1
|
Putman JN, Watson SD, Zhang Z, Khandelwal N, Kulkarni A, Gibson JR, Huber KM. Pre- and Postsynaptic MEF2C Promotes Experience-Dependent, Input-Specific Development of Cortical Layer 4 to Layer 2/3 Excitatory Synapses and Regulates Activity-Dependent Expression of Synaptic Cell Adhesion Molecules. J Neurosci 2024; 44:e0098242024. [PMID: 39317473 DOI: 10.1523/jneurosci.0098-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
Experience- and activity-dependent transcription is a candidate mechanism to mediate development and refinement of specific cortical circuits. Here, we demonstrate that the activity-dependent transcription factor myocyte enhancer factor 2C (MEF2C) is required in both presynaptic layer (L) 4 and postsynaptic L2/3 mouse (male and female) somatosensory (S1) cortical neurons for development of this specific synaptic connection. While postsynaptic deletion of Mef2c weakens L4 synaptic inputs, it has no effect on inputs from local L2/3, contralateral S1, or the ipsilateral frontal/motor cortex. Similarly, homozygous or heterozygous deletion of Mef2c in presynaptic L4 neurons weakens L4 to L2/3 excitatory synaptic inputs by decreasing presynaptic release probability. Postsynaptic MEF2C is specifically required during an early postnatal, experience-dependent, period for L4 to L2/3 synapse function, and expression of transcriptionally active MEF2C (MEF2C-VP16) rescues weak L4 to L2/3 synaptic strength in sensory-deprived mice. Together, these results suggest that experience- and/or activity-dependent transcriptional activation of MEF2C promotes development of L4 to L2/3 synapses. Additionally, MEF2C regulates the expression of many pre- and postsynaptic genes in postnatal cortical neurons. Interestingly, MEF2C was necessary for activity-dependent expression of many presynaptic genes, including those that function in transsynaptic adhesion and neurotransmitter release. This work provides mechanistic insight into the experience-dependent development of specific cortical circuits.
Collapse
Affiliation(s)
- Jennifer N Putman
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Sean D Watson
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Zhe Zhang
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Nitin Khandelwal
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Ashwinikumar Kulkarni
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Jay R Gibson
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Kimberly M Huber
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
2
|
Chato-Astrain I, Pronot M, Coppola T, Martin S. Molecular Organization and Regulation of the Mammalian Synapse by the Post-Translational Modification SUMOylation. Cells 2024; 13:420. [PMID: 38474384 DOI: 10.3390/cells13050420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Neurotransmission occurs within highly specialized compartments forming the active synapse where the complex organization and dynamics of the interactions are tightly orchestrated both in time and space. Post-translational modifications (PTMs) are central to these spatiotemporal regulations to ensure an efficient synaptic transmission. SUMOylation is a dynamic PTM that modulates the interactions between proteins and consequently regulates the conformation, the distribution and the trafficking of the SUMO-target proteins. SUMOylation plays a crucial role in synapse formation and stabilization, as well as in the regulation of synaptic transmission and plasticity. In this review, we summarize the molecular consequences of this protein modification in the structural organization and function of the mammalian synapse. We also outline novel activity-dependent regulation and consequences of the SUMO process and explore how this protein modification can functionally participate in the compartmentalization of both pre- and post-synaptic sites.
Collapse
Affiliation(s)
- Isabel Chato-Astrain
- Université Côte d'Azur, CNRS, Inserm, IPMC, Sophia Antipolis, F-06560 Valbonne, France
| | - Marie Pronot
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Thierry Coppola
- Université Côte d'Azur, CNRS, Inserm, IPMC, Sophia Antipolis, F-06560 Valbonne, France
| | - Stéphane Martin
- Université Côte d'Azur, CNRS, Inserm, IPMC, Sophia Antipolis, F-06560 Valbonne, France
| |
Collapse
|
3
|
Barvaux S, Okawa S, Del Sol A. SinCMat: A single-cell-based method for predicting functional maturation transcription factors. Stem Cell Reports 2024; 19:270-284. [PMID: 38215756 PMCID: PMC10874865 DOI: 10.1016/j.stemcr.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024] Open
Abstract
A major goal of regenerative medicine is to generate tissue-specific mature and functional cells. However, current cell engineering protocols are still unable to systematically produce fully mature functional cells. While existing computational approaches aim at predicting transcription factors (TFs) for cell differentiation/reprogramming, no method currently exists that specifically considers functional cell maturation processes. To address this challenge, here, we develop SinCMat, a single-cell RNA sequencing (RNA-seq)-based computational method for predicting cell maturation TFs. Based on a model of cell maturation, SinCMat identifies pairs of identity TFs and signal-dependent TFs that co-target genes driving functional maturation. A large-scale application of SinCMat to the Mouse Cell Atlas and Tabula Sapiens accurately recapitulates known maturation TFs and predicts novel candidates. We expect SinCMat to be an important resource, complementary to preexisting computational methods, for studies aiming at producing functionally mature cells.
Collapse
Affiliation(s)
- Sybille Barvaux
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Esch-Belval Esch-sur-Alzette, Luxembourg
| | - Satoshi Okawa
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Esch-Belval Esch-sur-Alzette, Luxembourg; University of Pittsburgh School of Medicine, Vascular Medicine Institute, Department of Computational and Systems Biology, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| | - Antonio Del Sol
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Esch-Belval Esch-sur-Alzette, Luxembourg; CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Bizkaia Technology Park, 801 Building, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
4
|
Matsumoto N, Hori I, Kajita MK, Murase T, Nakamura W, Tsuji T, Miyake S, Inatani M, Konishi Y. Intermitochondrial signaling regulates the uniform distribution of stationary mitochondria in axons. Mol Cell Neurosci 2022; 119:103704. [DOI: 10.1016/j.mcn.2022.103704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/27/2021] [Accepted: 01/31/2022] [Indexed: 10/19/2022] Open
|
5
|
Liu B, Ou WC, Fang L, Tian CW, Xiong Y. Myocyte Enhancer Factor 2A Plays a Central Role in the Regulatory Networks of Cellular Physiopathology. Aging Dis 2022; 14:331-349. [PMID: 37008050 PMCID: PMC10017154 DOI: 10.14336/ad.2022.0825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
Cell regulatory networks are the determinants of cellular homeostasis. Any alteration to these networks results in the disturbance of cellular homeostasis and induces cells towards different fates. Myocyte enhancer factor 2A (MEF2A) is one of four members of the MEF2 family of transcription factors (MEF2A-D). MEF2A is highly expressed in all tissues and is involved in many cell regulatory networks including growth, differentiation, survival and death. It is also necessary for heart development, myogenesis, neuronal development and differentiation. In addition, many other important functions of MEF2A have been reported. Recent studies have shown that MEF2A can regulate different, and sometimes even mutually exclusive cellular events. How MEF2A regulates opposing cellular life processes is an interesting topic and worthy of further exploration. Here, we reviewed almost all MEF2A research papers published in English and summarized them into three main sections: 1) the association of genetic variants in MEF2A with cardiovascular disease, 2) the physiopathological functions of MEF2A, and 3) the regulation of MEF2A activity and its regulatory targets. In summary, multiple regulatory patterns for MEF2A activity and a variety of co-factors cause its transcriptional activity to switch to different target genes, thereby regulating opposing cell life processes. The association of MEF2A with numerous signaling molecules establishes a central role for MEF2A in the regulatory network of cellular physiopathology.
Collapse
Affiliation(s)
- Benrong Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
- Correspondence should be addressed to: Dr. Benrong Liu, the Second Affiliated Hospital, Guangzhou Medical University, Guangdong, China. E-mail: ; or Yujuan Xiong, Panyu Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong, China. .
| | - Wen-Chao Ou
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Lei Fang
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Chao-Wei Tian
- General Practice, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Yujuan Xiong
- Department of Laboratory Medicine, Panyu Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
- Correspondence should be addressed to: Dr. Benrong Liu, the Second Affiliated Hospital, Guangzhou Medical University, Guangdong, China. E-mail: ; or Yujuan Xiong, Panyu Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong, China. .
| |
Collapse
|
6
|
Majidi SP, Reddy NC, Moore MJ, Chen H, Yamada T, Andzelm MM, Cherry TJ, Hu LS, Greenberg ME, Bonni A. Chromatin Environment and Cellular Context Specify Compensatory Activity of Paralogous MEF2 Transcription Factors. Cell Rep 2020; 29:2001-2015.e5. [PMID: 31722213 PMCID: PMC6874310 DOI: 10.1016/j.celrep.2019.10.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/04/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
Compensation among paralogous transcription factors (TFs) confers genetic robustness of cellular processes, but how TFs dynamically respond to paralog depletion on a genome-wide scale in vivo remains incompletely understood. Using single and double conditional knockout of myocyte enhancer factor 2 (MEF2) family TFs in granule neurons of the mouse cerebellum, we find that MEF2A and MEF2D play functionally redundant roles in cerebellar-dependent motor learning. Although both TFs are highly expressed in granule neurons, transcriptomic analyses show MEF2D is the predominant genomic regulator of gene expression in vivo. Strikingly, genome-wide occupancy analyses reveal upon depletion of MEF2D, MEF2A occupancy robustly increases at a subset of sites normally bound to MEF2D. Importantly, sites experiencing compensatory MEF2A occupancy are concentrated within open chromatin and undergo functional compensation for genomic activation and gene expression. Finally, motor activity induces a switch from non-compensatory to compensatory MEF2-dependent gene regulation. These studies uncover genome-wide functional interdependency between paralogous TFs in the brain. Majidi et al. study how transcription factors respond to paralog depletion by conditionally depleting MEF2A and MEF2D in mouse cerebellum. Depletion of MEF2D induces functionally compensatory genomic occupancy by MEF2A. Compensation occurs within accessible chromatin in a context-dependent manner. This study explores the interdependency between paralogous transcription factors.
Collapse
Affiliation(s)
- Shahriyar P Majidi
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; MD-PhD Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Naveen C Reddy
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael J Moore
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hao Chen
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tomoko Yamada
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Milena M Andzelm
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Timothy J Cherry
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101, USA; Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, 1900 9(th) Ave., Seattle, WA 98101, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Linda S Hu
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Azad Bonni
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
7
|
Tepe B, Hill MC, Pekarek BT, Hunt PJ, Martin TJ, Martin JF, Arenkiel BR. Single-Cell RNA-Seq of Mouse Olfactory Bulb Reveals Cellular Heterogeneity and Activity-Dependent Molecular Census of Adult-Born Neurons. Cell Rep 2019; 25:2689-2703.e3. [PMID: 30517858 PMCID: PMC6342206 DOI: 10.1016/j.celrep.2018.11.034] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/18/2018] [Accepted: 11/07/2018] [Indexed: 12/19/2022] Open
Abstract
Cellular heterogeneity within the mammalian brain poses a challenge
toward understanding its complex functions. Within the olfactory bulb, odor
information is processed by subtypes of inhibitory interneurons whose
heterogeneity and functionality are influenced by ongoing adult neurogenesis. To
investigate this cellular heterogeneity and better understand adult-born neuron
development, we utilized single-cell RNA sequencing and computational modeling
to reveal diverse and transcriptionally distinct neuronal and nonneuronal cell
types. We also analyzed molecular changes during adult-born interneuron
maturation and uncovered developmental programs within their gene expression
profiles. Finally, we identified that distinct neuronal subtypes are
differentially affected by sensory experience. Together, these data provide a
transcriptome-based foundation for investigating subtype-specific neuronal
function in the olfactory bulb (OB), charting the molecular profiles that arise
during the maturation and integration of adult-born neurons and how they
dynamically change in an activity-dependent manner. Using single-cell sequencing, Tepe et al. describe cellular heterogeneity
in the mouse olfactory bulb, uncover markers for each cell type, and reveal
differentially regulated genes in adult-born neurons. These findings provide a
framework for studying cell-type-specific functions and circuit integration in
the mammalian brain.
Collapse
Affiliation(s)
- Burak Tepe
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew C Hill
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brandon T Pekarek
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Patrick J Hunt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Thomas J Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - James F Martin
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; The Texas Heart Institute, 6770 Bertner Avenue, Houston, TX 77030, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Benjamin R Arenkiel
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; McNair Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Goodman JV, Bonni A. Regulation of neuronal connectivity in the mammalian brain by chromatin remodeling. Curr Opin Neurobiol 2019; 59:59-68. [PMID: 31146125 DOI: 10.1016/j.conb.2019.04.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/22/2019] [Indexed: 10/26/2022]
Abstract
Precise temporal and spatial control of gene expression is essential for brain development. Besides DNA sequence-specific transcription factors, epigenetic factors play an integral role in the control of gene expression in neurons. Among epigenetic mechanisms, chromatin remodeling enzymes have emerged as essential to the control of neural circuit assembly and function in the brain. Here, we review recent studies on the roles and mechanisms of the chromodomain-helicase-DNA-binding (Chd) family of chromatin remodeling enzymes in the regulation of neuronal morphogenesis and connectivity in the mammalian brain. We explore the field through the lens of Chd3, Chd4, and Chd5 proteins, which incorporate into the nucleosome remodeling and deacetylase (NuRD) complex, and the related proteins Chd7 and Chd8, implicated in the pathogenesis of intellectual disability and autism spectrum disorders. These studies have advanced our understanding of the mechanisms that regulate neuronal connectivity in brain development and neurodevelopmental disorders of cognition.
Collapse
Affiliation(s)
- Jared V Goodman
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA; Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA
| | - Azad Bonni
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
9
|
MEF-2 isoforms' (A-D) roles in development and tumorigenesis. Oncotarget 2019; 10:2755-2787. [PMID: 31105874 PMCID: PMC6505634 DOI: 10.18632/oncotarget.26763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/01/2019] [Indexed: 12/29/2022] Open
Abstract
Myocyte enhancer factor (MEF)-2 plays a critical role in proliferation, differentiation, and development of various cell types in a tissue specific manner. Four isoforms of MEF-2 (A-D) differentially participate in controlling the cell fate during the developmental phases of cardiac, muscle, vascular, immune and skeletal systems. Through their associations with various cellular factors MEF-2 isoforms can trigger alterations in complex protein networks and modulate various stages of cellular differentiation, proliferation, survival and apoptosis. The role of the MEF-2 family of transcription factors in the development has been investigated in various cell types, and the evolving alterations in this family of transcription factors have resulted in a diverse and wide spectrum of disease phenotypes, ranging from cancer to infection. This review provides a comprehensive account on MEF-2 isoforms (A-D) from their respective localization, signaling, role in development and tumorigenesis as well as their association with histone deacetylases (HDACs), which can be exploited for therapeutic intervention.
Collapse
|
10
|
The Transcriptional Regulator SnoN Promotes the Proliferation of Cerebellar Granule Neuron Precursors in the Postnatal Mouse Brain. J Neurosci 2018; 39:44-62. [PMID: 30425119 DOI: 10.1523/jneurosci.0688-18.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 10/16/2018] [Accepted: 10/22/2018] [Indexed: 02/08/2023] Open
Abstract
Control of neuronal precursor cell proliferation is essential for normal brain development, and deregulation of this fundamental developmental event contributes to brain diseases. Typically, neuronal precursor cell proliferation extends over long periods of time during brain development. However, how neuronal precursor proliferation is regulated in a temporally specific manner remains to be elucidated. Here, we report that conditional KO of the transcriptional regulator SnoN in cerebellar granule neuron precursors robustly inhibits the proliferation of these cells and promotes their cell cycle exit at later stages of cerebellar development in the postnatal male and female mouse brain. In laser capture microdissection followed by RNA-Seq, designed to profile gene expression specifically in the external granule layer of the cerebellum, we find that SnoN promotes the expression of cell proliferation genes and concomitantly represses differentiation genes in granule neuron precursors in vivo Remarkably, bioinformatics analyses reveal that SnoN-regulated genes contain binding sites for the transcription factors N-myc and Pax6, which promote the proliferation and differentiation of granule neuron precursors, respectively. Accordingly, we uncover novel physical interactions of SnoN with N-myc and Pax6 in cells. In behavior analyses, conditional KO of SnoN impairs cerebellar-dependent learning in a delayed eye-blink conditioning paradigm, suggesting that SnoN-regulation of granule neuron precursor proliferation bears functional consequences at the organismal level. Our findings define a novel function and mechanism for the major transcriptional regulator SnoN in the control of granule neuron precursor proliferation in the mammalian brain.SIGNIFICANCE STATEMENT This study reports the discovery that the transcriptional regulator SnoN plays a crucial role in the proliferation of cerebellar granule neuron precursors in the postnatal mouse brain. Conditional KO of SnoN in granule neuron precursors robustly inhibits the proliferation of these cells and promotes their cycle exit specifically at later stages of cerebellar development, with biological consequences of impaired cerebellar-dependent learning. Genomics and bioinformatics analyses reveal that SnoN promotes the expression of cell proliferation genes and concomitantly represses cell differentiation genes in vivo Although SnoN has been implicated in distinct aspects of the development of postmitotic neurons, this study identifies a novel function for SnoN in neuronal precursors in the mammalian brain.
Collapse
|
11
|
Kamath SP, Chen AI. Myocyte Enhancer Factor 2c Regulates Dendritic Complexity and Connectivity of Cerebellar Purkinje Cells. Mol Neurobiol 2018; 56:4102-4119. [PMID: 30276662 PMCID: PMC6505522 DOI: 10.1007/s12035-018-1363-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/21/2018] [Indexed: 12/05/2022]
Abstract
Mef2c haploinsufficiency is implicated in behavioral deficits related to autism, schizophrenia, and intellectual disability. Although perturbations in the cerebellum, notably Purkinje cells, have been linked to these neurological disorders, the underlying mechanisms remain poorly understood. In this study, we investigated the roles of Mef2c in cerebellar Purkinje cells during the first three weeks of postnatal development. Our analysis revealed that in comparison to other members of the Mef2 family, Mef2c expression is limited to postnatal Purkinje cells. Because the role of Mef2c has not been assessed in GABAergic neurons, we set out to determine the functional significance of Mef2c by knocking down the expression of Mef2c selectively in Purkinje cells. We found that the loss of Mef2c expression during the first and second postnatal week results in an increase in dendritic arborization without impact on the general growth and migration of Purkinje cells. The influence of Mef2c on dendritic arborization persists throughout the first three weeks, but is most prominent during the first postnatal week suggesting a critical period of Mef2c activity. Additionally, the loss of Mef2c expression results in an increase in the number of spines accompanied by an increase in Gad67 and vGluT1 puncta and decrease in vGluT2 puncta. Thus, our results reveal the specific expression and functional relevance of Mef2c in developing Purkinje cells and offer insight to how disruption of the expression of Mef2c in a GABAergic neuronal subtype may lead to pathogenesis of cerebellar-associated disorders.
Collapse
Affiliation(s)
- Sandhya Prakash Kamath
- School of Biological Sciences, Nanyang Technological University (NTU), Singapore, 637551, Singapore
| | - Albert I Chen
- School of Biological Sciences, Nanyang Technological University (NTU), Singapore, 637551, Singapore.
- A*STAR, Institute of Molecular and Cell Biology, Singapore, 138673, Singapore.
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
12
|
Zhu B, Carmichael RE, Solabre Valois L, Wilkinson KA, Henley JM. The transcription factor MEF2A plays a key role in the differentiation/maturation of rat neural stem cells into neurons. Biochem Biophys Res Commun 2018; 500:645-649. [PMID: 29678571 PMCID: PMC5956278 DOI: 10.1016/j.bbrc.2018.04.125] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022]
Abstract
Neural stem cells (NSCs) are self-renewing multipotent stem cells that can be proliferated in vitro and differentiated into neuronal and/or glial lineages, making them an ideal model to study the processes involved in neuronal differentiation. Here we have used NSCs to investigate the role of the transcription factor MEF2A in neuronal differentiation and development in vitro. We show that although MEF2A is present in undifferentiated NSCs, following differentiation it is expressed at significantly higher levels in a subset of neuronal compared to non-neuronal cells. Furthermore, shRNA-mediated knockdown of MEF2A reduces the number of NSC-derived neurons compared to non-neuronal cells after differentiation. Together, these data indicate that MEF2A participates in neuronal differentiation/maturation from NSCs. Undifferentiated and differentiated neural stem cells (NSCs) express MEF2A in vitro. NSC-derived neurons express more MEF2A than NSC-derived glia. Ablating MEF2A reduces NSC differentiation into neurons.
Collapse
Affiliation(s)
- Bangfu Zhu
- School of Biochemistry, Centre for Synaptic Plasticity, University of Bristol, BS8 1TD, UK
| | - Ruth E Carmichael
- School of Biochemistry, Centre for Synaptic Plasticity, University of Bristol, BS8 1TD, UK
| | - Luis Solabre Valois
- School of Biochemistry, Centre for Synaptic Plasticity, University of Bristol, BS8 1TD, UK
| | - Kevin A Wilkinson
- School of Biochemistry, Centre for Synaptic Plasticity, University of Bristol, BS8 1TD, UK
| | - Jeremy M Henley
- School of Biochemistry, Centre for Synaptic Plasticity, University of Bristol, BS8 1TD, UK.
| |
Collapse
|
13
|
Carmichael RE, Wilkinson KA, Craig TJ, Ashby MC, Henley JM. MEF2A regulates mGluR-dependent AMPA receptor trafficking independently of Arc/Arg3.1. Sci Rep 2018; 8:5263. [PMID: 29588465 PMCID: PMC5869744 DOI: 10.1038/s41598-018-23440-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/13/2018] [Indexed: 01/07/2023] Open
Abstract
Differential trafficking of AMPA receptors (AMPARs) to and from the postsynaptic membrane is a key determinant of the strength of excitatory neurotransmission, and is thought to underlie learning and memory. The transcription factor MEF2 is a negative regulator of memory in vivo, in part by regulating trafficking of the AMPAR subunit GluA2, but the molecular mechanisms behind this have not been established. Here we show, via knockdown of endogenous MEF2A in primary neuronal culture, that MEF2A is specifically required for Group I metabotropic glutamate receptor (mGluR)-mediated GluA2 internalisation, but does not regulate AMPAR expression or trafficking under basal conditions. Furthermore, this process occurs independently of changes in expression of Arc/Arg3.1, a previously characterised MEF2 transcriptional target and mediator of mGluR-dependent long-term depression. These data demonstrate a novel MEF2A-dependent mechanism for the regulation of activity-dependent AMPAR trafficking.
Collapse
Affiliation(s)
- Ruth E Carmichael
- School of Biochemistry, Centre for Synaptic Plasticity, University of Bristol, BS8 1TD, Bristol, United Kingdom.,Centre for Research in Biosciences, University of the West of England, Bristol, BS16 1QY, United Kingdom
| | - Kevin A Wilkinson
- School of Biochemistry, Centre for Synaptic Plasticity, University of Bristol, BS8 1TD, Bristol, United Kingdom
| | - Tim J Craig
- Centre for Research in Biosciences, University of the West of England, Bristol, BS16 1QY, United Kingdom
| | - Michael C Ashby
- School of Physiology, Pharmacology and Neuroscience, Centre for Synaptic Plasticity, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Jeremy M Henley
- School of Biochemistry, Centre for Synaptic Plasticity, University of Bristol, BS8 1TD, Bristol, United Kingdom.
| |
Collapse
|
14
|
Abstract
Post-translational modification of substrate proteins by SUMO conjugation regulates a diverse array of cellular processes. While predominantly a nuclear protein modification, there is a growing appreciation that SUMOylation of proteins outside the nucleus plays direct roles in controlling synaptic transmission, neuronal excitability, and adaptive responses to cell stress. Furthermore, alterations in protein SUMOylation are observed in a wide range of neurological and neurodegenerative diseases, and several extranuclear disease-associated proteins have been shown to be directly SUMOylated. Here, focusing mainly on SUMOylation of synaptic and mitochondrial proteins, we outline recent developments and discoveries, and present our opinion as to the most exciting avenues for future research to define how SUMOylation of extranuclear proteins regulates neuronal and synaptic function.
Collapse
Affiliation(s)
- Jeremy M Henley
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK.
| | - Ruth E Carmichael
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Kevin A Wilkinson
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
15
|
Mitchell AC, Javidfar B, Pothula V, Ibi D, Shen EY, Peter CJ, Bicks L, Fehr T, Jiang Y, Brennand KJ, Neve RL, Gonzalez-Maeso J, Akbarian S. MEF2C transcription factor is associated with the genetic and epigenetic risk architecture of schizophrenia and improves cognition in mice. Mol Psychiatry 2018; 23:123-132. [PMID: 28115742 PMCID: PMC5966823 DOI: 10.1038/mp.2016.254] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 10/30/2016] [Accepted: 12/06/2016] [Indexed: 12/20/2022]
Abstract
Large-scale consortia mapping the genomic risk architectures of schizophrenia provide vast amounts of molecular information, with largely unexplored therapeutic potential. We harnessed publically available information from the Psychiatric Genomics Consortium, and report myocyte enhancer factor 2C (MEF2C) motif enrichment in sequences surrounding the top scoring single-nucleotide polymorphisms within risk loci contributing by individual small effect to disease heritability. Chromatin profiling at base-pair resolution in neuronal nucleosomes extracted from prefrontal cortex of 34 subjects, including 17 cases diagnosed with schizophrenia, revealed MEF2C motif enrichment within cis-regulatory sequences, including neuron-specific promoters and superenhancers, affected by histone H3K4 hypermethylation in disease cases. Vector-induced short- and long-term Mef2c upregulation in mouse prefrontal projection neurons consistently resulted in enhanced cognitive performance in working memory and object recognition paradigms at baseline and after psychotogenic drug challenge, in conjunction with remodeling of local connectivity. Neuronal genome tagging in vivo by Mef2c-Dam adenine methyltransferase fusion protein confirmed the link between cognitive enhancement and MEF2C occupancy at promoters harboring canonical and variant MEF2C motifs. The multilayered integrative approaches presented here provide a roadmap to uncover the therapeutic potential of transcriptional regulators for schizophrenia and related disorders.
Collapse
Affiliation(s)
- Amanda C. Mitchell
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Behnam Javidfar
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Venu Pothula
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Daisuke Ibi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Erica Y. Shen
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Cyril J. Peter
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Lucy Bicks
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Tristan Fehr
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Yan Jiang
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Kristen J. Brennand
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Rachael L. Neve
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge MA02139, USA
| | - Javier Gonzalez-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University Medical School, Richmond, Virginia 23298, USA
| | - Schahram Akbarian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
16
|
Valnegri P, Huang J, Yamada T, Yang Y, Mejia LA, Cho HY, Oldenborg A, Bonni A. RNF8/UBC13 ubiquitin signaling suppresses synapse formation in the mammalian brain. Nat Commun 2017; 8:1271. [PMID: 29097665 PMCID: PMC5668370 DOI: 10.1038/s41467-017-01333-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 09/08/2017] [Indexed: 11/09/2022] Open
Abstract
Although ubiquitin ligases have been implicated in autism, their roles and mechanisms in brain development remain incompletely understood. Here, we report that in vivo knockdown or conditional knockout of the autism-linked ubiquitin ligase RNF8 or associated ubiquitin-conjugating enzyme UBC13 in rodent cerebellar granule neurons robustly increases the number of parallel fiber presynaptic boutons and functional parallel fiber/Purkinje cell synapses. In contrast to the role of nuclear RNF8 in proliferating cells, RNF8 operates in the cytoplasm in neurons to suppress synapse differentiation in vivo. Proteomics analyses reveal that neuronal RNF8 interacts with the HECT domain protein HERC2 and scaffold protein NEURL4, and knockdown of HERC2 or NEURL4 phenocopies the inhibition of RNF8/UBC13 signaling on synapse differentiation. In behavior analyses, granule neuron-specific knockout of RNF8 or UBC13 impairs cerebellar-dependent learning. Our study defines RNF8 and UBC13 as components of a novel cytoplasmic ubiquitin-signaling network that suppresses synapse formation in the brain.
Collapse
Affiliation(s)
- Pamela Valnegri
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ju Huang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Tomoko Yamada
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yue Yang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Luis A Mejia
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ha Y Cho
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Anna Oldenborg
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Azad Bonni
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
17
|
Yang Y, Yamada T, Hill KK, Hemberg M, Reddy NC, Cho HY, Guthrie AN, Oldenborg A, Heiney SA, Ohmae S, Medina JF, Holy TE, Bonni A. Chromatin remodeling inactivates activity genes and regulates neural coding. Science 2016; 353:300-305. [PMID: 27418512 DOI: 10.1126/science.aad4225] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 05/12/2016] [Indexed: 12/16/2022]
Abstract
Activity-dependent transcription influences neuronal connectivity, but the roles and mechanisms of inactivation of activity-dependent genes have remained poorly understood. Genome-wide analyses in the mouse cerebellum revealed that the nucleosome remodeling and deacetylase (NuRD) complex deposits the histone variant H2A.z at promoters of activity-dependent genes, thereby triggering their inactivation. Purification of translating messenger RNAs from synchronously developing granule neurons (Sync-TRAP) showed that conditional knockout of the core NuRD subunit Chd4 impairs inactivation of activity-dependent genes when neurons undergo dendrite pruning. Chd4 knockout or expression of NuRD-regulated activity genes impairs dendrite pruning. Imaging of behaving mice revealed hyperresponsivity of granule neurons to sensorimotor stimuli upon Chd4 knockout. Our findings define an epigenetic mechanism that inactivates activity-dependent transcription and regulates dendrite patterning and sensorimotor encoding in the brain.
Collapse
Affiliation(s)
- Yue Yang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tomoko Yamada
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kelly K Hill
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.,MD-PhD Program, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | | | - Naveen C Reddy
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ha Y Cho
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Arden N Guthrie
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anna Oldenborg
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shane A Heiney
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shogo Ohmae
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Javier F Medina
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Timothy E Holy
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Azad Bonni
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
18
|
Doan RN, Bae BI, Cubelos B, Chang C, Hossain AA, Al-Saad S, Mukaddes NM, Oner O, Al-Saffar M, Balkhy S, Gascon GG, Nieto M, Walsh CA. Mutations in Human Accelerated Regions Disrupt Cognition and Social Behavior. Cell 2016; 167:341-354.e12. [PMID: 27667684 PMCID: PMC5063026 DOI: 10.1016/j.cell.2016.08.071] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/18/2016] [Accepted: 08/26/2016] [Indexed: 12/15/2022]
Abstract
Comparative analyses have identified genomic regions potentially involved in human evolution but do not directly assess function. Human accelerated regions (HARs) represent conserved genomic loci with elevated divergence in humans. If some HARs regulate human-specific social and behavioral traits, then mutations would likely impact cognitive and social disorders. Strikingly, rare biallelic point mutations-identified by whole-genome and targeted "HAR-ome" sequencing-showed a significant excess in individuals with ASD whose parents share common ancestry compared to familial controls, suggesting a contribution in 5% of consanguineous ASD cases. Using chromatin interaction sequencing, massively parallel reporter assays (MPRA), and transgenic mice, we identified disease-linked, biallelic HAR mutations in active enhancers for CUX1, PTBP2, GPC4, CDKL5, and other genes implicated in neural function, ASD, or both. Our data provide genetic evidence that specific HARs are essential for normal development, consistent with suggestions that their evolutionary changes may have altered social and/or cognitive behavior. PAPERCLIP.
Collapse
Affiliation(s)
- Ryan N Doan
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Byoung-Il Bae
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Beatriz Cubelos
- Department of Molecular Biology, Centro de Biología Molecular 'Severo Ochoa', Universidad Autonoma de Madrid, UAM-CSIC, Nicolas Cabrera 1, 28049 Madrid, Spain; Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Cindy Chang
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Amer A Hossain
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | | | - Nahit M Mukaddes
- Istanbul Institute of Child and Adolescent Psychiatry, 34365 Istanbul, Turkey
| | - Ozgur Oner
- Department of Child and Adolescent Psychiatry, Bahcesehir University School of Medicine, 34353 Istanbul, Turkey
| | - Muna Al-Saffar
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al-Ain, United Arab Emirates
| | - Soher Balkhy
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Jeddah 21499, Kingdom of Saudi Arabia
| | - Generoso G Gascon
- Department of Neurology (Pediatric Neurology), Massachusetts General Hospital, Boston, MA 02114, USA
| | - Marta Nieto
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Pinto MJ, Alves PL, Martins L, Pedro JR, Ryu HR, Jeon NL, Taylor AM, Almeida RD. The proteasome controls presynaptic differentiation through modulation of an on-site pool of polyubiquitinated conjugates. J Cell Biol 2016; 212:789-801. [PMID: 27022091 PMCID: PMC4810304 DOI: 10.1083/jcb.201509039] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 02/24/2016] [Indexed: 11/22/2022] Open
Abstract
The intra-axonal events governing formation of presynaptic terminals are still poorly understood. Pinto et al. reveal a mechanism by which a localized decrease in proteasome degradation and resultant accumulation of polyubiquitinated proteins at nascent sites signal assembly of presynaptic terminals. Differentiation of the presynaptic terminal is a complex and rapid event that normally occurs in spatially specific axonal regions distant from the soma; thus, it is believed to be dependent on intra-axonal mechanisms. However, the full nature of the local events governing presynaptic assembly remains unknown. Herein, we investigated the involvement of the ubiquitin–proteasome system (UPS), the major degradative pathway, in the local modulation of presynaptic differentiation. We found that proteasome inhibition has a synaptogenic effect on isolated axons. In addition, formation of a stable cluster of synaptic vesicles onto a postsynaptic partner occurs in parallel to an on-site decrease in proteasome degradation. Accumulation of ubiquitinated proteins at nascent sites is a local trigger for presynaptic clustering. Finally, proteasome-related ubiquitin chains (K11 and K48) function as signals for the assembly of presynaptic terminals. Collectively, we propose a new axon-intrinsic mechanism for presynaptic assembly through local UPS inhibition. Subsequent on-site accumulation of proteins in their polyubiquitinated state triggers formation of presynapses.
Collapse
Affiliation(s)
- Maria J Pinto
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal PhD Program in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Pedro L Alves
- Instituto de Educação e Cidadania, 3770-033 Mamarrosa, Portugal
| | - Luís Martins
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Joana R Pedro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Hyun R Ryu
- Institute of Advanced Machinery and Design, Seoul National University, Seoul 151-744, Korea
| | - Noo Li Jeon
- Institute of Advanced Machinery and Design, Seoul National University, Seoul 151-744, Korea Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744, Korea
| | - Anne M Taylor
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599
| | - Ramiro D Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal Institute for Interdisciplinary Research, University of Coimbra, 3004-517 Coimbra, Portugal School of Allied Health Technologies, Polytechnic Institute of Porto, 4400-330 Vila Nova de Gaia, Portugal
| |
Collapse
|
20
|
Pinto MJ, Almeida RD. Puzzling out presynaptic differentiation. J Neurochem 2016; 139:921-942. [PMID: 27315450 DOI: 10.1111/jnc.13702] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/27/2016] [Accepted: 06/10/2016] [Indexed: 12/24/2022]
Abstract
Proper brain function in the nervous system relies on the accurate establishment of synaptic contacts during development. Countless synapses populate the adult brain in an orderly fashion. In each synapse, a presynaptic terminal loaded with neurotransmitters-containing synaptic vesicles is perfectly aligned to an array of receptors in the postsynaptic membrane. Presynaptic differentiation, which encompasses the events underlying assembly of new presynaptic units, has seen notable advances in recent years. It is now consensual that as a growing axon encounters the receptive dendrites of its partner, presynaptic assembly will be triggered and specified by multiple postsynaptically-derived factors including soluble molecules and cell adhesion complexes. Presynaptic material that reaches these distant sites by axonal transport in the form of pre-assembled packets will be retained and clustered, ultimately giving rise to a presynaptic bouton. This review focuses on the cellular and molecular aspects of presynaptic differentiation in the central nervous system, with a particular emphasis on the identity of the instructive factors and the intracellular processes used by neuronal cells to assemble functional presynaptic terminals. We provide a detailed description of the mechanisms leading to the formation of new presynaptic terminals. In brief, soma-derived packets of pre-assembled material are trafficked to distant axonal sites. Synaptogenic factors from dendritic or glial provenance activate downstream intra-axonal mediators to trigger clustering of passing material and their correct organization into a new presynaptic bouton. This article is part of a mini review series: "Synaptic Function and Dysfunction in Brain Diseases".
Collapse
Affiliation(s)
- Maria J Pinto
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine (PDBEB), Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ramiro D Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,School of Allied Health Technologies, Polytechnic Institute of Oporto, Vila Nova de Gaia, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
21
|
Microtubule-associated protein 1B (MAP1B)-deficient neurons show structural presynaptic deficiencies in vitro and altered presynaptic physiology. Sci Rep 2016; 6:30069. [PMID: 27425640 PMCID: PMC4948024 DOI: 10.1038/srep30069] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/28/2016] [Indexed: 11/20/2022] Open
Abstract
Microtubule-associated protein 1B (MAP1B) is expressed predominantly during the early stages of development of the nervous system, where it regulates processes such as axonal guidance and elongation. Nevertheless, MAP1B expression in the brain persists in adult stages, where it participates in the regulation of the structure and physiology of dendritic spines in glutamatergic synapses. Moreover, MAP1B expression is also found in presynaptic synaptosomal preparations. In this work, we describe a presynaptic phenotype in mature neurons derived from MAP1B knockout (MAP1B KO) mice. Mature neurons express MAP1B, and its deficiency does not alter the expression levels of a subgroup of other synaptic proteins. MAP1B KO neurons display a decrease in the density of presynaptic and postsynaptic terminals, which involves a reduction in the density of synaptic contacts, and an increased proportion of orphan presynaptic terminals. Accordingly, MAP1B KO neurons present altered synaptic vesicle fusion events, as shown by FM4-64 release assay, and a decrease in the density of both synaptic vesicles and dense core vesicles at presynaptic terminals. Finally, an increased proportion of excitatory immature symmetrical synaptic contacts in MAP1B KO neurons was detected. Altogether these results suggest a novel role for MAP1B in presynaptic structure and physiology regulation in vitro.
Collapse
|
22
|
Schorova L, Martin S. Sumoylation in Synaptic Function and Dysfunction. Front Synaptic Neurosci 2016; 8:9. [PMID: 27199730 PMCID: PMC4848311 DOI: 10.3389/fnsyn.2016.00009] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/08/2016] [Indexed: 12/18/2022] Open
Abstract
Sumoylation has recently emerged as a key post-translational modification involved in many, if not all, biological processes. Small Ubiquitin-like Modifier (SUMO) polypeptides are covalently attached to specific lysine residues of target proteins through a dedicated enzymatic pathway. Disruption of the SUMO enzymatic pathway in the developing brain leads to lethality indicating that this process exerts a central role during embryonic and post-natal development. However, little is still known regarding how this highly dynamic protein modification is regulated in the mammalian brain despite an increasing number of data implicating sumoylated substrates in synapse formation, synaptic communication and plasticity. The aim of this review is therefore to briefly describe the enzymatic SUMO pathway and to give an overview of our current knowledge on the function and dysfunction of protein sumoylation at the mammalian synapse.
Collapse
Affiliation(s)
- Lenka Schorova
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (UMR7275), University of Nice-Sophia-Antipolis, Laboratory of Excellence "Network for Innovation on Signal Transduction, Pathways in Life Sciences" Valbonne, France
| | - Stéphane Martin
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (UMR7275), University of Nice-Sophia-Antipolis, Laboratory of Excellence "Network for Innovation on Signal Transduction, Pathways in Life Sciences" Valbonne, France
| |
Collapse
|
23
|
Ryu JR, Jang MJ, Jo Y, Joo S, Lee DH, Lee BY, Nam Y, Sun W. Synaptic compartmentalization by micropatterned masking of a surface adhesive cue in cultured neurons. Biomaterials 2016; 92:46-56. [PMID: 27035488 DOI: 10.1016/j.biomaterials.2016.03.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 10/22/2022]
Abstract
Functions of neuronal circuit are fundamentally modulated by its quality and quantity of connections. Assessment of synapse, the basic unit for a neuronal connection, is labor-intensive and time-consuming in conventional culture systems, due to the small size and the spatially random distribution. In the present study, we propose a novel 'synapse compartmentalization' culture system, in which synapses are concentrated at controlled locations. We fabricated a negative dot array pattern by coating the entire surface with poly-l-lysine (PLL) and subsequent microcontact printing of 1) substrates which mask positive charge of PLL (Fc, BSA and laminin), or 2) a chemorepulsive protein (Semaphorin 3F-Fc). By combination of physical and biological features of these repulsive substrates, functional synapses were robustly concentrated in the PLL-coated dots. This synapse compartmentalization chip can be combined with the various high-throughput assay formats based on the synaptic morphology and function. Therefore, this quantifiable and controllable dot array pattern by microcontact printing will be potential useful for bio-chip platforms for the high-density assays used in synapse-related neurobiological studies.
Collapse
Affiliation(s)
- Jae Ryun Ryu
- Department of Anatomy, Brain Korea 21, Korea University College of Medicine, Anam-Dong, Sungbuk-Gu, Seoul, 136-705, Republic of Korea
| | - Min Jee Jang
- Department of Anatomy, Brain Korea 21, Korea University College of Medicine, Anam-Dong, Sungbuk-Gu, Seoul, 136-705, Republic of Korea
| | - Youhwa Jo
- Department of Anatomy, Brain Korea 21, Korea University College of Medicine, Anam-Dong, Sungbuk-Gu, Seoul, 136-705, Republic of Korea
| | - Sunghoon Joo
- Department of Bio and Brain Engineering, KAIST, 291 Daehak-Ro, Yuseong-Gu, Daejeon, 305-701, Republic of Korea
| | - Do Hoon Lee
- School of Mechanical Engineering, Korea University, Seoul, 136-713, Republic of Korea
| | - Byung Yang Lee
- School of Mechanical Engineering, Korea University, Seoul, 136-713, Republic of Korea
| | - Yoonkey Nam
- Department of Bio and Brain Engineering, KAIST, 291 Daehak-Ro, Yuseong-Gu, Daejeon, 305-701, Republic of Korea.
| | - Woong Sun
- Department of Anatomy, Brain Korea 21, Korea University College of Medicine, Anam-Dong, Sungbuk-Gu, Seoul, 136-705, Republic of Korea.
| |
Collapse
|
24
|
Huang J, Ikeuchi Y, Malumbres M, Bonni A. A Cdh1-APC/FMRP Ubiquitin Signaling Link Drives mGluR-Dependent Synaptic Plasticity in the Mammalian Brain. Neuron 2015; 86:726-39. [PMID: 25913861 DOI: 10.1016/j.neuron.2015.03.049] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 12/09/2014] [Accepted: 03/13/2015] [Indexed: 12/17/2022]
Abstract
Deregulation of synaptic plasticity may contribute to the pathogenesis of developmental cognitive disorders. In particular, exaggerated mGluR-dependent LTD is featured in fragile X syndrome, but the mechanisms that regulate mGluR-LTD remain incompletely understood. We report that conditional knockout of Cdh1, the key regulatory subunit of the ubiquitin ligase Cdh1-anaphase-promoting complex (Cdh1-APC), profoundly impairs mGluR-LTD in the hippocampus. Mechanistically, we find that Cdh1-APC operates in the cytoplasm to drive mGluR-LTD. We also identify the fragile X syndrome protein FMRP as a substrate of Cdh1-APC. Endogenous Cdh1-APC forms a complex with endogenous FMRP, and knockout of Cdh1 impairs mGluR-induced ubiquitination and degradation of FMRP in the hippocampus. Knockout of FMRP suppresses, and expression of an FMRP mutant protein that fails to interact with Cdh1 phenocopies, the Cdh1 knockout phenotype of impaired mGluR-LTD. These findings define Cdh1-APC and FMRP as components of a novel ubiquitin signaling pathway that regulates mGluR-LTD in the brain.
Collapse
Affiliation(s)
- Ju Huang
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Yoshiho Ikeuchi
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Marcos Malumbres
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Azad Bonni
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
25
|
Yang S, Gao L, Lu F, Wang B, Gao F, Zhu G, Cai Z, Lai J, Yang Q. Transcription factor myocyte enhancer factor 2D regulates interleukin-10 production in microglia to protect neuronal cells from inflammation-induced death. J Neuroinflammation 2015; 12:33. [PMID: 25890150 PMCID: PMC4339472 DOI: 10.1186/s12974-015-0258-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/30/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neuroinflammatory responses have been recognized as an important aspect in the pathogenesis of Parkinson's disease (PD). Transcriptional regulation plays a critical role in the process of inflammation. Transcription factor myocyte enhancer factor 2D (MEF2D) is identified as a central factor in transmission of extracellular signals and activation of the genetic programs in response to a wide range of stimuli in several cell types, including neurons. But its presence and function in microglia have not been reported. We therefore investigated the effect of MEF2D in activated microglia on the progress of neuroinflammation and the survival of neurons. METHODS BV2 cells and primary cultured glial cells were stimulated with lipopolysaccharide (LPS). Samples from cells were examined for MEF2D expression, interleukin-10 (IL-10), and tumor necrosis factor alpha (TNF-α) by immunoblotting, quantitative real-time PCR (qPCR) or enzyme-linked immunosorbent assay (ELISA). The activity of MEF2D was examined by electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation assay (ChIP). Recombinant lentivirus expressing shRNA specific to MEF2D was used to silence MEF2D expression in BV2 cells. The role of IL-10 transcriptionally induced by MEF2D on neuronal survival was assessed by anti-IL-10 neutralizing antibody. The survival of neurons was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. Male C57bl/6 mice were used to establish an acute PD model. Brain sections and cell slides were tested by immunofluorescence. RESULTS We demonstrated that MEF2D was present in microglia. Activation of microglia was associated with an increase in MEF2D level and activity in response to different stimuli in vivo and in vitro. MEF2D bound to a MEF2 consensus site in the promoter region of IL-10 gene and stimulated IL-10 transcription. Silencing MEF2D decreased the level of IL-10, increased the TNF-α mRNA, and promoted inflammation-induced cytotoxicity, consistent with the result of inhibiting IL-10 activity with an anti-IL-10 neutralizing antibody. CONCLUSIONS Our study identifies MEF2D as a critical regulator of IL-10 gene expression that negatively controls microglia inflammation response and prevents inflammation-mediated cytotoxicity.
Collapse
Affiliation(s)
- Shaosong Yang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.
| | - Li Gao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.
| | - Fangfang Lu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.
| | - Bao Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.
| | - Fei Gao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.
| | - Gang Zhu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.
| | - Zhibiao Cai
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.
| | - Juan Lai
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.
| | - Qian Yang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
26
|
Brusco J, Haas K. Interactions between mitochondria and the transcription factor myocyte enhancer factor 2 (MEF2) regulate neuronal structural and functional plasticity and metaplasticity. J Physiol 2015; 593:3471-81. [PMID: 25581818 DOI: 10.1113/jphysiol.2014.282459] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/21/2014] [Indexed: 12/20/2022] Open
Abstract
The classical view of mitochondria as housekeeping organelles acting in the background to simply maintain cellular energy demands has been challenged by mounting evidence of their direct and active participation in synaptic plasticity in neurons. Time-lapse imaging has revealed that mitochondria are motile in dendrites, with their localization and fusion and fission events regulated by synaptic activity. The positioning of mitochondria directly influences function of nearby synapses through multiple pathways including control over local concentrations of ATP, Ca(2+) and reactive oxygen species. Recent studies have also shown that mitochondrial protein cascades, classically associated with apoptosis, are involved in neural plasticity in healthy cells. These findings link mitochondria to the plasticity- and metaplasticity-associated activity-dependent transcription factor myocyte enhancer factor 2 (MEF2), further repositioning mitochondria as potential command centres for regulation of synaptic plasticity. Intriguingly, MEF2 and mitochondrial functions appear to be intricately intertwined, as MEF2 is a target of mitochondrial apoptotic caspases and, in turn, MEF2 regulates mitochondrial genome transcription essential for production of superoxidase and hydrogen peroxidase. Here, we review evidence supporting mitochondria as central organelles controlling the spatiotemporal expression of neuronal plasticity, and attempt to disentangle the MEF2-mitochondria relationship mediating these functions.
Collapse
Affiliation(s)
- Janaina Brusco
- Department of Cellular and Physiological Sciences and the Brain Research Centre, University of British Columbia, Vancouver, BC, Canada, V6T2B5
| | - Kurt Haas
- Department of Cellular and Physiological Sciences and the Brain Research Centre, University of British Columbia, Vancouver, BC, Canada, V6T2B5
| |
Collapse
|
27
|
Henley JM, Craig TJ, Wilkinson KA. Neuronal SUMOylation: mechanisms, physiology, and roles in neuronal dysfunction. Physiol Rev 2014; 94:1249-85. [PMID: 25287864 PMCID: PMC4187031 DOI: 10.1152/physrev.00008.2014] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Protein SUMOylation is a critically important posttranslational protein modification that participates in nearly all aspects of cellular physiology. In the nearly 20 years since its discovery, SUMOylation has emerged as a major regulator of nuclear function, and more recently, it has become clear that SUMOylation has key roles in the regulation of protein trafficking and function outside of the nucleus. In neurons, SUMOylation participates in cellular processes ranging from neuronal differentiation and control of synapse formation to regulation of synaptic transmission and cell survival. It is a highly dynamic and usually transient modification that enhances or hinders interactions between proteins, and its consequences are extremely diverse. Hundreds of different proteins are SUMO substrates, and dysfunction of protein SUMOylation is implicated in a many different diseases. Here we briefly outline core aspects of the SUMO system and provide a detailed overview of the current understanding of the roles of SUMOylation in healthy and diseased neurons.
Collapse
Affiliation(s)
- Jeremy M Henley
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Tim J Craig
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Kevin A Wilkinson
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
28
|
Caroni P, Chowdhury A, Lahr M. Synapse rearrangements upon learning: from divergent-sparse connectivity to dedicated sub-circuits. Trends Neurosci 2014; 37:604-14. [PMID: 25257207 DOI: 10.1016/j.tins.2014.08.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/26/2014] [Accepted: 08/27/2014] [Indexed: 01/24/2023]
Abstract
Learning can involve formation of new synapses and loss of synapses, providing memory traces of learned skills. Recent findings suggest that these synapse rearrangements reflect assembly of task-related sub-circuits from initially broadly distributed and sparse connectivity in the brain. These local circuit remodeling processes involve rapid emergence of synapses upon learning, followed by protracted validation involving strengthening of some new synapses, and selective elimination of others. The timing of these consolidation processes can vary. Here, we review these findings, focusing on how molecular/cellular mechanisms of synapse assembly, strengthening, and elimination might interface with circuit/system mechanisms of learning and memory consolidation. An integrated understanding of these learning-related processes should provide a better basis to elucidate how experience, genetic background, and disease influence brain function.
Collapse
Affiliation(s)
- Pico Caroni
- Friedrich Miescher Institut, Basel, Switzerland.
| | | | - Maria Lahr
- Friedrich Miescher Institut, Basel, Switzerland
| |
Collapse
|
29
|
Yamada T, Yang Y, Hemberg M, Yoshida T, Cho HY, Murphy JP, Fioravante D, Regehr WG, Gygi SP, Georgopoulos K, Bonni A. Promoter decommissioning by the NuRD chromatin remodeling complex triggers synaptic connectivity in the mammalian brain. Neuron 2014; 83:122-34. [PMID: 24991957 PMCID: PMC4266462 DOI: 10.1016/j.neuron.2014.05.039] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2014] [Indexed: 01/08/2023]
Abstract
Precise control of gene expression plays fundamental roles in brain development, but the roles of chromatin regulators in neuronal connectivity have remained poorly understood. We report that depletion of the NuRD complex by in vivo RNAi and conditional knockout of the core NuRD subunit Chd4 profoundly impairs the establishment of granule neuron parallel fiber/Purkinje cell synapses in the rodent cerebellar cortex in vivo. By interfacing genome-wide sequencing of transcripts and ChIP-seq analyses, we uncover a network of repressed genes and distinct histone modifications at target gene promoters that are developmentally regulated by the NuRD complex in the cerebellum in vivo. Finally, in a targeted in vivo RNAi screen of NuRD target genes, we identify a program of NuRD-repressed genes that operate as critical regulators of presynaptic differentiation in the cerebellar cortex. Our findings define NuRD-dependent promoter decommissioning as a developmentally regulated programming mechanism that drives synaptic connectivity in the mammalian brain.
Collapse
Affiliation(s)
- Tomoko Yamada
- Department of Anatomy and Neurobiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Yue Yang
- Department of Anatomy and Neurobiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Martin Hemberg
- Department of Ophthalmology, Children's Hospital Boston, Boston, MA 02115, USA
| | - Toshimi Yoshida
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Ha Young Cho
- Department of Anatomy and Neurobiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - J Patrick Murphy
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Katia Georgopoulos
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Azad Bonni
- Department of Anatomy and Neurobiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
30
|
Luo J, Ashikaga E, Rubin PP, Heimann MJ, Hildick KL, Bishop P, Girach F, Josa-Prado F, Tang LTH, Carmichael RE, Henley JM, Wilkinson KA. Receptor trafficking and the regulation of synaptic plasticity by SUMO. Neuromolecular Med 2013; 15:692-706. [PMID: 23934328 DOI: 10.1007/s12017-013-8253-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 07/25/2013] [Indexed: 12/18/2022]
Abstract
Timely and efficient information transfer at synapses is fundamental to brain function. Synapses are highly dynamic structures that exhibit long-lasting activity-dependent alterations to their structure and transmission efficiency, a phenomenon termed synaptic plasticity. These changes, which occur through alterations in presynaptic release or in the trafficking of postsynaptic receptor proteins, underpin the formation and stabilisation of neural circuits during brain development, and encode, process and store information essential for learning, memory and cognition. In recent years, it has emerged that the ubiquitin-like posttranslational modification SUMOylation is an important mediator of several aspects of neuronal and synaptic function. Through orchestrating synapse formation, presynaptic release and the trafficking of postsynaptic receptor proteins during forms of synaptic plasticity such as long-term potentiation, long-term depression and homeostatic scaling, SUMOylation is being increasingly appreciated to play a central role in neurotransmission. In this review, we outline key discoveries in this relatively new field, provide an update on recent progress regarding the targets and consequences of protein SUMOylation in synaptic function and plasticity, and highlight key outstanding questions regarding the roles of protein SUMOylation in the brain.
Collapse
Affiliation(s)
- Jia Luo
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Frias CP, Wierenga CJ. Activity-dependent adaptations in inhibitory axons. Front Cell Neurosci 2013; 7:219. [PMID: 24312009 PMCID: PMC3836028 DOI: 10.3389/fncel.2013.00219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 10/30/2013] [Indexed: 11/13/2022] Open
Abstract
Synaptic connections in our brains change continuously and throughout our lifetime. Despite ongoing synaptic changes, a healthy balance between excitation and inhibition is maintained by various forms of homeostatic and activity-dependent adaptations, ensuring stable functioning of neuronal networks. In this review we summarize experimental evidence for activity-dependent changes occurring in inhibitory axons, in cultures as well as in vivo. Axons form many presynaptic terminals, which are dynamic structures sharing presynaptic material along the axonal shaft. We discuss how internal (e.g., vesicle sharing) and external factors (e.g., binding of cell adhesion molecules or secreted factors) may affect the formation and plasticity of inhibitory synapses.
Collapse
Affiliation(s)
| | - Corette J. Wierenga
- Division of Cell Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| |
Collapse
|
32
|
MHCI requires MEF2 transcription factors to negatively regulate synapse density during development and in disease. J Neurosci 2013; 33:13791-804. [PMID: 23966700 DOI: 10.1523/jneurosci.2366-13.2013] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Major histocompatibility complex class I (MHCI) molecules negatively regulate cortical connections and are implicated in neurodevelopmental disorders, including autism spectrum disorders and schizophrenia. However, the mechanisms that mediate these effects are unknown. Here, we report a novel MHCI signaling pathway that requires the myocyte enhancer factor 2 (MEF2) transcription factors. In young rat cortical neurons, MHCI regulates MEF2 in an activity-dependent manner and requires calcineurin-mediated activation of MEF2 to limit synapse density. Manipulating MEF2 alone alters synaptic strength and GluA1 content, but not synapse density, implicating activity-dependent MEF2 activation as critical for MHCI signaling. The MHCI-MEF2 pathway identified here also mediates the effects of a mouse model of maternal immune activation (MIA) on connectivity in offspring. MHCI and MEF2 levels are higher, and synapse density is lower, on neurons from MIA offspring. Most important, dysregulation of MHCI and MEF2 is required for the MIA-induced reduction in neural connectivity. These results identify a previously unknown MHCI-calcineurin-MEF2 signaling pathway that regulates the establishment of cortical connections and mediates synaptic defects caused by MIA, a risk factor for autism spectrum disorders and schizophrenia.
Collapse
|