1
|
Centanni TM, Gunderson LPK, Parra M. Use of a predictor cue during a speech sound discrimination task in a Cntnap2 knockout rat model of autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626861. [PMID: 39677787 PMCID: PMC11643114 DOI: 10.1101/2024.12.04.626861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Autism is a common neurodevelopmental disorder that despite its complex etiology, is marked by deficits in prediction that manifest in a variety of domains including social interactions, communication, and movement. The tendency of individuals with autism to focus on predictable schedules and interests that contain patterns and rules highlights the likely involvement of the cerebellum in this disorder. One candidate-autism gene is contact in associated protein 2 (CNTNAP2), and variants in this gene are associated with sensory deficits and anatomical differences. It is unknown, however, whether this gene directly impacts the brain's ability to make and evaluate predictions about future events. The current study was designed to answer this question by training a genetic knockout rat on a rapid speech sound discrimination task. Rats with Cntnap2 knockout (KO) and their littermate wildtype controls (WT) were trained on a validated rapid speech sound discrimination task that contained unpredictable and predictable targets. We found that although both genotype groups learned the task in both unpredictable and predictable conditions, the KO rats responded more often to distractors during training as well as to the target sound during the predictable testing conditions compared to the WT group. There were only minor effects of sex on performance and only in the unpredictable condition. The current results provide preliminary evidence that removal of this candidate-autism gene may interfere with the learning of unpredictable scenarios and enhance reliance on predictability. Future research is needed to probe the neural anatomy and function that drives this effect.
Collapse
Affiliation(s)
- Tracy M. Centanni
- Department of Psychology, Texas Christian University, Fort Worth, TX 76129
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL 32610
| | | | - Monica Parra
- Department of Psychology, Texas Christian University, Fort Worth, TX 76129
| |
Collapse
|
2
|
Gunderson LPK, Brice K, Parra M, Engelhart AS, Centanni TM. A novel paradigm for measuring prediction abilities in a rat model using a speech-sound discrimination task. Behav Brain Res 2024; 472:115143. [PMID: 38986956 DOI: 10.1016/j.bbr.2024.115143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/17/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
The ability to predict and respond to upcoming stimuli is a critical skill for all animals, including humans. Prediction operates largely below conscious awareness to allow an individual to recall previously encountered stimuli and prepare an appropriate response, especially in language. The ability to predict upcoming words within typical speech patterns aids fluent comprehension, as conversational speech occurs quickly. Individuals with certain neurodevelopmental disorders such as autism and dyslexia have deficits in their ability to generate and use predictions. Rodent models are often used to investigate specific aspects of these disorders, but there is no existing behavioral paradigm that can assess prediction capabilities with complex stimuli like speech sounds. Thus, the present study modified an existing rapid speech sound discrimination paradigm to assess whether rats can form predictions of upcoming speech sound stimuli and utilize them to improve task performance. We replicated prior work showing that rats can discriminate between speech sounds presented at rapid rates. We also saw that rats responded exclusively to the target at slow speeds but began responding to the predictive cue in anticipation of the target as the speed increased, suggesting that they learned the predictive value of the cue and adjusted their behavior accordingly. This prediction task will be useful in assessing prediction deficits in rat models of various neurodevelopmental disorders through the manipulation of both genetic and environmental factors.
Collapse
Affiliation(s)
- Logun P K Gunderson
- Department of Psychology, Texas Christian University, Fort Worth, TX 76129, United States
| | - Kelly Brice
- Department of Psychology, Texas Christian University, Fort Worth, TX 76129, United States
| | - Monica Parra
- Department of Psychology, Texas Christian University, Fort Worth, TX 76129, United States
| | - Abby S Engelhart
- Department of Psychology, Texas Christian University, Fort Worth, TX 76129, United States
| | - Tracy M Centanni
- Department of Psychology, Texas Christian University, Fort Worth, TX 76129, United States; Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
3
|
Galaburda AM. Animal models of developmental dyslexia. Front Neurosci 2022; 16:981801. [PMID: 36452335 PMCID: PMC9702821 DOI: 10.3389/fnins.2022.981801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/28/2022] [Indexed: 09/10/2024] Open
Abstract
As some critics have stated, the term "developmental dyslexia" refers to a strictly human disorder, relating to a strictly human capacity - reading - so it cannot be modeled in experimental animals, much less so in lowly rodents. However, two endophenotypes associated with developmental dyslexia are eminently suitable for animal modeling: Cerebral Lateralization, as illustrated by the association between dyslexia and non-righthandedness, and Cerebrocortical Dysfunction, as illustrated by the described abnormal structural anatomy and/or physiology and functional imaging of the dyslexic cerebral cortex. This paper will provide a brief review of these two endophenotypes in human beings with developmental dyslexia and will describe the animal work done in my laboratory and that of others to try to shed light on the etiology of and neural mechanisms underlying developmental dyslexia. Some thought will also be given to future directions of the research.
Collapse
Affiliation(s)
- Albert M. Galaburda
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Animal models of developmental dyslexia: Where we are and what we are missing. Neurosci Biobehav Rev 2021; 131:1180-1197. [PMID: 34699847 DOI: 10.1016/j.neubiorev.2021.10.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/21/2022]
Abstract
Developmental dyslexia (DD) is a complex neurodevelopmental disorder and the most common learning disability among both school-aged children and across languages. Recently, sensory and cognitive mechanisms have been reported to be potential endophenotypes (EPs) for DD, and nine DD-candidate genes have been identified. Animal models have been used to investigate the etiopathological pathways that underlie the development of complex traits, as they enable the effects of genetic and/or environmental manipulations to be evaluated. Animal research designs have also been linked to cutting-edge clinical research questions by capitalizing on the use of EPs. For the present scoping review, we reviewed previous studies of murine models investigating the effects of DD-candidate genes. Moreover, we highlighted the use of animal models as an innovative way to unravel new insights behind the pathophysiology of reading (dis)ability and to assess cutting-edge preclinical models.
Collapse
|
5
|
Perani D, Scifo P, Cicchini GM, Rosa PD, Banfi C, Mascheretti S, Falini A, Marino C, Morrone MC. White matter deficits correlate with visual motion perception impairments in dyslexic carriers of the DCDC2 genetic risk variant. Exp Brain Res 2021; 239:2725-2740. [PMID: 34228165 PMCID: PMC8448712 DOI: 10.1007/s00221-021-06137-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/12/2021] [Indexed: 02/07/2023]
Abstract
Motion perception deficits in dyslexia show a large intersubjective variability, partly reflecting genetic factors influencing brain architecture development. In previous work, we have demonstrated that dyslexic carriers of a mutation of the DCDC2 gene have a very strong impairment in motion perception. In the present study, we investigated structural white matter alterations associated with the poor motion perception in a cohort of twenty dyslexics with a subgroup carrying the DCDC2 gene deletion (DCDC2d+) and a subgroup without the risk variant (DCDC2d–). We observed significant deficits in motion contrast sensitivity and in motion direction discrimination accuracy at high contrast, stronger in the DCDC2d+ group. Both motion perception impairments correlated significantly with the fractional anisotropy in posterior ventral and dorsal tracts, including early visual pathways both along the optic radiation and in proximity of occipital cortex, MT and VWFA. However, the DCDC2d+ group showed stronger correlations between FA and motion perception impairments than the DCDC2d– group in early visual white matter bundles, including the optic radiations, and in ventral pathways located in the left inferior temporal cortex. Our results suggest that the DCDC2d+ group experiences higher vulnerability in visual motion processing even at early stages of visual analysis, which might represent a specific feature associated with the genotype and provide further neurobiological support to the visual-motion deficit account of dyslexia in a specific subpopulation.
Collapse
Affiliation(s)
- Daniela Perani
- Vita-Salute San Raffaele University, Milan, Italy.,C.E.R.M.A.C. (Centro di Risonanza Magnetica ad Alto Campo), Milan, Italy.,Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Scifo
- C.E.R.M.A.C. (Centro di Risonanza Magnetica ad Alto Campo), Milan, Italy.,Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Guido M Cicchini
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy.
| | - Pasquale Della Rosa
- C.E.R.M.A.C. (Centro di Risonanza Magnetica ad Alto Campo), Milan, Italy.,Unit of Neuroradiology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Chiara Banfi
- Institute of Psychology, University of Graz, Graz, Austria
| | - Sara Mascheretti
- Child Psychopathology Unit, Scientific Institute Eugenio Medea, Bosisio Parini, Italy
| | - Andrea Falini
- Vita-Salute San Raffaele University, Milan, Italy.,C.E.R.M.A.C. (Centro di Risonanza Magnetica ad Alto Campo), Milan, Italy.,Unit of Neuroradiology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Cecilia Marino
- Department of Psychiatry, Unviersity of Toronto, Toronto, Canada.,Division of Child and Youth Psychiatry, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
| | - Maria Concetta Morrone
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,Scientific Institute Stella Maris (IRCSS), Pisa, Italy
| |
Collapse
|
6
|
Gabel LA, Voss K, Johnson E, Lindström ER, Truong DT, Murray EM, Cariño K, Nielsen CM, Paniagua S, Gruen JR. Identifying Dyslexia: Link between Maze Learning and Dyslexia Susceptibility Gene, DCDC2, in Young Children. Dev Neurosci 2021; 43:116-133. [PMID: 34186533 DOI: 10.1159/000516667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/20/2021] [Indexed: 12/29/2022] Open
Abstract
Dyslexia is a common learning disability that affects processing of written language despite adequate intelligence and educational background. If learning disabilities remain untreated, a child may experience long-term social and emotional problems, which influence future success in all aspects of their life. Dyslexia has a 60% heritability rate, and genetic studies have identified multiple dyslexia susceptibility genes (DSGs). DSGs, such as DCDC2, are consistently associated with the risk and severity of reading disability (RD). Altered neural connectivity within temporoparietal regions of the brain is associated with specific variants of DSGs in individuals with RD. Genetically altering DSG expression in mice results in visual and auditory processing deficits as well as neurophysiological and neuroanatomical disruptions. Previously, we demonstrated that learning deficits associated with RD can be translated across species using virtual environments. In this 2-year longitudinal study, we demonstrate that performance on a virtual Hebb-Williams maze in pre-readers is able to predict future reading impairment, and the genetic risk strengthens, but is not dependent on, this relationship. Due to the lack of oral reporting and use of letters, this easy-to-use tool may be particularly valuable in a remote working environment as well as working with vulnerable populations such as English language learners.
Collapse
Affiliation(s)
- Lisa A Gabel
- Department of Psychology, Lafayette College, Easton, Pennsylvania, USA.,Program in Neuroscience, Lafayette College, Easton, Pennsylvania, USA
| | - Kelsey Voss
- Program in Neuroscience, Lafayette College, Easton, Pennsylvania, USA
| | - Evelyn Johnson
- Department of Special Education, Boise State University, Boise, Idaho, USA
| | - Esther R Lindström
- Department of Education and Human Services, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Dongnhu T Truong
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Erin M Murray
- Program in Neuroscience, Lafayette College, Easton, Pennsylvania, USA
| | - Karla Cariño
- Program in Neuroscience, Lafayette College, Easton, Pennsylvania, USA
| | - Christiana M Nielsen
- Department of Education and Human Services, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Steven Paniagua
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jeffrey R Gruen
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Mascheretti S, Riva V, Feng B, Trezzi V, Andreola C, Giorda R, Villa M, Dionne G, Gori S, Marino C, Facoetti A. The Mediation Role of Dynamic Multisensory Processing Using Molecular Genetic Data in Dyslexia. Brain Sci 2020; 10:brainsci10120993. [PMID: 33339203 PMCID: PMC7765588 DOI: 10.3390/brainsci10120993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 12/21/2022] Open
Abstract
Although substantial heritability has been reported and candidate genes have been identified, we are far from understanding the etiopathogenetic pathways underlying developmental dyslexia (DD). Reading-related endophenotypes (EPs) have been established. Until now it was unknown whether they mediated the pathway from gene to reading (dis)ability. Thus, in a sample of 223 siblings from nuclear families with DD and 79 unrelated typical readers, we tested four EPs (i.e., rapid auditory processing, rapid automatized naming, multisensory nonspatial attention and visual motion processing) and 20 markers spanning five DD-candidate genes (i.e., DYX1C1, DCDC2, KIAA0319, ROBO1 and GRIN2B) using a multiple-predictor/multiple-mediator framework. Our results show that rapid auditory and visual motion processing are mediators in the pathway from ROBO1-rs9853895 to reading. Specifically, the T/T genotype group predicts impairments in rapid auditory and visual motion processing which, in turn, predict poorer reading skills. Our results suggest that ROBO1 is related to reading via multisensory temporal processing. These findings support the use of EPs as an effective approach to disentangling the complex pathways between candidate genes and behavior.
Collapse
Affiliation(s)
- Sara Mascheretti
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
| | - Valentina Riva
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
| | - Bei Feng
- École de Psychologie, Laval University, Québec, QC G1V 0A6, Canada; (B.F.); (G.D.)
| | - Vittoria Trezzi
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
| | - Chiara Andreola
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
- Laboratoire de Psychologie du Développement et de l’Éducation de l’Enfant (LaPsyDÉ), Universitè de Paris, 75005 Paris, France
| | - Roberto Giorda
- Molecular Biology Laboratory, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (R.G.); (M.V.)
| | - Marco Villa
- Molecular Biology Laboratory, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (R.G.); (M.V.)
| | - Ginette Dionne
- École de Psychologie, Laval University, Québec, QC G1V 0A6, Canada; (B.F.); (G.D.)
| | - Simone Gori
- Department of Human and Social Sciences, University of Bergamo, 24100 Bergamo, Italy;
| | - Cecilia Marino
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- The Division of Child and Youth Psychiatry, Centre for Addiction and Mental Health (CAMH), Toronto, ON M6J 1H4, Canada
- Correspondence: (C.M.); (A.F.)
| | - Andrea Facoetti
- Developmental Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, 35131 Padua, Italy
- Correspondence: (C.M.); (A.F.)
| |
Collapse
|
8
|
Liebig J, Friederici AD, Neef NE. Auditory brainstem measures and genotyping boost the prediction of literacy: A longitudinal study on early markers of dyslexia. Dev Cogn Neurosci 2020; 46:100869. [PMID: 33091833 PMCID: PMC7576516 DOI: 10.1016/j.dcn.2020.100869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 09/07/2020] [Accepted: 09/20/2020] [Indexed: 02/05/2023] Open
Abstract
Multi-domain profiles advance retrospective prediction of emergent literacy. DCDC2 and KIAA0319 risk variants influence emergent spelling skills. Combined DYX2 and auditory brainstem measures enhance predictive model fits. Additional benefit of preliterate phonological awareness on predictive power.
Literacy acquisition is impaired in children with developmental dyslexia resulting in lifelong struggle to read and spell. Proper diagnosis is usually late and commonly achieved after structured schooling started, which causes delayed interventions. Legascreen set out to develop a preclinical screening to identify children at risk of developmental dyslexia. To this end we examined 93 preliterate German children, half of them with a family history of dyslexia and half of them without a family history. We assessed standard demographic and behavioral precursors of literacy, acquired saliva samples for genotyping, and recorded speech-evoked brainstem responses to add an objective physiological measure. Reading and spelling was assessed after two years of structured literacy instruction. Multifactorial regression analyses considering demographic information, genotypes, and auditory brainstem encoding, predicted children’s literacy skills to varying degrees. These predictions were improved by adding the standard psychometrics with a slightly higher impact on spelling compared to reading comprehension. Our findings suggest that gene-brain-behavior profiling has the potential to determine the risk of developmental dyslexia. At the same time our results imply the need for a more sophisticated assessment to fully account for the disparate cognitive profiles and the multifactorial basis of developmental dyslexia.
Collapse
Affiliation(s)
- Johanna Liebig
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany.
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany.
| | - Nicole E Neef
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany; Department of Clinical Neurophysiology, Georg-August-University, Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany; Department of Diagnostic and Interventional Neuroradiology, Georg-August-University, Robert-Koch-Str. 40, 37075 Göttingen, Germany.
| | | |
Collapse
|
9
|
Benson PJ, Wallace L, Beedie SA. Sensory auditory interval perception errors in developmental dyslexia. Neuropsychologia 2020; 147:107587. [DOI: 10.1016/j.neuropsychologia.2020.107587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 11/16/2022]
|
10
|
Tang K, DeMille MMC, Frijters JC, Gruen JR. DCDC2 READ1 regulatory element: how temporal processing differences may shape language. Proc Biol Sci 2020; 287:20192712. [PMID: 32486976 PMCID: PMC7341942 DOI: 10.1098/rspb.2019.2712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Classic linguistic theory ascribes language change and diversity to population migrations, conquests, and geographical isolation, with the assumption that human populations have equivalent language processing abilities. We hypothesize that spectral and temporal characteristics make some consonant manners vulnerable to differences in temporal precision associated with specific population allele frequencies. To test this hypothesis, we modelled association between RU1-1 alleles of DCDC2 and manner of articulation in 51 populations spanning five continents, and adjusting for geographical proximity, and genetic and linguistic relatedness. RU1-1 alleles, acting through increased expression of DCDC2, appear to increase auditory processing precision that enhances stop-consonant discrimination, favouring retention in some populations and loss by others. These findings enhance classical linguistic theories by adding a genetic dimension, which until recently, has not been considered to be a significant catalyst for language change.
Collapse
Affiliation(s)
- Kevin Tang
- Department of Linguistics, University of Florida, Gainesville, FL 32611-5454, USA
| | - Mellissa M C DeMille
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jan C Frijters
- Child and Youth Studies, Brock University, St. Catherine's, Ontario, Canada L2S 3A1
| | - Jeffrey R Gruen
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
11
|
Guidi LG, Velayos‐Baeza A, Martinez‐Garay I, Monaco AP, Paracchini S, Bishop DVM, Molnár Z. The neuronal migration hypothesis of dyslexia: A critical evaluation 30 years on. Eur J Neurosci 2018; 48:3212-3233. [PMID: 30218584 PMCID: PMC6282621 DOI: 10.1111/ejn.14149] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/06/2018] [Accepted: 08/13/2018] [Indexed: 12/29/2022]
Abstract
The capacity for language is one of the key features underlying the complexity of human cognition and its evolution. However, little is known about the neurobiological mechanisms that mediate normal or impaired linguistic ability. For developmental dyslexia, early postmortem studies conducted in the 1980s linked the disorder to subtle defects in the migration of neurons in the developing neocortex. These early studies were reinforced by human genetic analyses that identified dyslexia susceptibility genes and subsequent evidence of their involvement in neuronal migration. In this review, we examine recent experimental evidence that does not support the link between dyslexia and neuronal migration. We critically evaluate gene function studies conducted in rodent models and draw attention to the lack of robust evidence from histopathological and imaging studies in humans. Our review suggests that the neuronal migration hypothesis of dyslexia should be reconsidered, and the neurobiological basis of dyslexia should be approached with a fresh start.
Collapse
Affiliation(s)
- Luiz G. Guidi
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUK
- Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Antonio Velayos‐Baeza
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUK
- Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Isabel Martinez‐Garay
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUK
- Division of NeuroscienceSchool of BiosciencesCardiff UniversityCardiffUK
| | | | | | | | - Zoltán Molnár
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUK
| |
Collapse
|
12
|
Centanni TM, Pantazis D, Truong DT, Gruen JR, Gabrieli JDE, Hogan TP. Increased variability of stimulus-driven cortical responses is associated with genetic variability in children with and without dyslexia. Dev Cogn Neurosci 2018; 34:7-17. [PMID: 29894888 PMCID: PMC6969288 DOI: 10.1016/j.dcn.2018.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 05/14/2018] [Accepted: 05/24/2018] [Indexed: 12/17/2022] Open
Abstract
Individuals with dyslexia exhibit increased brainstem variability in response to sound. It is unknown as to whether increased variability extends to neocortical regions associated with audition and reading, extends to visual stimuli, and whether increased variability characterizes all children with dyslexia or, instead, a specific subset of children. We evaluated the consistency of stimulus-evoked neural responses in children with (N = 20) or without dyslexia (N = 12) as measured by magnetoencephalography (MEG). Approximately half of the children with dyslexia had significantly higher levels of variability in cortical responses to both auditory and visual stimuli in multiple nodes of the reading network. There was a significant and positive relationship between the number of risk alleles at rs6935076 in the dyslexia-susceptibility gene KIAA0319 and the degree of neural variability in primary auditory cortex across all participants. This gene has been linked with neural variability in rodents and in typical readers. These findings indicate that unstable representations of auditory and visual stimuli in auditory and other reading-related neocortical regions are present in a subset of children with dyslexia and support the link between the gene KIAA0319 and the auditory neural variability across children with or without dyslexia.
Collapse
Affiliation(s)
- T M Centanni
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Psychology, Texas Christian University, Fort Worth, TX, USA.
| | - D Pantazis
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - D T Truong
- Departments of Pediatrics and Genetics, Yale University, New Haven, CT, USA
| | - J R Gruen
- Departments of Pediatrics and Genetics, Yale University, New Haven, CT, USA
| | - J D E Gabrieli
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - T P Hogan
- Communication Sciences and Disorders, MGH Institute of Health Professions, Boston, MA, USA
| |
Collapse
|
13
|
Rendall AR, Perrino PA, Buscarello AN, Fitch RH. Shank3B mutant mice display pitch discrimination enhancements and learning deficits. Int J Dev Neurosci 2018; 72:13-21. [DOI: 10.1016/j.ijdevneu.2018.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/21/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022] Open
Affiliation(s)
- Amanda R. Rendall
- Yale University School of Medicine, Pediatrics464 Congress AveNew Haven06520‐8055CTUSA
- University of Connecticut, Psychology‐Behavioral Neuroscience406 Babbidge Road, Unit 1020 StorrsMansfield06269CTUSA
| | - Peter A. Perrino
- University of Connecticut, Psychology‐Behavioral Neuroscience406 Babbidge Road, Unit 1020 StorrsMansfield06269CTUSA
| | - Alexzandrea N. Buscarello
- University of Connecticut, Psychology‐Behavioral Neuroscience406 Babbidge Road, Unit 1020 StorrsMansfield06269CTUSA
| | - R. Holly Fitch
- University of Connecticut, Psychology‐Behavioral Neuroscience406 Babbidge Road, Unit 1020 StorrsMansfield06269CTUSA
| |
Collapse
|
14
|
Appezzato MM, Hackerott MMS, Avila CRBD. Speech perception task with pseudowords. Codas 2018; 30:e20170030. [PMID: 29791617 DOI: 10.1590/2317-1782/20182017030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 10/25/2017] [Indexed: 11/22/2022] Open
Abstract
Purpose Prepare a list of pseudowords in Brazilian Portuguese to assess the auditory discrimination ability of schoolchildren and investigate the internal consistency of test items and the effect of school grade on discrimination performance. Methods Study participants were 60 schoolchildren (60% female) enrolled in the 3rd (n=14), 4th (n=24) and 5th (n=22) grades of an elementary school in the city of Sao Paulo, Brazil, aged between eight years and two months and 11 years and eight months (99 to 136 months; mean=120.05; SD=10.26), with average school performance score of 7.21 (minimum 5.0; maximum 10; SD=1.23). Forty-eight minimal pairs of Brazilian Portuguese pseudowords distinguished by a single phoneme were prepared. The participants' responses (whether the elements of the pairs were the same or different) were noted and analyzed. The data were analyzed using the Cronbach's Alpha Coefficient, Spearman's Correlation Coefficient, and Bonferroni Post-hoc Test at significance level of 0.05. Results Internal consistency analysis indicated the deletion of 20 pairs. The 28 items with results showed good internal consistency (α=0.84). The maximum and minimum scores of correct discrimination responses were 34 and 16, respectively (mean=30.79; SD=3.68). No correlation was observed between age, school performance, and discrimination performance, and no difference between school grades was found. Conclusion Most of the items proposed for assessing the auditory discrimination of speech sounds showed good internal consistency in relation to the task. Age and school grade did not improve the auditory discrimination of speech sounds.
Collapse
Affiliation(s)
| | - Maria Mercedes Saraiva Hackerott
- Núcleo de Ensino, Assistência e Pesquisa em Escrita e Leitura, Departamento de Fonoaudiologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | | |
Collapse
|
15
|
Worldwide distribution of the DCDC2 READ1 regulatory element and its relationship with phoneme variation across languages. Proc Natl Acad Sci U S A 2018; 115:4951-4956. [PMID: 29666269 PMCID: PMC5948951 DOI: 10.1073/pnas.1710472115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Languages evolve rapidly due to an interaction between sociocultural factors and underlying phonological processes that are influenced by genetic factors. DCDC2 has been strongly associated with core components of the phonological processing system in animal models and multiple independent studies of populations and languages. To characterize subtle language differences arising from genetic variants associated with phonological processes, we examined the relationship between READ1, a regulatory element in DCDC2, and phonemes in languages of 43 populations across five continents. Variation in READ1 was significantly correlated with the number of consonants. Our results suggest that subtle cognitive biases conferred by different READ1 alleles are amplified through cultural transmission that shape consonant use by populations over time. DCDC2 is a gene strongly associated with components of the phonological processing system in animal models and in multiple independent studies of populations and languages. We propose that it may also influence population-level variation in language component usage. To test this hypothesis, we investigated the evolution and worldwide distribution of the READ1 regulatory element within DCDC2, and compared its distribution with variation in different language properties. The mutational history of READ1 was estimated by examining primate and archaic hominin sequences. This identified duplication and expansion events, which created a large number of polymorphic alleles based on internal repeat units (RU1 and RU2). Association of READ1 alleles was studied with respect to the numbers of consonants and vowels for languages in 43 human populations distributed across five continents. Using population-based approaches with multivariate ANCOVA and linear mixed effects analyses, we found that the RU1-1 allele group of READ1 is significantly associated with the number of consonants within languages independent of genetic relatedness, geographic proximity, and language family. We propose that allelic variation in READ1 helped create a subtle cognitive bias that was amplified by cultural transmission, and ultimately shaped consonant use by different populations over time.
Collapse
|
16
|
Rendall AR, Perrino PA, LoTurco JJ, Fitch RH. Evaluation of visual motion perception ability in mice with knockout of the dyslexia candidate susceptibility gene Dcdc2. GENES BRAIN AND BEHAVIOR 2018; 18:e12450. [PMID: 29232042 DOI: 10.1111/gbb.12450] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 12/17/2022]
Abstract
Developmental dyslexia is a heritable disability characterized by difficulties in learning to read and write. The neurobiological and genetic mechanisms underlying dyslexia remain poorly understood; however, several dyslexia candidate risk genes have been identified. One of these candidate risk genes-doublecortin domain containing 2 (DCDC2)-has been shown to play a role in neuronal migration and cilia function. At a behavioral level, variants of DCDC2 have been associated with impairments in phonological processing, working memory and reading speed. Additionally, a specific mutation in DCDC2 has been strongly linked to deficits in motion perception-a skill subserving reading abilities. To further explore the relationship between DCDC2 and dyslexia, a genetic knockout (KO) of the rodent homolog of DCDC2 (Dcdc2) was created. Initial studies showed that Dcdc2 KOs display deficits in auditory processing and working memory. The current study was designed to evaluate the association between DCDC2 and motion perception, as these skills have not yet been assessed in the Dcdc2 KO mouse model. We developed a novel motion perception task, utilizing touchscreen technology and operant conditioning. Dcdc2 KOs displayed deficits on the Pairwise Discrimination task specifically as motion was added to visual stimuli. Following behavioral assessment, brains were histologically prepared for neuroanatomical analysis of the lateral geniculate nucleus (LGN). The cumulative distribution showed that Dcdc2 KOs exhibited more small neurons and fewer larger neurons in the LGN. Results compliment findings that DCDC2 genetic alteration results in anomalies in visual motion pathways in a subpopulation of dyslexic patients.
Collapse
Affiliation(s)
- A R Rendall
- Department of Psychology/Behavioral Neuroscience and Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut
| | - P A Perrino
- Department of Psychology/Behavioral Neuroscience and Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut
| | - J J LoTurco
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - R H Fitch
- Department of Psychology/Behavioral Neuroscience and Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
17
|
Meyer L. The neural oscillations of speech processing and language comprehension: state of the art and emerging mechanisms. Eur J Neurosci 2017; 48:2609-2621. [PMID: 29055058 DOI: 10.1111/ejn.13748] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/14/2017] [Accepted: 10/09/2017] [Indexed: 12/17/2022]
Abstract
Neural oscillations subserve a broad range of functions in speech processing and language comprehension. On the one hand, speech contains-somewhat-repetitive trains of air pressure bursts that occur at three dominant amplitude modulation frequencies, physically marking the linguistically meaningful progressions of phonemes, syllables and intonational phrase boundaries. To these acoustic events, neural oscillations of isomorphous operating frequencies are thought to synchronise, presumably resulting in an implicit temporal alignment of periods of neural excitability to linguistically meaningful spectral information on the three low-level linguistic description levels. On the other hand, speech is a carrier signal that codes for high-level linguistic meaning, such as syntactic structure and semantic information-which cannot be read from stimulus acoustics, but must be acquired during language acquisition and decoded for language comprehension. Neural oscillations subserve the processing of both syntactic structure and semantic information. Here, I synthesise a mapping from each linguistic processing domain to a unique set of subserving oscillatory mechanisms-the mapping is plausible given the role ascribed to different oscillatory mechanisms in different subfunctions of cortical information processing and faithful to the underlying electrophysiology. In sum, the present article provides an accessible and extensive review of the functional mechanisms that neural oscillations subserve in speech processing and language comprehension.
Collapse
Affiliation(s)
- Lars Meyer
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A, 04103, Leipzig, Germany
| |
Collapse
|
18
|
Adams AK, Smith SD, Truong DT, Willcutt EG, Olson RK, DeFries JC, Pennington BF, Gruen JR. Enrichment of putatively damaging rare variants in the DYX2 locus and the reading-related genes CCDC136 and FLNC. Hum Genet 2017; 136:1395-1405. [PMID: 28866788 PMCID: PMC5702371 DOI: 10.1007/s00439-017-1838-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/24/2017] [Indexed: 12/19/2022]
Abstract
Eleven loci with prior evidence for association with reading and language phenotypes were sequenced in 96 unrelated subjects with significant impairment in reading performance drawn from the Colorado Learning Disability Research Center collection. Out of 148 total individual missense variants identified, the chromosome 7 genes CCDC136 and FLNC contained 19. In addition, a region corresponding to the well-known DYX2 locus for RD contained 74 missense variants. Both allele sets were filtered for a minor allele frequency ≤0.01 and high Polyphen-2 scores. To determine if observations of these alleles are occurring more frequently in our cases than expected by chance in aggregate, counts from our sample were compared to the number of observations in the European subset of the 1000 Genomes Project using Fisher's exact test. Significant P values were achieved for both CCDC136/FLNC (P = 0.0098) and the DYX2 locus (P = 0.012). Taken together, this evidence further supports the influence of these regions on reading performance. These results also support the influence of rare variants in reading disability.
Collapse
Affiliation(s)
- Andrew K Adams
- Department of Genetics, Yale University, New Haven, CT, USA
| | - Shelley D Smith
- Munroe Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Erik G Willcutt
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, USA
| | - Richard K Olson
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, USA
| | - John C DeFries
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, USA
| | | | - Jeffrey R Gruen
- Department of Genetics, Yale University, New Haven, CT, USA.
- Department of Pediatrics and the Investigative Medicine Program, Yale University, New Haven, CT, USA.
| |
Collapse
|
19
|
Waye MMY, Poo LK, Ho CSH. Study of Genetic Association With DCDC2 and Developmental Dyslexia in Hong Kong Chinese Children. Clin Pract Epidemiol Ment Health 2017; 13:104-114. [PMID: 29081827 PMCID: PMC5633722 DOI: 10.2174/1745017901713010104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/21/2017] [Accepted: 07/25/2017] [Indexed: 11/30/2022]
Abstract
Background: Doublecortin domain-containing 2 (DCDC2) is a doublecortin domain-containing gene family member and the doublecortin domain has been demonstrated to bind to tubulin and enhance microtubule polymerization. It has been associated with developmental dyslexia and this protein family member is thought to function in neuronal migration where it may affect the signaling of primary cilia. Objectives: The objective of the study is to find out if there is any association of genetic variants of DCDC2 with developmental dyslexia in Chinese children from Hong Kong. Methods: The dyslexic children were diagnosed as developmental dyslexia (DD) using the Hong Kong Test of Specific Learning Difficulties in Reading and Writing (HKT-SpLD) by the Department of Health, Hong Kong. Saliva specimens were collected and their genotypes of DCDC2 were studied by DNA sequencing or TaqMan Real Time PCR Assays. Results: The most significant marker is rs6940827 which is associated with DD with nominal p-value (0.011). However, this marker did not remain significant after multiple testing corrections and the adjusted p-value from permutation test was 0.1329. Using sliding window haplotype analysis, several haplotypes were found to be nominally associated with DD. The smallest nominal p values was 0.0036 (rs2996452-rs1318700, C-A). However, none of the p values could withstand the multiple testing corrections. Conclusion: Despite early findings that DCDC2 is a strong candidate for developmental dyslexia and that some of the genetic variants have been linked to brain structure and functions, our findings showed that DCDC2 is not strongly associated with dyslexia.
Collapse
Affiliation(s)
- Mary M Y Waye
- The Nethersole School of Nursing, The Nethersole School of Nursing, The Chinese University of Hong Kong, Hong Kong
| | - Lim K Poo
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Connie S-H Ho
- Department of Psychology, The University of Hong Kong, Hong Kong
| |
Collapse
|
20
|
Engineer CT, Rahebi KC, Borland MS, Buell EP, Im KW, Wilson LG, Sharma P, Vanneste S, Harony-Nicolas H, Buxbaum JD, Kilgard MP. Shank3-deficient rats exhibit degraded cortical responses to sound. Autism Res 2017; 11:59-68. [PMID: 29052348 DOI: 10.1002/aur.1883] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 09/25/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023]
Abstract
Individuals with SHANK3 mutations have severely impaired receptive and expressive language abilities. While brain responses are known to be abnormal in these individuals, the auditory cortex response to sound has remained largely understudied. In this study, we document the auditory cortex response to speech and non-speech sounds in the novel Shank3-deficient rat model. We predicted that the auditory cortex response to sounds would be impaired in Shank3-deficient rats. We found that auditory cortex responses were weaker in Shank3 heterozygous rats compared to wild-type rats. Additionally, Shank3 heterozygous responses had less spontaneous auditory cortex firing and were unable to respond well to rapid trains of noise bursts. The rat model of the auditory impairments in SHANK3 mutation could be used to test potential rehabilitation or drug therapies to improve the communication impairments observed in individuals with Phelan-McDermid syndrome. Autism Res 2018, 11: 59-68. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY Individuals with SHANK3 mutations have severely impaired language abilities, yet the auditory cortex response to sound has remained largely understudied. In this study, we found that auditory cortex responses were weaker and were unable to respond well to rapid sounds in Shank3-deficient rats compared to control rats. The rat model of the auditory impairments in SHANK3 mutation could be used to test potential rehabilitation or drug therapies to improve the communication impairments observed in individuals with Phelan-McDermid syndrome.
Collapse
Affiliation(s)
- Crystal T Engineer
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road BSB11, Richardson, TX, 75080.,Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road BSB11, Richardson, TX, 75080
| | - Kimiya C Rahebi
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road BSB11, Richardson, TX, 75080.,Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road BSB11, Richardson, TX, 75080
| | - Michael S Borland
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road BSB11, Richardson, TX, 75080.,Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road BSB11, Richardson, TX, 75080
| | - Elizabeth P Buell
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road BSB11, Richardson, TX, 75080.,Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road BSB11, Richardson, TX, 75080
| | - Kwok W Im
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road BSB11, Richardson, TX, 75080
| | - Linda G Wilson
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road BSB11, Richardson, TX, 75080
| | - Pryanka Sharma
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road BSB11, Richardson, TX, 75080
| | - Sven Vanneste
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road BSB11, Richardson, TX, 75080
| | - Hala Harony-Nicolas
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Michael P Kilgard
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road BSB11, Richardson, TX, 75080.,Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road BSB11, Richardson, TX, 75080
| |
Collapse
|
21
|
The role of READ1 and KIAA0319 genetic variations in developmental dyslexia: testing main and interactive effects. J Hum Genet 2017; 62:949-955. [DOI: 10.1038/jhg.2017.80] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/30/2017] [Accepted: 07/02/2017] [Indexed: 12/23/2022]
|
22
|
Hancock R, Pugh KR, Hoeft F. Neural Noise Hypothesis of Developmental Dyslexia. Trends Cogn Sci 2017; 21:434-448. [PMID: 28400089 PMCID: PMC5489551 DOI: 10.1016/j.tics.2017.03.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/27/2017] [Accepted: 03/15/2017] [Indexed: 11/26/2022]
Abstract
Developmental dyslexia (decoding-based reading disorder; RD) is a complex trait with multifactorial origins at the genetic, neural, and cognitive levels. There is evidence that low-level sensory-processing deficits precede and underlie phonological problems, which are one of the best-documented aspects of RD. RD is also associated with impairments in integrating visual symbols with their corresponding speech sounds. Although causal relationships between sensory processing, print-speech integration, and fluent reading, and their neural bases are debated, these processes all require precise timing mechanisms across distributed brain networks. Neural excitability and neural noise are fundamental to these timing mechanisms. Here, we propose that neural noise stemming from increased neural excitability in cortical networks implicated in reading is one key distal contributor to RD.
Collapse
Affiliation(s)
- Roeland Hancock
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco (UCSF), 401 Parnassus Ave. Box-0984, San Francisco, CA 94143, USA; Science-based Innovation in Learning Center (SILC), 401 Parnassus Ave. Box-0984, San Francisco, CA 94143, USA.
| | - Kenneth R Pugh
- Haskins Laboratories, 300 George Street, New Haven, CT 06511, USA; Department of Linguistics, Yale University, 370 Temple Street, New Haven, CT 06520, USA; Department of Radiology and Biomedical Imaging, Yale University, 330 Cedar Street, New Haven, CT 06520, USA; Department of Psychological Sciences, University of Connecticut, 406 Babbidge Road, Storrs, CT 06269, USA
| | - Fumiko Hoeft
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco (UCSF), 401 Parnassus Ave. Box-0984, San Francisco, CA 94143, USA; Haskins Laboratories, 300 George Street, New Haven, CT 06511, USA; Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160, Japan; Science-based Innovation in Learning Center (SILC), 401 Parnassus Ave. Box-0984, San Francisco, CA 94143, USA; Dyslexia Center, UCSF, 675 Nelson Rising Lane, San Francisco, CA 94158, USA.
| |
Collapse
|
23
|
Xia Z, Hancock R, Hoeft F. Neurobiological bases of reading disorder Part I: Etiological investigations. LANGUAGE AND LINGUISTICS COMPASS 2017; 11:e12239. [PMID: 28785303 PMCID: PMC5543813 DOI: 10.1111/lnc3.12239] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 03/22/2017] [Indexed: 05/29/2023]
Abstract
While many studies have focused on identifying the neural and behavioral characteristics of decoding-based reading disorder (RD, aka developmental dyslexia), the etiology of RD remains largely unknown and understudied. Because the brain plays an intermediate role between genetic factors and behavioral outcomes, it is promising to address causality from a neural perspective. In the current, Part I of the two-part review, we discuss neuroimaging approaches to addressing the causality issue and review the results of studies that have employed these approaches. We assume that if a neural signature were associated with RD etiology, it would (a) manifest across comparisons in different languages, (b) be experience independent and appear in comparisons between RD and reading-matched controls, (c) be present both pre- and post-intervention, (d) be found in at-risk, pre-reading children and (e) be associated with genetic risk. We discuss each of these five characteristics in turn and summarize the studies that have examined each of them. The available literature provides evidence that anomalies in left temporo-parietal cortex, and possibly occipito-temporal cortex, may be closely related to the etiology of RD. Improved understanding of the etiology of RD can help improve the accuracy of early detection and enable targeted intervention of cognitive processes that are amenable to change, leading to improved outcomes in at-risk or affected populations.
Collapse
Affiliation(s)
- Zhichao Xia
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, USA
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, China
| | - Roeland Hancock
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, USA
| | - Fumiko Hoeft
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, USA
- Haskins Laboratories, USA
- Department of Neuropsychiatry, Keio University School of Medicine, Japan
- Dyslexia Center, University of California San Francisco, USA
| |
Collapse
|
24
|
Neef NE, Müller B, Liebig J, Schaadt G, Grigutsch M, Gunter TC, Wilcke A, Kirsten H, Skeide MA, Kraft I, Kraus N, Emmrich F, Brauer J, Boltze J, Friederici AD. Dyslexia risk gene relates to representation of sound in the auditory brainstem. Dev Cogn Neurosci 2017; 24:63-71. [PMID: 28182973 PMCID: PMC6987796 DOI: 10.1016/j.dcn.2017.01.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/15/2017] [Accepted: 01/15/2017] [Indexed: 12/20/2022] Open
Abstract
Previous studies associate poor reading with unstable speech-evoked brainstem responses. DCDC2 and KIAA0319 risk alleles form a strong genetic link with developmental dyslexia. Genetic burden with KIAA0319 risk is related to unstable speech-evoked brainstem responses. Genetic burden with DCDC2 risk is related to intact speech-evoked brainstem responses. Revealed brain-gene relationships may inform the multifactorial pathophysiology of dyslexia.
Dyslexia is a reading disorder with strong associations with KIAA0319 and DCDC2. Both genes play a functional role in spike time precision of neurons. Strikingly, poor readers show an imprecise encoding of fast transients of speech in the auditory brainstem. Whether dyslexia risk genes are related to the quality of sound encoding in the auditory brainstem remains to be investigated. Here, we quantified the response consistency of speech-evoked brainstem responses to the acoustically presented syllable [da] in 159 genotyped, literate and preliterate children. When controlling for age, sex, familial risk and intelligence, partial correlation analyses associated a higher dyslexia risk loading with KIAA0319 with noisier responses. In contrast, a higher risk loading with DCDC2 was associated with a trend towards more stable responses. These results suggest that unstable representation of sound, and thus, reduced neural discrimination ability of stop consonants, occurred in genotypes carrying a higher amount of KIAA0319 risk alleles. Current data provide the first evidence that the dyslexia-associated gene KIAA0319 can alter brainstem responses and impair phoneme processing in the auditory brainstem. This brain-gene relationship provides insight into the complex relationships between phenotype and genotype thereby improving the understanding of the dyslexia-inherent complex multifactorial condition.
Collapse
Affiliation(s)
- Nicole E Neef
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany.
| | - Bent Müller
- Department of Cell Therapy, Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany
| | - Johanna Liebig
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Gesa Schaadt
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany; Department of Psychology, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Maren Grigutsch
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Thomas C Gunter
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Arndt Wilcke
- Department of Cell Therapy, Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany
| | - Holger Kirsten
- Department of Cell Therapy, Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany; Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig and LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany
| | - Michael A Skeide
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Indra Kraft
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Nina Kraus
- Auditory Neuroscience Laboratory, Northwestern University, Evanston, IL 60208, USA
| | - Frank Emmrich
- Department of Cell Therapy, Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany
| | - Jens Brauer
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Johannes Boltze
- Department of Cell Therapy, Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany; Department of Medical Cell Technology, Fraunhofer Research Institution for Marine Biotechnology, and Institute for Medical and Marine Biotechnology, University of Lübeck, Germany
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| |
Collapse
|
25
|
Engineer CT, Shetake JA, Engineer ND, Vrana WA, Wolf JT, Kilgard MP. Temporal plasticity in auditory cortex improves neural discrimination of speech sounds. Brain Stimul 2017; 10:543-552. [PMID: 28131520 DOI: 10.1016/j.brs.2017.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/22/2016] [Accepted: 01/10/2017] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Many individuals with language learning impairments exhibit temporal processing deficits and degraded neural responses to speech sounds. Auditory training can improve both the neural and behavioral deficits, though significant deficits remain. Recent evidence suggests that vagus nerve stimulation (VNS) paired with rehabilitative therapies enhances both cortical plasticity and recovery of normal function. OBJECTIVE/HYPOTHESIS We predicted that pairing VNS with rapid tone trains would enhance the primary auditory cortex (A1) response to unpaired novel speech sounds. METHODS VNS was paired with tone trains 300 times per day for 20 days in adult rats. Responses to isolated speech sounds, compressed speech sounds, word sequences, and compressed word sequences were recorded in A1 following the completion of VNS-tone train pairing. RESULTS Pairing VNS with rapid tone trains resulted in stronger, faster, and more discriminable A1 responses to speech sounds presented at conversational rates. CONCLUSION This study extends previous findings by documenting that VNS paired with rapid tone trains altered the neural response to novel unpaired speech sounds. Future studies are necessary to determine whether pairing VNS with appropriate auditory stimuli could potentially be used to improve both neural responses to speech sounds and speech perception in individuals with receptive language disorders.
Collapse
Affiliation(s)
- Crystal T Engineer
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road BSB11, Richardson, TX 75080, United States; Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road BSB11, Richardson, TX 75080, United States.
| | - Jai A Shetake
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road BSB11, Richardson, TX 75080, United States
| | - Navzer D Engineer
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road BSB11, Richardson, TX 75080, United States; MicroTransponder Inc., 2802 Flintrock Trace Suite 225, Austin, TX 78738, United States
| | - Will A Vrana
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road BSB11, Richardson, TX 75080, United States
| | - Jordan T Wolf
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road BSB11, Richardson, TX 75080, United States
| | - Michael P Kilgard
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road BSB11, Richardson, TX 75080, United States; Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road BSB11, Richardson, TX 75080, United States
| |
Collapse
|
26
|
Neurogenetics of developmental dyslexia: from genes to behavior through brain neuroimaging and cognitive and sensorial mechanisms. Transl Psychiatry 2017; 7:e987. [PMID: 28045463 PMCID: PMC5545717 DOI: 10.1038/tp.2016.240] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 10/15/2016] [Indexed: 01/18/2023] Open
Abstract
Developmental dyslexia (DD) is a complex neurodevelopmental deficit characterized by impaired reading acquisition, in spite of adequate neurological and sensorial conditions, educational opportunities and normal intelligence. Despite the successful characterization of DD-susceptibility genes, we are far from understanding the molecular etiological pathways underlying the development of reading (dis)ability. By focusing mainly on clinical phenotypes, the molecular genetics approach has yielded mixed results. More optimally reduced measures of functioning, that is, intermediate phenotypes (IPs), represent a target for researching disease-associated genetic variants and for elucidating the underlying mechanisms. Imaging data provide a viable IP for complex neurobehavioral disorders and have been extensively used to investigate both morphological, structural and functional brain abnormalities in DD. Performing joint genetic and neuroimaging studies in humans is an emerging strategy to link DD-candidate genes to the brain structure and function. A limited number of studies has already pursued the imaging-genetics integration in DD. However, the results are still not sufficient to unravel the complexity of the reading circuit due to heterogeneous study design and data processing. Here, we propose an interdisciplinary, multilevel, imaging-genetic approach to disentangle the pathways from genes to behavior. As the presence of putative functional genetic variants has been provided and as genetic associations with specific cognitive/sensorial mechanisms have been reported, new hypothesis-driven imaging-genetic studies must gain momentum. This approach would lead to the optimization of diagnostic criteria and to the early identification of 'biologically at-risk' children, supporting the definition of adequate and well-timed prevention strategies and the implementation of novel, specific remediation approach.
Collapse
|
27
|
Ozernov-Palchik O, Yu X, Wang Y, Gaab N. Lessons to be learned: how a comprehensive neurobiological framework of atypical reading development can inform educational practice. Curr Opin Behav Sci 2016; 10:45-58. [PMID: 27766284 DOI: 10.1016/j.cobeha.2016.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Dyslexia is a heritable reading disorder with an estimated prevalence of 5-17%. A multiple deficit model has been proposed that illustrates dyslexia as an outcome of multiple risks and protective factors interacting at the genetic, neural, cognitive, and environmental levels. Here we review the evidence on each of these levels and discuss possible underlying mechanisms and their reciprocal interactions along a developmental timeline. Current and potential implications of neuroscientific findings for contemporary challenges in the field of dyslexia, as well as for reading development and education in general, are then discussed.
Collapse
Affiliation(s)
- Ola Ozernov-Palchik
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Children's Hospital Boston, MA 02115, United States; Center for Reading and Language Research, Tufts University, Medford, MA 02155, United States
| | - Xi Yu
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Children's Hospital Boston, MA 02115, United States; Harvard Medical School, Boston, MA 02115, United States
| | - Yingying Wang
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Children's Hospital Boston, MA 02115, United States; Harvard Medical School, Boston, MA 02115, United States
| | - Nadine Gaab
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Children's Hospital Boston, MA 02115, United States; Harvard Medical School, Boston, MA 02115, United States; Harvard Graduate School of Education, Cambridge, MA 02138, United States
| |
Collapse
|