1
|
Saggu S, Chen Y, Cottingham C, Rehman H, Wang H, Zhang S, Augelli-Szafran C, Lu S, Lambert N, Jiao K, Lu XY, Wang Q. Activation of a novel α 2AAR-spinophilin-cofilin axis determines the effect of α 2 adrenergic drugs on fear memory reconsolidation. Mol Psychiatry 2023; 28:588-600. [PMID: 36357671 PMCID: PMC9647772 DOI: 10.1038/s41380-022-01851-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022]
Abstract
Posttraumatic stress disorder (PTSD) after the pandemic has emerged as a major neuropsychiatric component of post-acute COVID-19 syndrome, yet the current pharmacotherapy for PTSD is limited. The use of adrenergic drugs to treat PTSD has been suggested; however, it is hindered by conflicting clinical results and a lack of mechanistic understanding of drug actions. Our studies, using both genetically modified mice and human induced pluripotent stem cell-derived neurons, reveal a novel α2A adrenergic receptor (α2AAR)-spinophilin-cofilin axis in the hippocampus that is critical for regulation of contextual fear memory reconsolidation. In addition, we have found that two α2 ligands, clonidine and guanfacine, exhibit differential abilities in activating this signaling axis to disrupt fear memory reconsolidation. Stimulation of α2AAR with clonidine, but not guanfacine, promotes the interaction of the actin binding protein cofilin with the receptor and with the dendritic spine scaffolding protein spinophilin to induce cofilin activation at the synapse. Spinophilin-dependent regulation of cofilin is required for clonidine-induced disruption of contextual fear memory reconsolidation. Our results inform the interpretation of differential clinical observations of these two drugs on PTSD and suggest that clonidine could provide immediate treatment for PTSD symptoms related to the current pandemic. Furthermore, our study indicates that modulation of dendritic spine morphology may represent an effective strategy for the development of new pharmacotherapies for PTSD.
Collapse
Affiliation(s)
- Shalini Saggu
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Yunjia Chen
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Christopher Cottingham
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Biology, University of North Alabama, Florence, AL, 35632, USA
| | - Hasibur Rehman
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Hongxia Wang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Sixue Zhang
- Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, AL, 35205, USA
| | - Corinne Augelli-Szafran
- Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, AL, 35205, USA
- Scientific Platforms, Southern Research, Birmingham, AL, 35205, USA
| | - Sumin Lu
- Department of Pharmacology, Medical College of Georgia at Augusta University, Augusta, GA, GA30912, USA
| | - Nevin Lambert
- Department of Pharmacology, Medical College of Georgia at Augusta University, Augusta, GA, GA30912, USA
| | - Kai Jiao
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia at Augusta University, Augusta, GA, GA30912, USA
| | - Xin-Yun Lu
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Qin Wang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
2
|
Vlajkovic SM, Thorne PR. Purinergic Signalling in the Cochlea. Int J Mol Sci 2022; 23:ijms232314874. [PMID: 36499200 PMCID: PMC9741428 DOI: 10.3390/ijms232314874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
The mammalian cochlea is the sensory organ of hearing with a delicate, highly organised structure that supports unique operating mechanisms. ATP release from the secretory tissues of the cochlear lateral wall (stria vascularis) triggers numerous physiological responses by activating P2 receptors in sensory, supporting and neural tissues. Two families of P2 receptors, ATP-gated ion channels (P2X receptors) and G protein-coupled P2Y receptors, activate intracellular signalling pathways that regulate cochlear development, homeostasis, sensory transduction, auditory neurotransmission and response to stress. Of particular interest is a purinergic hearing adaptation, which reflects the critical role of the P2X2 receptor in adaptive cochlear response to elevated sound levels. Other P2 receptors are involved in the maturation of neural processes and frequency selectivity refinement in the developing cochlea. Extracellular ATP signalling is regulated by a family of surface-located enzymes collectively known as "ectonucleotidases" that hydrolyse ATP to adenosine. Adenosine is a constitutive cell metabolite with an established role in tissue protection and regeneration. The differential activation of A1 and A2A adenosine receptors defines the cochlear response to injury caused by oxidative stress, inflammation, and activation of apoptotic pathways. A1 receptor agonism, A2A receptor antagonism, and increasing adenosine levels in cochlear fluids all represent promising therapeutic tools for cochlear rescue from injury and prevention of hearing loss.
Collapse
Affiliation(s)
- Srdjan M. Vlajkovic
- Department of Physiology and The Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Correspondence: ; Tel.: +64-9-9239782
| | - Peter R. Thorne
- Department of Physiology and The Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Section of Audiology, School of Population Health, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
3
|
Saggu S, Chen Y, Chen L, Pizarro D, Pati S, Law WJ, McMahon L, Jiao K, Wang Q. A peptide blocking the ADORA1-neurabin interaction is anticonvulsant and inhibits epilepsy in an Alzheimer's model. JCI Insight 2022; 7:155002. [PMID: 35674133 PMCID: PMC9220929 DOI: 10.1172/jci.insight.155002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
Epileptic seizures are common sequelae of stroke, acute brain injury, and chronic neurodegenerative diseases, including Alzheimer's disease (AD), and cannot be effectively controlled in approximately 40% of patients, necessitating the development of novel therapeutic agents. Activation of the A1 receptor (A1R) by endogenous adenosine is an intrinsic mechanism to self-terminate seizures and protect neurons from excitotoxicity. However, targeting A1R for neurological disorders has been hindered by side effects associated with its broad expression outside the nervous system. Here we aim to target the neural-specific A1R/neurabin/regulator of G protein signaling 4 (A1R/neurabin/RGS4) complex that dictates A1R signaling strength and response outcome in the brain. We developed a peptide that blocks the A1R-neurabin interaction to enhance A1R activity. Intracerebroventricular or i.n. administration of this peptide shows marked protection against kainate-induced seizures and neuronal death. Furthermore, in an AD mouse model with spontaneous seizures, nasal delivery of this blocking peptide reduces epileptic spike frequency. Significantly, the anticonvulsant and neuroprotective effects of this peptide are achieved through enhanced A1R function in response to endogenous adenosine in the brain, thus, avoiding side effects associated with A1R activation in peripheral tissues and organs. Our study informs potentially new anti-seizure therapy applicable to epilepsy and other neurological illness with comorbid seizures.
Collapse
Affiliation(s)
- Shalini Saggu
- Departments of Cell, Developmental and Integrative Biology
| | - Yunjia Chen
- Departments of Cell, Developmental and Integrative Biology
| | - Liping Chen
- Departments of Cell, Developmental and Integrative Biology
| | | | | | - Wen Jing Law
- Departments of Cell, Developmental and Integrative Biology
| | - Lori McMahon
- Departments of Cell, Developmental and Integrative Biology
| | - Kai Jiao
- Department of Genetics, University of Alabama at Birmingham, Alabama, USA
| | - Qin Wang
- Departments of Cell, Developmental and Integrative Biology
| |
Collapse
|
4
|
Regulation of Synaptic Transmission and Plasticity by Protein Phosphatase 1. J Neurosci 2021; 41:3040-3050. [PMID: 33827970 DOI: 10.1523/jneurosci.2026-20.2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/22/2023] Open
Abstract
Protein phosphatases, by counteracting protein kinases, regulate the reversible phosphorylation of many substrates involved in synaptic plasticity, a cellular model for learning and memory. A prominent phosphatase regulating synaptic plasticity and neurologic disorders is the serine/threonine protein phosphatase 1 (PP1). PP1 has three isoforms (α, β, and γ, encoded by three different genes), which are regulated by a vast number of interacting subunits that define their enzymatic substrate specificity. In this review, we discuss evidence showing that PP1 regulates synaptic transmission and plasticity, as well as presenting novel models of PP1 regulation suggested by recent experimental evidence. We also outline the required targeting of PP1 by neurabin and spinophilin to achieve substrate specificity at the synapse to regulate AMPAR and NMDAR function. We then highlight the role of inhibitor-2 in regulating PP1 function in plasticity, including its positive regulation of PP1 function in vivo in memory formation. We also discuss the distinct function of the three PP1 isoforms in synaptic plasticity and brain function, as well as briefly discuss the role of inhibitory phosphorylation of PP1, which has received recent emphasis in the regulation of PP1 activity in neurons.
Collapse
|
5
|
Fok C, Bogosanovic M, Pandya M, Telang R, Thorne PR, Vlajkovic SM. Regulator of G Protein Signalling 4 (RGS4) as a Novel Target for the Treatment of Sensorineural Hearing Loss. Int J Mol Sci 2020; 22:ijms22010003. [PMID: 33374915 PMCID: PMC7792627 DOI: 10.3390/ijms22010003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 12/20/2022] Open
Abstract
We and others have previously identified signalling pathways associated with the adenosine A1 receptor (A1R) as important regulators of cellular responses to injury in the cochlea. We have shown that the “post-exposure” treatment with adenosine A1R agonists confers partial protection against acoustic trauma and other forms of sensorineural hearing loss (SNHL). The aim of this study was to determine if increasing A1R responsiveness to endogenous adenosine would have the same otoprotective effect. This was achieved by pharmacological targeting of the Regulator of G protein Signalling 4 (RGS4). RGS proteins inhibit signal transduction pathways initiated by G protein-coupled receptors (GPCR) by enhancing GPCR deactivation and receptor desensitisation. A molecular complex between RGS4 and neurabin, an intracellular scaffolding protein expressed in neural and cochlear tissues, is the key negative regulator of A1R activity in the brain. In this study, Wistar rats (6–8 weeks) were exposed to traumatic noise (110 dBSPL, 8–16 kHz) for 2 h and a small molecule RGS4 inhibitor CCG-4986 was delivered intratympanically in a Poloxamer-407 gel formulation for sustained drug release 24 or 48 h after noise exposure. Intratympanic administration of CCG-4986 48 h after noise exposure attenuated noise-induced permanent auditory threshold shifts by up to 19 dB, whilst the earlier drug administration (24 h) led to even better preservation of auditory thresholds (up to 32 dB). Significant improvement of auditory thresholds and suprathreshold responses was linked to improved survival of sensorineural tissues and afferent synapses in the cochlea. Our studies thus demonstrate that intratympanic administration of CCG-4986 can rescue cochlear injury and hearing loss induced by acoustic overexposure. This research represents a novel paradigm for the treatment of various forms of SNHL based on regulation of GPCR.
Collapse
|
6
|
Ehses J, Fernández-Moya SM, Schröger L, Kiebler MA. Synergistic regulation of Rgs4 mRNA by HuR and miR-26/RISC in neurons. RNA Biol 2020; 18:988-998. [PMID: 32779957 PMCID: PMC8216180 DOI: 10.1080/15476286.2020.1795409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The negative regulator of G-protein signalling 4 (Rgs4) is linked to several neurologic diseases, e.g. schizophrenia, addiction, seizure and pain perception. Consequently, Rgs4 expression is tightly regulated, resulting in high mRNA and protein turnover. The post-transcriptional control of gene expression is mediated via RNA-binding proteins (RBPs) that interact with mRNAs in a combinatorial fashion. Here, we show that in neurons the RBP HuR reduces endogenous Rgs4 expression by destabilizing Rgs4 mRNA. Interestingly, in smooth muscle cells, Rgs4 is stabilized by HuR, indicating tissue-dependent differences in HuR function. Using in vitro RNA-based pulldown experiments, we identify the functional AU-rich element (ARE) within the Rgs4 3ʹ-UTR that is recognized and bound by HuR. Bioinformatic analysis uncovered that this ARE lies within a highly conserved area next to a miR-26 binding site. We find that the neuronal-enriched miR-26 negatively influences Rgs4 expression in neurons. Further, HuR and miR-26 act synergistically in fluorescent reporter assays. Together, our data suggest a regulatory mechanism, in which an RBP selectively destabilizes a target mRNA in cooperation with a miRNA and the RISC machinery.
Collapse
Affiliation(s)
- Janina Ehses
- BioMedical Center, Medical Faculty, Ludwig Maximilians University of Munich, Martinsried, Germany
| | - Sandra M Fernández-Moya
- BioMedical Center, Medical Faculty, Ludwig Maximilians University of Munich, Martinsried, Germany
| | - Luise Schröger
- BioMedical Center, Medical Faculty, Ludwig Maximilians University of Munich, Martinsried, Germany
| | - Michael A Kiebler
- BioMedical Center, Medical Faculty, Ludwig Maximilians University of Munich, Martinsried, Germany
| |
Collapse
|
7
|
Zhang F, Gannon M, Chen Y, Yan S, Zhang S, Feng W, Tao J, Sha B, Liu Z, Saito T, Saido T, Keene CD, Jiao K, Roberson ED, Xu H, Wang Q. β-amyloid redirects norepinephrine signaling to activate the pathogenic GSK3β/tau cascade. Sci Transl Med 2020; 12:eaay6931. [PMID: 31941827 PMCID: PMC7891768 DOI: 10.1126/scitranslmed.aay6931] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022]
Abstract
The brain noradrenergic system is critical for normal cognition and is affected at early stages in Alzheimer's disease (AD). Here, we reveal a previously unappreciated direct role of norepinephrine signaling in connecting β-amyloid (Aβ) and tau, two key pathological components of AD pathogenesis. Our results show that Aβ oligomers bind to an allosteric site on α2A adrenergic receptor (α2AAR) to redirect norepinephrine-elicited signaling to glycogen synthase kinase 3β (GSK3β) activation and tau hyperphosphorylation. This norepinephrine-dependent mechanism sensitizes pathological GSK3β/tau activation in response to nanomolar accumulations of extracellular Aβ, which is 50- to 100-fold lower than the amount required to activate GSK3β by Aβ alone. The significance of our findings is supported by in vivo evidence in two mouse models, human tissue sample analysis, and longitudinal clinical data. Our study provides translational insights into mechanisms underlying Aβ proteotoxicity, which might have strong implications for the interpretation of Aβ clearance trial results and future drug design and for understanding the selective vulnerability of noradrenergic neurons in AD.
Collapse
Affiliation(s)
- Fang Zhang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mary Gannon
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yunjia Chen
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Shun Yan
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sixue Zhang
- Department of Chemistry, Southern Research Institute, Birmingham, AL 35205, USA
| | - Wendy Feng
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jiahui Tao
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Bingdong Sha
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Zhenghui Liu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA 98104, USA
| | - Kai Jiao
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Erik D Roberson
- Alzheimer's Disease Center, Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Huaxi Xu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Qin Wang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
8
|
Shaw VS, Mohammadi M, Quinn JA, Vashisth H, Neubig RR. An Interhelical Salt Bridge Controls Flexibility and Inhibitor Potency for Regulators of G-protein Signaling Proteins 4, 8, and 19. Mol Pharmacol 2019; 96:683-691. [PMID: 31543506 DOI: 10.1124/mol.119.117176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/14/2019] [Indexed: 12/13/2022] Open
Abstract
Regulators of G-protein signaling (RGS) proteins modulate receptor signaling by binding to activated G-protein α-subunits, accelerating GTP hydrolysis. Selective inhibition of RGS proteins increases G-protein activity and may provide unique tissue specificity. Thiadiazolidinones (TDZDs) are covalent inhibitors that act on cysteine residues to inhibit RGS4, RGS8, and RGS19. There is a correlation between protein flexibility and potency of inhibition by the TDZD 4-[(4- fluorophenyl)methyl]-2-(4-methylphenyl)-1,2,4-thiadiazolidine-3,5-dione (CCG-50014). In the context of a single conserved cysteine residue on the α 4 helix, RGS19 is the most flexible and most potently inhibited by CCG-50014, followed by RGS4 and RGS8. In this work, we identify residues responsible for differences in both flexibility and potency of inhibition among RGS isoforms. RGS19 lacks a charged residue on the α 4 helix that is present in RGS4 and RGS8. Introducing a negative charge at this position (L118D) increased the thermal stability of RGS19 and decreased the potency of inhibition of CCG-50014 by 8-fold. Mutations eliminating salt bridge formation in RGS8 and RGS4 decreased thermal stability in RGS8 and increased potency of inhibition of both RGS4 and RGS8 by 4- and 2-fold, respectively. Molecular dynamics simulations with an added salt bridge in RGS19 (L118D) showed reduced RGS19 flexibility. Hydrogen-deuterium exchange studies showed striking differences in flexibility in the α 4 helix of RGS4, 8, and 19 with salt bridge-modifying mutations. These results show that the α 4 salt bridge-forming residue controls flexibility in several RGS isoforms and supports a causal relationship between RGS flexibility and the potency of TDZD inhibitors. SIGNIFICANCE STATEMENT: Inhibitor potency is often viewed in relation to the static structure of a target protein binding pocket. Using both experimental and computation studies we assess determinants of dynamics and inhibitor potency for three different RGS proteins. A single salt bridge-forming residue determines differences in flexibility between RGS isoforms; mutations either increase or decrease protein motion with correlated alterations in inhibitor potency. This strongly suggests a causal relationship between RGS protein flexibility and covalent inhibitor potency.
Collapse
Affiliation(s)
- Vincent S Shaw
- Department of Pharmacology and Toxicology (V.S.S., J.A.Q., R.R.N.) and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan; and Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire (M.M., H.V.)
| | - Mohammadjavad Mohammadi
- Department of Pharmacology and Toxicology (V.S.S., J.A.Q., R.R.N.) and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan; and Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire (M.M., H.V.)
| | - Josiah A Quinn
- Department of Pharmacology and Toxicology (V.S.S., J.A.Q., R.R.N.) and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan; and Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire (M.M., H.V.)
| | - Harish Vashisth
- Department of Pharmacology and Toxicology (V.S.S., J.A.Q., R.R.N.) and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan; and Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire (M.M., H.V.)
| | - Richard R Neubig
- Department of Pharmacology and Toxicology (V.S.S., J.A.Q., R.R.N.) and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan; and Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire (M.M., H.V.)
| |
Collapse
|
9
|
Muntean BS, Patil DN, Madoux F, Fossetta J, Scampavia L, Spicer TP, Martemyanov KA. A High-Throughput Time-Resolved Fluorescence Energy Transfer Assay to Screen for Modulators of RGS7/Gβ5/R7BP Complex. Assay Drug Dev Technol 2019; 16:150-161. [PMID: 29658790 DOI: 10.1089/adt.2017.839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are excellent drug targets exploited by majority of the Food and Drug Administration-approved medications, but when modulated, are often accompanied by significant adverse effects. Targeting of other elements in GPCR pathways for improved safety and efficacy is thus an unmet need. The strength of GPCR signaling is tightly regulated by regulators of G protein signaling (RGS) proteins, making them attractive drug targets. We focused on a prominent RGS complex in the brain consisting of RGS7 and its binding partners Gβ5 and R7BP. These complexes play critical roles in regulating multiple GPCRs and essential physiological processes, yet no small molecule modulators are currently available to modify its function. In this study, we report a novel high-throughput approach to screen for small molecule modulators of the intramolecular transitions in the RGS7/Gβ5/R7BP complex known to be involved in its allosteric regulation. We developed a time-resolved fluorescence energy transfer-based in vitro assay that utilizes full-length recombinant proteins and shows consistency, excellent assay statistics, and high level of sensitivity. We demonstrated the potential of this approach by screening two compound libraries (LOPAC 1280 and MicroSource Spectrum). This study confirms the feasibility of the chosen strategy for identifying small molecule modulators of RGS7/Gβ5/R7BP complex for impacting signaling downstream of the GPCRs.
Collapse
Affiliation(s)
- Brian S Muntean
- 1 Department of Neuroscience, The Scripps Research Institute , Jupiter, Florida
| | - Dipak N Patil
- 1 Department of Neuroscience, The Scripps Research Institute , Jupiter, Florida
| | - Franck Madoux
- 2 Department of Molecular Medicine, The Scripps Research Institute , Jupiter, Florida
| | | | - Louis Scampavia
- 2 Department of Molecular Medicine, The Scripps Research Institute , Jupiter, Florida
| | - Timothy P Spicer
- 2 Department of Molecular Medicine, The Scripps Research Institute , Jupiter, Florida
| | | |
Collapse
|
10
|
Köles L, Szepesy J, Berekméri E, Zelles T. Purinergic Signaling and Cochlear Injury-Targeting the Immune System? Int J Mol Sci 2019; 20:ijms20122979. [PMID: 31216722 PMCID: PMC6627352 DOI: 10.3390/ijms20122979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 02/06/2023] Open
Abstract
Hearing impairment is the most common sensory deficit, affecting more than 400 million people worldwide. Sensorineural hearing losses currently lack any specific or efficient pharmacotherapy largely due to the insufficient knowledge of the pathomechanism. Purinergic signaling plays a substantial role in cochlear (patho)physiology. P2 (ionotropic P2X and the metabotropic P2Y) as well as adenosine receptors expressed on cochlear sensory and non-sensory cells are involved mostly in protective mechanisms of the cochlea. They are implicated in the sensitivity adjustment of the receptor cells by a K+ shunt and can attenuate the cochlear amplification by modifying cochlear micromechanics. Cochlear blood flow is also regulated by purines. Here, we propose to comprehend this field with the purine-immune interactions in the cochlea. The role of harmful immune mechanisms in sensorineural hearing losses has been emerging in the horizon of cochlear pathologies. In addition to decreasing hearing sensitivity and increasing cochlear blood supply, influencing the immune system can be the additional avenue for pharmacological targeting of purinergic signaling in the cochlea. Elucidating this complexity of purinergic effects on cochlear functions is necessary and it can result in development of new therapeutic approaches in hearing disabilities, especially in the noise-induced ones.
Collapse
Affiliation(s)
- László Köles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
| | - Judit Szepesy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
| | - Eszter Berekméri
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
- Department of Ecology, University of Veterinary Medicine, H-1078 Budapest, Hungary.
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Hungary.
| |
Collapse
|
11
|
Berekméri E, Szepesy J, Köles L, Zelles T. Purinergic signaling in the organ of Corti: Potential therapeutic targets of sensorineural hearing losses. Brain Res Bull 2019; 151:109-118. [PMID: 30721767 DOI: 10.1016/j.brainresbull.2019.01.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/10/2019] [Accepted: 01/25/2019] [Indexed: 01/04/2023]
Abstract
Purinergic signaling is deeply involved in the development, functions and protective mechanisms of the cochlea. Release of ATP and activation of purinergic receptors on sensory and supporting/epithelial cells play a substantial role in cochlear (patho)physiology. Both the ionotropic P2X and the metabotropic P2Y receptors are widely distributed on the inner and outer hair cells as well as on the different supporting cells in the organ of Corti and on other epithelial cells in the scala media. Among others, they are implicated in the sensitivity adjustment of the receptor cells by a K+ shunt and can attenuate the cochlear amplification by modifying cochlear micromechanics acting on outer hair cells and supporting cells. Cochlear blood flow is also regulated by purines. Sensorineural hearing losses currently lack any specific or efficient pharmacotherapy. Decreasing hearing sensitivity and increasing cochlear blood supply by pharmacological targeting of purinergic signaling in the cochlea are potential new therapeutic approaches in these hearing disabilities, especially in the noise-induced ones.
Collapse
Affiliation(s)
- Eszter Berekméri
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Judit Szepesy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - László Köles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
12
|
Mohammadi M, Mohammadiarani H, Shaw VS, Neubig RR, Vashisth H. Interplay of cysteine exposure and global protein dynamics in small-molecule recognition by a regulator of G-protein signaling protein. Proteins 2018; 87:146-156. [PMID: 30521141 DOI: 10.1002/prot.25642] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/07/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023]
Abstract
Regulator of G protein signaling (RGS) proteins play a pivotal role in regulation of G protein-coupled receptor (GPCR) signaling and are therefore becoming an increasingly important therapeutic target. Recently discovered thiadiazolidinone (TDZD) compounds that target cysteine residues have shown different levels of specificities and potencies for the RGS4 protein, thereby suggesting intrinsic differences in dynamics of this protein upon binding of these compounds. In this work, we investigated using atomistic molecular dynamics (MD) simulations the effect of binding of several small-molecule inhibitors on perturbations and dynamical motions in RGS4. Specifically, we studied two conformational models of RGS4 in which a buried cysteine residue is solvent-exposed due to side-chain motions or due to flexibility in neighboring helices. We found that TDZD compounds with aromatic functional groups perturb the RGS4 structure more than compounds with aliphatic functional groups. Moreover, small-molecules with aromatic functional groups but lacking sulfur atoms only transiently reside within the protein and spontaneously dissociate to the solvent. We further measured inhibitory effects of TDZD compounds using a protein-protein interaction assay on a single-cysteine RGS4 protein showing trends in potencies of compounds consistent with our simulation studies. Thermodynamic analyses of RGS4 conformations in the apo-state and on binding to TDZD compounds revealed links between both conformational models of RGS4. The exposure of cysteine side-chains appears to facilitate initial binding of TDZD compounds followed by migration of the compound into a bundle of four helices, thereby causing allosteric perturbations in the RGS/Gα protein-protein interface.
Collapse
Affiliation(s)
| | | | - Vincent S Shaw
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Richard R Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire
| |
Collapse
|
13
|
Rorabaugh BR, Rose MJ, Stoops TS, Stevens AA, Seeley SL, D'Souza MS. Regulators of G-protein signaling 2 and 4 differentially regulate cocaine-induced rewarding effects. Physiol Behav 2018; 195:9-19. [PMID: 30036561 DOI: 10.1016/j.physbeh.2018.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/16/2018] [Accepted: 07/19/2018] [Indexed: 01/11/2023]
Abstract
There is a need to identify new therapeutic targets for the treatment of cocaine addiction due to the rise in cocaine abuse and deaths due to cocaine overdose. Regulator of G protein signaling (RGS) proteins such as RGS2 and RGS4 are widely distributed in brain regions that play a role in drug reward. Importantly, RGS2 and RGS4 negatively regulate G-protein coupled receptor signaling pathways of monoaminergic neurotransmitters that play a role in the rewarding effects of cocaine by enhancing the rate of hydrolysis of Gα-bound guanine nucleotide triphosphate. Thus, the objective of this study was to investigate the effects of cocaine on conditioned place preference (CPP) and locomotor activity in mice that lacked either RGS2 or RGS4 (i.e. knockout (KO) mice) and their wildtype (WT) littermates. Moreover recent studies have reported influence of sex on RGS functioning and hence studies were conducted in both male and female mice. Cocaine-induced CPP was attenuated in male, but not female RGS4 KO mice compared to respective RGS4 WT mice. Cocaine-induced CPP was not influenced by deletion of RGS2 in either male or female mice. Similarly, cocaine-induced locomotor activity was not influenced by deletion of either RGS2 or RGS4 irrespective of sex. Together, the data indicate that the rewarding effects of cocaine were attenuated in the absence of RGS4 expression, but not in the absence of RGS2 expression in a sex-dependent manner. Importantly, these data suggest that RGS4 can serve as a potential target for medications that can be used to treat cocaine addiction.
Collapse
Affiliation(s)
- Boyd R Rorabaugh
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, 525 S Main Street, Ada, OH 45810, United States
| | - Madison J Rose
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, 525 S Main Street, Ada, OH 45810, United States
| | - Thorne S Stoops
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, 525 S Main Street, Ada, OH 45810, United States
| | - Allison A Stevens
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, 525 S Main Street, Ada, OH 45810, United States
| | - Sarah L Seeley
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, 525 S Main Street, Ada, OH 45810, United States
| | - Manoranjan S D'Souza
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, 525 S Main Street, Ada, OH 45810, United States.
| |
Collapse
|
14
|
Gerald B, Ramsey K, Belnap N, Szelinger S, Siniard AL, Balak C, Russell M, Richholt R, De Both M, Claasen AM, Schrauwen I, Huentelman MJ, Craig DW, Rangasamy S, Narayanan V. Neonatal epileptic encephalopathy caused by de novo GNAO1 mutation misdiagnosed as atypical Rett syndrome: Cautions in interpretation of genomic test results. Semin Pediatr Neurol 2018; 26:28-32. [PMID: 29961512 DOI: 10.1016/j.spen.2017.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Epileptic encephalopathies are childhood brain disorders characterized by a variety of severe epilepsy syndromes that differ by the age of onset and seizure type. Until recently, the cause of many epileptic encephalopathies was unknown. Whole exome or whole genome sequencing has led to the identification of several causal genes in individuals with epileptic encephalopathy, and the list of genes has now expanded greatly. Genetic testing with epilepsy gene panels is now done quite early in the evaluation of children with epilepsy, following brain imaging, electroencephalogram, and metabolic profile. Early infantile epileptic encephalopathy (EIEE1; OMIM #308350) is the earliest of these age-dependent encephalopathies, manifesting as tonic spasms, myoclonic seizures, or partial seizures, with severely abnormal electroencephalogram, often showing a suppression-burst pattern. In this case study, we describe a 33-month-old female child with severe, neonatal onset epileptic encephalopathy. An infantile epilepsy gene panel test revealed 2 novel heterozygous variants in the MECP2 gene; a 70-bp deletion resulting in a frameshift and truncation (p.Lys377ProfsX9) thought to be pathogenic, and a 6-bp in-frame deletion (p.His371_372del), designated as a variant of unknown significance. Based on this test result, the diagnosis of atypical Rett syndrome (RTT) was made. Family-based targeted testing and segregation analysis, however, raised questions about the pathogenicity of these specific MECP2 variants. Whole exome sequencing was performed in this family trio, leading to the discovery of a rare, de novo, missense mutation in GNAO1 (p. Leu284Ser). De novo, heterozygous mutations in GNAO1 have been reported to cause early infantile epileptic encephalopathy-17 (EIEE17; OMIM 615473). The child's severe phenotype, the family history and segregation analysis of variants and prior reports of GNAO1-linked disease allowed us to conclude that the GNAO1 mutation, and not the MECP2 variants, was the cause of this child's neurological disease. With the increased use of genetic panels and whole exome sequencing, we will be confronted with lists of gene variants suspected to be pathogenic or of unknown significance. It is important to integrate clinical information, genetic testing that includes family members and correlates this with the published clinical and scientific literature, to help one arrive at the correct genetic diagnosis.
Collapse
Affiliation(s)
- Brittany Gerald
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ; Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ; School of Life Sciences, Arizona State University, Tempe, AZ
| | - Keri Ramsey
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ; Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ
| | - Newell Belnap
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ; Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ
| | - Szabolcs Szelinger
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ; Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ
| | - Ashley L Siniard
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ; Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ
| | - Chris Balak
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ; Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ
| | - Megan Russell
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ; Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ
| | - Ryan Richholt
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ; Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ
| | - Matt De Both
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ; Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ
| | - Ana M Claasen
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ; Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ
| | - Isabelle Schrauwen
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ; Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ
| | - Matthew J Huentelman
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ; Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ
| | - David W Craig
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ; Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ
| | - Sampathkumar Rangasamy
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ; Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ.
| | - Vinodh Narayanan
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ; Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ; School of Life Sciences, Arizona State University, Tempe, AZ.
| |
Collapse
|
15
|
Distinct Roles of Protein Phosphatase 1 Bound on Neurabin and Spinophilin and Its Regulation in AMPA Receptor Trafficking and LTD Induction. Mol Neurobiol 2018; 55:7179-7186. [PMID: 29383693 DOI: 10.1007/s12035-018-0886-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/08/2018] [Indexed: 01/30/2023]
Abstract
Protein phosphatase-1 (PP1) constrains learning and memory formation in part through its effects on the induction threshold of long-term potentiation (LTP) and depression (LTD). LTD induction requires both the enzymatic activity of PP1 and its proper anchoring to synaptic spines. We have shown previously that neurabin, a major synaptic scaffolding protein, targets PP1 to synapses for LTD induction. Here, we show that PP1 bound on spinophilin, a close homolog of neurabin and another major synaptic PP1 anchoring protein, does not play a role in LTD induction, which suggests that neurabin plays a privileged role in nanodomain targeting of PP1 in LTD induction. We found that protein kinase A can significantly weaken the neurabin-PP1 interaction in neurons via phosphorylation of neurabin at serine 461, a phosphorylation site adjacent to the PP1-binding motif that is not conserved in spinophilin. Finally, we found that a neurabin mutation (S461E), which mimics phosphorylation, blocked AMPA receptor endocytosis and LTD induction. The results indicate the critical importance of nanodomain targeting of PP1 within synaptic spines and its regulation in LTD induction.
Collapse
|
16
|
Chen Y, Booth C, Wang H, Wang RX, Terzi D, Zachariou V, Jiao K, Zhang J, Wang Q. Effective Attenuation of Adenosine A1R Signaling by Neurabin Requires Oligomerization of Neurabin. Mol Pharmacol 2017; 92:630-639. [PMID: 28954816 DOI: 10.1124/mol.117.109462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/25/2017] [Indexed: 12/17/2022] Open
Abstract
The adenosine A1 receptor (A1R) is a key mediator of the neuroprotective effect by endogenous adenosine. Yet targeting this receptor for neuroprotection is challenging due to its broad expression throughout the body. A mechanistic understanding of the regulation of A1R signaling is necessary for the future design of therapeutic agents that can selectively enhance A1R-mediated responses in the nervous system. In this study, we demonstrate that A1R activation leads to a sustained localization of regulator of G protein signaling 4 (RGS4) at the plasma membrane, a process that requires neurabin (a neural tissue-specific protein). A1R and RGS4 interact with the overlapping regions of neurabin. In addition, neurabin domains required for oligomerization are essential for formation of the A1R/neurabin/RGS4 ternary complex, as well as for stable localization of RGS4 at the plasma membrane and attenuation of A1R signaling. Thus, A1R and RGS4 each likely interact with one neurabin molecule in a neurabin homo-oligomer to form a ternary complex, representing a novel mode of regulation of G protein-coupled receptor signaling by scaffolding proteins. Our mechanistic analysis of neurabin-mediated regulation of A1R signaling in this study will be valuable for the future design of therapeutic agents that can selectively enhance A1R-mediated responses in the nervous system.
Collapse
Affiliation(s)
- Yunjia Chen
- Departments of Cell, Developmental, and Integrative Biology (Y.C., H.W., R.X.W., Q.W.) and Genetics (K.J.), University of Alabama, Birmingham, Alabama; Department of Pharmacology, University of California, San Diego, California (C.B., J.Z.); and Department of Neuroscience, Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York (D.T., V.Z.)
| | - Christopher Booth
- Departments of Cell, Developmental, and Integrative Biology (Y.C., H.W., R.X.W., Q.W.) and Genetics (K.J.), University of Alabama, Birmingham, Alabama; Department of Pharmacology, University of California, San Diego, California (C.B., J.Z.); and Department of Neuroscience, Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York (D.T., V.Z.)
| | - Hongxia Wang
- Departments of Cell, Developmental, and Integrative Biology (Y.C., H.W., R.X.W., Q.W.) and Genetics (K.J.), University of Alabama, Birmingham, Alabama; Department of Pharmacology, University of California, San Diego, California (C.B., J.Z.); and Department of Neuroscience, Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York (D.T., V.Z.)
| | - Raymond X Wang
- Departments of Cell, Developmental, and Integrative Biology (Y.C., H.W., R.X.W., Q.W.) and Genetics (K.J.), University of Alabama, Birmingham, Alabama; Department of Pharmacology, University of California, San Diego, California (C.B., J.Z.); and Department of Neuroscience, Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York (D.T., V.Z.)
| | - Dimitra Terzi
- Departments of Cell, Developmental, and Integrative Biology (Y.C., H.W., R.X.W., Q.W.) and Genetics (K.J.), University of Alabama, Birmingham, Alabama; Department of Pharmacology, University of California, San Diego, California (C.B., J.Z.); and Department of Neuroscience, Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York (D.T., V.Z.)
| | - Venetia Zachariou
- Departments of Cell, Developmental, and Integrative Biology (Y.C., H.W., R.X.W., Q.W.) and Genetics (K.J.), University of Alabama, Birmingham, Alabama; Department of Pharmacology, University of California, San Diego, California (C.B., J.Z.); and Department of Neuroscience, Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York (D.T., V.Z.)
| | - Kai Jiao
- Departments of Cell, Developmental, and Integrative Biology (Y.C., H.W., R.X.W., Q.W.) and Genetics (K.J.), University of Alabama, Birmingham, Alabama; Department of Pharmacology, University of California, San Diego, California (C.B., J.Z.); and Department of Neuroscience, Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York (D.T., V.Z.)
| | - Jin Zhang
- Departments of Cell, Developmental, and Integrative Biology (Y.C., H.W., R.X.W., Q.W.) and Genetics (K.J.), University of Alabama, Birmingham, Alabama; Department of Pharmacology, University of California, San Diego, California (C.B., J.Z.); and Department of Neuroscience, Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York (D.T., V.Z.)
| | - Qin Wang
- Departments of Cell, Developmental, and Integrative Biology (Y.C., H.W., R.X.W., Q.W.) and Genetics (K.J.), University of Alabama, Birmingham, Alabama; Department of Pharmacology, University of California, San Diego, California (C.B., J.Z.); and Department of Neuroscience, Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York (D.T., V.Z.)
| |
Collapse
|
17
|
Wu H, Cottingham C, Chen L, Wang H, Che P, Liu K, Wang Q. Age-dependent differential regulation of anxiety- and depression-related behaviors by neurabin and spinophilin. PLoS One 2017; 12:e0180638. [PMID: 28700667 PMCID: PMC5503268 DOI: 10.1371/journal.pone.0180638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/19/2017] [Indexed: 12/28/2022] Open
Abstract
Affective disorders impact nearly 10% of the adult population in the United States in a given year. Synaptic dysfunction has recently emerged as a key neurobiological mechanism underlying affective disorders such as anxiety and depression. In this study, we investigate the potential role of two synaptic scaffolding proteins, neurabin and spinophilin, in regulating anxiety- and depression-related behaviors at different ages using genetically deficient mice. Loss of the neurabin gene reduces anxiety-like behavior in the elevated zero maze in young adult mice (3-5 months old), but not in middle aged mice (11-13 months old), whereas loss of spinophilin decreases anxiety in middle-aged mice, but not in young adult mice. Neurabin knockout (KO) mice also show reduced immobility in the repeated force swim test (FST) at 3-5 months, but not 11-3 months, of age, compared to age- and strain-matched wild type (WT) controls. Conversely, spinophilin KO mice display a lower level of this behavioral despair than matched WT controls after repeated FST trials at the middle age (11-13 months) but not the young age (3-5 months). Together, these data indicate that, despite their structural similarities and overlapping function in regulating synaptic cytoskeleton, the two homologs neurabin and spinophilin play important yet distinct roles in the regulation of anxiety- and depression-like behaviors in an age-dependent manner. Our studies provide new insights into the complex neurobiology of affective disorders.
Collapse
Affiliation(s)
- Huiying Wu
- Ultrasonic Diagnosis Department, The Second Hospital of Jilin University, Changchun, Jilin, China
- Departments of Cell, Molecular and Developmental Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Christopher Cottingham
- Departments of Cell, Molecular and Developmental Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
- Department of Biology and Chemistry, Morehead State University, Morehead, KY, United States of America
| | - Liping Chen
- Departments of Cell, Molecular and Developmental Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Hongxia Wang
- Departments of Cell, Molecular and Developmental Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Pulin Che
- Departments of Cell, Molecular and Developmental Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Kexiang Liu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Qin Wang
- Departments of Cell, Molecular and Developmental Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
- * E-mail:
| |
Collapse
|
18
|
Zhang F, Gannon M, Chen Y, Zhou L, Jiao K, Wang Q. The amyloid precursor protein modulates α 2A-adrenergic receptor endocytosis and signaling through disrupting arrestin 3 recruitment. FASEB J 2017. [PMID: 28646018 DOI: 10.1096/fj.201700346r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The amyloid precursor protein (APP) has long been appreciated for its role in Alzheimer's disease (AD) pathology. However, less is known about the physiologic function of APP outside of AD. Particularly, whether and how APP may regulate functions of cell surface receptors, including GPCRs, remains largely unclear. In this study, we identified a novel direct interaction between APP and the α2A-adrenergic receptor (α2AAR) that occurs at the intracellular domains of both proteins. The APP interaction with α2AAR is promoted by agonist stimulation and competes with arrestin 3 binding to the receptor. Consequently, the presence of APP attenuates α2AAR internalization and desensitization, which are arrestin-dependent processes. Furthermore, in neuroblastoma neuro-2A cells and primary superior cervical ganglion neurons, where APP is highly expressed, the lack of APP leads to a dramatic increase in plasma membrane recruitment of endogenous arrestin 3 following α2AAR activation. Concomitantly, agonist-induced internalization of α2AAR is significantly enhanced in these neuronal cells. Our study provided the first evidence that APP fine tunes GPCR signaling and trafficking. Given the important role of α2AAR in controlling norepinephrine release and response, this novel regulation of α2AAR by APP may have an impact on modulation of noradrenergic activity and sympathetic tone.-Zhang, F., Gannon, M., Chen, Y., Zhou, L., Jiao, K., Wang, Q. The amyloid precursor protein modulates α2A-adrenergic receptor endocytosis and signaling through disrupting arrestin 3 recruitment.
Collapse
Affiliation(s)
- Fang Zhang
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mary Gannon
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yunjia Chen
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lufang Zhou
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kai Jiao
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Qin Wang
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA;
| |
Collapse
|
19
|
Cottingham C, Che P, Zhang W, Wang H, Wang RX, Percival S, Birky T, Zhou L, Jiao K, Wang Q. Diverse arrestin-recruiting and endocytic profiles of tricyclic antipsychotics acting as direct α 2A adrenergic receptor ligands. Neuropharmacology 2016; 116:38-49. [PMID: 27956055 DOI: 10.1016/j.neuropharm.2016.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/28/2016] [Accepted: 12/08/2016] [Indexed: 01/01/2023]
Abstract
The therapeutic mechanism of action underlying many psychopharmacological agents remains poorly understood, due largely to the extreme molecular promiscuity exhibited by these agents with respect to potential central nervous system targets. Agents of the tricyclic chemical class, including both antidepressants and antipsychotics, exhibit a particularly high degree of molecular promiscuity; therefore, any clarification of how these agents interact with specific central nervous system targets is of great potential significance to the field. Here, we present evidence demonstrating that tricyclic antipsychotics appear to segregate into three distinct groups based upon their molecular interactions with the centrally-important α2A adrenergic receptor (AR). Specifically, while the α2AAR binds all antipsychotics tested with similar affinities, and none of the agents are able to induce classical heterotrimeric G protein-mediated α2AAR signaling, significant differences are observed with respect to arrestin3 recruitment and receptor endocytosis. All antipsychotics tested induce arrestin3 recruitment to the α2AAR, but with differing strengths. Both chlorpromazine and clozapine drive significant α2AAR endocytosis, but via differing clathrin-dependent and lipid raft-dependent pathways, while fluphenazine does not drive a robust response. Intriguingly, in silico molecular modeling suggests that each of the three exhibits unique characteristics in interacting with the α2AAR ligand-binding pocket. In addition to establishing these three antipsychotics as novel arrestin-biased ligands at the α2AAR, our findings provide key insights into the molecular actions of these clinically-important agents.
Collapse
Affiliation(s)
- Christopher Cottingham
- Department of Cell, Molecular and Developmental Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Biology and Chemistry, Morehead State University, Morehead, KY 40351, USA
| | - Pulin Che
- Department of Cell, Molecular and Developmental Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Wei Zhang
- Southern Research Institute, Birmingham, AL 35205, USA
| | - Hongxia Wang
- Department of Cell, Molecular and Developmental Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Raymond X Wang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Stefanie Percival
- Department of Cell, Molecular and Developmental Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Tana Birky
- Department of Cell, Molecular and Developmental Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lufang Zhou
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kai Jiao
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Qin Wang
- Department of Cell, Molecular and Developmental Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
20
|
Banerji J. Asparaginase treatment side-effects may be due to genes with homopolymeric Asn codons (Review-Hypothesis). Int J Mol Med 2015; 36:607-26. [PMID: 26178806 PMCID: PMC4533780 DOI: 10.3892/ijmm.2015.2285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/15/2015] [Indexed: 12/14/2022] Open
Abstract
The present treatment of childhood T-cell leukemias involves the systemic administration of prokary-otic L-asparaginase (ASNase), which depletes plasma Asparagine (Asn) and inhibits protein synthesis. The mechanism of therapeutic action of ASNase is poorly understood, as are the etiologies of the side-effects incurred by treatment. Protein expression from genes bearing Asn homopolymeric coding regions (N-hCR) may be particularly susceptible to Asn level fluctuation. In mammals, N-hCR are rare, short and conserved. In humans, misfunctions of genes encoding N-hCR are associated with a cluster of disorders that mimic ASNase therapy side-effects which include impaired glycemic control, dislipidemia, pancreatitis, compromised vascular integrity, and neurological dysfunction. This paper proposes that dysregulation of Asn homeostasis, potentially even by ASNase produced by the microbiome, may contribute to several clinically important syndromes by altering expression of N-hCR bearing genes. By altering amino acid abundance and modulating ribosome translocation rates at codon repeats, the microbiomic environment may contribute to genome decoding and to shaping the proteome. We suggest that impaired translation at poly Asn codons elevates diabetes risk and severity.
Collapse
Affiliation(s)
- Julian Banerji
- Center for Computational and Integrative Biology, MGH, Simches Research Center, Boston, MA 02114, USA
| |
Collapse
|
21
|
Blazer LL, Storaska AJ, Jutkiewicz EM, Turner EM, Calcagno M, Wade SM, Wang Q, Huang XP, Traynor JR, Husbands SM, Morari M, Neubig RR. Selectivity and anti-Parkinson's potential of thiadiazolidinone RGS4 inhibitors. ACS Chem Neurosci 2015; 6:911-9. [PMID: 25844489 DOI: 10.1021/acschemneuro.5b00063] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Many current therapies target G protein coupled receptors (GPCR), transporters, or ion channels. In addition to directly targeting these proteins, disrupting the protein-protein interactions that localize or regulate their function could enhance selectivity and provide unique pharmacologic actions. Regulators of G protein signaling (RGS) proteins, especially RGS4, play significant roles in epilepsy and Parkinson's disease. Thiadiazolidinone (TDZD) inhibitors of RGS4 are nanomolar potency blockers of the biochemical actions of RGS4 in vitro. Here, we demonstrate the substantial selectivity (8- to >5000-fold) of CCG-203769 for RGS4 over other RGS proteins. It is also 300-fold selective for RGS4 over GSK-3β, another target of this class of chemical scaffolds. It does not inhibit the cysteine protease papain at 100 μM. CCG-203769 enhances Gαq-dependent cellular Ca(2+) signaling in an RGS4-dependent manner. TDZD inhibitors also enhance Gαi-dependent δ-OR inhibition of cAMP production in SH-SY-5Y cells, which express endogenous receptors and RGS4. Importantly, CCG-203769 potentiates the known RGS4 mechanism of Gαi-dependent muscarinic bradycardia in vivo. Furthermore, it reverses raclopride-induced akinesia and bradykinesia in mice, a model of some aspects of the movement disorder in Parkinson's disease. A broad assessment of compound effects revealed minimal off-target effects at concentrations necessary for cellular RGS4 inhibition. These results expand our understanding of the mechanism and specificity of TDZD RGS inhibitors and support the potential for therapeutic targeting of RGS proteins in Parkinson's disease and other neural disorders.
Collapse
Affiliation(s)
- Levi L. Blazer
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States,
| | - Andrew J. Storaska
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States,
- Department of Pharmacology and Toxicology, Michigan State University, East
Lansing, Michigan 48824, United States
| | - Emily M. Jutkiewicz
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States,
| | - Emma M. Turner
- Department of Pharmacy and Pharmacology, University of Bath, Bath, U.K
| | - Mariangela Calcagno
- Section of Pharmacology, Department of
Medical Science, University of Ferrara, Ferrara, Italy 44121
| | - Susan M. Wade
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States,
| | - Qin Wang
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States,
| | - Xi-Ping Huang
- National Institute of Mental Health Psychoactive Drug
Screening Program (NIMH PDSP), Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - John R. Traynor
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States,
| | | | - Michele Morari
- Section of Pharmacology, Department of
Medical Science, University of Ferrara, Ferrara, Italy 44121
| | - Richard R. Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East
Lansing, Michigan 48824, United States
| |
Collapse
|
22
|
Woodard GE, Jardín I, Berna-Erro A, Salido GM, Rosado JA. Regulators of G-protein-signaling proteins: negative modulators of G-protein-coupled receptor signaling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:97-183. [PMID: 26008785 DOI: 10.1016/bs.ircmb.2015.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulators of G-protein-signaling (RGS) proteins are a category of intracellular proteins that have an inhibitory effect on the intracellular signaling produced by G-protein-coupled receptors (GPCRs). RGS along with RGS-like proteins switch on through direct contact G-alpha subunits providing a variety of intracellular functions through intracellular signaling. RGS proteins have a common RGS domain that binds to G alpha. RGS proteins accelerate GTPase and thus enhance guanosine triphosphate hydrolysis through the alpha subunit of heterotrimeric G proteins. As a result, they inactivate the G protein and quickly turn off GPCR signaling thus terminating the resulting downstream signals. Activity and subcellular localization of RGS proteins can be changed through covalent molecular changes to the enzyme, differential gene splicing, and processing of the protein. Other roles of RGS proteins have shown them to not be solely committed to being inhibitors but behave more as modulators and integrators of signaling. RGS proteins modulate the duration and kinetics of slow calcium oscillations and rapid phototransduction and ion signaling events. In other cases, RGS proteins integrate G proteins with signaling pathways linked to such diverse cellular responses as cell growth and differentiation, cell motility, and intracellular trafficking. Human and animal studies have revealed that RGS proteins play a vital role in physiology and can be ideal targets for diseases such as those related to addiction where receptor signaling seems continuously switched on.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Isaac Jardín
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - A Berna-Erro
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Caceres, Spain
| |
Collapse
|
23
|
Rocha L, Alonso-Vanegas M, Orozco-Suárez S, Alcántara-González D, Cruzblanca H, Castro E. Do certain signal transduction mechanisms explain the comorbidity of epilepsy and mood disorders? Epilepsy Behav 2014; 38:25-31. [PMID: 24472685 DOI: 10.1016/j.yebeh.2014.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/03/2014] [Accepted: 01/03/2014] [Indexed: 11/29/2022]
Abstract
It is well known that mood disorders are highly prevalent in patients with epilepsy. Although several studies have aimed to characterize alterations in different types of receptors associated with both disturbances, there is a lack of studies focused on identifying the causes of this comorbidity. Here, we described some changes at the biochemical level involving serotonin, dopamine, and γ-aminobutyric acid (GABA) receptors as well as signal transduction mechanisms that may explain the coexistence of both epilepsy and mood disorders. Finally, the identification of common pathophysiological mechanisms associated with receptor-receptor interaction (heterodimers) could allow designing new strategies for treatment of patients with epilepsy and comorbid mood disorders.
Collapse
Affiliation(s)
- Luisa Rocha
- Department of Pharmacobiology, Center of Research and Advanced Studies, Mexico City, Mexico.
| | - Mario Alonso-Vanegas
- National Institute of Neurology and Neurosurgery "Manuel Velasco Suarez", Mexico City, Mexico
| | - Sandra Orozco-Suárez
- Unit for Medical Research in Neurological Diseases, National Medical Center, Mexico City, Mexico
| | | | - Humberto Cruzblanca
- University Center of Biomedical Research, University of Colima, Colima, Mexico
| | - Elena Castro
- University Center of Biomedical Research, University of Colima, Colima, Mexico
| |
Collapse
|
24
|
Kehrl JM, Sahaya K, Dalton HM, Charbeneau RA, Kohut KT, Gilbert K, Pelz MC, Parent J, Neubig RR. Gain-of-function mutation in Gnao1: a murine model of epileptiform encephalopathy (EIEE17)? Mamm Genome 2014; 25:202-10. [PMID: 24700286 PMCID: PMC4042023 DOI: 10.1007/s00335-014-9509-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 03/11/2014] [Indexed: 12/13/2022]
Abstract
G protein-coupled receptors strongly modulate neuronal excitability but there has been little evidence for G protein mechanisms in genetic epilepsies. Recently, four patients with epileptic encephalopathy (EIEE17) were found to have mutations in GNAO1, the most abundant G protein in brain, but the mechanism of this effect is not known. The GNAO1 gene product, Gαo, negatively regulates neurotransmitter release. Here, we report a dominant murine model of Gnao1-related seizures and sudden death. We introduced a genomic gain-of-function knock-in mutation (Gnao1 (+/G184S)) that prevents Go turnoff by Regulators of G protein signaling proteins. This results in rare seizures, strain-dependent death between 15 and 40 weeks of age, and a markedly increased frequency of interictal epileptiform discharges. Mutants on a C57BL/6J background also have faster sensitization to pentylenetetrazol (PTZ) kindling. Both premature lethality and PTZ kindling effects are suppressed in the 129SvJ mouse strain. We have mapped a 129S-derived modifier locus on Chromosome 17 (within the region 41-70 MB) as a Modifer of G protein Seizures (Mogs1). Our mouse model suggests a novel gain-of-function mechanism for the newly defined subset of epileptic encephalopathy (EIEE17). Furthermore, it reveals a new epilepsy susceptibility modifier Mogs1 with implications for the complex genetics of human epilepsy as well as sudden death in epilepsy.
Collapse
Affiliation(s)
- Jason M. Kehrl
- />Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Kinshuk Sahaya
- />Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Hans M. Dalton
- />Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109 USA
| | | | - Kevin T. Kohut
- />Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Kristen Gilbert
- />Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Madeline C. Pelz
- />Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Jack Parent
- />Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA
- />Ann Arbor Veterans Administration Healthcare System, Ann Arbor, MI 48105 USA
| | - Richard R. Neubig
- />Department of Pharmacology & Toxicology, Michigan State University, B440 Life Sciences, 1355 Bogue St, East Lansing, MI 48824 USA
| |
Collapse
|
25
|
Storaska AJ, Mei JP, Wu M, Li M, Wade SM, Blazer LL, Sjögren B, Hopkins CR, Lindsley CW, Lin Z, Babcock JJ, McManus OB, Neubig RR. Reversible inhibitors of regulators of G-protein signaling identified in a high-throughput cell-based calcium signaling assay. Cell Signal 2013; 25:2848-55. [PMID: 24041654 DOI: 10.1016/j.cellsig.2013.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 09/06/2013] [Indexed: 11/30/2022]
Abstract
Regulator of G-protein signaling (RGS) proteins potently suppress G-protein coupled receptor (GPCR) signal transduction by accelerating GTP hydrolysis on activated heterotrimeric G-protein α subunits. RGS4 is enriched in the CNS and is proposed as a therapeutic target for treatment of neuropathological states including epilepsy and Parkinson's disease. Therefore, identification of novel RGS4 inhibitors is of interest. An HEK293-FlpIn cell-line stably expressing M3-muscarinic receptor with doxycycline-regulated RGS4 expression was employed to identify compounds that inhibit RGS4-mediated suppression of M3-muscarinic receptor signaling. Over 300,000 compounds were screened for an ability to enhance Gαq-mediated calcium signaling in the presence of RGS4. Compounds that modulated the calcium response in a counter-screen in the absence of RGS4 were not pursued. Of the 1365 RGS4-dependent primary screen hits, thirteen compounds directly target the RGS-G-protein interaction in purified systems. All thirteen compounds lose activity against an RGS4 mutant lacking cysteines, indicating that covalent modification of free thiol groups on RGS4 is a common mechanism. Four compounds produce >85% inhibition of RGS4-G-protein binding at 100μM, yet are >50% reversible within a ten-minute time frame. The four reversible compounds significantly alter the thermal melting temperature of RGS4, but not G-protein, indicating that inhibition is occurring through interaction with the RGS protein. The HEK cell-line employed for this study provides a powerful tool for efficiently identifying RGS-specific modulators within the context of a GPCR signaling pathway. As a result, several new reversible, cell-active RGS4 inhibitors have been identified for use in future biological studies.
Collapse
Affiliation(s)
- Andrew J Storaska
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bastin G, Heximer SP. Rab family proteins regulate the endosomal trafficking and function of RGS4. J Biol Chem 2013; 288:21836-49. [PMID: 23733193 DOI: 10.1074/jbc.m113.466888] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RGS4, a heterotrimeric G-protein inhibitor, localizes to plasma membrane (PM) and endosomal compartments. Here, we examined Rab-mediated control of RGS4 internalization and recycling. Wild type and constitutively active Rab5 decreased RGS4 PM levels while increasing its endosomal targeting. Rab5, however, did not appreciably affect the PM localization or function of the M1 muscarinic receptor (M1R)/Gq signaling cascade. RGS4-containing endosomes co-localized with subsets of Rab5-, transferrin receptor-, and Lamp1/Lysotracker-marked compartments suggesting RGS4 traffics through PM recycling or acidified endosome pathways. Rab7 activity promoted TGN association, whereas Rab7(dominant negative) trapped RGS4 in late endosomes. Furthermore, RGS4 was found to co-localize with an endosomal pool marked by Rab11, the protein that mediates recycling/sorting of proteins to the PM. The Cys-12 residue in RGS4 appeared important for its Rab11-mediated trafficking to the PM. Rab11(dominant negative) decreased RGS4 PM levels and increased the number of RGS4-containing endosomes. Inhibition of Rab11 activity decreased RGS4 function as an inhibitor of M1R activity without affecting localization and function of the M1R/Gq signaling complex. Thus, both Rab5 activation and Rab11 inhibition decreased RGS4 function in a manner that is independent from their effects on the localization and function of the M1R/Gq signaling complex. This is the first study to implicate Rab GTPases in the intracellular trafficking of an RGS protein. Thus, Rab GTPases may be novel molecular targets for the selective regulation of M1R-mediated signaling via their specific effects on RGS4 trafficking and function.
Collapse
Affiliation(s)
- Guillaume Bastin
- Department of Physiology, Heart and Stroke/Richard Lewar Centre of Excellence in Cardiovascular Research, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|
27
|
Bodle CR, Mackie DI, Roman DL. RGS17: an emerging therapeutic target for lung and prostate cancers. Future Med Chem 2013; 5:995-1007. [PMID: 23734683 PMCID: PMC3865709 DOI: 10.4155/fmc.13.91] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ligands for G-protein-coupled receptors (GPCRs) represent approximately 50% of currently marketed drugs. RGS proteins modulate heterotrimeric G proteins and, thus, GPCR signaling, by accelerating the intrinsic GTPase activity of the Gα subunit. Given the prevalence of GPCR targeted therapeutics and the role RGS proteins play in G protein signaling, some RGS proteins are emerging as targets in their own right. One such RGS protein is RGS17. Increased RGS17 expression in some prostate and lung cancers has been demonstrated to support cancer progression, while reduced expression of RGS17 can lead to development of chemotherapeutic resistance in ovarian cancer. High-throughput screening is a powerful tool for lead compound identification, and utilization of high-throughput technologies has led to the discovery of several RGS inhibitors, thus far. As screening technologies advance, the identification of novel lead compounds the subsequent development of targeted therapeutics appears promising.
Collapse
Affiliation(s)
- Christopher R Bodle
- The Department of Pharmaceutical Sciences & Experimental Therapeutics, University of Iowa, College of Pharmacy, Iowa City, IA, USA
- Division of Medicinal & Natural Products Chemistry, University of Iowa, College of Pharmacy, Iowa City, IA, USA
| | - Duncan I Mackie
- The Department of Pharmaceutical Sciences & Experimental Therapeutics, University of Iowa, College of Pharmacy, Iowa City, IA, USA
- Division of Medicinal & Natural Products Chemistry, University of Iowa, College of Pharmacy, Iowa City, IA, USA
- Cancer Signaling and Experimental Therapeutics Program, The Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - David L Roman
- The Department of Pharmaceutical Sciences & Experimental Therapeutics, University of Iowa, College of Pharmacy, Iowa City, IA, USA
- Division of Medicinal & Natural Products Chemistry, University of Iowa, College of Pharmacy, Iowa City, IA, USA
- Cancer Signaling and Experimental Therapeutics Program, The Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| |
Collapse
|
28
|
Zhao P, Cladman W, Van Tol HHM, Chidiac P. Fine-tuning of GPCR signals by intracellular G protein modulators. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 115:421-53. [PMID: 23415100 DOI: 10.1016/b978-0-12-394587-7.00010-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Heterotrimeric G proteins convey receptor signals to intracellular effectors. Superimposed over the basic GPCR-G protein-effector scheme are three types of auxiliary proteins that also modulate Gα. Regulator of G protein signaling proteins and G protein signaling modifier proteins respectively promote GTPase activity and hinder GTP/GDP exchange to limit Gα activation. There are also diverse proteins that, like GPCRs, can promote nucleotide exchange and thus activation. Here we review the impact of these auxiliary proteins on GPCR signaling. Although their precise physiological functions are not yet clear, all of them can produce significant effects in experimental systems. These signaling changes are generally consistent with established effects on isolated Gα; however, the activation state of Gα is seldom verified and many such changes appear also to reflect the physical disruption of or indirect effects on interactions between Gα and its associated GPCR, Gβγ, and/or effector.
Collapse
Affiliation(s)
- Peishen Zhao
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | | | | | | |
Collapse
|
29
|
A scaffold as a platform for new therapies? Epilepsy Curr 2012; 12:172-3. [PMID: 23118599 DOI: 10.5698/1535-7511-12.5.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
30
|
Tosh DK, Paoletta S, Deflorian F, Phan K, Moss SM, Gao ZG, Jiang X, Jacobson KA. Structural sweet spot for A1 adenosine receptor activation by truncated (N)-methanocarba nucleosides: receptor docking and potent anticonvulsant activity. J Med Chem 2012; 55:8075-90. [PMID: 22921089 PMCID: PMC3463139 DOI: 10.1021/jm300965a] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A(1) adenosine receptor (AR) agonists display antiischemic and antiepileptic neuroprotective activity, but peripheral cardiovascular side effects impeded their development. SAR study of N(6)-cycloalkylmethyl 4'-truncated (N)-methanocarba-adenosines identified 10 (MRS5474, N(6)-dicyclopropylmethyl, K(i) = 47.9 nM) as a moderately A(1)AR-selective full agonist. Two stereochemically defined N(6)-methynyl group substituents displayed narrow SAR; groups larger than cyclobutyl greatly reduced AR affinity, and those larger or smaller than cyclopropyl reduced A(1)AR selectivity. Nucleoside docking to A(1)AR homology model characterized distinct hydrophobic cyclopropyl subpockets, the larger "A" forming contacts with Thr270 (7.35), Tyr271 (7.36), Ile274 (7.39), and carbon chains of glutamates (EL2) and the smaller subpocket "B" forming contacts between TM6 and TM7. 10 suppressed minimal clonic seizures (6 Hz mouse model) without typical rotarod impairment of A(1)AR agonists. Truncated nucleosides, an appealing preclinical approach, have more druglike physicochemical properties than other A(1)AR agonists. Thus, we identified highly restricted regions for substitution around N(6) suitable for an A(1)AR agonist with anticonvulsant activity.
Collapse
Affiliation(s)
- Dilip K. Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Silvia Paoletta
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Francesca Deflorian
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Khai Phan
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Steven M. Moss
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Xiaohui Jiang
- Anticonvulsant Screening Program, Office of Translational Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
31
|
Fourla DD, Papakonstantinou MP, Vrana SM, Georgoussi Z. Selective interactions of spinophilin with the C-terminal domains of the δ- and μ-opioid receptors and G proteins differentially modulate opioid receptor signaling. Cell Signal 2012; 24:2315-28. [PMID: 22922354 DOI: 10.1016/j.cellsig.2012.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 07/31/2012] [Accepted: 08/08/2012] [Indexed: 11/26/2022]
Abstract
Previous studies have shown that the intracellular domains of opioid receptors serve as platforms for the formation of a multi-component signaling complex consisting of various interacting partners (Leontiadis et al., 2009, Cell Signal. 21, 1218-1228; Georganta et al., 2010, Neuropharmacology, 59(3), 139-148). In the present study we demonstrate that spinophilin a dendritic-spine enriched scaffold protein associates with δ- and μ-opioid receptors (δ-ΟR, μ-OR) constitutively in HEK293 an interaction that is altered upon agonist administration and enhanced upon forskolin treatment for both μ-OR and δ-ΟR. Spinophilin association with the opioid receptors is mediated via the third intracellular loop and a conserved region of the C-terminal tails. The portion of spinophilin responsible for interaction with the δ-OR and μ-OR is narrowed to a region encompassing amino acids 151-444. Spinophilin, RGS4, Gα and Gβγ subunits of G proteins form a multi-protein complex using specific regions of spinophilin and a conserved amino acid stretch of the C-terminal tails of both δ-μ-ORs. Expression of spinophilin in HEK293 cells potentiated DPDPE-mediated adenylyl-cyclase inhibition of δ-OR leaving unaffected the levels of cAMP accumulation mediated by the μ-OR. Moreover, measurements of extracellular signal regulated kinase (ERK1,2) phosphorylation indicated that the presence of spinophilin attenuated agonist-driven ERK1,2 phosphorylation mediated upon activation of the δ-OR but not the μ-OR. Collectively, these findings suggest that spinophilin associates with both δ- and μ-ΟR and G protein subunits in HEK293 cells participating in a multimeric signaling complex that displays a differential regulatory role in opioid receptor signaling.
Collapse
Affiliation(s)
- Danai-Dionysia Fourla
- Laboratory of Cellular Signalling and Molecular Pharmacology, Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, Athens, Greece
| | | | | | | |
Collapse
|