglia motor control system. Hyperpolarization-activated cyclic-nucleotide gated (HCN) channels play an important role in the modulation of neuronal excitability. In vivo extracellular single unit recording, behavioral test and immunohistochemistry were performed to explore the possible modulation of endogenous HCN channels in the globus pallidus under parkinsonian states. In MPTP parkinsonian mice, micro-pressure application of the selective HCN channel antagonist, ZD7288, decreased the firing rate in 10 out of the 28 pallidal neurons, while increased the firing rate in another 15 out of the 28 neurons. In 6-OHDA parkinsonian rats, ZD7288 also bidirectionally regulated the spontaneous firing activity of the globus pallidus neurons. The proportion of pallidal neurons with ZD7288-induced slowing of firing rate tended to reduce in both parkinsonian animals. Morphological studies revealed a weaker staining of HCN channels in the globus pallidus under parkinsonian state. Finally, behavioral study demonstrated that intrapallidal microinjection of ZD7288 alleviated locomotor deficits in MPTP parkinsonian mice. These results suggest that endogenous HCN channels modulate the activities of pallidal neurons under parkinsonian states.
Collapse
Affiliation(s)
- Xiao-Meng Hao
- Department of Physiology, Qingdao University, Qingdao, China
| | - Rong Xu
- Department of Physiology, Qingdao University, Qingdao, China
| | - An-Qi Chen
- Department of Physiology, Qingdao University, Qingdao, China
| | - Feng-Jiao Sun
- Department of Physiology, Qingdao University, Qingdao, China
| | - Ying Wang
- Department of Physiology, Qingdao University, Qingdao, China
| | - Hong-Xia Liu
- Department of Physiology, Qingdao University, Qingdao, China
| | - Hua Chen
- Department of Pathology, Qingdao Municipal Hospital, Qingdao, China
| | - Yan Xue
- Department of Physiology, Qingdao University, Qingdao, China
| | - Lei Chen
- Department of Physiology, Qingdao University, Qingdao, China
| |
Collapse
|
14
|
Chang X, Wang J, Jiang H, Shi L, Xie J. Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels: An Emerging Role in Neurodegenerative Diseases. Front Mol Neurosci 2019; 12:141. [PMID: 31231190 PMCID: PMC6560157 DOI: 10.3389/fnmol.2019.00141] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/13/2019] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and spinal muscular atrophy (SMA) are chronic, progressive, and age-associated neurological disorders characterized by neuronal deterioration in specific brain regions. Although the specific pathological mechanisms underlying these disorders have remained elusive, ion channel dysfunction has become increasingly accepted as a potential mechanism for neurodegenerative diseases. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are encoded by the HCN1-4 gene family and conduct the hyperpolarization-activated current (I h). These channels play important roles in modulating cellular excitability, rhythmic activity, dendritic integration, and synaptic transmission. In the present review, we first provide a comprehensive picture of the role of HCN channels in PD by summarizing their role in the regulation of neuronal activity in PD-related brain regions. Dysfunction of I h may participate in 1-methyl-4-phenylpyridinium (MPP+)-induced toxicity and represent a pathogenic mechanism in PD. Given current reports of the critical role of HCN channels in neuroinflammation and depression, we also discussed the putative contribution of HCN channels in inflammatory processes and non-motor symptoms in PD. In the second section, we summarize how HCN channels regulate the formation of β-amyloid peptide in AD and the role of these channels in learning and memory. Finally, we briefly discuss the effects of HCN channels in ALS and SMA based on existing discoveries.
Collapse
Affiliation(s)
- Xiaoli Chang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Jun Wang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Limin Shi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Junxia Xie
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| |
Collapse
|
15
|
Li GY, Zhuang QX, Zhang XY, Wang JJ, Zhu JN. Ionic Mechanisms Underlying the Excitatory Effect of Orexin on Rat Subthalamic Nucleus Neurons. Front Cell Neurosci 2019; 13:153. [PMID: 31105528 PMCID: PMC6499184 DOI: 10.3389/fncel.2019.00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/08/2019] [Indexed: 11/24/2022] Open
Abstract
Central orexinergic system deficiency results in cataplexy, a motor deficit characterized with a sudden loss of muscle tone, highlighting a direct modulatory role of orexin in motor control. However, the neural mechanisms underlying the regulation of orexin on motor function are still largely unknown. The subthalamic nucleus (STN), the only excitatory structure of the basal ganglia, holds a key position in the basal ganglia circuitry and motor control. Previous study has revealed a wide distribution of orexinergic fibers as well as orexin receptors in the basal ganglia including the STN. Therefore, in the present study, by using whole-cell patch clamp recording and immunostaining techniques, the direct effect of orexin on the STN neurons in brain slices, especially the underlying receptor and ionic mechanisms, were investigated. Our results show that orexin-A elicits an excitatory effect on STN neurons in rats. Tetrodotoxin (TTX) does not block the orexin-induced excitation on STN neurons, suggesting a direct postsynaptic action of the neuropeptide. The orexin-A-induced inward current on STN neurons is mediated by the activation of both OX1 and OX2 receptors. Immunofluorescence result shows that OX1 and OX2 receptors are co-expressed and co-localized in STN neurons. Furthermore, Na+-Ca2+ exchangers (NCXs) and inward rectifier K+ channels co-mediate the excitatory effect of orexin-A on STN neurons. These results demonstrate a dual receptor in conjunction with the downstream ionic mechanisms underlying the excitatory action of orexin on STN neurons, suggesting a potential modulation of the central orexinergic system on basal ganglia circuitry as well as its related motor control and motor diseases.
Collapse
Affiliation(s)
- Guang-Ying Li
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qian-Xing Zhuang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
16
|
Zhuang QX, Li GY, Li B, Zhang CZ, Zhang XY, Xi K, Li HZ, Wang JJ, Zhu JN. Regularizing firing patterns of rat subthalamic neurons ameliorates parkinsonian motor deficits. J Clin Invest 2018; 128:5413-5427. [PMID: 30226827 DOI: 10.1172/jci99986] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 09/11/2018] [Indexed: 12/18/2022] Open
Abstract
The subthalamic nucleus (STN) is an effective therapeutic target for deep brain stimulation (DBS) for Parkinson's disease (PD), and histamine levels are elevated in the basal ganglia in PD patients. However, the effect of endogenous histaminergic modulation on STN neuronal activities and the neuronal mechanism underlying STN-DBS are unknown. Here, we report that STN neuronal firing patterns are more crucial than firing rates for motor control. Histamine excited STN neurons, but paradoxically ameliorated parkinsonian motor deficits, which we attributed to regularizing firing patterns of STN neurons via the hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) channel coupled to the H2 receptor. Intriguingly, DBS increased histamine release in the STN and regularized STN neuronal firing patterns under parkinsonian conditions. HCN2 contributed to the DBS-induced regularization of neuronal firing patterns, suppression of excessive β oscillations, and alleviation of motor deficits in PD. The results reveal an indispensable role for regularizing STN neuronal firing patterns in amelioration of parkinsonian motor dysfunction and a functional compensation for histamine in parkinsonian basal ganglia circuitry. The findings provide insights into mechanisms of STN-DBS as well as potential therapeutic targets and STN-DBS strategies for PD.
Collapse
Affiliation(s)
- Qian-Xing Zhuang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, and
| | - Guang-Ying Li
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, and
| | - Bin Li
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, and
| | - Chang-Zheng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, and
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, and
| | - Kang Xi
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, and
| | - Hong-Zhao Li
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, and
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, and.,Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, and.,Institute for Brain Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
17
|
|
18
|
Rubin JE. Computational models of basal ganglia dysfunction: the dynamics is in the details. Curr Opin Neurobiol 2017; 46:127-135. [PMID: 28888856 DOI: 10.1016/j.conb.2017.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/22/2017] [Indexed: 12/18/2022]
Abstract
The development, simulation, and analysis of mathematical models offer helpful tools for integrating experimental findings and exploring or suggesting possible explanatory mechanisms. As models relating to basal ganglia dysfunction have proliferated, however, there has not always been consistency among their findings. This work points out several ways in which biological details, relating to ionic currents and synaptic pathways, can influence the dynamics of models of the basal ganglia under parkinsonian conditions and hence may be important for inclusion in models. It also suggests some additional useful directions for future modeling studies relating to basal ganglia dysfunction.
Collapse
Affiliation(s)
- Jonathan E Rubin
- Department of Mathematics and Center for the Neural Basis of Cognition, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh, PA 15260, USA.
| |
Collapse
|
19
|
Chen L, Serdyuk T, Yang B, Wang S, Chen S, Chu X, Zhang X, Song J, Bao H, Zhou C, Wang X, Dong S, Song L, Chen F, He G, He L, Zhou Y, Li W. Abnormal circadian oscillation of hippocampal MAPK activity and power spectrums in NF1 mutant mice. Mol Brain 2017; 10:29. [PMID: 28673309 PMCID: PMC5496334 DOI: 10.1186/s13041-017-0309-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/15/2017] [Indexed: 11/10/2022] Open
Abstract
Studies have implied that the circadian oscillation of mitogen-activated protein kinase (MAPK) signal pathways is crucial for hippocampus-dependent memory. NF1 mouse models (Nf1 heterozygous null mutants; Nf1 +/-) displayed enhanced MAPK activity in the hippocampus and resulted in memory deficits. We assumed a link between MAPK pathways and hippocampal rhythmic oscillations, which have never been explored in Nf1 +/- mice. We demonstrated that the level of extracellular signal-regulated kinases 1 and 2 (ERK1/2) phosphorylation in Nf1 +/- mice were significantly higher at nighttime than at daytime. Moreover, the in vivo recording revealed that for the Nf1 +/- group, the power spectral density of theta rhythm significantly decreased and the firing rates of pyramidal neurons increased. Our results indicated that the hippocampal MAPK oscillation and theta rhythmic oscillations in Nf1 +/- mice were disturbed and hinted about a possible mechanism for the brain dysfunction in Nf1 +/- mice.
Collapse
Affiliation(s)
- Lei Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Tatiana Serdyuk
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Beimeng Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Shuai Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Shiqing Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Xixia Chu
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Xu Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Jinjing Song
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Hechen Bao
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Chengbin Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Xiang Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Shuangle Dong
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Lulu Song
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Fujun Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Ying Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Weidong Li
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| |
Collapse
|
20
|
Atherton JF, McIver EL, Mullen MR, Wokosin DL, Surmeier DJ, Bevan MD. Early dysfunction and progressive degeneration of the subthalamic nucleus in mouse models of Huntington's disease. eLife 2016; 5. [PMID: 27995895 PMCID: PMC5199195 DOI: 10.7554/elife.21616] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 12/08/2016] [Indexed: 01/05/2023] Open
Abstract
The subthalamic nucleus (STN) is an element of cortico-basal ganglia-thalamo-cortical circuitry critical for action suppression. In Huntington's disease (HD) action suppression is impaired, resembling the effects of STN lesioning or inactivation. To explore this potential linkage, the STN was studied in BAC transgenic and Q175 knock-in mouse models of HD. At <2 and 6 months of age autonomous STN activity was impaired due to activation of KATP channels. STN neurons exhibited prolonged NMDA receptor-mediated synaptic currents, caused by a deficit in glutamate uptake, and elevated mitochondrial oxidant stress, which was ameliorated by NMDA receptor antagonism. STN activity was rescued by NMDA receptor antagonism or the break down of hydrogen peroxide. At 12 months of age approximately 30% of STN neurons had been lost, as in HD. Together, these data argue that dysfunction within the STN is an early feature of HD that may contribute to its expression and course. DOI:http://dx.doi.org/10.7554/eLife.21616.001
Collapse
Affiliation(s)
- Jeremy F Atherton
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Eileen L McIver
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Matthew Rm Mullen
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - David L Wokosin
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Mark D Bevan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| |
Collapse
|
21
|
Hu T, Liu N, Lv M, Ma L, Peng H, Peng S, Liu T. Lidocaine Inhibits HCN Currents in Rat Spinal Substantia Gelatinosa Neurons. Anesth Analg 2016; 122:1048-59. [PMID: 26756913 PMCID: PMC4791316 DOI: 10.1213/ane.0000000000001140] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Lidocaine, which blocks voltage-gated sodium channels, is widely used in surgical anesthesia and pain management. Recently, it has been proposed that the hyperpolarization-activated cyclic nucleotide (HCN) channel is one of the other novel targets of lidocaine. Substantia gelatinosa in the spinal dorsal horn, which plays key roles in modulating nociceptive information from primary afferents, comprises heterogeneous interneurons that can be electrophysiologically categorized by firing pattern. Our previous study demonstrated that a substantial proportion of substantia gelatinosa neurons reveal the presence of HCN current (Ih); however, the roles of lidocaine and HCN channel expression in different types of substantia gelatinosa neurons remain unclear. METHODS By using the whole-cell patch-clamp technique, we investigated the effect of lidocaine on Ih in rat substantia gelatinosa neurons of acute dissociated spinal cord slices. RESULTS We found that lidocaine rapidly decreased the peak Ih amplitude with an IC50 of 80 μM. The inhibition rate on Ih was not significantly different with a second application of lidocaine in the same neuron. Tetrodotoxin, a sodium channel blocker, did not affect lidocaine's effect on Ih. In addition, lidocaine shifted the half-activation potential of Ih from -109.7 to -114.9 mV and slowed activation. Moreover, the reversal potential of Ih was shifted by -7.5 mV by lidocaine. In the current clamp, lidocaine decreased the resting membrane potential, increased membrane resistance, delayed rebound depolarization latency, and reduced the rebound spike frequency. We further found that approximately 58% of substantia gelatinosa neurons examined expressed Ih, in which most of them were tonically firing. CONCLUSIONS Our studies demonstrate that lidocaine strongly inhibits Ih in a reversible and concentration-dependent manner in substantia gelatinosa neurons, independent of tetrodotoxin-sensitive sodium channels. Thus, our study provides new insight into the mechanism underlying the central analgesic effect of the systemic administration of lidocaine.
Collapse
Affiliation(s)
- Tao Hu
- From the Departments of *Pediatrics and †Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China; and ‡Center for Laboratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
22
|
Yang Z, Santamaria F. Purkinje cell intrinsic excitability increases after synaptic long term depression. J Neurophysiol 2016; 116:1208-17. [PMID: 27306677 DOI: 10.1152/jn.00369.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 06/07/2016] [Indexed: 11/22/2022] Open
Abstract
Coding in cerebellar Purkinje cells not only depends on synaptic plasticity but also on their intrinsic membrane excitability. We performed whole cell patch-clamp recordings of Purkinje cells in sagittal cerebellar slices in mice. We found that inducing long-term depression (LTD) in the parallel fiber to Purkinje cell synapses results in an increase in the gain of the firing rate response. This increase in excitability is accompanied by an increase in the input resistance and a decrease in the amplitude of the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel-mediated voltage sag. Application of a HCN channel blocker prevents the increase in input resistance and excitability without blocking the expression of synaptic LTD. We conclude that the induction of parallel fiber-Purkinje cell LTD is accompanied by an increase in excitability of Purkinje cells through downregulation of the HCN-mediated h current. We suggest that HCN downregulation is linked to the biochemical pathway that sustains synaptic LTD. Given the diversity of information carried by the parallel fiber system, we suggest that changes in intrinsic excitability enhance the coding capacity of the Purkinje cell to specific input sources.
Collapse
Affiliation(s)
- Zhen Yang
- UTSA Neurosciences Institute and Department of Biology, University of Texas at San Antonio, San Antonio, Texas
| | - Fidel Santamaria
- UTSA Neurosciences Institute and Department of Biology, University of Texas at San Antonio, San Antonio, Texas
| |
Collapse
|
23
|
Mahadevan V, Woodin MA. Regulation of neuronal chloride homeostasis by neuromodulators. J Physiol 2016; 594:2593-605. [PMID: 26876607 PMCID: PMC4865579 DOI: 10.1113/jp271593] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/10/2016] [Indexed: 01/23/2023] Open
Abstract
KCC2 is the central regulator of neuronal Cl(-) homeostasis, and is critical for enabling strong hyperpolarizing synaptic inhibition in the mature brain. KCC2 hypofunction results in decreased inhibition and increased network hyperexcitability that underlies numerous disease states including epilepsy, neuropathic pain and neuropsychiatric disorders. The current holy grail of KCC2 biology is to identify how we can rescue KCC2 hypofunction in order to restore physiological levels of synaptic inhibition and neuronal network activity. It is becoming increasingly clear that diverse cellular signals regulate KCC2 surface expression and function including neurotransmitters and neuromodulators. In the present review we explore the existing evidence that G-protein-coupled receptor (GPCR) signalling can regulate KCC2 activity in numerous regions of the nervous system including the hypothalamus, hippocampus and spinal cord. We present key evidence from the literature suggesting that GPCR signalling is a conserved mechanism for regulating chloride homeostasis. This evidence includes: (1) the activation of group 1 metabotropic glutamate receptors and metabotropic Zn(2+) receptors strengthens GABAergic inhibition in CA3 pyramidal neurons through a regulation of KCC2; (2) activation of the 5-hydroxytryptamine type 2A serotonin receptors upregulates KCC2 cell surface expression and function, restores endogenous inhibition in motoneurons, and reduces spasticity in rats; and (3) activation of A3A-type adenosine receptors rescues KCC2 dysfunction and reverses allodynia in a model of neuropathic pain. We propose that GPCR-signals are novel endogenous Cl(-) extrusion enhancers that may regulate KCC2 function.
Collapse
Affiliation(s)
- Vivek Mahadevan
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Melanie A Woodin
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
The Global Spike: Conserved Dendritic Properties Enable Unique Ca2+ Spike Generation in Low-Threshold Spiking Neurons. J Neurosci 2016; 35:15505-22. [PMID: 26609149 PMCID: PMC4659821 DOI: 10.1523/jneurosci.2740-15.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Low-threshold Ca2+ spikes (LTS) are an indispensible signaling mechanism for neurons in areas including the cortex, cerebellum, basal ganglia, and thalamus. They have critical physiological roles and have been strongly associated with disorders including epilepsy, Parkinson's disease, and schizophrenia. However, although dendritic T-type Ca2+ channels have been implicated in LTS generation, because the properties of low-threshold spiking neuron dendrites are unknown, the precise mechanism has remained elusive. Here, combining data from fluorescence-targeted dendritic recordings and Ca2+ imaging from low-threshold spiking cells in rat brain slices with computational modeling, the cellular mechanism responsible for LTS generation is established. Our data demonstrate that key somatodendritic electrical conduction properties are highly conserved between glutamatergic thalamocortical neurons and GABAergic thalamic reticular nucleus neurons and that these properties are critical for LTS generation. In particular, the efficiency of soma to dendrite voltage transfer is highly asymmetric in low-threshold spiking cells, and in the somatofugal direction, these neurons are particularly electrotonically compact. Our data demonstrate that LTS have remarkably similar amplitudes and occur synchronously throughout the dendritic tree. In fact, these Ca2+ spikes cannot occur locally in any part of the cell, and hence we reveal that LTS are generated by a unique whole-cell mechanism that means they always occur as spatially global spikes. This all-or-none, global electrical and biochemical signaling mechanism clearly distinguishes LTS from other signals, including backpropagating action potentials and dendritic Ca2+/NMDA spikes, and has important consequences for dendritic function in low-threshold spiking neurons. SIGNIFICANCE STATEMENT Low-threshold Ca2+ spikes (LTS) are critical for important physiological processes, including generation of sleep-related oscillations, and are implicated in disorders including epilepsy, Parkinson's disease, and schizophrenia. However, the mechanism underlying LTS generation in neurons, which is thought to involve dendritic T-type Ca2+ channels, has remained elusive due to a lack of knowledge of the dendritic properties of low-threshold spiking cells. Combining dendritic recordings, two-photon Ca2+ imaging, and computational modeling, this study reveals that dendritic properties are highly conserved between two prominent low-threshold spiking neurons and that these properties underpin a whole-cell somatodendritic spike generation mechanism that makes the LTS a unique global electrical and biochemical signal in neurons.
Collapse
|
25
|
Engel D, Seutin V. High dendritic expression of Ih in the proximity of the axon origin controls the integrative properties of nigral dopamine neurons. J Physiol 2015; 593:4905-22. [PMID: 26350173 DOI: 10.1113/jp271052] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/26/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The hyperpolarization-activated cation current Ih is expressed in dopamine neurons of the substantia nigra, but the subcellular distribution of the current and its role in synaptic integration remain unknown. We used cell-attached patch recordings to determine the localization profile of Ih along the somatodendritic axis of nigral dopamine neurons in slices from young rats. Ih density is higher in axon-bearing dendrites, in a membrane area close to the axon origin, than in the soma and axon-lacking dendrites. Dual current-clamp recordings revealed a similar contribution of Ih to the waveform of single excitatory postsynaptic potentials throughout the somatodendritic domain. The Ih blocker ZD 7288 increased the temporal summation in all dendrites with a comparable effect in axon- and non-axon dendrites. The strategic position of Ih in the proximity of the axon may influence importantly transitions between pacemaker and bursting activities and consequently the downstream release of dopamine. ABSTRACT Dendrites of most neurons express voltage-gated ion channels in their membrane. In combination with passive properties, active currents confer to dendrites a high computational potential. The hyperpolarization-activated cation current Ih present in the dendrites of some pyramidal neurons affects their membrane and integration properties, synaptic plasticity and higher functions such as memory. A gradient of increasing h-channel density towards distal dendrites has been found to be responsible for the location independence of excitatory postsynaptic potential (EPSP) waveform and temporal summation in cortical and hippocampal pyramidal cells. However, reports on other cell types revealed that smoother gradients or even linear distributions of Ih can achieve homogeneous temporal summation. Although the existence of a robust, slowly activating Ih current has been repeatedly demonstrated in nigral dopamine neurons, its subcellular distribution and precise role in synaptic integration are unknown. Using cell-attached patch-clamp recordings, we find a higher Ih current density in the axon-bearing dendrite than in the soma or in dendrites without axon in nigral dopamine neurons. Ih is mainly concentrated in the dendritic membrane area surrounding the axon origin and decreases with increasing distances from this site. Single EPSPs and temporal summation are similarly affected by blockade of Ih in axon- and non-axon-bearing dendrites. The presence of Ih close to the axon is pivotal to control the integrative functions and the output signal of dopamine neurons and may consequently influence the downstream coding of movement.
Collapse
Affiliation(s)
- Dominique Engel
- GIGA-Neurosciences, Neurophysiology Unit, University of Liège, SartTilman, B-4000, Liège, Belgium
| | - Vincent Seutin
- GIGA-Neurosciences, Neurophysiology Unit, University of Liège, SartTilman, B-4000, Liège, Belgium
| |
Collapse
|
26
|
Decreased HCN2 expression in STN contributes to abnormal high-voltage spindles in the cortex and globus pallidus of freely moving rats. Brain Res 2015; 1618:17-28. [DOI: 10.1016/j.brainres.2015.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 05/06/2015] [Accepted: 05/08/2015] [Indexed: 12/23/2022]
|
27
|
Chen L, Xu R, Sun FJ, Xue Y, Hao XM, Liu HX, Wang H, Chen XY, Liu ZR, Deng WS, Han XH, Xie JX, Yung WH. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels regulate firing of globus pallidus neurons in vivo. Mol Cell Neurosci 2015; 68:46-55. [PMID: 25858108 DOI: 10.1016/j.mcn.2015.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 03/26/2015] [Accepted: 04/03/2015] [Indexed: 01/27/2023] Open
Abstract
The globus pallidus plays a significant role in motor control under both health and pathological states. Recent studies have revealed that hyperpolarization-activated cyclic nucleotide-gated (HCN) channels occupy a critical position in globus pallidus pacemaking activity. Morphological studies have shown the expression of HCN channels in the globus pallidus. To investigate the in vivo effects of HCN channels in the globus pallidus, extracellular recordings and behavioral tests were performed in the present study. In normal rats, micro-pressure ejection of 0.05mM ZD7288, the selective HCN channel blocker, decreased the frequency of spontaneous firing in 21 out of the 40 pallidal neurons. The average decrease was 50.4±5.4%. Interestingly, in another 18 out of the 40 pallidal neurons, ZD7288 increased the firing rate by 137.1±27.6%. Similar bidirectional modulation on the firing rate was observed by a higher concentration of ZD7288 (0.5mM) as well as another HCN channel blocker, CsCl. Furthermore, activation of HCN channels by 8-Br-cAMP increased the firing rate by 63.0±9.3% in 15 out of the 25 pallidal neurons and decreased the firing rate by 46.9±9.4% in another 8 out of the 25 pallidal neurons. Further experiments revealed that modulation of glutamatergic but not GABAergic transmission may be involved in ZD7288-induced increase in firing rate. Consistent with electrophysiological results, further studies revealed that modulation of HCN channels also had bidirectional effects on behavior. Taken together, the present studies suggest that HCN channels may modulate the activity of pallidal neurons by different pathways in vivo.
Collapse
Affiliation(s)
- Lei Chen
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China.
| | - Rong Xu
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Feng-Jiao Sun
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Yan Xue
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Xiao-Meng Hao
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Hong-Xia Liu
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Hua Wang
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Xin-Yi Chen
- Department of Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Zi-Ran Liu
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Wen-Shuai Deng
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Xiao-Hua Han
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Jun-Xia Xie
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Wing-Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
28
|
Sekulić V, Chen TC, Lawrence JJ, Skinner FK. Dendritic distributions of I h channels in experimentally-derived multi-compartment models of oriens-lacunosum/moleculare (O-LM) hippocampal interneurons. Front Synaptic Neurosci 2015; 7:2. [PMID: 25774132 PMCID: PMC4343010 DOI: 10.3389/fnsyn.2015.00002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 02/02/2015] [Indexed: 01/14/2023] Open
Abstract
The O-LM cell type mediates feedback inhibition onto hippocampal pyramidal cells and gates information flow in the CA1. Its functions depend on the presence of voltage-gated channels (VGCs), which affect its integrative properties and response to synaptic input. Given the challenges associated with determining densities and distributions of VGCs on interneuron dendrites, we take advantage of computational modeling to consider different possibilities. In this work, we focus on hyperpolarization-activated channels (h-channels) in O-LM cells. While h-channels are known to be present in O-LM cells, it is unknown whether they are present on their dendrites. In previous work, we used ensemble modeling techniques with experimental data to obtain insights into potentially important conductance balances. We found that the best O-LM models that included uniformly distributed h-channels in the dendrites could not fully capture the “sag” response. This led us to examine activation kinetics and non-uniform distributions of h-channels in the present work. In tuning our models, we found that different kinetics and non-uniform distributions could better reproduce experimental O-LM cell responses. In contrast to CA1 pyramidal cells where higher conductance densities of h-channels occur in more distal dendrites, decreasing conductance densities of h-channels away from the soma were observed in O-LM models. Via an illustrative scenario, we showed that having dendritic h-channels clearly speeds up back-propagating action potentials in O-LM cells, unlike when h-channels are present only in the soma. Although the present results were morphology-dependent, our work shows that it should be possible to determine the distributions and characteristics of O-LM cells with recordings and morphologies from the same cell. We hypothesize that h-channels are distributed in O-LM cell dendrites and endow them with particular synaptic integration properties that shape information flow in hippocampus.
Collapse
Affiliation(s)
- Vladislav Sekulić
- Department of Fundamental Neurobiology, Toronto Western Research Institute, University Health Network Toronto, ON, Canada ; Department of Physiology, University of Toronto Toronto, ON, Canada
| | - Tse-Chiang Chen
- Department of Fundamental Neurobiology, Toronto Western Research Institute, University Health Network Toronto, ON, Canada
| | - J Josh Lawrence
- Center for Structural and Functional Neuroscience, University of Montana Missoula, MT, USA ; Department of Biomedical and Pharmaceutical Sciences, University of Montana Missoula, MT, USA
| | - Frances K Skinner
- Department of Fundamental Neurobiology, Toronto Western Research Institute, University Health Network Toronto, ON, Canada ; Department of Physiology, University of Toronto Toronto, ON, Canada ; Department of Medicine (Neurology), University of Toronto Toronto, ON, Canada
| |
Collapse
|
29
|
Abstract
The development of methodology to identify specific cell populations and circuits within the basal ganglia is rapidly transforming our ability to understand the function of this complex circuit. This mini-symposium highlights recent advances in delineating the organization and function of neural circuits in the external segment of the globus pallidus (GPe). Although long considered a homogeneous structure in the motor-suppressing "indirect-pathway," the GPe consists of a number of distinct cell types and anatomical subdomains that contribute differentially to both motor and nonmotor features of behavior. Here, we integrate recent studies using techniques, such as viral tracing, transgenic mice, electrophysiology, and behavioral approaches, to create a revised framework for understanding how the GPe relates to behavior in both health and disease.
Collapse
|
30
|
Chu HY, Atherton JF, Wokosin D, Surmeier DJ, Bevan MD. Heterosynaptic regulation of external globus pallidus inputs to the subthalamic nucleus by the motor cortex. Neuron 2015; 85:364-76. [PMID: 25578364 PMCID: PMC4304914 DOI: 10.1016/j.neuron.2014.12.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
Abstract
The two principal movement-suppressing pathways of the basal ganglia, the so-called hyperdirect and indirect pathways, interact within the subthalamic nucleus (STN). An appropriate level and pattern of hyperdirect pathway cortical excitation and indirect pathway external globus pallidus (GPe) inhibition of the STN are critical for normal movement and are greatly perturbed in Parkinson's disease. Here we demonstrate that motor cortical inputs to the STN heterosynaptically regulate, through activation of postsynaptic NMDA receptors, the number of functional GABAA receptor-mediated GPe-STN inputs. Therefore, a homeostatic mechanism, intrinsic to the STN, balances cortical excitation by adjusting the strength of GPe inhibition. However, following the loss of dopamine, excessive cortical activation of STN NMDA receptors triggers GPe-STN inputs to strengthen abnormally, contributing to the emergence of pathological, correlated activity.
Collapse
Affiliation(s)
- Hong-Yuan Chu
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jeremy F Atherton
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - David Wokosin
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Mark D Bevan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
31
|
Zhang XY, Yu L, Zhuang QX, Peng SY, Zhu JN, Wang JJ. Postsynaptic mechanisms underlying the excitatory action of histamine on medial vestibular nucleus neurons in rats. Br J Pharmacol 2014; 170:156-69. [PMID: 23713466 DOI: 10.1111/bph.12256] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 04/06/2013] [Accepted: 05/15/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Anti-histaminergic drugs have been widely used in the clinical treatment of vestibular disorders and most studies concentrate on their presynaptic actions. The present study investigated the postsynaptic effect of histamine on medial vestibular nucleus (MVN) neurons and the underlying mechanisms. EXPERIMENTAL APPROACH Histamine-induced postsynaptic actions on MVN neurons and the corresponding receptor and ionic mechanisms were detected by whole-cell patch-clamp recordings on rat brain slices. The distribution of postsynaptic histamine H₁, H₂ and H₄ receptors was mapped by double and single immunostaining. Furthermore, the expression of mRNAs for H₁, H₂ and H₄ receptors and for subtypes of Na⁺ -Ca²⁺ exchangers (NCXs) and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels was assessed by quantitative real-time RT-PCR. KEY RESULTS A marked postsynaptic excitatory effect, co-mediated by histamine H₁ and H₂ receptors, was involved in the histamine-induced depolarization of MVN neurons. Postsynaptic H₁ and H₂ rather than H₄ receptors were co-localized in the same MVN neurons. NCXs contributed to the inward current mediated by H₁ receptors, whereas HCN channels were responsible for excitation induced by activation of H₂ receptors. Moreover, NCX1 and NCX3 rather than NCX2, and HCN1 rather than HCN2-4 mRNAs, were abundantly expressed in MVN. CONCLUSION AND IMPLICATIONS NCXs coupled to H₁ receptors and HCN channels linked to H₂ receptors co-mediate the strong postsynaptic excitatory action of histamine on MVN neurons. These results highlight an active role of postsynaptic mechanisms in the modulation by central histaminergic systems of vestibular functions and suggest potential targets for clinical treatment of vestibular disorders.
Collapse
Affiliation(s)
- Xiao-Yang Zhang
- Department of Biological Science and Technology and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | | | | | | | | | | |
Collapse
|
32
|
Sparks DW, Chapman CA. Contribution of Ih to the relative facilitation of synaptic responses induced by carbachol in the entorhinal cortex during repetitive stimulation of the parasubiculum. Neuroscience 2014; 278:81-92. [PMID: 25130557 DOI: 10.1016/j.neuroscience.2014.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/31/2014] [Accepted: 08/07/2014] [Indexed: 11/16/2022]
Abstract
Neurons in the superficial layers of the entorhinal cortex provide the hippocampus with the majority of its cortical sensory input, and also receive the major output projection from the parasubiculum. This puts the parasubiculum in a position to modulate the activity of entorhinal neurons that project to the hippocampus. These brain areas receive cholinergic projections that are active during periods of theta- and gamma-frequency electroencephalographic (EEG) activity. The purpose of this study was to investigate how cholinergic receptor activation affects the strength of repetitive synaptic responses at these frequencies in the parasubiculo-entorhinal pathway and the cellular mechanisms involved. Whole-cell patch-clamp recordings of rat layer II medial entorhinal neurons were conducted using an acute slice preparation, and responses to 5-pulse trains of stimulation at theta- and gamma-frequency delivered to the parasubiculum were recorded. The cholinergic agonist carbachol (CCh) suppressed the amplitude of single synaptic responses, but also produced a relative facilitation of synaptic responses evoked during stimulation trains. The N-methyl-d-aspartate (NMDA) glutamate receptor blocker APV did not significantly reduce the relative facilitation effect. However, the hyperpolarization-activated cationic current (Ih) channel blocker ZD7288 mimicked the relative facilitation induced by CCh, suggesting that CCh-induced inhibition of Ih could produce the effect by increasing dendritic input resistance (Rin). Inward-rectifying and leak K(+) currents are known to interact with Ih to affect synaptic excitability. Application of the K(+) channel antagonist Ba(2+) depolarized neurons and enhanced temporal summation, but did not block further facilitation of train-evoked responses by ZD7288. The Ih-dependent facilitation of synaptic responses can therefore occur during reductions in inward-rectifying potassium current (IKir) associated with dendritic depolarization. Thus, in addition to cholinergic reductions in transmitter release that are known to facilitate train-evoked responses, these findings emphasize the role of inhibition of Ih in the integration of synaptic inputs within the entorhinal cortex during cholinergically-induced oscillatory states, likely due to enhanced summation of excitatory postsynaptic potentials (EPSPs) induced by increases in dendritic Rin.
Collapse
Affiliation(s)
- D W Sparks
- Centre for Studies in Behavioural Neurobiology, Department of Psychology, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - C A Chapman
- Centre for Studies in Behavioural Neurobiology, Department of Psychology, Concordia University, Montréal, Québec H4B 1R6, Canada.
| |
Collapse
|
33
|
Shah MM. Cortical HCN channels: function, trafficking and plasticity. J Physiol 2014; 592:2711-9. [PMID: 24756635 PMCID: PMC4104471 DOI: 10.1113/jphysiol.2013.270058] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/15/2014] [Indexed: 12/26/2022] Open
Abstract
The hyperpolarization-activated cyclic nucleotide-gated (HCN) channels belong to the superfamily of voltage-gated potassium ion channels. They are, however, activated by hyperpolarizing potentials and are permeable to cations. Four HCN subunits have been cloned, of which HCN1 and HCN2 subunits are predominantly expressed in the cortex. These subunits are principally located in pyramidal cell dendrites, although they are also found at lower concentrations in the somata of pyramidal neurons as well as other neuron subtypes. HCN channels are actively trafficked to dendrites by binding to the chaperone protein TRIP8b. Somato-dendritic HCN channels in pyramidal neurons modulate spike firing and synaptic potential integration by influencing the membrane resistance and resting membrane potential. Intriguingly, HCN channels are present in certain cortical axons and synaptic terminals too. Here, they regulate synaptic transmission but the underlying mechanisms appear to vary considerably amongst different synaptic terminals. In conclusion, HCN channels are expressed in multiple neuronal subcellular compartments in the cortex, where they have a diverse and complex effect on neuronal excitability.
Collapse
Affiliation(s)
- Mala M Shah
- Department of Pharmacology, UCL School of Pharmacy, London, UK
| |
Collapse
|
34
|
Thalamocortical neurons display suppressed burst-firing due to an enhanced Ih current in a genetic model of absence epilepsy. Pflugers Arch 2014; 467:1367-82. [PMID: 24953239 PMCID: PMC4435665 DOI: 10.1007/s00424-014-1549-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 05/28/2014] [Accepted: 05/30/2014] [Indexed: 10/25/2022]
Abstract
Burst-firing in distinct subsets of thalamic relay (TR) neurons is thought to be a key requirement for the propagation of absence seizures. However, in the well-regarded Genetic Absence Epilepsy Rats from Strasbourg (GAERS) model as yet there has been no link described between burst-firing in TR neurons and spike-and-wave discharges (SWDs). GAERS ventrobasal (VB) neurons are a specific subset of TR neurons that do not normally display burst-firing during absence seizures in the GAERS model, and here, we assessed the underlying relationship of VB burst-firing with Ih and T-type calcium currents between GAERS and non-epileptic control (NEC) animals. In response to 200-ms hyperpolarizing current injections, adult epileptic but not pre-epileptic GAERS VB neurons displayed suppressed burst-firing compared to NEC. In response to longer duration 1,000-ms hyperpolarizing current injections, both pre-epileptic and epileptic GAERS VB neurons required significantly more hyperpolarizing current injection to burst-fire than those of NEC animals. The current density of the Hyperpolarization and Cyclic Nucleotide-activated (HCN) current (Ih) was found to be increased in GAERS VB neurons, and the blockade of Ih relieved the suppressed burst-firing in both pre-epileptic P15-P20 and adult animals. In support, levels of HCN-1 and HCN-3 isoform channel proteins were increased in GAERS VB thalamic tissue. T-type calcium channel whole-cell currents were found to be decreased in P7-P9 GAERS VB neurons, and also noted was a decrease in CaV3.1 mRNA and protein levels in adults. Z944, a potent T-type calcium channel blocker with anti-epileptic properties, completely abolished hyperpolarization-induced VB burst-firing in both NEC and GAERS VB neurons.
Collapse
|
35
|
Deng WS, Jiang YX, Han XH, Xue Y, Wang H, Sun P, Chen L. HCN Channels Modulate the Activity of the Subthalamic Nucleus In Vivo. J Mol Neurosci 2014; 55:260-268. [DOI: 10.1007/s12031-014-0316-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 04/24/2014] [Indexed: 01/17/2023]
|
36
|
Li CJ, Lu Y, Zhou M, Zong XG, Li C, Xu XL, Guo LJ, Lu Q. Activation of GABAB receptors ameliorates cognitive impairment via restoring the balance of HCN1/HCN2 surface expression in the hippocampal CA1 area in rats with chronic cerebral hypoperfusion. Mol Neurobiol 2014; 50:704-20. [PMID: 24838625 DOI: 10.1007/s12035-014-8736-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/29/2014] [Indexed: 11/30/2022]
Abstract
Hyperpolarization-activated cyclic-nucleotide-gated cation nonselective (HCN) channels are involved in the pathology of nervous system diseases. HCN channels and γ-aminobutyric acid (GABA) receptors can mutually co-regulate the function of neurons in many brain areas. However, little is known about the co-regulation of HCN channels and GABA receptors in the chronic ischemic rats with possible features of vascular dementia. Protein kinase A (PKA) and TPR containing Rab8b interacting protein (TRIP8b) can modulate GABAB receptors cell surface stability and HCN channel trafficking, respectively, and adaptor-associated kinase 1 (AAK1) inhibits the function of the major TRIP8b-interacting protein adaptor protein 2 (AP2) via phosphorylating the AP2 μ2 subunit. Until now, the role of these regulatory factors in chronic cerebral hypoperfusion is unclear. In the present study, we evaluated whether and how HCN channels and GABAB receptors were pathologically altered and investigated neuroprotective effects of GABAB receptors activation and cross-talk networks between GABAB receptors and HCN channels in the hippocampal CA1 area in chronic cerebral hypoperfusion rat model. We found that cerebral hypoperfusion for 5 weeks by permanent occlusion of bilateral common carotid arteries (two-vessel occlusion, 2VO) induced marked spatial and nonspatial learning and memory deficits, significant neuronal loss and decrease in dendritic spine density, impairment of long-term potentiation (LTP) at the Schaffer collateral-CA1 synapses, and reduction of surface expression of GABAB R1, GABAB R2, and HCN1, but increase in HCN2 surface expression. Meanwhile, the protein expression of TRIP8b (1a-4), TRIP8b (1b-2), and AAK1 was significantly decreased. Baclofen, a GABAB receptor agonist, markedly improved the memory impairment and alleviated neuronal damage. Besides, baclofen attenuated the decrease of surface expression of GABAB R1, GABAB R2, and HCN1, but downregulated HCN2 surface expression. Furthermore, baclofen could restore expression of AAK1 protein and significantly increase p-PKA, TRIP8b (1a-4), TRIP8b (1b-2), and p-AP2 μ2 expression. Those findings suggested that, under chronic cerebral hypoperfusion, activation of PKA could attenuate baclofen-induced decrease in surface expression of GABAB R1 and GABAB R2, and activation of GABAB receptors not only increased the expression of TRIP8b (1a-4) and TRIP8b (1b-2) but also regulated the function of TRIP8b via AAK1 and p-AP2 μ2, which restored the balance of HCN1/HCN2 surface expression in rat hippocampal CA1 area, and thus ameliorated cognitive impairment.
Collapse
Affiliation(s)
- Chang-jun Li
- Department of Pharmacology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Yu HM, Liu WH, He XH, Peng BW. IL-1β: an important cytokine associated with febrile seizures? Neurosci Bull 2014; 28:301-8. [PMID: 22622830 DOI: 10.1007/s12264-012-1240-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Febrile seizures (FSs) are the most common convulsions in childhood. Studies have demonstrated a significant relationship between a history of prolonged FSs during early childhood and temporal sclerosis, which is responsible for intractable mesial temporal lobe epilepsy. It has been shown that interleukin-1β (IL-1β) is intrinsically involved in the febrile response in children and in the generation of FSs. We summarize the gene polymorphisms, changes of IL-1β levels and the putative role of IL-1β in the generation of FSs. IL-1β could play a role either in enhancing or in reducing neural excitability. If the enhancing and reducing effects are balanced, an FS does not occur. When the enhancing effect plays the leading role, an FS is generated. A mild imbalance can cause simple FSs while a severe imbalance can cause complex FSs and febrile status epilepticus. Therefore, anti-IL-1β therapy may help to treat FSs.
Collapse
Affiliation(s)
- Hong-Mei Yu
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | | | | | | |
Collapse
|
38
|
Nevado-Holgado AJ, Mallet N, Magill PJ, Bogacz R. Effective connectivity of the subthalamic nucleus-globus pallidus network during Parkinsonian oscillations. J Physiol 2013; 592:1429-55. [PMID: 24344162 PMCID: PMC3979604 DOI: 10.1113/jphysiol.2013.259721] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In Parkinsonism, subthalamic nucleus (STN) neurons and two types of external globus pallidus (GP) neuron inappropriately synchronise their firing in time with slow (∼1 Hz) or beta (13-30 Hz) oscillations in cortex. We recorded the activities of STN, Type-I GP (GP-TI) and Type-A GP (GP-TA) neurons in anaesthetised Parkinsonian rats during such oscillations to constrain a series of computational models that systematically explored the effective connections and physiological parameters underlying neuronal rhythmic firing and phase preferences in vivo. The best candidate model, identified with a genetic algorithm optimising accuracy/complexity measures, faithfully reproduced experimental data and predicted that the effective connections of GP-TI and GP-TA neurons are quantitatively different. Estimated inhibitory connections from striatum were much stronger to GP-TI neurons than to GP-TA neurons, whereas excitatory connections from thalamus were much stronger to GP-TA and STN neurons than to GP-TI neurons. Reciprocal connections between GP-TI and STN neurons were matched in weight, but those between GP-TA and STN neurons were not; only GP-TI neurons sent substantial connections back to STN. Different connection weights between and within the two types of GP neuron were also evident. Adding to connection differences, GP-TA and GP-TI neurons were predicted to have disparate intrinsic physiological properties, reflected in distinct autonomous firing rates. Our results elucidate potential substrates of GP functional dichotomy, and emphasise that rhythmic inputs from striatum, thalamus and cortex are important for setting activity in the STN-GP network during Parkinsonian beta oscillations, suggesting they arise from interactions between most nodes of basal ganglia-thalamocortical circuits.
Collapse
Affiliation(s)
- Alejo J Nevado-Holgado
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, Mansfield Road, University of Oxford, Oxford OX1 3TH, UK. ; R. Bogacz: Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
| | | | | | | |
Collapse
|
39
|
Engbers JDT, Anderson D, Zamponi GW, Turner RW. Signal processing by T-type calcium channel interactions in the cerebellum. Front Cell Neurosci 2013; 7:230. [PMID: 24348329 PMCID: PMC3841819 DOI: 10.3389/fncel.2013.00230] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/06/2013] [Indexed: 01/28/2023] Open
Abstract
T-type calcium channels of the Cav3 family are unique among voltage-gated calcium channels due to their low activation voltage, rapid inactivation, and small single channel conductance. These special properties allow Cav3 calcium channels to regulate neuronal processing in the subthreshold voltage range. Here, we review two different subthreshold ion channel interactions involving Cav3 channels and explore the ability of these interactions to expand the functional roles of Cav3 channels. In cerebellar Purkinje cells, Cav3 and intermediate conductance calcium-activated potassium (IKCa) channels form a novel complex which creates a low voltage-activated, transient outward current capable of suppressing temporal summation of excitatory postsynaptic potentials (EPSPs). In large diameter neurons of the deep cerebellar nuclei, Cav3-mediated calcium current (I T) and hyperpolarization-activated cation current (I H) are activated during trains of inhibitory postsynaptic potentials. These currents have distinct, and yet synergistic, roles in the subthreshold domain with I T generating a rebound burst and I H controlling first spike latency and rebound spike precision. However, by shortening the membrane time constant the membrane returns towards resting value at a faster rate, allowing I H to increase the efficacy of I T and increase the range of burst frequencies that can be generated. The net effect of Cav3 channels thus depends on the channels with which they are paired. When expressed in a complex with a KCa channel, Cav3 channels reduce excitability when processing excitatory inputs. If functionally coupled with an HCN channel, the depolarizing effect of Cav3 channels is accentuated, allowing for efficient inversion of inhibitory inputs to generate a rebound burst output. Therefore, signal processing relies not only on the activity of individual subtypes of channels but also on complex interactions between ion channels whether based on a physical complex or by indirect effects on membrane properties.
Collapse
Affiliation(s)
- Jordan D. T. Engbers
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of CalgaryCalgary, Canada
| | - Dustin Anderson
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of CalgaryCalgary, Canada
| | - Gerald W. Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of CalgaryCalgary, Canada
| | - Ray W. Turner
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of CalgaryCalgary, Canada
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of CalgaryCalgary, Canada
| |
Collapse
|
40
|
Chetrit J, Taupignon A, Froux L, Morin S, Bouali-Benazzouz R, Naudet F, Kadiri N, Gross CE, Bioulac B, Benazzouz A. Inhibiting subthalamic D5 receptor constitutive activity alleviates abnormal electrical activity and reverses motor impairment in a rat model of Parkinson's disease. J Neurosci 2013; 33:14840-9. [PMID: 24027284 PMCID: PMC6705171 DOI: 10.1523/jneurosci.0453-13.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 07/25/2013] [Accepted: 08/08/2013] [Indexed: 11/21/2022] Open
Abstract
Burst firing has been reported as a pathological activity of subthalamic nucleus (STN) neurons in Parkinson's disease. However, the origin of bursts and their causal link with motor deficits remain unknown. Here we tested the hypothesis that dopamine D5 receptors (D5Rs), characterized by a high constitutive activity, may contribute to the emergence of burst firing in STN. We tested whether inhibiting D5R constitutive activity depresses burst firing and alleviates motor impairments in the 6-OHDA rat model of Parkinson's disease. Intrasubthalamic microinjections of either an inverse agonist of D5Rs, flupenthixol, or a D2R antagonist, raclopride, were applied. Behavioral experiments, in vivo and in vitro electrophysiological recordings, and ex vivo functional neuroanatomy studies were performed. Using [(5)S]GTPγ binding autoradiography, we show that application of flupenthixol inhibits D5R constitutive activity within the STN. Furthermore, flupenthixol reduced evoked burst in brain slices and converted pathological burst firing into physiological tonic, single-spike firing in 6-OHDA rats in vivo. This later action was mimicked by calciseptine, a Cav1 channel blocker. Moreover, the same treatment dramatically attenuated motor impairment in this model and normalized metabolic hyperactivity in both STN and substantia nigra pars reticulata, the main output structure of basal ganglia in rats. In contrast, raclopride as well as saline did not reverse burst firing and motor deficits, confirming the selective action of flupenthixol on D5Rs. These results are the first to demonstrate that subthalamic D5Rs are involved in the pathophysiology of Parkinson's disease and that administering an inverse agonist of these receptors may lessen motor symptoms.
Collapse
Affiliation(s)
- Jonathan Chetrit
- Université Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, and
| | - Anne Taupignon
- Université Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, and
| | - Lionel Froux
- Université Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, and
| | - Stephanie Morin
- Université Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, and
| | | | - Frédéric Naudet
- Université Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, and
| | - Nabila Kadiri
- Université Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, and
| | - Christian E. Gross
- Université Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, and
| | - Bernard Bioulac
- Université Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, and
| | - Abdelhamid Benazzouz
- Université Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, and
| |
Collapse
|
41
|
Short-term depression of external globus pallidus-subthalamic nucleus synaptic transmission and implications for patterning subthalamic activity. J Neurosci 2013; 33:7130-44. [PMID: 23616523 DOI: 10.1523/jneurosci.3576-12.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The frequency and pattern of activity in the reciprocally connected GABAergic external globus pallidus (GPe) and glutamatergic subthalamic nucleus (STN) are closely related to motor function. Although phasic, unitary GPe-STN inputs powerfully pattern STN activity ex vivo, correlated GPe-STN activity is not normally observed in vivo. To test the hypothesis that the GPe's influence is constrained by short-term synaptic depression, unitary GPe-STN inputs were stimulated in rat and mouse brain slices at rates and in patterns that mimicked GPe activity in vivo. Together with connectivity estimates these data were then used to simulate GPe-STN transmission. Unitary GPe-STN synaptic connections initially generated large conductances and transmitted reliably. However, the amplitude and reliability of transmission declined rapidly (τ = 0.6 ± 0.5 s) to <10% of their initial values when connections were stimulated at the mean rate of GPe activity in vivo (33 Hz). Recovery from depression (τ = 17.3 ± 18.9 s) was also longer than pauses in tonic GPe activity in vivo. Depression was the result of the limited supply of release-ready vesicles and was in sharp contrast to Calyx of Held transmission, which exhibited 100% reliability. Injection of simulated GPe-STN conductances revealed that synaptic depression caused tonic, nonsynchronized GPe-STN activity to disrupt rather than abolish autonomous STN activity. Furthermore, synchronous inhibition of tonically active GPe-STN neurons or phasic activity of GPe-STN neurons reliably patterned STN activity through disinhibition and inhibition, respectively. Together, these data argue that the frequency and pattern of GPe activity profoundly influence its transmission to the STN.
Collapse
|
42
|
|
43
|
Proliferation of external globus pallidus-subthalamic nucleus synapses following degeneration of midbrain dopamine neurons. J Neurosci 2013; 32:13718-28. [PMID: 23035084 DOI: 10.1523/jneurosci.5750-11.2012] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The symptoms of Parkinson's disease (PD) are related to changes in the frequency and pattern of activity in the reciprocally connected GABAergic external globus pallidus (GPe) and glutamatergic subthalamic nucleus (STN). In idiopathic and experimental PD, the GPe and STN exhibit hypoactivity and hyperactivity, respectively, and abnormal synchronous rhythmic burst firing. Following lesion of midbrain dopamine neurons, abnormal STN activity emerges slowly and intensifies gradually until it stabilizes after 2-3 weeks. Alterations in cellular/network properties may therefore underlie the expression of abnormal firing. Because the GPe powerfully regulates the frequency, pattern, and synchronization of STN activity, electrophysiological, molecular, and anatomical measures of GPe-STN transmission were compared in the STN of control and 6-hydroxydopamine-lesioned rats and mice. Following dopamine depletion: (1) the frequency (but not the amplitude) of mIPSCs increased by ∼70%; (2) the amplitude of evoked IPSCs and isoguvacine-evoked current increased by ∼60% and ∼70%, respectively; (3) mRNA encoding α1, β2, and γ2 GABA(A) receptor subunits increased by 15-30%; (4) the density of postsynaptic gephyrin and γ2 subunit coimmunoreactive structures increased by ∼40%, whereas the density of vesicular GABA transporter and bassoon coimmunoreactive axon terminals was unchanged; and (5) the number of ultrastructurally defined synapses per GPe-STN axon terminal doubled with no alteration in terminal/synapse size or target preference. Thus, loss of dopamine leads, through an increase in the number of synaptic connections per GPe-STN axon terminal, to substantial strengthening of the GPe-STN pathway. This adaptation may oppose hyperactivity but could also contribute to abnormal firing patterns in the parkinsonian STN.
Collapse
|
44
|
The Role of HCN Channels on Membrane Excitability in the Nervous System. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:619747. [PMID: 22934165 PMCID: PMC3425855 DOI: 10.1155/2012/619747] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 06/19/2012] [Indexed: 01/07/2023]
Abstract
Hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels were first reported in heart cells and are recently known to be involved in a variety of neural functions in healthy and diseased brains. HCN channels generate inward currents when the membrane potential is hyperpolarized. Voltage dependence of HCN channels is regulated by intracellular signaling cascades, which contain cyclic AMP, PIP(2), and TRIP8b. In addition, voltage-gated potassium channels have a strong influence on HCN channel activity. Because of these funny features, HCN channel currents, previously called funny currents, can have a wide range of functions that are determined by a delicate balance of modulatory factors. These multifaceted features also make it difficult to predict and elucidate the functional role of HCN channels in actual neurons. In this paper, we focus on the impacts of HCN channels on neural activity. The functions of HCN channels reported previously will be summarized, and their mechanisms will be explained by using numerical simulation of simplified model neurons.
Collapse
|
45
|
Farries MA, Wilson CJ. Biophysical basis of the phase response curve of subthalamic neurons with generalization to other cell types. J Neurophysiol 2012; 108:1838-55. [PMID: 22786959 DOI: 10.1152/jn.00054.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Experimental evidence indicates that the response of subthalamic neurons to excitatory postsynaptic potentials (EPSPs) is well described by their infinitesimal phase response curves (iPRC). However, the factors controlling the shape of that iPRC, and hence controlling the way subthalamic neurons respond to synaptic input, are unclear. We developed a biophysical model of subthalamic neurons to aid in the understanding of their iPRCs; this model exhibited an iPRC type common to many subthalamic cells. We devised a method for deriving its iPRC from its biophysical properties that clarifies how these different properties interact to shape the iPRC. This method revealed why the response of subthalamic neurons is well approximated by their iPRCs and how that approximation becomes less accurate under strong fluctuating input currents. It also connected iPRC structure to aspects of cellular physiology that could be estimated in simple current-clamp experiments. This allowed us to directly compare the iPRC predicted by our theory with the iPRC estimated from the response to EPSPs or current pulses in individual cells. We found that theoretically predicted iPRCs agreed well with estimates derived from synaptic stimuli, but not with those estimated from the response to somatic current injection. The difference between synaptic currents and those applied experimentally at the soma may arise from differences in the dynamics of charge redistribution on the dendrites and axon. Ultimately, our approach allowed us to identify novel ways in which voltage-dependent conductances interact with AHP conductances to influence synaptic integration that will apply to a wide range of cell types.
Collapse
Affiliation(s)
- Michael A Farries
- Department of Biology, University of Texas San Antonio, San Antonio, Texas 78249, USA.
| | | |
Collapse
|
46
|
Grant PF, Lowery MM. Simulation of cortico-basal ganglia oscillations and their suppression by closed loop deep brain stimulation. IEEE Trans Neural Syst Rehabil Eng 2012; 21:584-94. [PMID: 22695362 DOI: 10.1109/tnsre.2012.2202403] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A new model of deep brain stimulation (DBS) is presented that integrates volume conduction effects with a neural model of pathological beta-band oscillations in the cortico-basal ganglia network. The model is used to test the clinical hypothesis that closed-loop control of the amplitude of DBS may be possible, based on the average rectified value of beta-band oscillations in the local field potential. Simulation of closed-loop high-frequency DBS was shown to yield energy savings, with the magnitude of the energy saved dependent on the strength of coupling between the subthalamic nucleus and the remainder of the cortico-basal ganglia network. When closed-loop DBS was applied to a strongly coupled cortico-basal ganglia network, the stimulation energy delivered over a 480 s period was reduced by up to 42%. Greater energy reductions were observed for weakly coupled networks, as the stimulation amplitude reduced to zero once the initial desynchronization had occurred. The results provide support for the application of closed-loop high-frequency DBS based on electrophysiological biomarkers.
Collapse
Affiliation(s)
- Peadar F Grant
- School of Electrical, Electronic and Communications Engineering, University College Dublin, Dublin, Ireland.
| | | |
Collapse
|
47
|
Towards an integrated view of HCN channel role in epilepsy. Curr Opin Neurobiol 2011; 21:873-9. [PMID: 21782415 DOI: 10.1016/j.conb.2011.06.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 06/11/2011] [Accepted: 06/30/2011] [Indexed: 12/17/2022]
Abstract
Epilepsy is the third most common brain disorder and affects millions of people. Epilepsy is characterized by the occurrence of spontaneous seizures, that is, bursts of synchronous firing of large populations of neurons. These are believed to result from abnormal regulation of neuronal excitability that favors hypersynchrony. Among the intrinsic conductances that govern neuronal excitability, the hyperpolarization-activated current (I(h)) plays complex and important roles in the fine-tuning of both cellular and network activity. Not surprisingly, dysregulation of I(h) and/or of its conducting ion-channels (HCN) has been strongly implicated in various experimental models of epilepsy, as well as in human epilepsy. Here we provide an overview of recent findings on the distinct physiological roles played by I(h) in specific contexts, and the cellular mechanisms that underlie these functions, including the subunit make-up of the channels. We further discuss current knowledge of dysregulation of I(h) and HCN channels in epilepsy in light of the multifaceted functions of I(h) in the brain.
Collapse
|
48
|
Ying SW, Tibbs GR, Picollo A, Abbas SY, Sanford RL, Accardi A, Hofmann F, Ludwig A, Goldstein PA. PIP2-mediated HCN3 channel gating is crucial for rhythmic burst firing in thalamic intergeniculate leaflet neurons. J Neurosci 2011; 31:10412-23. [PMID: 21753018 PMCID: PMC6623048 DOI: 10.1523/jneurosci.0021-11.2011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 04/21/2011] [Accepted: 05/30/2011] [Indexed: 01/26/2023] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels generate a pacemaking current, I(h), which regulates neuronal excitability and oscillatory activity in the brain. Although all four HCN isoforms are expressed in the brain, the functional contribution of HCN3 is unknown. Using immunohistochemistry, confocal microscopy, and whole-cell patch-clamp recording techniques, we investigated HCN3 function in thalamic intergeniculate leaflet (IGL) neurons, as HCN3 is reportedly preferentially expressed in these cells. We observed that I(h) recorded from IGL, but not ventral geniculate nucleus, neurons in HCN2(+/+) mice and rats activated slowly and were cAMP insensitive, which are hallmarks of HCN3 channels. We also observed strong immunolabeling for HCN3, with no labeling for HCN1 and HCN4, and only very weak labeling for HCN2. Deletion of HCN2 did not alter I(h) characteristics in mouse IGL neurons. These data together indicate that the HCN3 channel isoform generated I(h) in IGL neurons. Intracellular phosphatidylinositol-4,5-bisphosphate (PIP(2)) shifted I(h) activation to more depolarized potentials and accelerated activation kinetics. Upregulation of HCN3 function by PIP(2) augmented low-threshold burst firing and spontaneous oscillations; conversely, depletion of PIP(2) or pharmacologic block of I(h) resulted in a profound inhibition of excitability. The results indicate that functional expression of HCN3 channels in IGL neurons is crucial for intrinsic excitability and rhythmic burst firing, and PIP(2) serves as a powerful modulator of I(h)-dependent properties via an effect on HCN3 channel gating. Since the IGL is a major input to the suprachiasmatic nucleus, regulation of pacemaking function by PIP(2) in the IGL may influence sleep and circadian rhythms.
Collapse
Affiliation(s)
- Shui-Wang Ying
- Department of Anesthesiology, Weill Cornell Medical College, New York, New York 10065, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Intrinsic dynamics and synaptic inputs control the activity patterns of subthalamic nucleus neurons in health and in Parkinson's disease. Neuroscience 2011; 198:54-68. [PMID: 21723918 DOI: 10.1016/j.neuroscience.2011.06.049] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/10/2011] [Accepted: 06/15/2011] [Indexed: 11/22/2022]
Abstract
Neurons in the subthalamic nucleus occupy a pivotal position in the circuitry of the basal ganglia. They receive direct excitatory input from the cerebral cortex and the intralaminar nuclei of the thalamus, and directly excite the inhibitory basal ganglia output neurons in the internal segment of the globus pallidus and the substantia nigra. They are also engaged in a reciprocal synaptic arrangement with inhibitory neurons in the external segment of the globus pallidus. Although once viewed as a simple relay of extrinsic input to the basal ganglia, physiological studies of subthalamic neurons have revealed that activity in these neurons does not directly reflect their pattern of extrinsic excitation. Subthalamic neurons are autonomously active at rates comparable to those observed in vivo, and they generate complex patterns of intrinsic activity arising from the interactions between voltage sensitive ion channels on the somatodendritic and axonal membranes. Extrinsic synaptic excitation does not create the firing pattern of the subthalamic neuron, but rather controls the timing of action potentials generated intrinsically. The dopaminergic innervation of the subthalamic nucleus, although moderate, can directly influence firing patterns by acting both on synaptic transmission and voltage-sensitive ion channels responsible for intrinsic properties. Furthermore, chronic dopamine depletion in Parkinson's disease may modify both synaptic transmission and integration in the subthalamic nucleus, in addition to its effects on other regions of the basal ganglia.
Collapse
|
50
|
Kubota S, Rubin JE. NMDA-induced burst firing in a model subthalamic nucleus neuron. J Neurophysiol 2011; 106:527-37. [PMID: 21562199 DOI: 10.1152/jn.01127.2010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Experiments in rat brain slice show that hyperpolarized subthalamic nucleus (STN) neurons engage in slow, regular burst firing when treated with an N-methyl-d-aspartate (NMDA) bath. A depolarization-activated inward current (DIC) has been hypothesized to contribute to this bursting activity. To explore the mechanism for STN burst firing in this setting, we augmented a previously published conductance-based computational model for single rat STN neurons to include both DIC and NMDA currents, fit to data from published electrophysiological recordings. Simulations show that with these additions, the model engages in bursting activity at <1 Hz in response to hyperpolarizing current injection and that this bursting exhibits several features observed experimentally in STN. Furthermore, a reduced model is used to show that the combination of NMDA and DIC currents, but not either alone, suffices to generate oscillations under hyperpolarizing current injection. STN neurons show enhanced burstiness in Parkinson's disease patients and experimental models of parkinsonism, and the burst mechanism studied presently could contribute to this effect.
Collapse
Affiliation(s)
- Shigeru Kubota
- Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, Japan
| | | |
Collapse
|