1
|
Krizman J, Colegrove D, Cunningham J, Bonacina S, Nicol T, Nerrie M, Kraus N. Concussion acutely disrupts auditory processing in division I football student-athletes. Brain Inj 2025; 39:17-25. [PMID: 39224977 PMCID: PMC11668622 DOI: 10.1080/02699052.2024.2396012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Diagnosis, assessment, and management of sports-related concussion require a multi-modal approach. Yet, currently, an objective assessment of auditory processing is not included. The auditory system is uniquely complex, relying on exquisite temporal precision to integrate signals across many synapses, connected by long axons. Given this complexity and precision, together with the fact that axons are highly susceptible to damage from mechanical force, we hypothesize that auditory processing is susceptible to concussive injury. METHODS We measured the frequency-following response (FFR), a scalp-recorded evoked potential that assesses processing of complex sound features, including pitch and phonetic identity. FFRs were obtained on male Division I Collegiate football players prior to contact practice to determine a pre-season baseline of auditory processing abilities, and again after sustaining a sports-related concussion. We predicted that concussion would decrease pitch and phonetic processing relative to the student-athlete's preseason baseline. RESULTS We found that pitch and phonetic encoding was smaller post-concussion. Student-athletes who sustained a second concussion showed similar declines after each injury. CONCLUSIONS Auditory processing should be included in the multimodal assessment of sports-related concussion. Future studies that extend this work to other sports, other injuries (e.g. blast exposure), and to female athletes are needed.
Collapse
Affiliation(s)
- Jennifer Krizman
- Department of Communication Sciences, Auditory Neuroscience Laboratory, Northwestern University, Evanston, IL, USA
| | - Danielle Colegrove
- Department of Sports Medicine, Northwestern University, Evanston, IL, USA
| | - Jenna Cunningham
- Department of Communication Sciences, Auditory Neuroscience Laboratory, Northwestern University, Evanston, IL, USA
| | - Silvia Bonacina
- Department of Communication Sciences, Auditory Neuroscience Laboratory, Northwestern University, Evanston, IL, USA
| | - Trent Nicol
- Department of Communication Sciences, Auditory Neuroscience Laboratory, Northwestern University, Evanston, IL, USA
| | - Matt Nerrie
- Department of Sports Medicine, Northwestern University, Evanston, IL, USA
| | - Nina Kraus
- Department of Communication Sciences, Auditory Neuroscience Laboratory, Northwestern University, Evanston, IL, USA
- Institute for Neuroscience, Northwestern University, Evanston, IL, USA
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
- Department of Otolaryngology, Northwestern University, Chicago, IL, USA
- Department of Linguistics, Northwestern University, Evanston, IL, USA
| |
Collapse
|
2
|
Monk T, Dennler N, Ralph N, Rastogi S, Afshar S, Urbizagastegui P, Jarvis R, van Schaik A, Adamatzky A. Electrical Signaling Beyond Neurons. Neural Comput 2024; 36:1939-2029. [PMID: 39141803 DOI: 10.1162/neco_a_01696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/21/2024] [Indexed: 08/16/2024]
Abstract
Neural action potentials (APs) are difficult to interpret as signal encoders and/or computational primitives. Their relationships with stimuli and behaviors are obscured by the staggering complexity of nervous systems themselves. We can reduce this complexity by observing that "simpler" neuron-less organisms also transduce stimuli into transient electrical pulses that affect their behaviors. Without a complicated nervous system, APs are often easier to understand as signal/response mechanisms. We review examples of nonneural stimulus transductions in domains of life largely neglected by theoretical neuroscience: bacteria, protozoans, plants, fungi, and neuron-less animals. We report properties of those electrical signals-for example, amplitudes, durations, ionic bases, refractory periods, and particularly their ecological purposes. We compare those properties with those of neurons to infer the tasks and selection pressures that neurons satisfy. Throughout the tree of life, nonneural stimulus transductions time behavioral responses to environmental changes. Nonneural organisms represent the presence or absence of a stimulus with the presence or absence of an electrical signal. Their transductions usually exhibit high sensitivity and specificity to a stimulus, but are often slow compared to neurons. Neurons appear to be sacrificing the specificity of their stimulus transductions for sensitivity and speed. We interpret cellular stimulus transductions as a cell's assertion that it detected something important at that moment in time. In particular, we consider neural APs as fast but noisy detection assertions. We infer that a principal goal of nervous systems is to detect extremely weak signals from noisy sensory spikes under enormous time pressure. We discuss neural computation proposals that address this goal by casting neurons as devices that implement online, analog, probabilistic computations with their membrane potentials. Those proposals imply a measurable relationship between afferent neural spiking statistics and efferent neural membrane electrophysiology.
Collapse
Affiliation(s)
- Travis Monk
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Nik Dennler
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
- Biocomputation Group, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, U.K.
| | - Nicholas Ralph
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Shavika Rastogi
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
- Biocomputation Group, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, U.K.
| | - Saeed Afshar
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Pablo Urbizagastegui
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Russell Jarvis
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - André van Schaik
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Andrew Adamatzky
- Unconventional Computing Laboratory, University of the West of England, Bristol BS16 1QY, U.K.
| |
Collapse
|
3
|
MacLeod KM, Pandya S. Expression and Neurotransmitter Association of the Synaptic Calcium Sensor Synaptotagmin in the Avian Auditory Brain Stem. J Assoc Res Otolaryngol 2022; 23:701-720. [PMID: 35999323 PMCID: PMC9789253 DOI: 10.1007/s10162-022-00863-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 07/12/2022] [Indexed: 01/31/2023] Open
Abstract
In the avian auditory brain stem, acoustic timing and intensity cues are processed in separate, parallel pathways via the two divisions of the cochlear nucleus, nucleus angularis (NA) and nucleus magnocellularis (NM). Differences in excitatory and inhibitory synaptic properties, such as release probability and short-term plasticity, contribute to differential processing of the auditory nerve inputs. We investigated the distribution of synaptotagmin, a putative calcium sensor for exocytosis, via immunohistochemistry and double immunofluorescence in the embryonic and hatchling chick brain stem (Gallus gallus). We found that the two major isoforms, synaptotagmin 1 (Syt1) and synaptotagmin 2 (Syt2), showed differential expression. In the NM, anti-Syt2 label was strong and resembled the endbulb terminals of the auditory nerve inputs, while anti-Syt1 label was weaker and more punctate. In NA, both isoforms were intensely expressed throughout the neuropil. A third isoform, synaptotagmin 7 (Syt7), was largely absent from the cochlear nuclei. In nucleus laminaris (NL, the target nucleus of NM), anti-Syt2 and anti-Syt7 strongly labeled the dendritic lamina. These patterns were established by embryonic day 18 and persisted to postnatal day 7. Double-labeling immunofluorescence showed that Syt1 and Syt2 were associated with vesicular glutamate transporter 2 (VGluT2), but not vesicular GABA transporter (VGAT), suggesting that these Syt isoforms were localized to excitatory, but not inhibitory, terminals. These results suggest that Syt2 is the major calcium binding protein underlying excitatory neurotransmission in the timing pathway comprising NM and NL, while Syt2 and Syt1 regulate excitatory transmission in the parallel intensity pathway via cochlear nucleus NA.
Collapse
Affiliation(s)
- Katrina M MacLeod
- Department of Biology, University of Maryland, College Park, MD, 20742, USA.
| | - Sangeeta Pandya
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
4
|
Ordiway G, McDonnell M, Mohan S, Sanchez JT. Evaluation of Auditory Brainstem Response in Chicken Hatchlings. J Vis Exp 2022:10.3791/63477. [PMID: 35435914 PMCID: PMC9136940 DOI: 10.3791/63477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
The auditory brainstem response (ABR) is an invaluable assay in clinical audiology, non-human animals, and human research. Despite the widespread use of ABRs in measuring auditory neural synchrony and estimating hearing sensitivity in other vertebrate model systems, methods for recording ABRs in the chicken have not been reported in nearly four decades. Chickens provide a robust animal research model because their auditory system is near functional maturation during late embryonic and early hatchling stages. We have demonstrated methods used to elicit one or two-channel ABR recordings using subdermal needle electrode arrays in chicken hatchlings. Regardless of electrode recording configuration (i.e., montage), ABR recordings included 3-4 positive-going peak waveforms within the first 6 ms of a suprathreshold click stimulus. Peak-to-trough waveform amplitudes ranged from 2-11 µV at high-intensity levels, with positive peaks exhibiting expected latency-intensity functions (i.e., increase in latency as a function of decreased intensity). Standardized earphone position was critical for optimal recordings as loose skin can occlude the ear canal, and animal movement can dislodge the stimulus transducer. Peak amplitudes were smaller, and latencies were longer as animal body temperature lowered, supporting the need for maintaining physiological body temperature. For young hatchlings (<3 h post-hatch day 1), thresholds were elevated by ~5 dB, peak latencies increased ~1-2 ms, and peak to trough amplitudes were decreased ~1 µV compared to older hatchlings. This suggests a potential conductive-related issue (i.e., fluid in the middle ear cavity) and should be considered for young hatchlings. Overall, the ABR methods outlined here permit accurate and reproducible recording of in-vivo auditory function in chicken hatchlings that could be applied to different stages of development. Such findings are easily compared to human and mammalian models of hearing loss, aging, or other auditory-related manipulations.
Collapse
Affiliation(s)
- George Ordiway
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University;
| | - Miranda McDonnell
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University
| | - Sandesh Mohan
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University
| | - Jason Tait Sanchez
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University; Knowles Hearing Research Center, Northwestern University; Department of Neurobiology, Northwestern University
| |
Collapse
|
5
|
Koert E, Kuenzel T. Small dendritic synapses enhance temporal coding in a model of cochlear nucleus bushy cells. J Neurophysiol 2021; 125:915-937. [PMID: 33471627 DOI: 10.1152/jn.00331.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spherical bushy cells (SBCs) in the anteroventral cochlear nucleus receive a single or very few powerful axosomatic inputs from the auditory nerve. However, SBCs are also contacted by small regular bouton synapses of the auditory nerve, located in their dendritic tree. The function of these small inputs is unknown. It was speculated that the interaction of axosomatic inputs with small dendritic inputs improved temporal precision, but direct evidence for this is missing. In a compartment model of spherical bushy cells with a stylized or realistic three-dimensional (3-D) representation of the bushy dendrite, we explored this hypothesis. Phase-locked dendritic inputs caused both tonic depolarization and a modulation of the model SBC membrane potential at the frequency of the stimulus. For plausible model parameters, dendritic inputs were subthreshold. Instead, the tonic depolarization increased the excitability of the SBC model and the modulation of the membrane potential caused a phase-dependent increase in the efficacy of the main axosomatic input. This improved response rate and entrainment for low-input frequencies and temporal precision of output at and above the characteristic frequency. A careful exploration of morphological and biophysical parameters of the bushy dendrite suggested a functional explanation for the peculiar shape of the bushy dendrite. Our model for the first time directly implied a role for the small excitatory dendritic inputs in auditory processing: they modulate the efficacy of the main input and are thus a plausible mechanism for the improvement of temporal precision and fidelity in these central auditory neurons.NEW & NOTEWORTHY We modeled dendritic inputs from the auditory nerve that spherical bushy cells of the cochlear nucleus receive. Dendritic inputs caused both tonic depolarization and modulation of the membrane potential at the input frequency. This improved the rate, entrainment, and temporal precision of output action potentials. Our simulations suggest a role for small dendritic inputs in auditory processing: they modulate the efficacy of the main input supporting temporal precision and fidelity in these central auditory neurons.
Collapse
Affiliation(s)
- Elisabeth Koert
- Auditory Neurophysiology Group, Department of Chemosensation, RWTH Aachen University, Aachen, Germany
| | - Thomas Kuenzel
- Auditory Neurophysiology Group, Department of Chemosensation, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
6
|
Neural Networks in Health and Disease. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11470-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
7
|
Structural and Functional Refinement of the Axon Initial Segment in Avian Cochlear Nucleus during Development. J Neurosci 2020; 40:6709-6721. [PMID: 32719016 DOI: 10.1523/jneurosci.3068-19.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/25/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022] Open
Abstract
The axon initial segment (AIS) is involved in action potential initiation. Structural and biophysical characteristics of the AIS differ among cell types and/or brain regions, but the underlying mechanisms remain elusive. Using immunofluorescence and electrophysiological methods, combined with super-resolution imaging, we show in the developing nucleus magnocellularis of the chicken in both sexes that the AIS is refined in a tonotopic region-dependent manner. This process of AIS refinement differs among cells tuned to different frequencies. At hearing onset, the AIS was ∼50 µm long with few voltage-gated sodium channels regardless of tonotopic region. However, after hatching, the AIS matured and displayed an ∼20-µm-long structure with a significant enrichment of sodium channels responsible for an increase in sodium current and a decrease in spike threshold. Moreover, the shortening was more pronounced, while the accumulation of channels was not, in neurons tuned to higher frequency, creating tonotopic differences in the AIS. We conclude that AIS shortening is mediated by disassembly of the cytoskeleton at the distal end of the AIS, despite intact periodicity of the submembranous cytoskeleton across the AIS. Importantly, deprivation of afferent input diminished the shortening in neurons tuned to a higher frequency to a larger extent in posthatch animals, with little effect on the accumulation of sodium channels. Thus, cytoskeletal reorganization and sodium channel enrichment at the AIS are differentially regulated depending on tonotopic region, but work synergistically to optimize neuronal output in the auditory nucleus.SIGNIFICANCE STATEMENT The axon initial segment (AIS) plays fundamental roles in determining neuronal output. The AIS varies structurally and molecularly across tonotopic regions in avian cochlear nucleus. However, the mechanism underlying these variations remains unclear. The AIS is immature around hearing onset, but becomes shorter and accumulates more sodium channels during maturation, with a pronounced shortening and a moderate channel accumulation at higher tonotopic regions. Afferent input adjusts sodium conductance at the AIS by augmenting AIS shortening (via disassembly of cytoskeletons at its distal end) specifically at higher-frequency regions. However, this had little effect on channel accumulation. Thus, cytoskeletal structure and sodium channel accumulation at the AIS are regulated differentially but work synergistically to optimize the neuronal output.
Collapse
|
8
|
Bibikov NG. The Relative Significance of Signal Amplitude and Rate of Its Change for Spike Generation in Amphibian Medullary Auditory Neurons. J EVOL BIOCHEM PHYS+ 2020. [DOI: 10.1134/s0022093020010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Müller MK, Jovanovic S, Keine C, Radulovic T, Rübsamen R, Milenkovic I. Functional Development of Principal Neurons in the Anteroventral Cochlear Nucleus Extends Beyond Hearing Onset. Front Cell Neurosci 2019; 13:119. [PMID: 30983974 PMCID: PMC6447607 DOI: 10.3389/fncel.2019.00119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/11/2019] [Indexed: 01/23/2023] Open
Abstract
Sound information is transduced into graded receptor potential by cochlear hair cells and encoded as discrete action potentials of auditory nerve fibers. In the cochlear nucleus, auditory nerve fibers convey this information through morphologically distinct synaptic terminals onto bushy cells (BCs) and stellate cells (SCs) for processing of different sound features. With expanding use of transgenic mouse models, it is increasingly important to understand the in vivo functional development of these neurons in mice. We characterized the maturation of spontaneous and acoustically evoked activity in BCs and SCs by acquiring single-unit juxtacellular recordings between hearing onset (P12) and young adulthood (P30) of anesthetized CBA/J mice. In both cell types, hearing sensitivity and characteristic frequency (CF) range are mostly adult-like by P14, consistent with rapid maturation of the auditory periphery. In BCs, however, some physiological features like maximal firing rate, dynamic range, temporal response properties, recovery from post-stimulus depression, first spike latency (FSL) and encoding of sinusoid amplitude modulation undergo further maturation up to P18. In SCs, the development of excitatory responses is even more prolonged, indicated by a gradual increase in spontaneous and maximum firing rates up to P30. In the same cell type, broadly tuned acoustically evoked inhibition is immediately effective at hearing onset, covering the low- and high-frequency flanks of the excitatory response area. Together, these data suggest that maturation of auditory processing in the parallel ascending BC and SC streams engages distinct mechanisms at the first central synapses that may differently depend on the early auditory experience.
Collapse
Affiliation(s)
- Maria Katharina Müller
- Carl Ludwig Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Sasa Jovanovic
- Carl Ludwig Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Christian Keine
- Carver College of Medicine, Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, United States.,Institute of Biology, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Tamara Radulovic
- Carl Ludwig Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany.,Carver College of Medicine, Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, United States
| | - Rudolf Rübsamen
- Institute of Biology, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Ivan Milenkovic
- Carl Ludwig Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany.,School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
10
|
McColgan T, Kuokkanen PT, Carr CE, Kempter R. Dynamics of synaptic extracellular field potentials in the nucleus laminaris of the barn owl. J Neurophysiol 2019; 121:1034-1047. [PMID: 30575430 DOI: 10.1152/jn.00648.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Synaptic currents are frequently assumed to make a major contribution to the extracellular field potential (EFP). However, in any neuronal population, the explicit separation of synaptic sources from other contributions such as postsynaptic spikes remains a challenge. Here we take advantage of the simple organization of the barn owl nucleus laminaris (NL) in the auditory brain stem to isolate synaptic currents through the iontophoretic application of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-receptor antagonist 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[ f]quinoxaline-7-sulfonamide (NBQX). Responses to auditory stimulation show that the temporal dynamics of the evoked synaptic contributions to the EFP are consistent with synaptic short-term depression (STD). The estimated time constants of an STD model fitted to the data are similar to the fast time constants reported from in vitro experiments in the chick. Overall, the putative synaptic EFPs in the barn owl NL are significant but small (<1% change of the variance by NBQX). This result supports the hypothesis that the EFP in NL is generated mainly by axonal spikes, in contrast to most other neuronal systems. NEW & NOTEWORTHY Synaptic currents are assumed to make a major contribution to the extracellular field potential in the brain, but it is hard to directly isolate these synaptic components. Here we take advantage of the simple organization of the barn owl nucleus laminaris in the auditory brain stem to isolate synaptic currents through the iontophoretic application of a synaptic blocker. We show that the responses are consistent with a simple model of short-term synaptic depression.
Collapse
Affiliation(s)
- Thomas McColgan
- Bernstein Center for Computational Neuroscience , Berlin , Germany.,Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin , Germany
| | - Paula T Kuokkanen
- Bernstein Center for Computational Neuroscience , Berlin , Germany.,Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin , Germany.,Department of Biology, University of Maryland , College Park, Maryland
| | - Catherine E Carr
- Department of Biology, University of Maryland , College Park, Maryland
| | - Richard Kempter
- Bernstein Center for Computational Neuroscience , Berlin , Germany.,Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin , Germany.,Einstein Center for Neurosciences , Berlin , Germany
| |
Collapse
|
11
|
Adachi R, Yamada R, Kuba H. Tonotopic Differentiation of Coupling between Ca 2+ and Kv1.1 Expression in Brainstem Auditory Circuit. iScience 2019; 13:199-213. [PMID: 30856389 PMCID: PMC6411580 DOI: 10.1016/j.isci.2019.02.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/17/2018] [Accepted: 02/22/2019] [Indexed: 12/25/2022] Open
Abstract
Tonotopic differentiations of ion channels ensure sound processing across frequencies. Afferent input plays a critical role in differentiations. We demonstrate here in organotypic culture of chicken cochlear nucleus that expression of Kv1.1 was coupled with Ca2+ to a different degree depending on tonotopic regions, thereby differentiating the level of expression within the nucleus. In the culture, Kv1.1 was down-regulated and not differentiated tonotopically. Chronic depolarization increased Kv1.1 expression in a level-dependent manner. Moreover, the dependence was steeper at higher-frequency regions, which restored the differentiation. The depolarization increased Kv1.1 via activation of Cav1 channels, whereas basal Ca2+ level elevated similarly irrespective of tonotopic regions. Thus, the efficiency of Ca2+-dependent Kv1.1 expression would be fine-tuned in a tonotopic-region-specific manner, emphasizing the importance of neuronal tonotopic identity as well as pattern of afferent input in the tonotopic differentiation of the channel in the auditory circuit. Kv1.1 expression is down-regulated in slice culture of chicken cochlear nucleus Depolarization up-regulates Kv1.1 in a tonotopic-region-specific manner Level of Kv1.1 expression is dependent on basal calcium concentration Efficiency of calcium-dependent Kv1.1 expression is differentiated tonotopically
Collapse
Affiliation(s)
- Ryota Adachi
- Department of Cell Physiology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | - Rei Yamada
- Department of Cell Physiology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | - Hiroshi Kuba
- Department of Cell Physiology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan.
| |
Collapse
|
12
|
Brown DH, Hyson RL. Intrinsic physiological properties underlie auditory response diversity in the avian cochlear nucleus. J Neurophysiol 2019; 121:908-927. [PMID: 30649984 DOI: 10.1152/jn.00459.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sensory systems exploit parallel processing of stimulus features to enable rapid, simultaneous extraction of information. Mechanisms that facilitate this differential extraction of stimulus features can be intrinsic or synaptic in origin. A subdivision of the avian cochlear nucleus, nucleus angularis (NA), extracts sound intensity information from the auditory nerve and contains neurons that exhibit diverse responses to sound and current injection. NA neurons project to multiple regions ascending the auditory brain stem including the superior olivary nucleus, lateral lemniscus, and avian inferior colliculus, with functional implications for inhibitory gain control and sound localization. Here we investigated whether the diversity of auditory response patterns in NA can be accounted for by variation in intrinsic physiological features. Modeled sound-evoked auditory nerve input was applied to NA neurons with dynamic clamp during in vitro whole cell recording at room temperature. Temporal responses to auditory nerve input depended on variation in intrinsic properties, and the low-threshold K+ current was implicated as a major contributor to temporal response diversity and neuronal input-output functions. An auditory nerve model of acoustic amplitude modulation produced synchrony coding of modulation frequency that depended on the intrinsic physiology of the individual neuron. In Primary-Like neurons, varying low-threshold K+ conductance with dynamic clamp altered temporal modulation tuning bidirectionally. Taken together, these data suggest that intrinsic physiological properties play a key role in shaping auditory response diversity to both simple and more naturalistic auditory stimuli in the avian cochlear nucleus. NEW & NOTEWORTHY This article addresses the question of how the nervous system extracts different information in sounds. Neurons in the cochlear nucleus show diverse responses to acoustic stimuli that may allow for parallel processing of acoustic features. The present studies suggest that diversity in intrinsic physiological features of individual neurons, including levels of a low voltage-activated K+ current, play a major role in regulating the diversity of auditory responses.
Collapse
Affiliation(s)
- David H Brown
- Program in Neuroscience, Department of Psychology, Florida State University , Tallahassee, Florida
| | - Richard L Hyson
- Program in Neuroscience, Department of Psychology, Florida State University , Tallahassee, Florida
| |
Collapse
|
13
|
Hong H, Sanchez JT. Need for Speed and Precision: Structural and Functional Specialization in the Cochlear Nucleus of the Avian Auditory System. J Exp Neurosci 2018; 12:1179069518815628. [PMID: 30559595 PMCID: PMC6291874 DOI: 10.1177/1179069518815628] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/06/2018] [Indexed: 11/17/2022] Open
Abstract
Birds such as the barn owl and zebra finch are known for their remarkable hearing abilities that are critical for survival, communication, and vocal learning functions. A key to achieving these hearing abilities is the speed and precision required for the temporal coding of sound-a process heavily dependent on the structural, synaptic, and intrinsic specializations in the avian auditory brainstem. Here, we review recent work from us and others focusing on the specialization of neurons in the chicken cochlear nucleus magnocellularis (NM)-a first-order auditory brainstem structure analogous to bushy cells in the mammalian anteroventral cochlear nucleus. Similar to their mammalian counterpart, NM neurons are mostly adendritic and receive auditory nerve input through large axosomatic endbulb of Held synapses. Axonal projections from NM neurons to their downstream auditory targets are sophisticatedly programmed regarding their length, caliber, myelination, and conduction velocity. Specialized voltage-dependent potassium and sodium channel properties also play important and unique roles in shaping the functional phenotype of NM neurons. Working synergistically with potassium channels, an atypical current known as resurgent sodium current promotes rapid and precise action potential firing for NM neurons. Interestingly, these structural and functional specializations vary dramatically along the tonotopic axis and suggest a plethora of encoding strategies for sounds of different acoustic frequencies, mechanisms likely shared across species.
Collapse
Affiliation(s)
- Hui Hong
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Jason Tait Sanchez
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA.,Department of Neurobiology, Northwestern University, Evanston, IL, USA.,The Hugh Knowles Hearing Research Center, Northwestern University, Evanston, IL, USA
| |
Collapse
|
14
|
Wang X, Zorio DAR, Schecterson L, Lu Y, Wang Y. Postsynaptic FMRP Regulates Synaptogenesis In Vivo in the Developing Cochlear Nucleus. J Neurosci 2018; 38:6445-6460. [PMID: 29950504 PMCID: PMC6052239 DOI: 10.1523/jneurosci.0665-18.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 12/29/2022] Open
Abstract
A global loss of the fragile X mental retardation protein (FMRP; encoded by the Fmr1 gene) leads to sensory dysfunction and intellectual disabilities. One underlying mechanism of these phenotypes is structural and functional deficits in synapses. Here, we determined the autonomous function of postsynaptic FMRP in circuit formation, synaptogenesis, and synaptic maturation. In normal cochlea nucleus, presynaptic auditory axons form large axosomatic endbulb synapses on cell bodies of postsynaptic bushy neurons. In ovo electroporation of drug-inducible Fmr1-shRNA constructs produced a mosaicism of FMRP expression in chicken (either sex) bushy neurons, leading to reduced FMRP levels in transfected, but not neighboring nontransfected, neurons. Structural analyses revealed that postsynaptic FMRP reduction led to smaller size and abnormal morphology of individual presynaptic endbulbs at both early and later developmental stages. We further examined whether FMRP reduction affects dendritic development, as a potential mechanism underlying defective endbulb formation. Normally, chicken bushy neurons grow extensive dendrites at early stages and retract these dendrites when endbulbs begin to form. Neurons transfected with Fmr1 shRNA exhibited a remarkable delay in branch retraction, failing to provide necessary somatic surface for timely formation and growth of large endbulbs. Patch-clamp recording verified functional consequences of dendritic and synaptic deficits on neurotransmission, showing smaller amplitudes and slower kinetics of spontaneous and evoked EPSCs. Together, these data demonstrate that proper levels of postsynaptic FMRP are required for timely maturation of somatodendritic morphology, a delay of which may affect synaptogenesis and thus contribute to long-lasting deficits of excitatory synapses.SIGNIFICANCE STATEMENT Fragile X mental retardation protein (FMRP) regulates a large variety of neuronal activities. A global loss of FMRP affects neural circuit development and synaptic function, leading to fragile X syndrome (FXS). Using temporally and spatially controlled genetic manipulations, this study provides the first in vivo report that autonomous FMRP regulates multiple stages of dendritic development, and that selective reduction of postsynaptic FMRP leads to abnormal development of excitatory presynaptic terminals and compromised neurotransmission. These observations demonstrate secondary influence of developmentally transient deficits in neuronal morphology and connectivity to the development of long-lasting synaptic pathology in FXS.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Biomedical Science, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, Florida 32306
| | - Diego A R Zorio
- Department of Biomedical Science, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, Florida 32306
| | - Leslayann Schecterson
- Department of Otolaryngology, Bloedel Hearing Research Center, University of Washington, Seattle, Washington 98195, and
| | - Yong Lu
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio 44272
| | - Yuan Wang
- Department of Biomedical Science, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, Florida 32306,
| |
Collapse
|
15
|
Hong H, Wang X, Lu T, Zorio DAR, Wang Y, Sanchez JT. Diverse Intrinsic Properties Shape Functional Phenotype of Low-Frequency Neurons in the Auditory Brainstem. Front Cell Neurosci 2018; 12:175. [PMID: 29997479 PMCID: PMC6028565 DOI: 10.3389/fncel.2018.00175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/04/2018] [Indexed: 12/18/2022] Open
Abstract
In the auditory system, tonotopy is the spatial arrangement of where sounds of different frequencies are processed. Defined by the organization of neurons and their inputs, tonotopy emphasizes distinctions in neuronal structure and function across topographic gradients and is a common feature shared among vertebrates. In this study we characterized action potential firing patterns and ion channel properties from neurons located in the extremely low-frequency region of the chicken nucleus magnocellularis (NM), an auditory brainstem structure. We found that NM neurons responsible for encoding the lowest sound frequencies (termed NMc neurons) have enhanced excitability and fired bursts of action potentials to sinusoidal inputs ≤10 Hz; a distinct firing pattern compared to higher-frequency neurons. This response property was due to lower amounts of voltage dependent potassium (KV) conductances, unique combination of KV subunits and specialized sodium (NaV) channel properties. Particularly, NMc neurons had significantly lower KV1 and KV3 currents, but higher KV2 current. NMc neurons also showed larger and faster transient NaV current (INaT) with different voltage dependence of inactivation from higher-frequency neurons. In contrast, significantly smaller resurgent sodium current (INaR) was present in NMc with kinetics and voltage dependence that differed from higher-frequency neurons. Immunohistochemistry showed expression of NaV1.6 channel subtypes across the tonotopic axis. However, various immunoreactive patterns were observed between regions, likely underlying some tonotopic differences in INaT and INaR. Finally, using pharmacology and computational modeling, we concluded that KV3, KV2 channels and INaR work synergistically to regulate burst firing in NMc.
Collapse
Affiliation(s)
- Hui Hong
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Xiaoyu Wang
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, United States
- Program in Neuroscience Florida State University College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Ting Lu
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Diego A. R. Zorio
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, United States
- Program in Neuroscience Florida State University College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Yuan Wang
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, United States
- Program in Neuroscience Florida State University College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Jason Tait Sanchez
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Northwestern University, Evanston, IL, United States
- The Hugh Knowles Hearing Research Center, Northwestern University, Evanston, IL, United States
| |
Collapse
|
16
|
Carricondo F, Romero-Gómez B. The Cochlear Spiral Ganglion Neurons: The Auditory Portion of the VIII Nerve. Anat Rec (Hoboken) 2018; 302:463-471. [DOI: 10.1002/ar.23815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/08/2017] [Accepted: 10/08/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Francisco Carricondo
- Laboratory of Neurobiology of Hearing, Dept. of Immunology, Ophthalmology and Otorhinolaryngology, Faculty of Medicine; Complutense University of Madrid (Spain)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos" (IdISSC); Madrid Spain
| | - Bárbara Romero-Gómez
- Laboratory of Neurobiology of Hearing, Dept. of Immunology, Ophthalmology and Otorhinolaryngology, Faculty of Medicine; Complutense University of Madrid (Spain)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos" (IdISSC); Madrid Spain
| |
Collapse
|
17
|
Boxwell A, Terman D, Frank M, Yanagawa Y, Travers JB. A computational analysis of signal fidelity in the rostral nucleus of the solitary tract. J Neurophysiol 2018; 119:771-785. [PMID: 29093172 PMCID: PMC5899313 DOI: 10.1152/jn.00624.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 02/07/2023] Open
Abstract
Neurons in the rostral nucleus of the solitary tract (rNST) convey taste information to both local circuits and pathways destined for forebrain structures. This nucleus is more than a simple relay, however, because rNST neurons differ in response rates and tuning curves relative to primary afferent fibers. To systematically study the impact of convergence and inhibition on firing frequency and breadth of tuning (BOT) in rNST, we constructed a mathematical model of its two major cell types: projection neurons and inhibitory neurons. First, we fit a conductance-based neuronal model to data derived from whole cell patch-clamp recordings of inhibitory and noninhibitory neurons in a mouse expressing Venus under the control of the VGAT promoter. We then used in vivo chorda tympani (CT) taste responses as afferent input to modeled neurons and assessed how the degree and type of convergence influenced model cell output frequency and BOT for comparison with in vivo gustatory responses from the rNST. Finally, we assessed how presynaptic and postsynaptic inhibition impacted model cell output. The results of our simulations demonstrated 1) increasing numbers of convergent afferents (2-10) result in a proportional increase in best-stimulus firing frequency but only a modest increase in BOT, 2) convergence of afferent input selected from the same best-stimulus class of CT afferents produced a better fit to real data from the rNST compared with convergence of randomly selected afferent input, and 3) inhibition narrowed the BOT to more realistically model the in vivo rNST data. NEW & NOTEWORTHY Using a combination of in vivo and in vitro neurophysiology together with conductance-based modeling, we show how patterns of convergence and inhibition interact in the rostral (gustatory) solitary nucleus to maintain signal fidelity. Although increasing convergence led to a systematic increase in firing frequency, tuning specificity was maintained with a pattern of afferent inputs sharing the best-stimulus compared with random inputs. Tonic inhibition further enhanced response fidelity.
Collapse
Affiliation(s)
- Alison Boxwell
- College of Medicine, Ohio State University , Columbus, Ohio
| | - David Terman
- Department of Mathematics, Ohio State University , Columbus, Ohio
| | - Marion Frank
- Department of Oral Health and Diagnostic Sciences, University of Connecticut Health Center , Farmington, Connecticut
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | | |
Collapse
|
18
|
Auditory Input Shapes Tonotopic Differentiation of Kv1.1 Expression in Avian Cochlear Nucleus during Late Development. J Neurosci 2018; 38:2967-2980. [PMID: 29439165 DOI: 10.1523/jneurosci.2472-17.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 11/21/2022] Open
Abstract
Tonotopic differentiation is fundamental for signal processing in the auditory system. However, when and how this differentiation arises remain elusive. We addressed this issue using electrophysiology and immunohistochemistry in nucleus magnocellularis of chickens of both sexes, which is known to differ in the expression of Kv1.1 channels depending on characteristic frequency (CF). Just after hearing onset (embryonic day 12-14), Kv1 current gradually increased to a slightly larger extent in neurons with higher CF, causing a tonotopic difference of Kv1 current before hatch. However, after hatch, a much larger increase of Kv1 current occurred, particularly in higher-CF neurons, due to an augmentation of Kv1.1 expression at the plasma membrane. This later change in expression led to the large tonotopic difference of Kv1 current characteristic of mature animals. Attenuation of auditory input by inducing conductive or sensorineural hearing loss around hatch suppressed the differentiation in a level-dependent manner. Moreover, elevation of auditory input during embryonic periods could not reproduce the differentiation, suggesting that the capacity of neurons to drive Kv1.1 expression via auditory input develops in a cell-specific manner, thus underlying the frequency-specific expression of the channel within the nucleus. The results indicated that the tonotopic differentiation of Kv1.1 in nucleus magnocellularis is partially determined before hatch, but largely driven by afferent input after hatch. Our results highlight the importance of neuronal capacity for sound to drive ion channel expression as well as the level of auditory experience in the frequency tuning of brainstem auditory circuits.SIGNIFICANCE STATEMENT Tuning-frequency-specific expression of ion channels is a prerequisite for auditory system function, but its underlying mechanisms remain unclear. Here, we revealed in avian cochlear nucleus that the expression of Kv1.1 became more dependent on auditory input at a late period of maturation in neurons tuned to higher-frequency sound, leading to frequency-specific Kv1.1 expression. Attenuation of auditory input during this period suppressed the differentiation in a level-dependent manner, whereas elevation of input in earlier periods could not reproduce the differentiation. Thus, the capacity of neurons to drive Kv1.1 expression via auditory input develops in a cell-specific manner and directs differentiation, highlighting the importance of neuronal character as well as the level of input in the frequency tuning of auditory circuits.
Collapse
|
19
|
Carroll BJ, Bertram R, Hyson RL. Intrinsic physiology of inhibitory neurons changes over auditory development. J Neurophysiol 2017; 119:290-304. [PMID: 29046423 DOI: 10.1152/jn.00447.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
During auditory development, changes in membrane properties promote the ability of excitatory neurons in the brain stem to code aspects of sound, including the level and timing of a stimulus. Some of these changes coincide with hearing onset, suggesting that sound-driven neural activity produces developmental plasticity of ion channel expression. While it is known that the coding properties of excitatory neurons are modulated by inhibition in the mature system, it is unknown whether there are also developmental changes in the membrane properties of brain stem inhibitory neurons. We investigated the primary source of inhibition in the avian auditory brain stem, the superior olivary nucleus (SON). The present studies test the hypothesis that, as in excitatory neurons, the membrane properties of these inhibitory neurons change after hearing onset. We examined SON neurons at different stages of auditory development: embryonic days 14-16 (E14-E16), a time at which cochlear ganglion neurons are just beginning to respond to sound; later embryonic stages (E18-E19); and after hatching (P0-P2). We used in vitro whole cell patch electrophysiology to explore physiological changes in SON. Age-related changes were observed at the level of a single spike and in multispiking behavior. In particular, tonic behavior, measured as a neuron's ability to sustain tonic firing over a range of current steps, became more common later in development. Voltage-clamp recordings and biophysical models were employed to examine how age-related increases in ion currents enhance excitability in SON. Our findings suggest that concurrent increases in sodium and potassium currents underlie the emergence of tonic behavior. NEW & NOTEWORTHY This article is the first to examine heterogeneity of neuronal physiology in the inhibitory nucleus of the avian auditory system and demonstrate that tonic firing here emerges over development. By pairing computer simulations with physiological data, we show that increases in both sodium and potassium channels over development are necessary for the emergence of tonic firing.
Collapse
Affiliation(s)
- Briana J Carroll
- Department of Psychology, Florida State University , Tallahassee, Florida.,Program in Neuroscience, Florida State University , Tallahassee, Florida
| | - Richard Bertram
- Deparment of Mathematics, Florida State University , Tallahassee, Florida.,Program in Molecular Biophysics, Florida State University , Tallahassee, Florida.,Program in Neuroscience, Florida State University , Tallahassee, Florida
| | - Richard L Hyson
- Department of Psychology, Florida State University , Tallahassee, Florida.,Program in Neuroscience, Florida State University , Tallahassee, Florida
| |
Collapse
|
20
|
Lu T, Wade K, Hong H, Sanchez JT. Ion channel mechanisms underlying frequency-firing patterns of the avian nucleus magnocellularis: A computational model. Channels (Austin) 2017; 11:444-458. [PMID: 28481659 PMCID: PMC5626364 DOI: 10.1080/19336950.2017.1327493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We have previously shown that late-developing avian nucleus magnocellularis (NM) neurons (embryonic [E] days 19–21) fire action potentials (APs) that resembles a band-pass filter in response to sinusoidal current injections of varying frequencies. NM neurons located in the mid- to high-frequency regions of the nucleus fire preferentially at 75 Hz, but only fire a single onset AP to frequency inputs greater than 200 Hz. Surprisingly, NM neurons do not fire APs to sinusoidal inputs less than 20 Hz regardless of the strength of the current injection. In the present study we evaluated intrinsic mechanisms that prevent AP generation to low frequency inputs. We constructed a computational model to simulate the frequency-firing patterns of NM neurons based on experimental data at both room and near physiologic temperatures. The results from our model confirm that the interaction among low- and high-voltage activated potassium channels (KLVA and KHVA, respectively) and voltage dependent sodium channels (NaV) give rise to the frequency-firing patterns observed in vitro. In particular, we evaluated the regulatory role of KLVA during low frequency sinusoidal stimulation. The model shows that, in response to low frequency stimuli, activation of large KLVA current counterbalances the slow-depolarizing current injection, likely permitting NaV closed-state inactivation and preventing the generation of APs. When the KLVA current density was reduced, the model neuron fired multiple APs per sinusoidal cycle, indicating that KLVA channels regulate low frequency AP firing of NM neurons. This intrinsic property of NM neurons may assist in optimizing response to different rates of synaptic inputs.
Collapse
Affiliation(s)
- Ting Lu
- a Roxelyn and Richard Pepper Department of Communication Sciences and Disorders , Northwestern University , Evanston , IL , USA
| | - Kirstie Wade
- a Roxelyn and Richard Pepper Department of Communication Sciences and Disorders , Northwestern University , Evanston , IL , USA
| | - Hui Hong
- a Roxelyn and Richard Pepper Department of Communication Sciences and Disorders , Northwestern University , Evanston , IL , USA
| | - Jason Tait Sanchez
- a Roxelyn and Richard Pepper Department of Communication Sciences and Disorders , Northwestern University , Evanston , IL , USA.,b Department of Neurobiology , Northwestern University , Evanston , IL , USA.,c The Hugh Knowles Hearing Research Center , Northwestern University , Evanston , IL , USA
| |
Collapse
|
21
|
Kopp-Scheinpflug C. Your genes decide what you are listening to. Channels (Austin) 2017; 11:355-356. [PMID: 28662361 PMCID: PMC5626367 DOI: 10.1080/19336950.2017.1348870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Conny Kopp-Scheinpflug
- a Division of Neurobiology, Department Biology II , Ludwig-Maximilians-University Munich , Planegg-Martinsried , Germany
| |
Collapse
|
22
|
Distinct Neural Properties in the Low-Frequency Region of the Chicken Cochlear Nucleus Magnocellularis. eNeuro 2017; 4:eN-NWR-0016-17. [PMID: 28413822 PMCID: PMC5388668 DOI: 10.1523/eneuro.0016-17.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/17/2017] [Accepted: 03/05/2017] [Indexed: 12/03/2022] Open
Abstract
Topography in the avian cochlear nucleus magnocellularis (NM) is represented as gradually increasing characteristic frequency (CF) along the caudolateral-to-rostromedial axis. In this study, we characterized the organization and cell biophysics of the caudolateral NM (NMc) in chickens (Gallus gallus). Examination of cellular and dendritic architecture first revealed that NMc contains small neurons and extensive dendritic processes, in contrast to adendritic, large neurons located more rostromedially. Individual dye-filling study further demonstrated that NMc is divided into two subregions, with NMc2 neurons having larger and more complex dendritic fields than NMc1. Axonal tract tracing studies confirmed that NMc1 and NMc2 neurons receive afferent inputs from the auditory nerve and the superior olivary nucleus, similar to the adendritic NM. However, the auditory axons synapse with NMc neurons via small bouton-like terminals, unlike the large end bulb synapses on adendritic NM neurons. Immunocytochemistry demonstrated that most NMc2 neurons express cholecystokinin but not calretinin, distinct from NMc1 and adendritic NM neurons that are cholecystokinin negative and mostly calretinin positive. Finally, whole-cell current clamp recordings revealed that NMc neurons require significantly lower threshold current for action potential generation than adendritic NM neurons. Moreover, in contrast to adendritic NM neurons that generate a single-onset action potential, NMc neurons generate multiple action potentials to suprathreshold sustained depolarization. Taken together, our data indicate that NMc contains multiple neuron types that are structurally, connectively, molecularly, and physiologically different from traditionally defined NM neurons, emphasizing specialized neural properties for processing low-frequency sounds.
Collapse
|
23
|
Xu J, Berret E, Kim JH. Activity-dependent formation and location of voltage-gated sodium channel clusters at a CNS nerve terminal during postnatal development. J Neurophysiol 2016; 117:582-593. [PMID: 27832602 DOI: 10.1152/jn.00617.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/05/2016] [Indexed: 01/18/2023] Open
Abstract
In auditory pathways, the precision of action potential (AP) propagation depends on axon myelination and high densities of voltage-gated Na (Nav) channels clustered at nodes of Ranvier. Changes in Nav channel expression at the heminode, the final node before the nerve terminal, can alter AP invasion into the presynaptic terminal. We studied the activity-dependent formation of Nav channel clusters before and after hearing onset at postnatal day 12 in the rat and mouse auditory brain stem. In rats, the Nav channel cluster at the heminode formed progressively during the second postnatal week, around hearing onset, whereas the Nav channel cluster at the nodes was present before hearing onset. Initiation of heminodal Nav channel clustering was correlated with the expression of scaffolding protein ankyrinG and paranodal protein Caspr. However, in whirler mice with congenital deafness, heminodal Nav channels did not form clusters and maintained broad expression, but Nav channel clustering was normal at the nodes. In addition, a clear difference in the distance from the heminodal Nav channel to the calyx across the mediolateral axis of the medial nucleus of the trapezoid body (MNTB) developed after hearing onset. In the medial MNTB, where neurons respond best to high-frequency sounds, the heminodal Nav channel cluster was located closer to the terminal than in the lateral MNTB, where neurons respond best to low-frequency sounds. Thus sound-mediated neuronal activities are potentially associated with the refinement of the heminode adjacent to the presynaptic terminal in the auditory brain stem. NEW & NOTEWORTHY Clustering of voltage-gated sodium (Nav) channels and their distribution along the axon, specifically at the unmyelinated axon segment next to the nerve terminal, are essential for tuning propagated action potentials. Nav channel clusters near the nerve terminal and their location as a function of neuronal position along the mediolateral axis are controlled by auditory inputs after hearing onset. Thus sound-mediated neuronal activity influences the tonotopic organization of Nav channels at the nerve terminal in the auditory brain stem.
Collapse
Affiliation(s)
- Jie Xu
- The Department of Physiology, University of Texas Health Science Center, San Antonio, Texas; and
| | - Emmanuelle Berret
- The Department of Physiology, University of Texas Health Science Center, San Antonio, Texas; and
| | - Jun Hee Kim
- The Department of Physiology, University of Texas Health Science Center, San Antonio, Texas; and .,Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, Texas
| |
Collapse
|