1
|
Borzuola R, Caricati V, Parrella M, Scalia M, Macaluso A. Frequency-dependent effects of superimposed NMES on spinal excitability in upper and lower limb muscles. Heliyon 2024; 10:e40145. [PMID: 39568857 PMCID: PMC11577215 DOI: 10.1016/j.heliyon.2024.e40145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/15/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
Superimposing neuromuscular electrical stimulation (NMES) on voluntary contractions has proven to be highly effective for improving muscle strength and performance. These improvements might involve specific adaptations occurring at cortical and spinal level. The effects of NMES on corticospinal activation seem to be frequency dependent and differ between upper and lower limb muscles. The aim of this study was to investigate acute responses in spinal excitability, as measured by H-reflex amplitude of flexor carpi radialis (FCR) and soleus (SOL) muscles, after NMES superimposed on voluntary contractions (NMES + ISO) at two different pulse frequencies (40 and 80 Hz). Conditions involved fifteen intermittent contractions at submaximal level. Before and after each condition, H-reflexes were elicited in FCR and SOL muscles. H-reflex amplitudes increased in FCR and SOL following both NMES + ISO at 40 and 80 Hz. The potentiation of the H-reflex was greater following the 40 Hz condition compared to 80 Hz, although no differences between muscles emerged. These findings indicated that superimposing NMES has an excitatory effect on spinal motoneurons in both upper and lower limb muscles with an overall greater response after low frequency NMES. Such facilitation could be associated to enhanced somatosensory stimuli conjunctly with higher supraspinal downward commands.
Collapse
Affiliation(s)
- Riccardo Borzuola
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Valerio Caricati
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Martina Parrella
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Martina Scalia
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Andrea Macaluso
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| |
Collapse
|
2
|
Moukarzel G, Lemay MA, Spence AJ. A MATLAB application for automated H-Reflex measurements and analyses. Biomed Signal Process Control 2021; 66. [PMID: 33815563 PMCID: PMC8011562 DOI: 10.1016/j.bspc.2021.102448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective: H-Reflex is a test that is carried out to measure the relative excitability of reflex pathways. Although reliable, conventional methods consist of performing many small steps, which requires a high level of attentiveness, and thus can carry an elevated risk of human error, despite proper training. Equipment that is available to perform those tests with different levels of automation are typically proprietary, inextensible by the user, and expensive. Here we present a novel MATLAB application that can accurately and reliably perform automated H-Reflex measurements, test the stimulating electrodes, and carry out typical subsequent analyses. Methods: This application is a Graphical User Interface that works with inexpensive equipment and offers many important features such as measuring electrode impedance in-situ, automating lengthy measurements like recruitment curves and frequency response trials, standardizing electric stimulation properties, automatic exporting of digital data and metadata, and immediately analyzing acquired data with single-click events. Results: Our new method was validated against conventional H-Reflex measurement methods with 2 anesthetized rats. The difference between acquired data using both methods was negligible (mean difference=0.0038; std=0.0121). Our app also detected electrode impedance with high accuracy (94%). Conclusion: The method presented here allows reliable and efficient automated H-reflex measurements and can accurately analyze the collected data. Significance: The features provided by our app can speed up data collection and reduce human error, and unlike conventional methods, allow the user to analyze data immediately after the record. This can result in higher research quality and give broader access to the technique.
Collapse
Affiliation(s)
- George Moukarzel
- Temple University, College of Engineering, Philadelphia, PA, USA
| | - Michel A Lemay
- Temple University, College of Engineering, Philadelphia, PA, USA
| | - Andrew J Spence
- Temple University, College of Engineering, Philadelphia, PA, USA
| |
Collapse
|
3
|
Asparagine Endopeptidase (δ Secretase), an Enzyme Implicated in Alzheimer's Disease Pathology, Is an Inhibitor of Axon Regeneration in Peripheral Nerves. eNeuro 2021; 8:ENEURO.0155-20.2020. [PMID: 33323399 PMCID: PMC7814480 DOI: 10.1523/eneuro.0155-20.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 01/11/2023] Open
Abstract
Asparagine endopeptidase (AEP) is a lysosomal protease implicated in the pathology of Alzheimer’s disease (AD). It is known to cleave the axonal microtubule associated protein, Tau, and amyloid precursor protein (APP), both of which might impede axon regeneration following peripheral nerve injury (PNI). Active AEP, AEP-cleaved fragments of Tau (Tau N368), and APP (APP N585) were found in injured peripheral nerves. In AEP null mice, elongation of regenerating axons after sciatic nerve transection and repair was increased relative to wild-type (WT) controls. Compound muscle action potentials (M responses) were restored in reinnervated muscles twice as fast after injury in AEP knock-out (KO) mice as WT controls. Neurite elongation in cultures of adult dorsal root ganglion (DRG) neurons derived from AEP KO mice was increased significantly relative to cultures from WT controls. In AEP KO mice exposed to 1 h of 20-Hz electrical stimulation (ES) at the time of nerve injury, no further enhancement of axon regeneration was observed. These findings support inhibition of AEP as a therapeutic target to enhance axon regeneration after PNI.
Collapse
|
4
|
Zuo KJ, Gordon T, Chan KM, Borschel GH. Electrical stimulation to enhance peripheral nerve regeneration: Update in molecular investigations and clinical translation. Exp Neurol 2020; 332:113397. [PMID: 32628968 DOI: 10.1016/j.expneurol.2020.113397] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/16/2020] [Accepted: 06/27/2020] [Indexed: 02/06/2023]
Abstract
Peripheral nerve injuries are common and frequently result in incomplete functional recovery even with optimal surgical treatment. Permanent motor and sensory deficits are associated with significant patient morbidity and socioeconomic burden. Despite substantial research efforts to enhance peripheral nerve regeneration, few effective and clinically feasible treatment options have been found. One promising strategy is the use of low frequency electrical stimulation delivered perioperatively to an injured nerve at the time of surgical repair. Possibly through its effect of increasing intraneuronal cyclic AMP, perioperative electrical stimulation accelerates axon outgrowth, remyelination of regenerating axons, and reinnervation of end organs, even with delayed surgical intervention. Building on decades of experimental evidence in animal models, several recent, prospective, randomized clinical trials have affirmed electrical stimulation as a clinically translatable technique to enhance functional recovery in patients with peripheral nerve injuries requiring surgical treatment. This paper provides an updated review of the cellular physiology of electrical stimulation and its effects on axon regeneration, Level I evidence from recent prospective randomized clinical trials of electrical stimulation, and ongoing and future directions of research into electrical stimulation as a clinically feasible adjunct to surgical intervention in the treatment of patients with peripheral nerve injuries.
Collapse
Affiliation(s)
- Kevin J Zuo
- Division of Plastic & Reconstructive Surgery, University of Toronto, Toronto, ON, Canada; Neurosciences and Mental Health, SickKids Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Tessa Gordon
- Division of Plastic & Reconstructive Surgery, University of Toronto, Toronto, ON, Canada; Neurosciences and Mental Health, SickKids Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - K Ming Chan
- Division of Physical Medicine and Rehabilitation, University of Alberta, Edmonton, AB, Canada
| | - Gregory H Borschel
- Division of Plastic & Reconstructive Surgery, University of Toronto, Toronto, ON, Canada; Neurosciences and Mental Health, SickKids Research Institute, Hospital for Sick Children, Toronto, ON, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
VanWye WR, Wallmann HW, Norris ES, Furgal KE. Differential diagnosis of knee pain following a surgically induced lumbosacral plexus stretch injury. A case report. Physiother Theory Pract 2018; 35:1355-1362. [PMID: 29877751 DOI: 10.1080/09593985.2018.1477891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Background and Purpose: Knee joint biomechanics requires an understanding of lower extremity (LE) segmental interactions. In some cases, knee pain may arise as a result of altered LE biomechanics; while in other cases, knee pain may stem from other causes, such as a peripheral nerve injury. Case Description: A 33-year-old woman presented via direct access for physical therapist (PT) examination with a chief complaint of left knee pain. The day after undergoing a dilation and curettage (D&C) procedure the patient had an acute onset of gait dysfunction. Over the next few days, the patient developed left anterior knee pain (7/10 at worst) in addition to a significant change in physical functioning (Lower Extremity Functional Scale [LEFS] 38/80). Physical examination revealed left LE weakness, altered sensation, and an absent Achilles deep tendon reflex. Outcomes: The patient's presentation was consistent with a lumbosacral plexus stretch injury, with S1 being most affected. A physiatrist was consulted and recommended initiating PT treatment with bi-weekly re-examination. The 6-week (14 visits) re-examination revealed abolished left knee pain and improved physical functioning (LEFS 66/80). Conclusion: Stretch injuries are a known complication of lithotomy positioning. Knowledge of this and the addition of a thorough examination allowed the PT to identify the possible cause of the patient's abrupt onset of left LE dysfunction. Regardless of mode of patient access, screening for referral is crucial and may include referral or, as in this case, consultation with other professionals.
Collapse
Affiliation(s)
- William R VanWye
- Department of Physical Therapy, Western Kentucky University, Bowling Green, KY, USA
| | - Harvey W Wallmann
- Department of Physical Therapy, Western Kentucky University, Bowling Green, KY, USA
| | - Elizabeth S Norris
- Department of Physical Therapy, Western Kentucky University, Bowling Green, KY, USA
| | - Karen E Furgal
- Department of Physical Therapy, Western Kentucky University, Bowling Green, KY, USA
| |
Collapse
|
6
|
Norton JJS, Wolpaw JR. Acquisition, Maintenance, and Therapeutic Use of a Simple Motor Skill. Curr Opin Behav Sci 2018; 20:138-144. [PMID: 30480059 PMCID: PMC6251313 DOI: 10.1016/j.cobeha.2017.12.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Operant conditioning of the spinal stretch reflex (SSR) or its electrical analog, the H-reflex, is a valuable experimental paradigm for studying the acquisition and maintenance of a simple motor skill. The CNS substrate of this skill consists of brain and spinal cord plasticity that operates as a hierarchy-the learning experience induces plasticity in the brain that guides and maintains plasticity in the spinal cord. This is apparent in the two components of the skill acquisition: task-dependent adaptation, reflecting brain plasticity; and long-term change, reflecting gradual development of spinal plasticity. The inferior olive, cerebellum, sensorimotor cortex, and corticospinal tract (CST) are essential components of this hierarchy. The neuronal and synaptic mechanisms of the spinal plasticity are under study. Because acquisition of this skill changes the spinal cord, it can affect other skills, such as locomotion. Thus, it enables investigation of how the highly plastic spinal cord supports the acquisition and maintenance of a broad repertoire of motor skills throughout life. These studies have resulted in the negotiated equilibrium model of spinal cord function, which reconciles the spinal cord's long-recognized reliability as the final common pathway for behaviors with its recently recognized ongoing plasticity. In accord with this model, appropriate H-reflex conditioning in a person with spasticity due to an incomplete spinal cord injury can trigger wider beneficial plasticity that markedly improves walking. H-reflex operant conditioning appears to provide a valuable new method for enhancing functional recovery in people with spinal cord injury and possibly other disorders as well.
Collapse
Affiliation(s)
- James J. S. Norton
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, P.O. Box 22002, Albany, NY 12201, USA
- Department of Neurology, Stratton VA Medical Center, 113 Holland Ave, Albany, NY 12208, USA
| | - Jonathan R. Wolpaw
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, P.O. Box 22002, Albany, NY 12201, USA
- Department of Neurology, Stratton VA Medical Center, 113 Holland Ave, Albany, NY 12208, USA
| |
Collapse
|
7
|
Electrical Stimulation of Low-Threshold Proprioceptive Fibers in the Adult Rat Increases Density of Glutamatergic and Cholinergic Terminals on Ankle Extensor α-Motoneurons. PLoS One 2016; 11:e0161614. [PMID: 27552219 PMCID: PMC4994941 DOI: 10.1371/journal.pone.0161614] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/09/2016] [Indexed: 12/18/2022] Open
Abstract
The effects of stimulation of low-threshold proprioceptive afferents in the tibial nerve on two types of excitatory inputs to α-motoneurons were tested. The first input is formed by glutamatergic Ia sensory afferents contacting monosynaptically α-motoneurons. The second one is the cholinergic input originating from V0c—interneurons, located in lamina X of the spinal cord, modulating activity of α-motoneurons via C-terminals. Our aim was to clarify whether enhancement of signaling to ankle extensor α-motoneurons, via direct electrical stimulation addressed predominantly to low-threshold proprioceptive fibers in the tibial nerve of awake rats, will affect Ia glutamatergic and cholinergic innervation of α-motoneurons of lateral gastrocnemius (LG). LG motoneurons were identified with True Blue tracer injected intramuscularly. Tibial nerve was stimulated for 7 days with continuous bursts of three pulses applied in four 20 min sessions daily. The Hoffmann reflex and motor responses recorded from the soleus muscle, LG synergist, allowed controlling stimulation. Ia terminals and C-terminals abutting on LG-labeled α-motoneurons were detected by immunofluorescence (IF) using input-specific anti- VGLUT1 and anti-VAChT antibodies, respectively. Quantitative analysis of confocal images revealed that the number of VGLUT1 IF and VAChT IF terminals contacting the soma of LG α-motoneurons increased after stimulation by 35% and by 26%, respectively, comparing to the sham-stimulated side. The aggregate volume of VGLUT1 IF and VAChT IF terminals increased by 35% and by 30%, respectively. Labeling intensity of boutons was also increased, suggesting an increase of signaling to LG α-motoneurons after stimulation. To conclude, one week of continuous burst stimulation of proprioceptive input to LG α-motoneurons is effective in enrichment of their direct glutamatergic but also indirect cholinergic inputs. The effectiveness of such and longer stimulation in models of injury is a prerequisite to propose it as a therapeutic method to improve inputs to selected group of α-motoneurons after damage.
Collapse
|
8
|
Pantall A, Hodson-Tole EF, Gregor RJ, Prilutsky BI. Increased intensity and reduced frequency of EMG signals from feline self-reinnervated ankle extensors during walking do not normalize excessive lengthening. J Neurophysiol 2016; 115:2406-20. [PMID: 26912591 PMCID: PMC4922462 DOI: 10.1152/jn.00565.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 02/22/2016] [Indexed: 11/22/2022] Open
Abstract
Kinematics of cat level walking recover after elimination of length-dependent sensory feedback from the major ankle extensor muscles induced by self-reinnervation. Little is known, however, about changes in locomotor myoelectric activity of self-reinnervated muscles. We examined the myoelectric activity of self-reinnervated muscles and intact synergists to determine the extent to which patterns of muscle activity change as almost normal walking is restored following muscle self-reinnervation. Nerves to soleus (SO) and lateral gastrocnemius (LG) of six adult cats were surgically transected and repaired. Intramuscular myoelectric signals of SO, LG, medial gastrocnemius (MG), and plantaris (PL), muscle fascicle length of SO and MG, and hindlimb mechanics were recorded during level and slope (±27°) walking before and after (10-12 wk postsurgery) self-reinnervation of LG and SO. Mean myoelectric signal intensity and frequency were determined using wavelet analysis. Following SO and LG self-reinnervation, mean myoelectric signal intensity increased and frequency decreased in most conditions for SO and LG as well as for intact synergist MG (P < 0.05). Greater elongation of SO muscle-tendon unit during downslope and unchanged magnitudes of ankle extensor moment during the stance phase in all walking conditions suggested a functional deficiency of ankle extensors after self-reinnervation. Possible effects of morphological reorganization of motor units of ankle extensors and altered sensory and central inputs on the changes in myoelectric activity of self-reinnervated SO and LG are discussed.
Collapse
Affiliation(s)
- Annette Pantall
- School of Applied Physiology, Center for Human Movement Studies, Georgia Institute of Technology, Atlanta, Georgia
| | - Emma F Hodson-Tole
- Cognitive Motor Function Research Group, School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom; and
| | - Robert J Gregor
- School of Applied Physiology, Center for Human Movement Studies, Georgia Institute of Technology, Atlanta, Georgia; Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California
| | - Boris I Prilutsky
- School of Applied Physiology, Center for Human Movement Studies, Georgia Institute of Technology, Atlanta, Georgia;
| |
Collapse
|
9
|
Chen XY, Wang Y, Chen Y, Chen L, Wolpaw JR. Ablation of the inferior olive prevents H-reflex down-conditioning in rats. J Neurophysiol 2016; 115:1630-6. [PMID: 26792888 DOI: 10.1152/jn.01069.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/16/2016] [Indexed: 01/01/2023] Open
Abstract
We evaluated the role of the inferior olive (IO) in acquisition of the spinal cord plasticity that underlies H-reflex down-conditioning, a simple motor skill. The IO was chemically ablated before a 50-day exposure to an operant conditioning protocol that rewarded a smaller soleus H-reflex. In normal rats, down-conditioning succeeds (i.e., H-reflex size decreases at least 20%) in 80% of animals. Down-conditioning failed in every IO-ablated rat (P< 0.001 vs. normal rats). IO ablation itself had no long-term effect on H-reflex size. These results indicate that the IO is essential for acquisition of a down-conditioned H-reflex. With previous data, they support the hypothesis that IO and cortical inputs to cerebellum enable the cerebellum to guide sensorimotor cortex plasticity that produces and maintains the spinal cord plasticity that underlies the down-conditioned H-reflex. They help to further define H-reflex conditioning as a model for understanding motor learning and as a new approach to enhancing functional recovery after trauma or disease.
Collapse
Affiliation(s)
- Xiang Yang Chen
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, New York; Department of Biomedical Sciences, State University of New York, Albany, New York;
| | - Yu Wang
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, New York
| | - Yi Chen
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, New York
| | - Lu Chen
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, New York
| | - Jonathan R Wolpaw
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, New York; Department of Biomedical Sciences, State University of New York, Albany, New York; Department of Neurology, Albany Stratton Department of Veterans Affairs Medical Center, Albany, New York; and Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York
| |
Collapse
|
10
|
Boulay CB, Chen XY, Wolpaw JR. Electrocorticographic activity over sensorimotor cortex and motor function in awake behaving rats. J Neurophysiol 2015; 113:2232-41. [PMID: 25632076 PMCID: PMC4416631 DOI: 10.1152/jn.00677.2014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/15/2015] [Indexed: 01/21/2023] Open
Abstract
Sensorimotor cortex exerts both short-term and long-term control over the spinal reflex pathways that serve motor behaviors. Better understanding of this control could offer new possibilities for restoring function after central nervous system trauma or disease. We examined the impact of ongoing sensorimotor cortex (SMC) activity on the largely monosynaptic pathway of the H-reflex, the electrical analog of the spinal stretch reflex. In 41 awake adult rats, we measured soleus electromyographic (EMG) activity, the soleus H-reflex, and electrocorticographic activity over the contralateral SMC while rats were producing steady-state soleus EMG activity. Principal component analysis of electrocorticographic frequency spectra before H-reflex elicitation consistently revealed three frequency bands: μβ (5-30 Hz), low γ (γ1; 40-85 Hz), and high γ (γ2; 100-200 Hz). Ongoing (i.e., background) soleus EMG amplitude correlated negatively with μβ power and positively with γ1 power. In contrast, H-reflex size correlated positively with μβ power and negatively with γ1 power, but only when background soleus EMG amplitude was included in the linear model. These results support the hypothesis that increased SMC activation (indicated by decrease in μβ power and/or increase in γ1 power) simultaneously potentiates the H-reflex by exciting spinal motoneurons and suppresses it by decreasing the efficacy of the afferent input. They may help guide the development of new rehabilitation methods and of brain-computer interfaces that use SMC activity as a substitute for lost or impaired motor outputs.
Collapse
Affiliation(s)
- Chadwick B Boulay
- Laboratory of Neural Injury and Repair, Wadsworth Center, New York State Department of Health, Albany, New York; and State University of New York, Albany, New York
| | - Xiang Yang Chen
- Laboratory of Neural Injury and Repair, Wadsworth Center, New York State Department of Health, Albany, New York; and State University of New York, Albany, New York
| | - Jonathan R Wolpaw
- Laboratory of Neural Injury and Repair, Wadsworth Center, New York State Department of Health, Albany, New York; and State University of New York, Albany, New York
| |
Collapse
|
11
|
Neuronal BDNF signaling is necessary for the effects of treadmill exercise on synaptic stripping of axotomized motoneurons. Neural Plast 2015; 2015:392591. [PMID: 25918648 PMCID: PMC4397030 DOI: 10.1155/2015/392591] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 03/09/2015] [Accepted: 03/16/2015] [Indexed: 11/18/2022] Open
Abstract
The withdrawal of synaptic inputs from the somata and proximal dendrites of spinal motoneurons following peripheral nerve injury could contribute to poor functional recovery. Decreased availability of neurotrophins to afferent terminals on axotomized motoneurons has been implicated as one cause of the withdrawal. No reduction in contacts made by synaptic inputs immunoreactive to the vesicular glutamate transporter 1 and glutamic acid decarboxylase 67 is noted on axotomized motoneurons if modest treadmill exercise, which stimulates the production of neurotrophins by spinal motoneurons, is applied after nerve injury. In conditional, neuron-specific brain-derived neurotrophic factor (BDNF) knockout mice, a reduction in synaptic contacts onto motoneurons was noted in intact animals which was similar in magnitude to that observed after nerve transection in wild-type controls. No further reduction in coverage was found if nerves were cut in knockout mice. Two weeks of moderate daily treadmill exercise following nerve injury in these BDNF knockout mice did not affect synaptic inputs onto motoneurons. Treadmill exercise has a profound effect on synaptic inputs to motoneurons after peripheral nerve injury which requires BDNF production by those postsynaptic cells.
Collapse
|
12
|
Abstract
An operant-conditioning protocol that bases reward on the electromyographic response produced by a specific CNS pathway can change that pathway. For example, in both animals and people, an operant-conditioning protocol can increase or decrease the spinal stretch reflex or its electrical analog, the H-reflex. Reflex change is associated with plasticity in the pathway of the reflex as well as elsewhere in the spinal cord and brain. Because these pathways serve many different behaviors, the plasticity produced by this conditioning can change other behaviors. Thus, in animals or people with partial spinal cord injuries, appropriate reflex conditioning can improve locomotion. Furthermore, in people with spinal cord injuries, appropriate reflex conditioning can trigger widespread beneficial plasticity. This wider plasticity appears to reflect an iterative process through which the multiple behaviors in the individual's repertoire negotiate the properties of the spinal neurons and synapses that they all use. Operant-conditioning protocols are a promising new therapeutic method that could complement other rehabilitation methods and enhance functional recovery. Their successful use requires strict adherence to appropriately designed procedures, as well as close attention to accommodating and engaging the individual subject in the conditioning process.
Collapse
|
13
|
Thompson AK, Wolpaw JR. The simplest motor skill: mechanisms and applications of reflex operant conditioning. Exerc Sport Sci Rev 2014; 42:82-90. [PMID: 24508738 DOI: 10.1249/jes.0000000000000010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Operant conditioning protocols can change spinal reflexes gradually, which are the simplest behaviors. This article summarizes the evidence supporting two propositions: that these protocols provide excellent models for defining the substrates of learning and that they can induce and guide plasticity to help restore skills, such as locomotion, that have been impaired by spinal cord injury or other disorders.
Collapse
Affiliation(s)
- Aiko K Thompson
- 1Helen Hayes Hospital, NYS Department of Health, West Haverstraw; 2Wadsworth Center, NYS Department of Health, Albany; 3Department of Neurology, Neurological Institute, Columbia University, New York; and 4Department of Biomedical Sciences, State University of New York, Albany, NY
| | | |
Collapse
|
14
|
Chen Y, Chen L, Wang Y, Wolpaw JR, Chen XY. Persistent beneficial impact of H-reflex conditioning in spinal cord-injured rats. J Neurophysiol 2014; 112:2374-81. [PMID: 25143542 DOI: 10.1152/jn.00422.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Operant conditioning of a spinal cord reflex can improve locomotion in rats and humans with incomplete spinal cord injury. This study examined the persistence of its beneficial effects. In rats in which a right lateral column contusion injury had produced asymmetric locomotion, up-conditioning of the right soleus H-reflex eliminated the asymmetry while down-conditioning had no effect. After the 50-day conditioning period ended, the H-reflex was monitored for 100 [±9 (SD)] (range 79-108) more days and locomotion was then reevaluated. After conditioning ended in up-conditioned rats, the H-reflex continued to increase, and locomotion continued to improve. In down-conditioned rats, the H-reflex decrease gradually disappeared after conditioning ended, and locomotion at the end of data collection remained as impaired as it had been before and immediately after down-conditioning. The persistence (and further progression) of H-reflex increase but not H-reflex decrease in these spinal cord-injured rats is consistent with the fact that up-conditioning improved their locomotion while down-conditioning did not. That is, even after up-conditioning ended, the up-conditioned H-reflex pathway remained adaptive because it improved locomotion. The persistence and further enhancement of the locomotor improvement indicates that spinal reflex conditioning protocols might supplement current therapies and enhance neurorehabilitation. They may be especially useful when significant spinal cord regeneration becomes possible and precise methods for retraining the regenerated spinal cord are needed.
Collapse
Affiliation(s)
- Yi Chen
- Wadsworth Center, New York State Department of Health, Albany, New York
| | - Lu Chen
- Wadsworth Center, New York State Department of Health, Albany, New York
| | - Yu Wang
- Wadsworth Center, New York State Department of Health, Albany, New York
| | - Jonathan R Wolpaw
- Wadsworth Center, New York State Department of Health, Albany, New York; Department of Biomedical Sciences, State University of New York, Albany, New York; and Department of Neurology, Neurological Institute, Columbia University, New York, New York
| | - Xiang Yang Chen
- Wadsworth Center, New York State Department of Health, Albany, New York; Department of Biomedical Sciences, State University of New York, Albany, New York; and
| |
Collapse
|
15
|
Thompson AK, Wolpaw JR. Operant conditioning of spinal reflexes: from basic science to clinical therapy. Front Integr Neurosci 2014; 8:25. [PMID: 24672441 PMCID: PMC3957063 DOI: 10.3389/fnint.2014.00025] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/20/2014] [Indexed: 12/26/2022] Open
Abstract
New appreciation of the adaptive capabilities of the nervous system, recent recognition that most spinal cord injuries are incomplete, and progress in enabling regeneration are generating growing interest in novel rehabilitation therapies. Here we review the 35-year evolution of one promising new approach, operant conditioning of spinal reflexes. This work began in the late 1970’s as basic science; its purpose was to develop and exploit a uniquely accessible model for studying the acquisition and maintenance of a simple behavior in the mammalian central nervous system (CNS). The model was developed first in monkeys and then in rats, mice, and humans. Studies with it showed that the ostensibly simple behavior (i.e., a larger or smaller reflex) rests on a complex hierarchy of brain and spinal cord plasticity; and current investigations are delineating this plasticity and its interactions with the plasticity that supports other behaviors. In the last decade, the possible therapeutic uses of reflex conditioning have come under study, first in rats and then in humans. The initial results are very exciting, and they are spurring further studies. At the same time, the original basic science purpose and the new clinical purpose are enabling and illuminating each other in unexpected ways. The long course and current state of this work illustrate the practical importance of basic research and the valuable synergy that can develop between basic science questions and clinical needs.
Collapse
Affiliation(s)
- Aiko K Thompson
- Helen Hayes Hospital, New York State Department of Health West Haverstraw, NY, USA ; Wadsworth Center, New York State Department of Health Albany, NY, USA ; Department of Neurology, Neurological Institute, Columbia University New York, NY, USA ; Department of Biomedical Sciences, University at Albany, State University of New York Albany, NY, USA
| | - Jonathan R Wolpaw
- Helen Hayes Hospital, New York State Department of Health West Haverstraw, NY, USA ; Wadsworth Center, New York State Department of Health Albany, NY, USA ; Department of Neurology, Neurological Institute, Columbia University New York, NY, USA ; Department of Biomedical Sciences, University at Albany, State University of New York Albany, NY, USA
| |
Collapse
|
16
|
Thompson AK, Wolpaw JR. Restoring walking after spinal cord injury: operant conditioning of spinal reflexes can help. Neuroscientist 2014; 21:203-15. [PMID: 24636954 DOI: 10.1177/1073858414527541] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
People with incomplete spinal cord injury (SCI) frequently suffer motor disabilities due to spasticity and poor muscle control, even after conventional therapy. Abnormal spinal reflex activity often contributes to these problems. Operant conditioning of spinal reflexes, which can target plasticity to specific reflex pathways, can enhance recovery. In rats in which a right lateral column lesion had weakened right stance and produced an asymmetrical gait, up-conditioning of the right soleus H-reflex, which increased muscle spindle afferent excitation of soleus, strengthened right stance and eliminated the asymmetry. In people with hyperreflexia due to incomplete SCI, down-conditioning of the soleus H-reflex improved walking speed and symmetry. Furthermore, modulation of electromyographic activity during walking improved bilaterally, indicating that a protocol that targets plasticity to a specific pathway can trigger widespread plasticity that improves recovery far beyond that attributable to the change in the targeted pathway. These improvements were apparent to people in their daily lives. They reported walking faster and farther, and noted less spasticity and better balance. Operant conditioning protocols could be developed to modify other spinal reflexes or corticospinal connections; and could be combined with other therapies to enhance recovery in people with SCI or other neuromuscular disorders.
Collapse
Affiliation(s)
- Aiko K Thompson
- Helen Hayes Hospital, New York State Department of Health, West Haverstraw, NY, USA Wadsworth Center, New York State Department of Health, Albany, NY, USA Department of Neurology, Neurological Institute, Columbia University, New York, NY, USA Department of Biomedical Sciences, State University of New York, Albany, NY, USA
| | - Jonathan R Wolpaw
- Helen Hayes Hospital, New York State Department of Health, West Haverstraw, NY, USA Wadsworth Center, New York State Department of Health, Albany, NY, USA Department of Neurology, Neurological Institute, Columbia University, New York, NY, USA Department of Biomedical Sciences, State University of New York, Albany, NY, USA
| |
Collapse
|
17
|
Chen Y, Chen L, Liu R, Wang Y, Chen XY, Wolpaw JR. Locomotor impact of beneficial or nonbeneficial H-reflex conditioning after spinal cord injury. J Neurophysiol 2013; 111:1249-58. [PMID: 24371288 DOI: 10.1152/jn.00756.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
When new motor learning changes neurons and synapses in the spinal cord, it may affect previously learned behaviors that depend on the same spinal neurons and synapses. To explore these effects, we used operant conditioning to strengthen or weaken the right soleus H-reflex pathway in rats in which a right spinal cord contusion had impaired locomotion. When up-conditioning increased the H-reflex, locomotion improved. Steps became longer, and step-cycle asymmetry (i.e., limping) disappeared. In contrast, when down-conditioning decreased the H-reflex, locomotion did not worsen. Steps did not become shorter, and asymmetry did not increase. Electromyographic and kinematic analyses explained how H-reflex increase improved locomotion and why H-reflex decrease did not further impair it. Although the impact of up-conditioning or down-conditioning on the H-reflex pathway was still present during locomotion, only up-conditioning affected the soleus locomotor burst. Additionally, compensatory plasticity apparently prevented the weaker H-reflex pathway caused by down-conditioning from weakening the locomotor burst and further impairing locomotion. The results support the hypothesis that the state of the spinal cord is a "negotiated equilibrium" that serves all the behaviors that depend on it. When new learning changes the spinal cord, old behaviors undergo concurrent relearning that preserves or improves their key features. Thus, if an old behavior has been impaired by trauma or disease, spinal reflex conditioning, by changing a specific pathway and triggering a new negotiation, may enable recovery beyond that achieved simply by practicing the old behavior. Spinal reflex conditioning protocols might complement other neurorehabilitation methods and enhance recovery.
Collapse
Affiliation(s)
- Yi Chen
- Wadsworth Center, New York State Department of Health, Albany, New York
| | | | | | | | | | | |
Collapse
|
18
|
Lamy JC, Boakye M. BDNF Val66Met polymorphism alters spinal DC stimulation-induced plasticity in humans. J Neurophysiol 2013; 110:109-16. [DOI: 10.1152/jn.00116.2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The brain-derived neurotrophic factor gene (BDNF) is one of many genes thought to influence neuronal survival, synaptic plasticity, and neurogenesis. A common single nucleotide polymorphism (SNP) of the BDNF gene due to valine-to-methionine substitution at codon 66 (BDNF Val66Met) in the normal population has been associated with complex neuronal phenotype, including differences in brain morphology, episodic memory, or cortical plasticity following brain stimulation and is believed to influence synaptic changes following motor learning task. However, the effect of this polymorphism on spinal plasticity remains largely unknown. Here, we used anodal transcutaneous spinal direct current stimulation (tsDCS), a novel noninvasive technique that induces plasticity of spinal neuronal circuits in healthy subjects. To investigate whether the susceptibility of tsDCS probes of spinal plasticity is significantly influenced by BDNF polymorphism, we collected stimulus-response curves of the soleus (Sol) H reflex before, during, at current offset, and 15 min after anodal tsDCS delivered at Th11 (2.5 mA, 15 min, 0.071 mA/cm2, and 64 mC/cm2) in 17 healthy, Met allele carriers and 17 Val homozygotes who were matched for age and sex. Anodal tsDCS induced a progressive leftward shift of recruitment curve of the H reflex during the stimulation that persisted for at least 15 min after current offset in Val/Val individuals. In contrast, this shift was not observed in Met allele carriers. Our findings demonstrate for the first time that the BDNF Val66Met genotype impacts spinal plasticity in humans, as assessed by tsDCS, and may be one factor influencing the natural response of the spinal cord to injury or disease.
Collapse
Affiliation(s)
- Jean-Charles Lamy
- Centre de la Sensorimotricité, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8194, Université Paris Descartes, Sorbonne Paris Cité, Unité de Formation et de Recherche Biomédicale, Paris, France
- Spinal Cord and Brain Injury Research Laboratory, Center for Advanced Neurosurgery, Department of Neurosurgery, University of Louisville, Louisville, Kentucky; and
| | - Maxwell Boakye
- Spinal Cord and Brain Injury Research Laboratory, Center for Advanced Neurosurgery, Department of Neurosurgery, University of Louisville, Louisville, Kentucky; and
- Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky
| |
Collapse
|
19
|
Operant conditioning of a spinal reflex can improve locomotion after spinal cord injury in humans. J Neurosci 2013; 33:2365-75. [PMID: 23392666 DOI: 10.1523/jneurosci.3968-12.2013] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Operant conditioning protocols can modify the activity of specific spinal cord pathways and can thereby affect behaviors that use these pathways. To explore the therapeutic application of these protocols, we studied the impact of down-conditioning the soleus H-reflex in people with impaired locomotion caused by chronic incomplete spinal cord injury. After a baseline period in which soleus H-reflex size was measured and locomotion was assessed, subjects completed either 30 H-reflex down-conditioning sessions (DC subjects) or 30 sessions in which the H-reflex was simply measured [unconditioned (UC) subjects], and locomotion was reassessed. Over the 30 sessions, the soleus H-reflex decreased in two-thirds of the DC subjects (a success rate similar to that in normal subjects) and remained smaller several months later. In these subjects, locomotion became faster and more symmetrical, and the modulation of EMG activity across the step cycle increased bilaterally. Furthermore, beginning about halfway through the conditioning sessions, all of these subjects commented spontaneously that they were walking faster and farther in their daily lives, and several noted less clonus, easier stepping, and/or other improvements. The H-reflex did not decrease in the other DC subjects or in any of the UC subjects; and their locomotion did not improve. These results suggest that reflex-conditioning protocols can enhance recovery of function after incomplete spinal cord injuries and possibly in other disorders as well. Because they are able to target specific spinal pathways, these protocols could be designed to address each individual's particular deficits, and might thereby complement other rehabilitation methods.
Collapse
|
20
|
Ahmed Z, Wieraszko A. Trans-spinal direct current enhances corticospinal output and stimulation-evoked release of glutamate analog, D-2,3-³H-aspartic acid. J Appl Physiol (1985) 2012; 112:1576-92. [PMID: 22362399 DOI: 10.1152/japplphysiol.00967.2011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Trans-spinal direct current (tsDC) stimulation is a modulator of spinal excitability and can influence cortically elicited muscle contraction in a polarity-dependent fashion. When combined with low-frequency repetitive cortical stimulation, cathodal tsDC [tsDC(-)] produces a long-term facilitation of cortically elicited muscle actions. We investigated the ability of this combined stimulation paradigm to facilitate cortically elicited muscle actions in spinal cord-injured and noninjured animals. The effect of tsDC-applied alone or in combination with repetitive spinal stimulation (rSS) on the release of the glutamate analog, D-2,3-(3)H-aspartate (D-Asp), from spinal cord preparations in vitro-was also tested. In noninjured animals, tsDC (-2 mA) reproducibly potentiated cortically elicited contractions of contralateral and ipsilateral muscles tested at various levels of baseline muscle contraction forces. Cortically elicited muscle responses in animals with contusive and hemisectioned spinal cord injuries (SCIs) were similarly potentiated. The combined paradigm of stimulation caused long-lasting potentiation of cortically elicited bilateral muscle contraction in injured and noninjured animals. Additional analysis suggests that at higher baseline forces, tsDC(-) application does not increase the rising slope of the muscle contraction but causes repeated firing of the same motor units. Both cathodal and anodal stimulations induced a significant increase of D-Asp release in vitro. The effect of the combined paradigm of stimulation (tsDC and rSS) on the concentration of extracellular D-Asp was polarity dependent. These results indicate that tsDC can powerfully modulate the responsiveness of spinal cord neurons. The results obtained from the in vitro preparation suggest that the changes in neuronal excitability were correlated with an increased concentration of extracellular glutamate. The combined paradigm of stimulation, used in our experiments, could be noninvasively applied to restore motor control in humans with SCI.
Collapse
Affiliation(s)
- Zaghloul Ahmed
- Dept. of Physical Therapy, College of Staten Island, 2800 Victory Blvd., Rm. 202, Staten Island, NY 10314, USA.
| | | |
Collapse
|
21
|
Martin JH. Systems neurobiology of restorative neurology and future directions for repair of the damaged motor systems. Clin Neurol Neurosurg 2012; 114:515-23. [PMID: 22316612 DOI: 10.1016/j.clineuro.2012.01.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 01/09/2012] [Indexed: 12/15/2022]
Abstract
Restoring movement control after central nervous system injury requires reconnecting the brain and spinal motoneurons, and doing so with sufficient precision and strength to enable robust voluntary muscle recruitment. Whereas the connection between the upper motoneuron in motor cortex and alpha-motoneurons was thought to be the only important connection for normal motor function in humans, we know that a multiplicity of motor circuits are recruited during normal motor control. Multiplicity of functionally important motor circuits points to the myriad possibilities of intervention that restorative neurology can turn to for repairing motor systems connections to recover movement control after injury. New motor systems repair strategies in animal models and humans are tapping into distributed motor control functions of the spinal cord; neural activity-based approaches, especially for corticospinal tract repair; and circuit-selective activation approaches. I focus on studies harnessing activity-based therapeutic approaches to promote sprouting of spared corticospinal tract axons after injury and redirecting potentially maladaptive plasticity. I discuss that we can see on the near horizon, many different strategies for repairing motor systems connections after injury.
Collapse
Affiliation(s)
- John H Martin
- Department of Physiology, Pharmacology, and Neuroscience, City College of the City University of New York, NY 10031, USA.
| |
Collapse
|
22
|
Sun C, Wang Y, Chen XY. WITHDRAWN: H-reflex up-conditioning after sciatic nerve transection and regeneration may increase VGLUT-1 terminals and GluR2/3 immunoreactivity in spinal motoneurons. Neurosci Lett 2011:S0304-3940(11)01597-7. [PMID: 22198372 DOI: 10.1016/j.neulet.2011.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 12/08/2011] [Accepted: 12/08/2011] [Indexed: 11/23/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Chenyou Sun
- Wadsworth Center, Laboratory of Neural Injury and Repair, New York State Department Health and State University of New York at Albany, Albany, NY 12201-0509, United States; Department of Anatomy, Wenzhou Medical College, Zhejiang Province 325035, China
| | | | | |
Collapse
|
23
|
English AW, Wilhelm JC, Sabatier MJ. Enhancing recovery from peripheral nerve injury using treadmill training. Ann Anat 2011; 193:354-61. [PMID: 21498059 PMCID: PMC3137663 DOI: 10.1016/j.aanat.2011.02.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 02/03/2011] [Accepted: 02/22/2011] [Indexed: 12/25/2022]
Abstract
Full functional recovery after traumatic peripheral nerve injury is rare. We postulate three reasons for the poor functional outcome measures observed. Axon regeneration is slow and not all axons participate. Significant misdirection of regenerating axons to reinnervate inappropriate targets occurs. Seemingly permanent changes in neural circuitry in the central nervous system are found to accompany axotomy of peripheral axons. Exercise in the form of modest daily treadmill training impacts all three of these areas. Compared to untrained controls, regenerating axons elongate considerably farther in treadmill trained animals and do so via an autocrine/paracrine neurotrophin signaling pathway. This enhancement of axon regeneration takes place without an increase in the amount of misdirection of regenerating axons found without training. The enhancement also occurs in a sex-dependent manner. Slow continuous training is effective only in males, while more intense interval training is effective only in females. In treadmill trained, but not untrained mice the extent of coverage of axotomized motoneurons is maintained, thus preserving important elements of the spinal circuitry.
Collapse
Affiliation(s)
- Arthur W English
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|