1
|
Yu LQ, Ma H, Cao LY, Zhou YL. Noninvasive Evaluation of Acupuncture-Induced Cortical Plasticity in Advanced Rehabilitation of Facial Paralysis. J Craniofac Surg 2024; 35:2015-2020. [PMID: 39178417 DOI: 10.1097/scs.0000000000010544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/13/2024] [Indexed: 08/25/2024] Open
Abstract
OBJECTIVE Facial paralysis (FP), which resulted from head and neck cancer resection, significantly impacts patients' quality of life. Traditional assessments rely on subjective evaluations and electromyography, whereas functional magnetic resonance imaging offers a noninvasive alternative for enhanced rehabilitation. Acupuncture has shown promise in promoting cerebral cortex reorganization, yet the precise relationship between acupuncture-induced structural and functional changes remains unclear, necessitating further investigation into therapeutic mechanisms. METHODS Fifty-five patients afflicted with FP underwent evaluations using voxel-mirrored homotopic connectivity (VMHC) and tract-based spatial statistics and were divided into the acupuncture intervention group (n = 35) and pseudo intervention group (n = 20). Comparative analyses of metrics pre and postintervention were conducted to delineate therapy-induced modifications in acupuncture intervention. The postacupuncture effect between groups to verify the necessity of accurate positioning for the rehabilitation of FP. RESULTS Patients with FP showed deficits in VMHC in regions of the postcentral, precentral, and parietal areas. Corpus callosum and internal capsule showed significantly increased fractional anisotropy of the white matter skeleton in tract-based spatial statistics after treatment. Comparison postintervention results between groups exhibited deficits in VMHC and increased fractional anisotropy in regions of the corpus callosum in the acupuncture intervention group. CONCLUSIONS Early acupuncture intervention may suppress cortical hyperactivation and restore interhemispheric inhibition across the corpus callosum to inhibit maladaptive structural plasticity. Precise acupoint localization is crucial for effective therapy, highlighting the potential of postacupuncture cortical space data for refining therapeutic strategies.
Collapse
Affiliation(s)
- Li-Qing Yu
- Department of Acupuncture, Shanghai Changning Tianshan Traditional Chinese Medicine Hospital
| | - Hao Ma
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lian-Ying Cao
- Department of Acupuncture, Shanghai Changning Tianshan Traditional Chinese Medicine Hospital
| | - Yu-Lu Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Lo YL, Hwang R, Teng PPC, Tan YE. Corpus Callosum-Mediated Interhemispheric Interactions in Cervical Spondylotic Myelopathy. J Clin Neurophysiol 2024; 41:473-477. [PMID: 38922289 DOI: 10.1097/wnp.0000000000000979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
PURPOSE The corpus callosum is crucial for interhemispheric interactions in the motor control of limb functions. Human and animal studies suggested spinal cord pathologies may induce cortical reorganization in sensorimotor areas. We investigate participation of the corpus callosum in executions of a simple motor task in patients with cervical spondylotic myelopathy (CSM) using transcranial magnetic stimulation. METHODS Twenty patients with CSM with various MRI grades of severity of cord compression were compared with 19 normal controls. Ipsilateral silent period, contralateral silent period, central motor conduction time, and transcallosal conduction time (TCT) were determined. RESULTS In both upper and lower limbs, TCTs were significantly increased for patients with CSM than normal controls ( p < 0.001 for all), without side-to-side differences. Ipsilateral silent period and contralateral silent period durations were significantly increased bilaterally for upper limbs in comparison to controls ( p < 0.01 for all), without side-to-side differences. There were no significant correlations of TCT with central motor conduction time nor severity of CSM for both upper and lower limbs ( p > 0.05 for all) bilaterally. CONCLUSIONS Previous transcranial magnetic stimulation studies show increased motor cortex excitability in CSM; hence, increased TCTs observed bilaterally may be a compensatory mechanism for effective unidirectional and uniplanar execution of muscle activation in the distal limb muscles. Lack of correlation of TCTs with severity of CSM or central motor conduction time may be in keeping with a preexistent role of the corpus callosum as a predominantly inhibitory pathway for counteracting redundant movements resulting from increased motor cortex excitability occurring after spinal cord lesions.
Collapse
Affiliation(s)
- Yew Long Lo
- National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore; and
- Singapore General Hospital, Singapore, Singapore
| | - Ruby Hwang
- Singapore General Hospital, Singapore, Singapore
| | | | - Yam Eng Tan
- Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
3
|
Tucciarelli R, Ejaz N, Wesselink DB, Kolli V, Hodgetts CJ, Diedrichsen J, Makin TR. Does Ipsilateral Remapping Following Hand Loss Impact Motor Control of the Intact Hand? J Neurosci 2024; 44:e0948232023. [PMID: 38050100 PMCID: PMC10860625 DOI: 10.1523/jneurosci.0948-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/31/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023] Open
Abstract
What happens once a cortical territory becomes functionally redundant? We studied changes in brain function and behavior for the remaining hand in humans (male and female) with either a missing hand from birth (one-handers) or due to amputation. Previous studies reported that amputees, but not one-handers, show increased ipsilateral activity in the somatosensory territory of the missing hand (i.e., remapping). We used a complex finger task to explore whether this observed remapping in amputees involves recruiting more neural resources to support the intact hand to meet greater motor control demands. Using basic fMRI analysis, we found that only amputees had more ipsilateral activity when motor demand increased; however, this did not match any noticeable improvement in their behavioral task performance. More advanced multivariate fMRI analyses showed that amputees had stronger and more typical representation-relative to controls' contralateral hand representation-compared with one-handers. This suggests that in amputees, both hand areas work together more collaboratively, potentially reflecting the intact hand's efference copy. One-handers struggled to learn difficult finger configurations, but this did not translate to differences in univariate or multivariate activity relative to controls. Additional white matter analysis provided conclusive evidence that the structural connectivity between the two hand areas did not vary across groups. Together, our results suggest that enhanced activity in the missing hand territory may not reflect intact hand function. Instead, we suggest that plasticity is more restricted than generally assumed and may depend on the availability of homologous pathways acquired early in life.
Collapse
Affiliation(s)
- Raffaele Tucciarelli
- MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom
| | - Naveed Ejaz
- Departments of Statistical and Actuarial Sciences and Computer Science, Western University, London, Ontario N6A 5B7, Canada
| | - Daan B Wesselink
- WIN Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, United Kingdom
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Vijay Kolli
- Queen Mary's Hospital, London SW15 5PN, United Kingdom
| | - Carl J Hodgetts
- CUBRIC, School of Psychology, Cardiff University, Cardiff CF24 4HQ, United Kingdom
- Royal Holloway, University of London, Egham TW20 0EX, United Kingdom
| | - Jörn Diedrichsen
- Departments of Statistical and Actuarial Sciences and Computer Science, Western University, London, Ontario N6A 5B7, Canada
- Brain and Mind Institute, Western University, London, Ontario N6A 3K7, Canada
| | - Tamar R Makin
- MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom
- WIN Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
4
|
Rubin N, Hinson R, Saul K, Filer W, Hu X, Huang H(H. Modified motor unit properties in residual muscle following transtibial amputation. J Neural Eng 2024; 21:10.1088/1741-2552/ad1ac2. [PMID: 38176027 PMCID: PMC11214693 DOI: 10.1088/1741-2552/ad1ac2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/04/2024] [Indexed: 01/06/2024]
Abstract
Objective.Neural signals in residual muscles of amputated limbs are frequently decoded to control powered prostheses. Yet myoelectric controllers assume muscle activities of residual muscles are similar to that of intact muscles. This study sought to understand potential changes to motor unit (MU) properties after limb amputation.Approach.Six people with unilateral transtibial amputation were recruited. Surface electromyogram (EMG) of residual and intacttibialis anterior(TA) andgastrocnemius(GA) muscles were recorded while subjects traced profiles targeting up to 20% and 35% of maximum activation for each muscle (isometric for intact limbs). EMG was decomposed into groups of MU spike trains. MU recruitment thresholds, action potential amplitudes (MU size), and firing rates were correlated to model Henneman's size principle, the onion-skin phenomenon, and rate-size associations. Organization (correlation) and modulation (rates of change) of relations were compared between intact and residual muscles.Main results.The residual TA exhibited significantly lower correlation and flatter slopes in the size principle and onion-skin, and each outcome covaried between the MU relations. The residual GA was unaffected for most subjects. Subjects trained prior with myoelectric prostheses had minimally affected slopes in the TA. Rate-size association correlations were preserved, but both residual muscles exhibited flatter decay rates.Significance.We showed peripheral neuromuscular damage also leads to spinal-level functional reorganizations. Our findings suggest models of MU recruitment and discharge patterns for residual muscle EMG generation need reparameterization to account for disturbances observed. In the future, tracking MU pool adaptations may also provide a biomarker of neuromuscular control to aid training with myoelectric prostheses.
Collapse
Affiliation(s)
- Noah Rubin
- UNC/NC State Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Robert Hinson
- UNC/NC State Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695, United States of America
- UNC/NC State Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Katherine Saul
- Department of Mechanical & Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, United States of America
| | - William Filer
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Xiaogang Hu
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
| | - He (Helen) Huang
- UNC/NC State Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| |
Collapse
|
5
|
Sparling T, Iyer L, Pasquina P, Petrus E. Cortical Reorganization after Limb Loss: Bridging the Gap between Basic Science and Clinical Recovery. J Neurosci 2024; 44:e1051232024. [PMID: 38171645 PMCID: PMC10851691 DOI: 10.1523/jneurosci.1051-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/28/2023] [Accepted: 09/29/2023] [Indexed: 01/05/2024] Open
Abstract
Despite the increasing incidence and prevalence of amputation across the globe, individuals with acquired limb loss continue to struggle with functional recovery and chronic pain. A more complete understanding of the motor and sensory remodeling of the peripheral and central nervous system that occurs postamputation may help advance clinical interventions to improve the quality of life for individuals with acquired limb loss. The purpose of this article is to first provide background clinical context on individuals with acquired limb loss and then to provide a comprehensive review of the known motor and sensory neural adaptations from both animal models and human clinical trials. Finally, the article bridges the gap between basic science researchers and clinicians that treat individuals with limb loss by explaining how current clinical treatments may restore function and modulate phantom limb pain using the underlying neural adaptations described above. This review should encourage the further development of novel treatments with known neurological targets to improve the recovery of individuals postamputation.Significance Statement In the United States, 1.6 million people live with limb loss; this number is expected to more than double by 2050. Improved surgical procedures enhance recovery, and new prosthetics and neural interfaces can replace missing limbs with those that communicate bidirectionally with the brain. These advances have been fairly successful, but still most patients experience persistent problems like phantom limb pain, and others discontinue prostheses instead of learning to use them daily. These problematic patient outcomes may be due in part to the lack of consensus among basic and clinical researchers regarding the plasticity mechanisms that occur in the brain after amputation injuries. Here we review results from clinical and animal model studies to bridge this clinical-basic science gap.
Collapse
Affiliation(s)
- Tawnee Sparling
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Laxmi Iyer
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland 20817
| | - Paul Pasquina
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Emily Petrus
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland 20814
| |
Collapse
|
6
|
Umansky D, Elzinga K, Midha R. Surgery for mononeuropathies. HANDBOOK OF CLINICAL NEUROLOGY 2024; 201:227-249. [PMID: 38697743 DOI: 10.1016/b978-0-323-90108-6.00012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Advancement in microsurgical techniques and innovative approaches including greater use of nerve and tendon transfers have resulted in better peripheral nerve injury (PNI) surgical outcomes. Clinical evaluation of the patient and their injury factors along with a shift toward earlier time frame for intervention remain key. A better understanding of the pathophysiology and biology involved in PNI and specifically mononeuropathies along with advances in ultrasound and magnetic resonance imaging allow us, nowadays, to provide our patients with a logical and sophisticated approach. While functional outcomes are constantly being refined through different surgical techniques, basic scientific concepts are being advanced and translated to clinical practice on a continuous basis. Finally, a combination of nerve transfers and technological advances in nerve/brain and machine interfaces are expanding the scope of nerve surgery to help patients with amputations, spinal cord, and brain lesions.
Collapse
Affiliation(s)
- Daniel Umansky
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, United States
| | - Kate Elzinga
- Division of Plastic Surgery, Department of Surgery, University of Calgary, Calgary, AB, Canada
| | - Rajiv Midha
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
7
|
Hunter SW, Motala A, Cronin AE, Bartha R, Viana R, Payne MW. Cortical activation during imagined walking for people with lower limb loss: a pilot study. Front Hum Neurosci 2023; 17:1163526. [PMID: 37476004 PMCID: PMC10354232 DOI: 10.3389/fnhum.2023.1163526] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/22/2023] [Indexed: 07/22/2023] Open
Abstract
Each year in Canada, a substantial number of adults undergo limb amputation, with lower limb amputation (LLA) the most prevalent. Enhancing walking ability is crucial for optimizing rehabilitation outcomes, promoting participation, and facilitating community reintegration. Overcoming challenges during the acute post-amputation phase and sub-acute rehabilitation necessitates alternative approaches, such as motor imagery and mental practice, to maximize rehabilitation success. However, the current evidence on activation patterns using motor imagery in individuals with LLA is limited. The primary objective was to assess the feasibility of observing brain activation during imagined walking in individuals with LLA utilizing 3T functional magnetic resonance imaging (fMRI). Eight individuals with LLA and 11 control subjects participated. Consistent with representations of the lower limbs, both control and amputee groups demonstrated bilateral activation in the medial surface of the primary motor and somatosensory cortices. However, individuals with lower limb amputations exhibited significantly greater activation during imagined walking, particularly in frontal regions and the medial surface of the primary motor and supplementary motor cortices. Furthermore, the volume of activation in the bilateral primary motor cortices was higher for participants with amputations compared to controls. The protocol developed in this study establishes a foundation for evaluating the effects of a gait training program that incorporates mental imagery alongside conventional rehabilitation practices, in contrast to standard care alone. This pilot investigation holds potential to enhance our understanding of brain plasticity in individuals with LLA and pave the way for more effective rehabilitation strategies to optimize functional recovery and community reintegration.
Collapse
Affiliation(s)
- Susan W. Hunter
- School of Physical Therapy, The University of Western Ontario, London, ON, Canada
| | - Aysha Motala
- School of Psychology, The University of Stirling, Stirling, Scotland
| | - Alicia E. Cronin
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, ON, Canada
| | - Robert Bartha
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, ON, Canada
| | - Ricardo Viana
- Department of Physical Medicine and Rehabilitation, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Michael W. Payne
- Department of Physical Medicine and Rehabilitation, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
8
|
Zhao Y, Xie GH, Yang RQ, Qin HY, Yang YP, Wu XY, Hou WS. Beta Changes Induced by Acute Hand Loss Model during NMES . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082588 DOI: 10.1109/embc40787.2023.10341119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Neuromuscular electrical stimulation (NMES) has been demonstrated to effectively modulate cortical activities by evoking muscle contraction in upper limb and generating joint movements, which showed an excellent performance in motor rehabilitation. However, due to hand loss and cortical function reorganization induced by hand amputation, how neural activities in sensorimotor cortex response to NMES-evoked muscle contraction in the end of an amputation stump is not clear. In this paper, Ischemic nerve block (INB) technique was used to build an acute hand loss model, and 64-channel EEG signals were recorded from 11 healthy subjects to perform a 2×2 factorial design protocol, with the INB state and the current intensity as factors. The changes of NMES-evoked sensorimotor cortical activities were quantified by computing Beta-band event-related desynchronization (Beta ERD) patterns and the time-varying functional connectivity using adaptive directed transfer function (ADTF) before and during INB. The acute hand "loss" resulted in ipsilateral dominance of Beta ERD induced by NMES with two current intensities in the topographic maps, that is, ipsilateral Beta ERD was significantly higher than that the contralateral one (p<0.05). However, before INB, Beta ERD in the contralateral sensorimotor cortex induced by NMES above motor threshold was significantly higher than that in the ipsilateral area (p< 0.01). Meanwhile, whatever before or during INB, clustering coefficients of the ADTF network in sensorimotor cortex showed temporal dynamics during two NMES tasks. During INB, NMES above motor threshold-evoked lower clustering coefficients of the time-varying network in sensorimotor cortex than that before INB (p<0.05). The present results suggest that the loss of the hand proprioception will degrade cortical activities in the contralateral area, and increase cortical activities in the ipsilateral area compensatively responding to NMES. This finding may be particularly important to improve the reconstruction of the proprioception function of hand prosthesis.
Collapse
|
9
|
Osseoperception in transcutaneous osseointegrated prosthetic systems (TOPS) after transfemoral amputation: a prospective study. Arch Orthop Trauma Surg 2023; 143:603-610. [PMID: 34345935 DOI: 10.1007/s00402-021-04099-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Endo-exo prosthetics (EEP), which belongs to the transcutaneous osseointegrated prosthetic systems (TOPS), provides an alternative bone-anchored rehabilitation method for transfemoral amputees. It led to the question of whether transmitted forces from prosthetic feet are perceptible by osseoperception resulting in proprioceptive feedback of ground conditions. OBJECTIVES The following hypotheses emerged for our trial with the null hypothesis: EEP fitting after transfemoral amputation does not influence osseoperception. Alternative hypothesis 1: EEP patients achieve better osseoperception results than transfemoral amputees fitted with socket prosthesis. Alternative hypothesis 2: EEP carriers achieve comparable results with regards to their osseoperception as non-amputees. METHODS N = 25 patients with EEP (mean age = 50,6 ± 9,4, male/female = 15/10) N = 25 patients with socket prostheses (mean age = 52,6 ± 13,1, male/female = 19/6) and N = 25 healthy volunteers were included in the experimental case-control study. In three blinded test modules (V1, V2, V3), the participants had to identify different degrees of shore hardness (c) of different materials (rubber balls (shore = 5-25c), foam cushions (shore = 5-30c), foam mats (shore = 5-30c) with their prosthetic foot (or a personally defined foot in healthy volunteers) without footwear and had to rank them into the correct order according to their tactile sensation and the degree of hardness. A maximum of 10 points could be scored per run. RESULTS This experimental observational study included N = 75 participants. The mean age for the entire cohort was 42.8 ± 16.6 years and the BMI was 26.0 ± 4.8. Our results show a significant level of differences in tactile osseoperception between all groups (p < 0.001). A correlation between the mean values of V1-3 and the PMQ2.0 as well as the mean values of K-Level and the prosthesis wearing time per day showed for PMQ (r = 0.387, p = 0.006) and K-level (r = 0.448, p = 0.001) which is a moderate effect according to Cohen. CONCLUSION Our study results suggest that the EEP treatment can lead to an improvement in tactile sensory perception via the bone-anchored implant, which can lead to an increase in quality of life and improved gait safety.
Collapse
|
10
|
Zhang K, Wu C, Lyu Y, Xiang J, Pan C, Guo X, Tong S. Upper-limb amputation disrupts the interhemispheric structural rather than functional connectivity. Brain Connect 2022; 13:133-142. [PMID: 36082989 DOI: 10.1089/brain.2022.0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Recent neuroimaging studies on upper-limb amputation have revealed the reorganization of bilateral sensorimotor cortex after sensory deprivation, underpinning the assumption of changes in the interhemispheric connections. In the present study, using functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI), we aim to explore the alterations in the interhemispheric functional and structural connectivity after upper-limb amputation. Methods: Twenty-two upper-limb amputees and 15 age- and sex-matched healthy controls were recruited for MRI scanning. The amputees were further divided into subgroups by amputation side and residual limb pain (RLP). DTI metrics of corpus callosum (CC) subregions and resting-state functional connectivity (FC) between the bilateral sensorimotor cortices were measured for each participant. Linear mixed models were carried out to investigate the relationship of interhemispheric connectivity with the amputation, amputation side, and RLP. Results: Compared with healthy controls, upper-limb amputees showed lower axial diffusivity (AD) in CC subregions II and III. Subgroup analyses showed that the dominant hand amputation induced significant microstructural changes in CC subregion III. In addition, only amputees with RLP showed decreased fractional anisotropy and AD in CC, which was also correlated with the intensity of RLP. No significant changes in interhemispheric FC were found after upper-limb amputation. Conclusion: The present study demonstrated that the interhemispheric structural connectivity rather than FC degenerated after upper-limb amputation, and the degeneration of interhemispheric structural connectivity was shown to be relevant to the amputation side and the intensity of RLP. Impact statement Neuroimaging studies have revealed the functional reorganization of bilateral sensorimotor cortex after amputation, with expanded activation from the intact hemisphere to the deprived hemisphere. Our findings indicated a degeneration of interhemispheric white matter connections in upper-limb amputees, unveiling the underlying structural basis for bilateral functional reorganization after amputation.
Collapse
Affiliation(s)
- Kexu Zhang
- Shanghai Jiao Tong University, School of Biomedical Engineering, Shanghai Jiao Tong University, Jiangchuan Road, Shanghai, 200240, China, Shanghai, China, 200240
| | - Chaowei Wu
- Shanghai Jiao Tong University, School of Biomedical Engineering, Shanghai, China
| | - Yuanyuan Lyu
- Shanghai Jiao Tong University, School of Biomedical Engineering, Shanghai, China
| | - Jianbo Xiang
- The 2nd People’s Hospital of Changzhou of Nanjing Medical University, the Department of Radiology, Changzhou, China,
| | - Changjie Pan
- The 2nd People’s Hospital of Changzhou of Nanjing Medical University, the Department of Radiology, Changzhou, China
| | - Xiaoli Guo
- Shanghai Jiao Tong University, School of Biomedical Engineering, Shanghai, China
| | - Shanbao Tong
- Shanghai Jiao Tong University, School of Biomedical Engineering, Shanghai, China
| |
Collapse
|
11
|
Nakazawa K. Brain Reorganization and Neural Plasticity in Elite Athletes With Physical Impairments. Exerc Sport Sci Rev 2022; 50:118-127. [PMID: 35175230 PMCID: PMC9197146 DOI: 10.1249/jes.0000000000000288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2021] [Indexed: 11/21/2022]
Abstract
Use-dependent and impairment-specific brain plasticity are hypothesized to interact and enhance neural reorganization in the central nervous system (CNS) of athletes with physical impairments. Paralympic brain studies are helpful in achieving a fundamental understanding of the underlying neural mechanism related to CNS reorganization after physical therapy or athletic training. Information learned from these individuals also provides new insights into sports- and rehabilitation-related neuroscience.
Collapse
|
12
|
Browne JD, Fraiser R, Cai Y, Leung D, Leung A, Vaninetti M. Unveiling the phantom: What neuroimaging has taught us about phantom limb pain. Brain Behav 2022; 12:e2509. [PMID: 35218308 PMCID: PMC8933774 DOI: 10.1002/brb3.2509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/05/2021] [Accepted: 01/11/2022] [Indexed: 11/08/2022] Open
Abstract
Phantom limb pain (PLP) is a complicated condition with diverse clinical challenges. It consists of pain perception of a previously amputated limb. The exact pain mechanism is disputed and includes mechanisms involving cerebral, peripheral, and spinal origins. Such controversy limits researchers' and clinicians' ability to develop consistent therapeutics or management. Neuroimaging is an essential tool that can address this problem. This review explores diffusion tensor imaging, functional magnetic resonance imaging, electroencephalography, and magnetoencephalography in the context of PLP. These imaging modalities have distinct mechanisms, implications, applications, and limitations. Diffusion tensor imaging can outline structural changes and has surgical applications. Functional magnetic resonance imaging captures functional changes with spatial resolution and has therapeutic applications. Electroencephalography and magnetoencephalography can identify functional changes with a strong temporal resolution. Each imaging technique provides a unique perspective and they can be used in concert to reveal the true nature of PLP. Furthermore, researchers can utilize the respective strengths of each neuroimaging technique to support the development of innovative therapies. PLP exemplifies how neuroimaging and clinical management are intricately connected. This review can assist clinicians and researchers seeking a foundation for applications and understanding the limitations of neuroimaging techniques in the context of PLP.
Collapse
Affiliation(s)
- Jonathan D Browne
- School of Medicine, California University of Science and Medicine, Colton, California, USA
| | - Ryan Fraiser
- Center for Pain Medicine, University of California San Diego, La Jolla, California, USA
| | - Yi Cai
- Center for Pain Medicine, University of California San Diego, La Jolla, California, USA
| | - Dillon Leung
- College of Letters and Science, University of California Berkeley, Berkeley, California, USA
| | - Albert Leung
- Center for Pain Medicine, University of California San Diego, La Jolla, California, USA
| | - Michael Vaninetti
- Center for Pain Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
13
|
Otaki R, Oouchida Y, Aizu N, Sudo T, Sasahara H, Saito Y, Takemura S, Izumi SI. Relationship Between Body-Specific Attention to a Paretic Limb and Real-World Arm Use in Stroke Patients: A Longitudinal Study. Front Syst Neurosci 2022; 15:806257. [PMID: 35273480 PMCID: PMC8902799 DOI: 10.3389/fnsys.2021.806257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Learned nonuse is a major problem in upper limb (UL) rehabilitation after stroke. Among the various factors that contribute to learned nonuse, recent studies have focused on body representation of the paretic limb in the brain. We previously developed a method to measure body-specific attention, as a marker of body representation of the paretic limb and revealed a decline in body-specific attention to the paretic limb in chronic stroke patients by a cross-sectional study. However, longitudinal changes in body-specific attention and paretic arm use in daily life (real-world arm use) from the onset to the chronic phase, and their relationship, remain unknown. Here, in a longitudinal, prospective, observational study, we sought to elucidate the longitudinal changes in body-specific attention to the paretic limb and real-world arm use, and their relationship, by using accelerometers and psychophysical methods, respectively, in 25 patients with subacute stroke. Measurements were taken at baseline (TBL), 2 weeks (T2w), 1 month (T1M), 2 months (T2M), and 6 months (T6M) after enrollment. UL function was measured using the Fugl-Meyer Assessment (FMA) and Action Research Arm Test (ARAT). Real-world arm use was measured using accelerometers on both wrists. Body-specific attention was measured using a visual detection task. The UL function and real-world arm use improved up to T6M. Longitudinal changes in body-specific attention were most remarkable at T1M. Changes in body-specific attention up to T1M correlated positively with changes in real-world arm use up to T6M, and from T1M to T6M, and the latter more strongly correlated with changes in real-world arm use. Changes in real-world arm use up to T2M correlated positively with changes in FMA up to T2M and T6M. No correlation was found between body-specific attention and FMA scores. Thus, these results suggest that improved body-specific attention to the paretic limb during the early phase contributes to increasing long-term real-world arm use and that increased real-world use is associated with the recovery of UL function. Our results may contribute to the development of rehabilitation strategies to enhance adaptive changes in body representation in the brain and increase real-world arm use after stroke.
Collapse
Affiliation(s)
- Ryoji Otaki
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Rehabilitation, Yamagata Saisei Hospital, Yamagata, Japan
| | - Yutaka Oouchida
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Education, Osaka Kyoiku University, Osaka, Japan
| | - Naoki Aizu
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Tamami Sudo
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Computer and Information Sciences, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hiroshi Sasahara
- Department of Rehabilitation, Yamagata Saisei Hospital, Yamagata, Japan
| | - Yuki Saito
- Department of Neurosurgery, Yamagata Saisei Hospital, Yamagata, Japan
| | - Sunao Takemura
- Department of Neurosurgery, Yamagata Saisei Hospital, Yamagata, Japan
| | - Shin-Ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| |
Collapse
|
14
|
Aizu N, Otaki R, Nishii K, Kito T, Yao R, Uemura K, Izumi SI, Yamada K. Body-Specific Attention to the Hands and Feet in Healthy Adults. Front Syst Neurosci 2022; 15:805746. [PMID: 35145381 PMCID: PMC8821660 DOI: 10.3389/fnsys.2021.805746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/23/2021] [Indexed: 12/02/2022] Open
Abstract
To execute the intended movement, the brain directs attention, called body-specific attention, to the body to obtain information useful for movement. Body-specific attention to the hands has been examined but not to the feet. We aimed to confirm the existence of body-specific attention to the hands and feet, and examine its relation to motor and sensory functions from a behavioral perspective. The study included two groups of 27 right-handed and right-footed healthy adults, respectively. Visual detection tasks were used to measure body-specific attention. We measured reaction times to visual stimuli on or off the self-body and calculated the index of body-specific attention score to subtract the reaction time on self-body from that off one. Participants were classified into low and high attention groups based on each left and right body-specific attention index. For motor functions, Experiment 1 comprised handgrip strength and ball-rotation tasks for the hands, and Experiment 2 comprised toe grip strength involved in postural control for the feet. For sensory functions, the tactile thresholds of the hands and feet were measured. The results showed that, in both hands, the reaction time to visual stimuli on the hand was significantly lesser than that offhand. In the foot, this facilitation effect was observed in the right foot but not the left, which showed the correlation between body-specific attention and the normalized toe gripping force, suggesting that body-specific attention affected postural control. In the hand, the number of rotations of the ball was higher in the high than in the low attention group, regardless of the elaboration exercise difficulty or the left or right hand. However, this relation was not observed in the handgripping task. Thus, body-specific attention to the hand is an important component of elaborate movements. The tactile threshold was higher in the high than in the low attention group, regardless of the side in hand and foot. The results suggested that more body-specific attention is directed to the limbs with lower tactile abilities, supporting the sensory information reaching the brain. Therefore, we suggested that body-specific attention regulates the sensory information to help motor control.
Collapse
Affiliation(s)
- Naoki Aizu
- School of Health Sciences, Faculty of Rehabilitation, Fujita Health University, Toyoake, Japan
- *Correspondence: Naoki Aizu
| | - Ryoji Otaki
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuhiro Nishii
- School of Health Sciences, Faculty of Rehabilitation, Fujita Health University, Toyoake, Japan
- Graduate School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Takumi Kito
- School of Health Sciences, Faculty of Rehabilitation, Fujita Health University, Toyoake, Japan
| | - Runhong Yao
- Department of Physical Therapy, School of Health Sciences, Japan University of Health Sciences, Satte, Japan
| | - Kenya Uemura
- Department of Rehabilitation, Hachinohe City Hospital, Hachinohe, Japan
| | - Shin-ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Kouji Yamada
- School of Health Sciences, Faculty of Rehabilitation, Fujita Health University, Toyoake, Japan
- Graduate School of Health Sciences, Fujita Health University, Toyoake, Japan
| |
Collapse
|
15
|
Seth M, Beisheim-Ryan EH, Pohlig RT, Horne JR, Hicks GE, Sions JM. Vibration Sensitivity Is Associated With Functional Balance After Unilateral Transtibial Amputation. Arch Rehabil Res Clin Transl 2022; 3:100161. [PMID: 34977543 PMCID: PMC8683871 DOI: 10.1016/j.arrct.2021.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Objectives To evaluate differences in vibration perception thresholds between adults with transtibial amputation and age-matched adults without amputation and to examine associations between vibration perception thresholds and balance performance. We hypothesized that adults with transtibial amputation would demonstrate lower thresholds compared with adults without amputation and that lower thresholds would be associated with better functional balance. Design Prospective cross-sectional study. Setting National conference, clinical practice, and university laboratory. Participants Adults (N=34) with a nondysvascular, unilateral, transtibial amputation and 43 age-matched controls without amputation. Interventions Participants' vibration perception thresholds were evaluated bilaterally by applying a vibration stimulus to the midpatella and recording their verbal response to conscious perception of stimulus. Functional balance was assessed with the Berg Balance Scale and the Four Square Step Test. Main Outcome Measures Residual and sound limb (right and left for controls) vibration perception thresholds, Berg Balance Scale, and Four Square Step Test. Results For participants with transtibial amputation and controls, there were no significant between-group (P=.921) or interlimb (P=.540) differences in vibration perception thresholds. Overall, robust regression models explained 35.1% and 19.3% variance in Berg Balance Scale scores and Four Square Step Test times, respectively. Among adults with transtibial amputation, vibration perception thresholds were negatively associated with Berg Balance Scale scores (P=.009) and positively associated with Four Square Step Test times (P=.048). Among controls, average vibration perception thresholds were not significantly associated with functional balance (P>.050). Conclusions Adults with nondysvascular, transtibial-level amputation demonstrated similar vibration detection compared with adults with intact limbs, indicating that vibration detection is preserved in the amputated region postamputation. These findings suggest a unique relationship between vibration perception and functional balance post-transtibial amputation.
Collapse
Affiliation(s)
- Mayank Seth
- Delaware Limb Loss Studies, Department of Physical Therapy, University of Delaware, Newark DE
| | - Emma H Beisheim-Ryan
- Delaware Limb Loss Studies, Department of Physical Therapy, University of Delaware, Newark DE
| | - Ryan T Pohlig
- Biostatistics Core, University of Delaware, Newark, DE
| | | | - Gregory E Hicks
- Delaware Spine Studies, Department of Physical Therapy, University of Delaware, Newark DE
| | - Jaclyn M Sions
- Delaware Limb Loss Studies, Department of Physical Therapy, University of Delaware, Newark DE
| |
Collapse
|
16
|
Saetta G, Ho JT, Bekrater-Bodmann R, Brugger P, Dijkerman CH, Lenggenhager B. Limb apparent motion perception: Modification by tDCS, and clinically or experimentally altered bodily states. Neuropsychologia 2021; 162:108032. [PMID: 34600001 DOI: 10.1016/j.neuropsychologia.2021.108032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/26/2021] [Accepted: 09/21/2021] [Indexed: 12/24/2022]
Abstract
Limb apparent motion perception (LAMP) refers to the illusory visual perception of a moving limb upon observing two rapidly alternating photographs depicting the same limb in two different postures. Fast stimulus onset asynchronies (SOAs) induce the more visually guided perception of physically impossible movements. Slow SOAs induce the perception of physically possible movements. According to the motor theory of LAMP, the latter perception depends upon the observer's sensorimotor representations. Here, we tested this theory in two independent studies by performing a central (study 1) and peripheral (study 2) manipulation of the body's sensorimotor states during two LAMP tasks. In the first sham-controlled transcranial direct current stimulation between-subject designed study, we observed that the dampening of left sensorimotor cortex activity through cathodal stimulation biased LAMP towards the more visually guided perception of physically impossible movements for stimulus pairs at slow SOAs. In the second, online within-subject designed study, we tested three participant groups twice: (1) individuals with an acquired lower limb amputation, either while wearing or not wearing their prosthesis (2) individuals with body integrity dysphoria (i.e., with a desire for amputation of a healthy leg) while sitting in a regular position or binding up the undesired leg (to simulate the desired amputation); (3) able-bodied individuals while sitting in a normal position or sitting on one of their legs. We found that the momentary sensorimotor state crucially impacted LAMP in individuals with an amputation and able-bodied participants, but not in BID individuals. Taken together, the results of these two studies substantiate the motor theory of LAMP.
Collapse
Affiliation(s)
- Gianluca Saetta
- Department of Psychology, University of Zurich, Switzerland; Department of Experimental Psychology, Utrecht University, the Netherlands.
| | - Jasmine T Ho
- Department of Psychology, University of Zurich, Switzerland
| | - Robin Bekrater-Bodmann
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Peter Brugger
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry (PUK), Zurich, Switzerland; Neuropsychology Unit, Valens Rehabilitation Centre, Valens, Switzerland
| | - Chris H Dijkerman
- Department of Experimental Psychology, Utrecht University, the Netherlands
| | | |
Collapse
|
17
|
Clonazepam: An Old "New" Therapy for the Treatment of Phantom Limb Pain-A Brief Report of a Retrospective Study. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9966059. [PMID: 34621901 PMCID: PMC8492268 DOI: 10.1155/2021/9966059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 09/18/2021] [Indexed: 11/21/2022]
Abstract
The purpose of this study is to describe the results of clonazepam use in the treatment of phantom limb pain (PLP). Although the efficacy of clonazepam on PLP has been reported in 1996, there are no subsequent known studies that confirmed this report. A consecutive sample of 32 patients who suffered from PLP after recent lower limb amputation was studied based on clinical charts. Wilcoxon's signed rank test was used to compare Numeric Rating Scale (NRS) values before and after the treatment with clonazepam. Twenty-three amputees were treated only with clonazepam, without adding other drugs or targeted rehabilitation treatments. The median NRS before the treatment with clonazepam was 7 (2), the median NRS after 31 ± 5 days of treatment was 3 (3.5) (p < 0.0001). The average dosage of clonazepam used was 1.5 ± 1 mg per day. The results suggest that clonazepam has to be considered as an alternative drug for PLP treatment.
Collapse
|
18
|
Changes in Temporal and Spatial Patterns of Intrinsic Brain Activity and Functional Connectivity in Upper-Limb Amputees: An fMRI Study. Neural Plast 2021; 2021:8831379. [PMID: 33981337 PMCID: PMC8088358 DOI: 10.1155/2021/8831379] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 01/04/2021] [Accepted: 04/05/2021] [Indexed: 11/20/2022] Open
Abstract
Background Amputation in adults is a serious procedure or traumatic outcome, one that leads to a possible “remapping” of limb representations (somatotopy) in the motor and sensory cortex. The temporal and spatial extent underlying reorganization of somatotopy is unclear. The aim of this study was to better understand how local and global structural plasticity in sensory-motor cortical networks changes temporally and spatially after upper-limb amputation. Methods We studied 8 healthy nonamputee control subjects and 16 complete upper-limb amputees. Resting-state MRI (rs-fMRI) was used to measure local and large-scale relative differences (compared to controls) in both the amplitude of low-frequency fluctuations (ALFF) and degree of centrality (DC) at 2 months, 6 months, and 12 months after traumatic amputation. Results In amputees, rs-fMRI scans revealed differences in spatial patterns of ALFF and DC among brain regions over time. Significant relative increases in ALFF and DC were detected not only in the sensory and motor cortex but also in related cortical regions believed to be involved in cognition and motor planning. We observed changes in the magnitude of ALFFs in the pre- and postcentral gyrus and primary sensory cortex, as well as in the anterior cingulate, parahippocampal gyrus, and hippocampus, 2 months after the amputation. The regional distribution of increases/decreases in ALFFs and DC documented at 2-month postamputation was very different from those at 6 and 12-month postamputation. Conclusion Local and wide-spread changes in ALFFs in the sensorimotor cortex and cognitive-related brain regions after upper-limb amputation may imply dysfunction not only in sensory and motor function but also in areas responsible for sensorimotor integration and motor planning. These results suggest that cortical reorganization after upper extremity deafferentation is temporally and spatially more complicated than previously appreciated, affecting DC in widespread regions.
Collapse
|
19
|
Wang L, Tomson SN, Lu G, Yau JM. Cortical representations of phantom movements in lower limb amputees. Eur J Neurosci 2021; 53:3160-3174. [PMID: 33662143 DOI: 10.1111/ejn.15170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 11/28/2022]
Abstract
Understanding how sensorimotor cortex (SMC) organization relates to limb loss has major clinical implications, as cortical activity associated with phantom hand movements has been shown to predict phantom pain reports. Critically, earlier studies have largely focused on upper limb amputees; far less is known regarding SMC activity in lower limb amputees, despite the fact that this population comprises the majority of major limb loss cases. We aimed to characterize BOLD fMRI responses associated with phantom and sound limb movements to test the hypothesis that SMC organization is preserved in individuals with lower limb loss. Individuals with unilateral or bilateral lower limb loss underwent fMRI scans as they performed simple movements of their sound or phantom limbs. We observed that voluntary movements of the sound and phantom ankles were associated with BOLD signal changes in medial and superior portions of the precentral and postcentral gyri. In both hemispheres, contralateral limb movements were associated with greater signal changes compared to ipsilateral limb movements. Hand and mouth movements were associated with distinct activation patterns localized to more lateral SMC regions. We additionally tested whether activations associated with phantom movements related to self-report assessments indexing phantom pain experiences, nonpainful phantom sensations and phantom movement capabilities. We found that responses during phantom ankle movements did not correlate with any of the composite phantom limb indices in our sample. Our collective results reveal that SMC representations of the amputated limb persist and that traditional somatotopic organization is generally preserved in individuals suffering from lower limb loss.
Collapse
Affiliation(s)
- Lingyan Wang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Steffie N Tomson
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Grace Lu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey M Yau
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
20
|
Wang H, Sun J, Cui D, Wang X, Jin J, Li Y, Liu Z, Yin T. Quantitative assessment of inter-individual variability in fMRI-based human brain atlas. Quant Imaging Med Surg 2021; 11:810-822. [PMID: 33532279 DOI: 10.21037/qims-20-404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Inter-individual variability is an inherent and ineradicable feature of group-level brain atlases that undermines their reliability for clinical and other applications. To date, there have been no reports quantifying inter-individual variability in brain atlases. Methods In the present study, we compared inter-individual variability in nine brain atlases by task-based functional magnetic resonance imaging (MRI) mapping of motor and temporal lobe language regions in both cerebral hemispheres. We analyzed complete motor and language task-based fMRI and T1 data for 893 young, healthy subjects in the Human Connectome Project database. Euclidean distances (EDs) between hotspots in specific brain regions were calculated from task-based fMRI and brain atlas data. General linear model parameters were used to investigate the influence of different brain atlases on signal extraction. Finally, the inter-individual variability of ED and extracted signals and interdependence of relevant indicators were statistically evaluated. Results We found that inter-individual variability of ED varied across the nine brain atlases (P<0.0001 for motor regions and P<0.0001 for language regions). There was no correlation between parcel number and inter-individual variability in left to right (LtoR; P=0.7959 for motor regions and P=0.2002 for language regions) and right to left (RtoL; P=0.7654 for motor regions and P=0.3544 for language regions) ED; however, LtoR (P≤0.0001) and RtoL (P≤0.0001) inter-individual variability differed according to brain region: the LtoR (P=0.0008) and RtoL (P=0.0004) inter-individual variability was greater for the right hand than for the left hand, the LtoR (P=0.0019) and RtoL (P=0.0179) inter-individual variability was greater for the right language than for the left language, but there was no such difference between the right foot and left foot (LtoR, P=0.2469 and RtoL, P=0.6140). Inter-individual variability in one motor region was positively correlated with mean values in the other three motor regions (left hand, P=0.0145; left foot, P=0.0103; right hand, P=0.1318; right foot, P=0.3785). Inter-individual variability in language region was positively correlated with mean values in the four motor regions (left language, P=0.0422; right language, P=0.0514). Signal extraction for LtoR (P<0.0001) and RtoL (P<0.0001) varied across the nine brain atlases, which also showed differences in inter-individual variability. Conclusions These results underscore the importance of quantitatively assessing the inter-individual variability of a brain atlas prior to use, and demonstrate that mapping motor regions by task-based fMRI is an effective method for quantitatively assessing the inter-individual variability in a brain atlas.
Collapse
Affiliation(s)
- He Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Jinping Sun
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Dong Cui
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Xin Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Jingna Jin
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Ying Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Zhipeng Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Tao Yin
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China.,Neuroscience Center, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
Vianna-Barbosa R, Bahia CP, Sanabio A, de Freitas GPA, Madeiro da Costa RF, Garcez PP, Miranda K, Lent R, Tovar-Moll F. Myelination of Callosal Axons Is Hampered by Early and Late Forelimb Amputation in Rats. Cereb Cortex Commun 2020; 2:tgaa090. [PMID: 34296146 PMCID: PMC8152840 DOI: 10.1093/texcom/tgaa090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 11/17/2020] [Accepted: 11/22/2020] [Indexed: 11/14/2022] Open
Abstract
Deafferentation is an important determinant of plastic changes in the CNS, which consists of a loss of inputs from the body periphery or from the CNS itself. Although cortical reorganization has been well documented, white matter plasticity was less explored. Our goal was to investigate microstructural interhemispheric connectivity changes in early and late amputated rats. For that purpose, we employed diffusion-weighted magnetic resonance imaging, as well as Western blotting, immunohistochemistry, and electron microscopy of sections of the white matter tracts to analyze the microstructural changes in the corticospinal tract and in the corpus callosum (CC) sector that contains somatosensory fibers integrating cortical areas representing the forelimbs and compare differences in rats undergoing forelimb amputation as neonates, with those amputated as adults. Results showed that early amputation induced decreased fractional anisotropy values and reduction of total myelin amount in the cerebral peduncle contralateral to the amputation. Both early and late forelimb amputations induced decreased myelination of callosal fibers. While early amputation affected myelination of thinner axons, late amputation disrupted axons of all calibers. Since the CC provides a modulation of inhibition and excitation between the hemispheres, we suggest that the demyelination observed among callosal fibers may misbalance this modulation.
Collapse
Affiliation(s)
- Rodrigo Vianna-Barbosa
- Post-Graduate Program in Morphological Sciences, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro CEP 21941-902, Brazil.,National Center of Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro CEP 21941-902, Brazil
| | - Carlomagno P Bahia
- Institute of Health Sciences, Federal University of Pará, Pará CEP 66035-160, Brazil
| | - Alexandre Sanabio
- Post-Graduate Program in Morphological Sciences, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro CEP 21941-902, Brazil
| | - Gabriella P A de Freitas
- Post-Graduate Program in Morphological Sciences, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro CEP 21941-902, Brazil
| | | | - Patricia P Garcez
- Post-Graduate Program in Morphological Sciences, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro CEP 21941-902, Brazil
| | - Kildare Miranda
- National Center of Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro CEP 21941-902, Brazil.,Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro CEP 21941-902, Brazil
| | - Roberto Lent
- Post-Graduate Program in Morphological Sciences, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro CEP 21941-902, Brazil.,D'Or Institute of Research and Education (IDOR), Rio de Janeiro, CEP 22281-100, Brazil
| | - Fernanda Tovar-Moll
- Post-Graduate Program in Morphological Sciences, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro CEP 21941-902, Brazil.,National Center of Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro CEP 21941-902, Brazil.,D'Or Institute of Research and Education (IDOR), Rio de Janeiro, CEP 22281-100, Brazil
| |
Collapse
|
22
|
Zheng BX, Yin Y, Xiao H, Lui S, Wen CB, Dai YE, Yang G, Liu J, Gong Q. Altered Cortical Reorganization and Brain Functional Connectivity in Phantom Limb Pain: A Functional MRI Study. Pain Pract 2020; 21:394-403. [PMID: 33202107 DOI: 10.1111/papr.12966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/02/2020] [Accepted: 11/01/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Functional neuroimaging studies have shown that amputees have altered cortical reorganization and functional connectivity (FC). This study aimed to investigate whether patients with phantom limb pain (PLP) and PLP-free lower limb amputees exhibit changes in corresponding primary cortical motor area/somatosensory cortex (M1/S1) cortical reorganization and supplementary motor area (SMA) network FC. The association between functional magnetic resonance imaging (fMRI) changes and clinical parameters is also explored. METHODS A total of 10 PLP patients were matched with 10 PLP-free amputees and 10 healthy controls (HCs). Before undergoing fMRI, all participants completed questionnaires evaluating pain, anxiety, depression, and health-related quality of life. Task-related activation and regions of interest (ROI)-wise connectivity analysis were applied to differentiate the brain regions of amputees from those of HCs. Linear correlation analysis was used to evaluate the correlation between altered FC and clinical manifestations. RESULTS As compared with HCs, PLP patients showed increased cortical activation in M1/S1 when moving the intact foot, imagining phantom big toe movement, or having the corresponding thumb stimulated. The increased FC in the SMA network included the SMA-caudate nucleus, SMA-bilateral insula, and SMA-anterior cingulate cortex. Furthermore, results of the linear correlation analysis demonstrated that this increased FC was positively correlated with VAS scores, negatively correlated with Medical Outcomes Study 36-item Short-Form (SF-36) scores, and not correlated with anxiety or depression scores. CONCLUSIONS Phantom limb pain in lower limb amputees is associated with M1/S1 cortical reorganization and altered SMA network FC in different areas of the brain, which could help to support our understanding of the central mechanism of PLP.
Collapse
Affiliation(s)
- Bi-Xin Zheng
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Yin
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Xiao
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Su Lui
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuan-Bing Wen
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Yue-E Dai
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Guang Yang
- Department of Anesthesiology, Sichuan Orthopedics Hospital, Chengdu, Sichuan, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiyong Gong
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
23
|
Petrus E, Dembling S, Usdin T, Isaac JTR, Koretsky AP. Circuit-Specific Plasticity of Callosal Inputs Underlies Cortical Takeover. J Neurosci 2020; 40:7714-7723. [PMID: 32913109 PMCID: PMC7531555 DOI: 10.1523/jneurosci.1056-20.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/13/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
Injury induces synaptic, circuit, and systems reorganization. After unilateral amputation or stroke, this functional loss disrupts the interhemispheric interaction between intact and deprived somatomotor cortices to recruit deprived cortex in response to intact limb stimulation. This recruitment has been implicated in enhanced intact sensory function. In other patients, maladaptive consequences such as phantom limb pain can occur. We used unilateral whisker denervation in male and female mice to detect circuitry alterations underlying interhemispheric cortical reorganization. Enhanced synaptic strength from the intact cortex via the corpus callosum (CC) onto deep neurons in deprived primary somatosensory barrel cortex (S1BC) has previously been detected. It was hypothesized that specificity in this plasticity may depend on to which area these neurons projected. Increased connectivity to somatomotor areas such as contralateral S1BC, primary motor cortex (M1) and secondary somatosensory cortex (S2) may underlie beneficial adaptations, while increased connectivity to pain areas like anterior cingulate cortex (ACC) might underlie maladaptive pain phenotypes. Neurons from the deprived S1BC that project to intact S1BC were hyperexcitable, had stronger responses and reduced inhibitory input to CC stimulation. M1-projecting neurons also showed increases in excitability and CC input strength that was offset with enhanced inhibition. S2 and ACC-projecting neurons showed no changes in excitability or CC input. These results demonstrate that subgroups of output neurons undergo dramatic and specific plasticity after peripheral injury. The changes in S1BC-projecting neurons likely underlie enhanced reciprocal connectivity of S1BC after unilateral deprivation consistent with the model that interhemispheric takeover supports intact whisker processing.SIGNIFICANCE STATEMENT Amputation, peripheral injury, and stroke patients experience widespread alterations in neural activity after sensory loss. A hallmark of this reorganization is the recruitment of deprived cortical space which likely aids processing and thus enhances performance on intact sensory systems. Conversely, this recruitment of deprived cortical space has been hypothesized to underlie phenotypes like phantom limb pain and hinder recovery. A mouse model of unilateral denervation detected remarkable specificity in alterations in the somatomotor circuit. These changes underlie increased reciprocal connectivity between intact and deprived cortical hemispheres. This increased connectivity may help explain the enhanced intact sensory processing detected in humans.
Collapse
Affiliation(s)
- Emily Petrus
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Sarah Dembling
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Ted Usdin
- Systems Neuroscience Imaging Resource, National Institute of Mental Health, Bethesda, Maryland 20892
| | - John T R Isaac
- Janssen Neuroscience, J&J Innovations, London W1G 0BG, United Kingdom
| | - Alan P Koretsky
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
24
|
Mosch B, Hagena V, Diers M. Bildgebende Untersuchungen des neuronalen
Schmerznetzwerks. AKTUEL RHEUMATOL 2020. [DOI: 10.1055/a-1202-0766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
ZusammenfassungDer vorliegende Artikel soll eine Übersicht über bildgebende
Untersuchungen im Bereich chronischer Schmerzsyndrome bieten. Auf die
einleitenden Worte zur allgemeinen Phänomenologie des Schmerzes
folgt ein umfassender Einblick in die gegenwärtige Anwendung
funktioneller und struktureller Bildgebungstechniken am Beispiel
ausgewählter Schmerzsyndrome (Chronischer Rückenschmerz,
Fibromyalgiesyndrom (FMS), Phantomschmerz und Komplexes regionales
Schmerzsyndrom (CRPS)). In diesem Zusammenhang werden Gemeinsamkeiten und
Besonderheiten der spezifischen neurologischen Korrelate verschiedener
chronischer Schmerzerkrankungen diskutiert.
Collapse
Affiliation(s)
- Benjamin Mosch
- Klinik für Psychosomatische Medizin und Psychotherapie, LWL
Universitätsklinikum Bochum der Ruhr-Universität Bochum,
Bochum
| | - Verena Hagena
- Klinik für Psychosomatische Medizin und Psychotherapie, LWL
Universitätsklinikum Bochum der Ruhr-Universität Bochum,
Bochum
| | - Martin Diers
- Klinik für Psychosomatische Medizin und Psychotherapie, LWL
Universitätsklinikum Bochum der Ruhr-Universität Bochum,
Bochum
| |
Collapse
|
25
|
Münger M, Pinto CB, Pacheco-Barrios K, Duarte D, Gunduz ME, Simis M, Battistella LR, Fregni F. Protective and Risk Factors for Phantom Limb Pain and Residual Limb Pain Severity. Pain Pract 2020; 20:578-587. [PMID: 32176435 PMCID: PMC7363546 DOI: 10.1111/papr.12881] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/29/2020] [Accepted: 03/04/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The exact mechanisms underlying the development and maintenance of phantom limb pain (PLP) are still unclear. This study aimed to identify the factors affecting pain intensity in patients with chronic, lower limb, traumatic PLP. METHODS This is a cross-sectional analysis of patients with PLP. We assessed amputation-related and pain-related clinical and demographic variables. We used univariate and multivariate models to evaluate the associated factors modulating PLP and residual limb pain (RLP) intensity. RESULTS We included 71 unilateral traumatic lower limb amputees. Results showed that (1) amputation-related perceptions were experienced by a large majority of the patients with chronic PLP (sensations: 90.1%, n = 64; residual pain: 81.7%, n = 58); (2) PLP intensity has 2 significant protective factors (phantom limb movement and having effective treatment for PLP previously) and 2 significant risk factors (phantom limb sensation intensity and age); and (3) on the other hand, for RLP, risk factors are different: presence of pain before amputation and level of amputation (in addition to the same protective factors). CONCLUSION These results suggest different neurobiological mechanisms to explain PLP and RLP intensity. While PLP risk factors seem to be related to maladaptive plasticity, since phantom sensation and older age are associated with more pain, RLP risk factors seem to have components leading to neuropathic pain, such as the amount of neural lesion and previous history of chronic pain. Interestingly, the phantom movement appears to be protective for both phenomena.
Collapse
Affiliation(s)
- Marionna Münger
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neuropsychology, Institute of Psychology, University of Zurich, 8050 Zurich, Switzerland
| | - Camila B. Pinto
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
- Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud. Lima, Peru
| | - Dante Duarte
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Muhamed Enes Gunduz
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Marcel Simis
- Department of Physical Medicine and Rehabilitation, Instituto de Reabilitação Lucy Montoro
| | | | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Human brain connectivity: Clinical applications for clinical neurophysiology. Clin Neurophysiol 2020; 131:1621-1651. [DOI: 10.1016/j.clinph.2020.03.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022]
|
27
|
Bahia CP, Vianna-Barbosa RJ, Tovar-Moll F, Lent R. Terminal Arbors of Callosal Axons Undergo Plastic Changes in Early-Amputated Rats. Cereb Cortex 2020; 29:1460-1472. [PMID: 30873555 DOI: 10.1093/cercor/bhy043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/04/2018] [Accepted: 02/07/2018] [Indexed: 12/26/2022] Open
Abstract
Sensory information is processed in specific brain regions, and shared between the cerebral hemispheres by axons that cross the midline through the corpus callosum. However, sensory deprivation usually causes sensory losses and/or functional changes. This is the case of people who suffered limb amputation and show changes of body map organization within the somatosensory cortex (S1) of the deafferented cerebral hemisphere (contralateral to the amputated limb), as well as in the afferented hemisphere (ipsilateral to the amputated limb). Although several studies have approached these functional changes, the possible finer morphological alterations, such as those occurring in callosal axons, still remain unknown. The present work combined histochemistry, single-axon tracing and 3D microscopy to analyze the fine morphological changes that occur in callosal axons of the forepaw representation in early amputated rats. We showed that the forepaw representation in S1 was reduced in the deafferented hemisphere and expanded in the afferented side. Accordingly, after amputation, callosal axons originating from the deafferented cortex undergo an expansion of their terminal arbors with increased number of terminal boutons within the homotopic representation at the afferented cerebral hemisphere. Similar microscale structural changes may underpin the macroscale morphological and functional phenomena that characterize limb amputation in humans.
Collapse
Affiliation(s)
- Carlomagno Pacheco Bahia
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, CEP 21941-902 Rio de Janeiro (RJ), Brazil.,Institute of Health Sciences, Federal University of Pará, CEP 66075-110 Belém (PA), Brazil
| | - Rodrigo Jorge Vianna-Barbosa
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, CEP 21941-902 Rio de Janeiro (RJ), Brazil
| | - Fernanda Tovar-Moll
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, CEP 21941-902 Rio de Janeiro (RJ), Brazil.,D'Or Institute of Research and Education, CEP 22281-100 Rio de Janeiro (RJ), Brazil
| | - Roberto Lent
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, CEP 21941-902 Rio de Janeiro (RJ), Brazil
| |
Collapse
|
28
|
Liu H, Andoh J, Lyu Y, Milde C, Desch S, Zidda F, Schmelz M, Curio G, Flor H. Peripheral input and phantom limb pain: A somatosensory event-related potential study. Eur J Pain 2020; 24:1314-1329. [PMID: 32335979 DOI: 10.1002/ejp.1579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/06/2020] [Accepted: 04/17/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND Following amputation, nearly all amputees report nonpainful phantom phenomena and many of them suffer from chronic phantom limb pain (PLP) and residual limb pain (RLP). The aetiology of PLP remains elusive and there is an ongoing debate on the role of peripheral and central mechanisms. Few studies have examined the entire somatosensory pathway from the truncated nerves to the cortex in amputees with PLP compared to those without PLP. The relationship among afferent input, somatosensory responses and the change in PLP remains unclear. METHODS Transcutaneous electrical nerve stimulation was applied on the truncated median nerve, the skin of the residual limb and the contralateral homologous nerve in 22 traumatic upper-limb amputees (12 with and 10 without PLP). Using somatosensory event-related potentials, the ascending volley was monitored from the brachial plexus, the spinal cord, the brainstem and the thalamus to the primary somatosensory cortex. RESULTS Peripheral input could evoke PLP in amputees with chronic PLP (7/12), but not in amputees without a history of PLP (0/10). The amplitudes of the somatosensory components were comparable between amputees with and without PLP. In addition, evoked potentials from the periphery through the spinal, subcortical and cortical segments were not significantly associated with PLP. CONCLUSIONS Peripheral input can modulate PLP but seems insufficient to cause PLP. These findings suggest the multifactorial complexity of PLP and different mechanisms for PLP and RLP. SIGNIFICANCE Peripheral afferent input plays a role in PLP and has been assumed to be sufficient to generate PLP. In this study we found no significant differences in the electrical potentials generated by peripheral stimulation from the truncated nerve and the skin of the residual limb in amputees with and without PLP. Peripheral input could enhance existing PLP but could not cause it. These findings indicate the multifactorial complexity of PLP and an important role of central processes in PLP.
Collapse
Affiliation(s)
- Hongcai Liu
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jamila Andoh
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yuanyuan Lyu
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Christopher Milde
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Biopsychology, Clinical Psychology and Psychotherapy, University of Koblenz-Landau, Landau, Germany
| | - Simon Desch
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Francesca Zidda
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Martin Schmelz
- Department of Experimental Pain Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gabriel Curio
- Neurophysics Group, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
29
|
Nakagawa K, Takemi M, Nakanishi T, Sasaki A, Nakazawa K. Cortical reorganization of lower-limb motor representations in an elite archery athlete with congenital amputation of both arms. NEUROIMAGE-CLINICAL 2019; 25:102144. [PMID: 31958685 PMCID: PMC6970184 DOI: 10.1016/j.nicl.2019.102144] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/13/2019] [Accepted: 12/21/2019] [Indexed: 02/07/2023]
Abstract
We investigated cortical reorganization in an amputated archer who used his feet. Lower-limb motor representations were examined using fMRI and TMS mapping. M1 areas innervating lower-limb muscles were larger in the amputated athlete. The toe and knee representations were expanded towards the lateral part of the M1. Paralympic athletes have a unique and dynamic M1 plasticity.
Despite their disabilities, top Paralympic athletes have better motor skills than able-bodied athletes. However, the neural underpinnings of these better motor skills remain unclear. We investigated the reorganization of the primary motor cortex (M1) in a Paralympic athlete with congenital amputation of both arms who holds the world record for the farthest accurate shot in archery (Amputee Archer: AA). We recorded brain activity during contraction of right toe, ankle, knee, and hip joint muscles in the AA and 12 able-bodied control subjects using functional magnetic resonance imaging. The results revealed that M1 activation was more widespread in the AA compared with control subjects during all tasks, and shifted towards the lateral part of the M1 during contraction of toe and knee muscles. We also conducted a motor mapping experiment using navigated transcranial magnetic stimulation. The M1 area receiving stimulation elicited motor-evoked potentials from the toe, lower-leg, and thigh muscles, which were larger in the AA compared with 12 control subjects. Furthermore, the AA's motor maps were shifted towards the lateral side of M1. These results suggest an expansion of lower-limb M1 representation towards the lateral side of M1, including the trunk and upper-limb representations, and an expansion of the area of corticomotor neurons innervating the lower limb muscles in the AA. This unique M1 reorganization could underpin the AA's excellent archery performance in the absence of upper limbs. The current results suggest that Paralympic athletes may exhibit extreme M1 plasticity, which could arise through a combination of rigorous long-term motor training and compensatory M1 reorganization for missing body parts.
Collapse
Affiliation(s)
- Kento Nakagawa
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan; The Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan; Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan
| | - Mitsuaki Takemi
- Division of Physical and Health Education, Graduate School of Education, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan; Japan Science and Technology Agency, PRESTO, 4-1-8 Honmachi, Kawaguchi, Saitama, 332-0012, Japan
| | - Tomoya Nakanishi
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan; The Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Atsushi Sasaki
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan; The Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Kimitaka Nakazawa
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
30
|
[Two-point discrimination through electrical stimulation of receptive fields]. Schmerz 2019; 34:74-78. [PMID: 31784907 DOI: 10.1007/s00482-019-00435-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The effect of two-point discrimination described in this case report indicates a cortical reorganization through electrical stimulation of receptive fields. The "intervention units" compared to the "baseline" show clear effects. The pain behavior in both "intervention units" showed a clear change in the phantom phenomena, which in both "wash out" phases moved back towards "baseline". Thus, electrical stimulation of receptive fields could be another therapy for the treatment of phantom pain, given the change in two-point discrimination.
Collapse
|
31
|
Seo CH, Park CH, Jung MH, Baek S, Song J, Cha E, Ohn SH. Increased white matter diffusivity associated with phantom limb pain. Korean J Pain 2019; 32:271-279. [PMID: 31569919 PMCID: PMC6813898 DOI: 10.3344/kjp.2019.32.4.271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022] Open
Abstract
Background We utilized diffusion tensor imaging (DTI) to evaluate the cerebral white matter changes that are associated with phantom limb pain in patients with unilateral arm amputation. It was anticipated that this would complement previous research in which we had shown that changes in cerebral blood volume were associated with the cerebral pain network. Methods Ten patients with phantom limb pain due to unilateral arm amputation and sixteen healthy age-matched controls were enrolled. The intensity of phantom limb pain was measured by the visual analogue scale (VAS) and depressive mood was assessed by the Hamilton depression rating scale. Diffusion tensor-derived parameters, including fractional anisotropy, mean diffusivity, axial diffusivity (AD), and radial diffusivity (RD), were computed from the DTI. Results Compared with controls, the cases had alterations in the cerebral white matter as a consequence of phantom limb pain, manifesting a higher AD of white matter in both hemispheres symmetrically after adjusting for individual depressive moods. In addition, there were associations between the RD of white matter and VAS scores primarily in the hemispheres related to the missing hand and in the corpus callosum. Conclusions The phantom limb pain after unilateral arm amputation induced plasticity in the white matter. We conclude that loss of white matter integrity, particularly in the hemisphere connected with the missing hand, is significantly correlated with phantom limb pain.
Collapse
Affiliation(s)
- Cheong Hoon Seo
- Department of Physical Medicine and Rehabilitation, Hallym University Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Chang-Hyun Park
- Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
| | - Myung Hun Jung
- Department of Psychiatry, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Seungki Baek
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Jimin Song
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Eunsil Cha
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Suk Hoon Ohn
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| |
Collapse
|
32
|
Ando A, Mazzone SB, Farrell MJ. Altered neural activity in brain cough suppression networks in cigarette smokers. Eur Respir J 2019; 54:13993003.00362-2019. [PMID: 31248952 DOI: 10.1183/13993003.00362-2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/12/2019] [Indexed: 11/05/2022]
Abstract
Cough is important for airway defence, and studies in healthy animals and humans have revealed multiple brain networks intimately involved in the perception of airway irritation, cough induction and cough suppression. Changes in cough sensitivity and/or the ability to suppress cough accompany pulmonary pathologies, suggesting a level of plasticity is possible in these central neural circuits. However, little is known about how persistent inputs from the lung might modify the brain processes regulating cough.In the present study, we used human functional brain imaging to investigate the central neural responses that accompany an altered cough sensitivity in cigarette smokers.In nonsmokers, inhalation of the airway irritant capsaicin induced a transient urge-to-cough associated with the activation of a distributed brain network that included sensory, prefrontal and motor cortical regions. Cigarette smokers demonstrated significantly higher thresholds for capsaicin-induced urge-to-cough, consistent with a reduced sensitivity to airway irritation. Intriguingly, this was accompanied by increased activation in brain regions known to be involved in both cough sensory processing (primary sensorimotor cortex) and cough suppression (dorsolateral prefrontal cortex and the midbrain nucleus cuneiformis). Activations in the prefrontal cortex were highest among participants with the least severe smoking behaviour, whereas those in the midbrain correlated with more severe smoking behaviour.These outcomes suggest that smoking-induced sensitisation of central cough neural circuits is offset by concurrently enhanced central suppression. Furthermore, central suppression mechanisms may evolve with the severity of smoke exposure, changing from initial prefrontal inhibition to more primitive midbrain processes as exposure increases.
Collapse
Affiliation(s)
- Ayaka Ando
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Stuart B Mazzone
- Dept of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Australia
| | - Michael J Farrell
- Dept of Medical Imaging and Radiation Sciences, Monash University, Melbourne, Australia.,Monash Biomedical Imaging Research Centre, Monash University, Melbourne, Australia
| |
Collapse
|
33
|
Guo X, Liu R, Lu J, Wu C, Lyu Y, Wang Z, Xiang J, Pan C, Tong S. Alterations in Brain Structural Connectivity After Unilateral Upper-Limb Amputation. IEEE Trans Neural Syst Rehabil Eng 2019; 27:2196-2204. [PMID: 31443033 DOI: 10.1109/tnsre.2019.2936615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Previous studies have indicated that amputation induces reorganization of functional brain network. However, the influence of amputation on structural brain network remains unclear. In this study, using diffusion tensor imaging (DTI), we aimed to investigate the alterations in fractional anisotropy (FA) network after unilateral upper-limb amputation. We acquired DTI from twenty-two upper-limb amputees (15 dominant-side and 7 nondominant-side amputees) as well as fifteen healthy controls. Using DTI tractography and graph theoretical approaches, we examined the topological changes in FA network of amputees. Compared with healthy controls, dominant-side amputees showed reduced global mean strength, increased characteristic path length, and decreased nodal strength in the contralateral sensorimotor system and visual areas. In particular, the nodal strength of the contralateral postcentral gyrus was negatively correlated with residual limb usage, representing a use-dependent reorganization. In addition, the nodal strength of the contralateral middle temporal gyrus was positively correlated with the magnitude of phantom limb sensation. Our results suggested a degeneration of FA network after dominant-side upper-limb amputation.
Collapse
|
34
|
Ramalho BL, Rangel ML, Schmaedeke AC, Erthal FS, Vargas CD. Unilateral Brachial Plexus Lesion Impairs Bilateral Touch Threshold. Front Neurol 2019; 10:872. [PMID: 31456738 PMCID: PMC6700256 DOI: 10.3389/fneur.2019.00872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 07/26/2019] [Indexed: 12/20/2022] Open
Abstract
Unilateral brachial plexus injury (BPI) impairs sensory and motor functions of the upper limb. This study aimed to map in detail brachial plexus sensory impairment both in the injured and the uninjured upper limb. Touch sensation was measured through Semmes-Weinstein monofilaments at the autonomous regions of the brachial plexus nerves, hereafter called points of exclusive innervation (PEIs). Seventeen BPI patients (31.35 years±6.9 SD) and 14 age-matched healthy controls (27.57 years±5.8 SD) were tested bilaterally at six selected PEIs (axillary, musculocutaneous, median, radial, ulnar, and medial antebrachial cutaneous [MABC]). As expected, the comparison between the control group and the brachial plexus patients' injured limb showed a robust difference for all PEIs (p ≤ 0.001). Moreover, the comparison between the control group and the brachial plexus uninjured limb revealed a difference for the median (p = 0.0074), radial (p = 0.0185), ulnar (p = 0.0404), and MABC (p = 0.0328) PEIs. After splitting the sample into two groups with respect to the dominance of the injured limb, higher threshold values were found for the uninjured side when it occurred in the right dominant limb compared to the control group at the median (p = 0.0456), radial (p = 0.0096), and MABC (p = 0.0078) PEIs. This effect was absent for the left, non-dominant arm. To assess the effect of the severity of sensory deficits observed in the injured limb upon the alterations of the uninjured limb, a K-means clustering algorithm (k = 2) was applied resulting in two groups with less or more severe sensory impairment. The less severely affected patients presented higher thresholds at the median (p = 0.0189), radial (p = 0.0081), ulnar (p = 0.0253), and MABC (p = 0.0187) PEIs in the uninjured limb in comparison with the control group, whereas higher thresholds at the uninjured limb were found only for the median PEI (p = 0.0457) in the more severely affected group. In conclusion, an expressive reduction in touch threshold was found for the injured limb allowing a precise mapping of the impairment caused by the BPI. Crucially, BPI also led to reduced tactile threshold in specific PEIs in the uninjured upper limb. These new findings suggest a superordinate model of representational plasticity occurring bilaterally in the brain after a unilateral peripheral injury.
Collapse
Affiliation(s)
- Bia Lima Ramalho
- Laboratory of Neurobiology of Movement, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratory of Neuroscience and Rehabilitation, Institute of Neurology Deolindo Couto, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Luíza Rangel
- Laboratory of Neurobiology of Movement, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratory of Neuroscience and Rehabilitation, Institute of Neurology Deolindo Couto, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Carolina Schmaedeke
- Laboratory of Neurobiology of Movement, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratory of Neuroscience and Rehabilitation, Institute of Neurology Deolindo Couto, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fátima Smith Erthal
- Laboratory of Neurobiology II, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia D Vargas
- Laboratory of Neurobiology of Movement, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratory of Neuroscience and Rehabilitation, Institute of Neurology Deolindo Couto, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
35
|
Molina-Rueda F, Navarro-Fernández C, Cuesta-Gómez A, Alguacil-Diego IM, Molero-Sánchez A, Carratalá-Tejada M. Neuroplasticity Modifications Following a Lower-Limb Amputation: A Systematic Review. PM R 2019; 11:1326-1334. [PMID: 30989836 DOI: 10.1002/pmrj.12167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/07/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Although there are studies that have examined brain functional reorganization following upper-limb amputation, understanding of the brain changes that occur in people with lower-limb amputation is limited. OBJECTIVE To investigate modifications in the brain following lower-limb amputation. METHODS We included case-control studies that evaluate neuroplasticity in the central nervous system using neuroimaging techniques. A literature search was conducted using MEDLINE, CINAHL, Web of Science, Scopus, and Cochrane. RESULTS Eleven articles were included (total n = 204 people with unilateral lower-limb amputation). These studies showed an increase in cerebellar gray matter volume in prosthesis users, as well as a decrease in thickness of the premotor cortex, orbitofrontal cortex, temporo-occipital junction, precentral gyrus, visual areas, and somatosensory cortex. Regarding white matter, the trials observed a decrease in the integrity at the corona radiata, the connections between the premotor areas, the fronto-occipital fasciculus and the corpus callosum. In addition, a decreased functional connectivity between cortical and subcortical areas has been described. CONCLUSIONS Lower-limb amputation causes changes in several brain structures that may occur in the absence of pain and regardless of prosthesis use. The modifications observed include thinning or loss of gray matter volume, decrease in the integrity of the white matter connections between brain structures and changes in the functional connectivity between cortical and subcortical areas. LEVEL OF EVIDENCE I.
Collapse
Affiliation(s)
- Francisco Molina-Rueda
- Departamento de Fisioterapia, Terapia Ocupacional, Rehabilitación y Medicina Física, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain
| | - Cristian Navarro-Fernández
- Departamento de Fisioterapia, Terapia Ocupacional, Rehabilitación y Medicina Física, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain
| | - Alicia Cuesta-Gómez
- Departamento de Fisioterapia, Terapia Ocupacional, Rehabilitación y Medicina Física, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain
| | - Isabel M Alguacil-Diego
- Departamento de Fisioterapia, Terapia Ocupacional, Rehabilitación y Medicina Física, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain
| | - Alberto Molero-Sánchez
- Departamento de Fisioterapia, Terapia Ocupacional, Rehabilitación y Medicina Física, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain
| | - María Carratalá-Tejada
- Departamento de Fisioterapia, Terapia Ocupacional, Rehabilitación y Medicina Física, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain
| |
Collapse
|
36
|
Abstract
In this chapter, we provide an overview of neuroimaging studies in chronic pain. We start with an introduction about the phenomenology of pain. In the following section, the application of functional and structural imaging techniques is shown in selected chronic pain syndromes (chronic back pain, fibromyalgia syndrome (FMS), phantom limb pain, and complex regional pain syndrome (CRPS)), and commonalities and peculiarities of imaging correlates across different types of chronic pain are discussed. We conclude this chapter with implications for treatments, with focus on behavioral interventions, sensory and motor trainings, and mirror and motor imagery trainings.
Collapse
Affiliation(s)
- Martin Diers
- Clinical and Experimental Behavioral Medicine, Department of Psychosomatic Medicine and Psychotherapy, LWL University Hospital, Ruhr University Bochum, Alexandrinenstrasse 1-3, 44791, Bochum, Germany.
| |
Collapse
|
37
|
Peng H, Cirstea CM, Kaufman CL, Frey SH. Microstructural integrity of corticospinal and medial lemniscus tracts: insights from diffusion tensor tractography of right-hand amputees. J Neurophysiol 2019; 122:316-324. [PMID: 31116678 DOI: 10.1152/jn.00316.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Reductions in sensory and motor activity following unilateral upper limb amputation during adulthood are associated with widespread, activity-dependent reorganization of the gray matter and white matter through the central nervous system. Likewise, in cases of congenital limb absence there is evidence that limited afferent or efferent activity affects the structural integrity of white matter pathways serving the affected side. Evidence that the structural integrity of mature sensory and motor tracts controlling the lost upper limb exhibits similar activity dependence is, however, sparse and inconsistent. Here we used diffusion tensor tractography to test whether amputation of the dominant right hand during adulthood (n = 16) alters the microstructural integrity of the major sensory (medial lemniscus, ML) and motor (corticospinal tract, CST) pathways controlling missing hand function. Consistent with prior findings, healthy control subjects (n = 27) exhibited higher fractional anisotropy (FA), an index of white matter microstructural integrity, within dominant left CST and nondominant right ML. Critically, in contrast to what might be expected if the microstructural organization of these tracts is activity dependent, these asymmetries persisted in amputees. Moreover, we failed to detect any differences in dominant left ML or CST between healthy control subjects and amputees. Our results are consistent with these white matter tracts being robust to changes in activity once mature or that continued use of the residual limb (in a compensatory fashion or with prosthesis) provides stimulation sufficient to maintain tract integrity. NEW & NOTEWORTHY We report that unilateral hand amputation in adults has no significant effects on the structure of major sensory or motor pathways contralateral to the amputation. Our results are consistent with the organization of these white matter tracts being robust to changes in activity once mature or that continued use of the residual limb (with or without a prosthesis) provides stimulation sufficient to maintain tract integrity.
Collapse
Affiliation(s)
- Huiling Peng
- Department of Psychology, Temple University , Philadelphia, Pennsylvania
| | - Carmen M Cirstea
- Department of Physical Medicine and Rehabilitation, University of Missouri , Columbia, Missouri
| | | | - Scott H Frey
- Department of Physical Medicine and Rehabilitation, University of Missouri , Columbia, Missouri.,Department of Psychological Sciences, University of Missouri , Columbia, Missouri
| |
Collapse
|
38
|
Mizuguchi N, Nakagawa K, Tazawa Y, Kanosue K, Nakazawa K. Functional plasticity of the ipsilateral primary sensorimotor cortex in an elite long jumper with below-knee amputation. NEUROIMAGE-CLINICAL 2019; 23:101847. [PMID: 31103873 PMCID: PMC6525316 DOI: 10.1016/j.nicl.2019.101847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 02/08/2023]
Abstract
Functional plasticity of the sensorimotor cortex occurs following motor practice, as well as after limb amputation. However, the joint effect of limb amputation and intensive, long-term motor practice on cortical plasticity remains unclear. Here, we recorded brain activity during unilateral contraction of the hip, knee, and ankle joint muscles from a long jump Paralympic gold medalist with a unilateral below-knee amputation (Amputee Long Jumper, ALJ). He used the amputated leg with a prosthesis for take-off. Under similar conditions to the ALJ, we also recorded brain activity from healthy long jumpers (HLJ) and non-athletes with a below-knee amputation. During a rhythmic isometric contraction of knee extensor muscles with the take-off/prosthetic leg, the ALJ activated not only the contralateral primary sensorimotor cortex (M1/S1), but also the ipsilateral M1/S1. In addition, this ipsilateral M1/S1 activation was significantly greater than that seen in the HLJ. However, we did not find any significant differences between the ALJ and HLJ in M1/S1 activation during knee muscle contraction in the non-take-off/intact leg, nor during hip muscle contraction on either side. Region of interest analysis revealed that the ALJ exhibited a greater difference in M1/S1 activity and activated areas ipsilateral to the movement side between the take-off/prosthetic and non-take-off/intact legs during knee muscle contraction compared with the other two groups. However, difference in activity in M1/S1 contralateral to the movement side did not differ across groups. These results suggest that a combination of below-knee amputation and intensive, prolonged long jump training using a prosthesis (i.e. fine knee joint control) induced an expansion of the functional representation of the take-off/prosthetic leg in the ipsilateral M1/S1 in a muscle-specific manner. These results provide novel insights into the potential for substantial cortical plasticity with an extensive motor rehabilitation program. A Paralympic gold medalist with a unilateral below-knee amputation was recruited. Brain activity during hip, knee, and ankle movements was recorded. Brain activity was compared with healthy athletes and non-athletes with amputation. Greater ipsilateral M1/S1 activity during knee movement was observed in the medalist. Intensive motor practice and limb amputation would induce drastic neural plasticity.
Collapse
Affiliation(s)
- Nobuaki Mizuguchi
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192, Japan; Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama city, Kanagawa 223-8522, Japan; The Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Kento Nakagawa
- The Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan; Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Yutaka Tazawa
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Kazuyuki Kanosue
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192, Japan
| | - Kimitaka Nakazawa
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
39
|
Bramati IE, Rodrigues EC, Simões EL, Melo B, Höfle S, Moll J, Lent R, Tovar-Moll F. Lower limb amputees undergo long-distance plasticity in sensorimotor functional connectivity. Sci Rep 2019; 9:2518. [PMID: 30792514 PMCID: PMC6384924 DOI: 10.1038/s41598-019-39696-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/21/2019] [Indexed: 11/08/2022] Open
Abstract
Amputation in adults is associated with an extensive remapping of cortical topography in primary and secondary sensorimotor areas. Here, we used tactile residual limb stimulation and 3T functional magnetic resonance imaging in humans to investigate functional connectivity changes in the sensorimotor network of patients with long-term lower limb traumatic amputations with phantom sensation, but without pain. We found a pronounced reduction of inter-hemispheric functional connectivity between homologous sensorimotor cortical regions in amputees, including the primary (S1) and secondary (S2) somatosensory areas, and primary (M1) and secondary (M2) motor areas. We additionally observed an intra-hemispheric increased functional connectivity between primary and secondary somatosensory regions, and between the primary and premotor areas, contralateral to amputation. These functional connectivity changes in specialized small-scale sensory-motor networks improve our understanding of the functional impact of lower limb amputation in the brain. Our findings in a selective group of patients with phantom limb sensations, but without pain suggest that disinhibition of neural inputs following traumatic limb amputation disrupts sensorimotor topology, unbalancing functional brain network organization. These findings step up the description of brain plasticity related with phantom sensations by showing that pain is not critical for sensorimotor network changes after peripheral injury.
Collapse
Affiliation(s)
- Ivanei E Bramati
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, 22281-100, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, 21941-902, Brazil
| | - Erika C Rodrigues
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, 22281-100, Brazil
- Augusto Motta University (Unisuam), Rio de Janeiro, 21041-020, Brazil
| | - Elington L Simões
- Rio de Janeiro State University (UERJ), Rio de Janeiro, 20550-900, Brazil
| | - Bruno Melo
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, 22281-100, Brazil
| | - Sebastian Höfle
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, 22281-100, Brazil
| | - Jorge Moll
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, 22281-100, Brazil
| | - Roberto Lent
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, 22281-100, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, 21941-902, Brazil
| | - Fernanda Tovar-Moll
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, 22281-100, Brazil.
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, 21941-902, Brazil.
- National Centre for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, 21941-902, Brazil.
| |
Collapse
|
40
|
Surgical Algorithm for Neuroma Management: A Changing Treatment Paradigm. Plast Reconstr Surg Glob Open 2018. [PMID: 30534497 DOI: 10.1097/gox.0000000000001952.] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Successful treatment of the painful neuroma is a particular challenge to the nerve surgeon. Historically, symptomatic neuromas have primarily been treated with excision and implantation techniques, which are inherently passive and do not address the terminal end of the nerve. Over the past decade, the surgical management of neuromas has undergone a paradigm shift synchronous with the development of contemporary techniques aiming to satisfy the nerve end. In this article, we describe the important features of surgical treatment, including the approach to diagnosis with consideration of neuroma type and the decision of partial versus complete neuroma excision. A comprehensive list of the available surgical techniques for management following neuroma excision is presented, the choice of which is often predicated upon the availability of the terminal nerve end for reconstruction. Techniques for neuroma reconstruction in the presence of an intact terminal nerve end include hollow tube reconstruction and auto- or allograft nerve reconstruction. Techniques for neuroma management in the absence of an intact or identifiable terminal nerve end include submuscular or interosseous implantation, centro-central neurorrhaphy, relocation nerve grafting, nerve cap placement, use of regenerative peripheral nerve interface, "end-to-side" neurorrhaphy, and targeted muscle reinnervation. These techniques can be further categorized into passive/ablative and active/reconstructive modalities. The nerve surgeon must be aware of available treatment options and should carefully choose the most appropriate intervention for each patient. Comparative studies are lacking and will be necessary in the future to determine the relative effectiveness of each technique.
Collapse
|
41
|
Selective sensory deafferentation induces structural and functional brain plasticity. NEUROIMAGE-CLINICAL 2018; 21:101633. [PMID: 30584013 PMCID: PMC6411904 DOI: 10.1016/j.nicl.2018.101633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/27/2018] [Accepted: 12/08/2018] [Indexed: 02/07/2023]
Abstract
Sensory-motor integration models have been proposed aiming to explain how the brain uses sensory information to guide and check the planning and execution of movements. Sensory neuronopathy (SN) is a peculiar disease characterized by exclusive, severe and widespread sensory loss. It is a valuable condition to investigate how sensory deafferentation impacts brain organization. We thus recruited patients with clinical and electrophysiological criteria for SN to perform structural and functional MRI analyses. We investigated volumetric changes in gray matter (GM) using anatomical images; the microstructure of WM within segmented regions of interest (ROI), via diffusion images; and brain activation related to a finger tapping task. All significant results were related to the long disease duration subgroup of patients. Structural analysis showed hypertrophy of the caudate nucleus, whereas the diffusion study identified reduction of fractional anisotropy values in ROIs located around the thalamus and the striatum. We also found differences regarding finger-tapping activation in the posterior parietal regions and in the medial areas of the cerebellum. Our results stress the role of the caudate nucleus over the other basal ganglia in the sensory-motor integration models, and suggest an inhibitory function of a recently discovered tract between the thalamus and the striatum. Overall, our findings confirm plasticity in the adult brain and open new avenues to design neurorehabilitation strategies.
Collapse
|
42
|
Surgical Algorithm for Neuroma Management: A Changing Treatment Paradigm. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2018; 6:e1952. [PMID: 30534497 PMCID: PMC6250458 DOI: 10.1097/gox.0000000000001952] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 01/19/2023]
Abstract
Successful treatment of the painful neuroma is a particular challenge to the nerve surgeon. Historically, symptomatic neuromas have primarily been treated with excision and implantation techniques, which are inherently passive and do not address the terminal end of the nerve. Over the past decade, the surgical management of neuromas has undergone a paradigm shift synchronous with the development of contemporary techniques aiming to satisfy the nerve end. In this article, we describe the important features of surgical treatment, including the approach to diagnosis with consideration of neuroma type and the decision of partial versus complete neuroma excision. A comprehensive list of the available surgical techniques for management following neuroma excision is presented, the choice of which is often predicated upon the availability of the terminal nerve end for reconstruction. Techniques for neuroma reconstruction in the presence of an intact terminal nerve end include hollow tube reconstruction and auto- or allograft nerve reconstruction. Techniques for neuroma management in the absence of an intact or identifiable terminal nerve end include submuscular or interosseous implantation, centro-central neurorrhaphy, relocation nerve grafting, nerve cap placement, use of regenerative peripheral nerve interface, “end-to-side” neurorrhaphy, and targeted muscle reinnervation. These techniques can be further categorized into passive/ablative and active/reconstructive modalities. The nerve surgeon must be aware of available treatment options and should carefully choose the most appropriate intervention for each patient. Comparative studies are lacking and will be necessary in the future to determine the relative effectiveness of each technique.
Collapse
|
43
|
Zhang J, Zhang Y, Wang L, Sang L, Li L, Li P, Yin X, Qiu M. Brain Functional Connectivity Plasticity Within and Beyond the Sensorimotor Network in Lower-Limb Amputees. Front Hum Neurosci 2018; 12:403. [PMID: 30356798 PMCID: PMC6189475 DOI: 10.3389/fnhum.2018.00403] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/20/2018] [Indexed: 12/12/2022] Open
Abstract
Cerebral neuroplasticity after amputation has been elucidated by functional neuroimaging. However, little is known concerning how brain network-level functional reorganization of the sensorimotor system evolves following lower-limb amputation. We studied 32 unilateral lower-limb amputees (LLAs) and 32 matched healthy controls (HCs) using resting-state functional magnetic resonance imaging (rs-fMRI). A regions of interest (ROI)-wise connectivity analysis was performed with ROIs in eight brain regions in the sensorimotor network to investigate intra-network changes, and seed-based whole-brain functional connectivity (FC) with a seed in the contralateral primary sensorimotor cortex (S1M1) was used to study the FC reorganization between the sensorimotor region (S1M1) and other parts of the brain in the LLAs. The ROI-wise connectivity analysis showed that the LLAs had decreased FC, mainly between the subcortical nuclei and the contralateral S1M1 (p < 0.05, FDR corrected). Seed-based whole-brain FC analysis revealed that brain regions with decreased FC with the contralateral S1M1 extended beyond the sensorimotor network to the prefrontal and visual cortices (p < 0.05, FDR corrected). Moreover, correlation analysis showed that decreased FC between the subcortical and the cortical regions in the sensorimotor network progressively increased in relation to the time since amputation. These findings indicated a cascade of cortical reorganization at a more extensive network level following lower-limb amputation, and also showed promise for the development of a possible neurobiological marker of changes in FC related to motor function recovery in LLAs.
Collapse
Affiliation(s)
- Jingna Zhang
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China.,Department of Rehabilitation, Southwest Hospital, Army Medical University, Chongqing, China
| | - Ye Zhang
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Li Wang
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Linqiong Sang
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Lei Li
- Department of Rehabilitation, Southwest Hospital, Army Medical University, Chongqing, China
| | - Pengyue Li
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Xuntao Yin
- Department of Radiology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Mingguo Qiu
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| |
Collapse
|
44
|
De Nunzio AM, Schweisfurth MA, Ge N, Falla D, Hahne J, Gödecke K, Petzke F, Siebertz M, Dechent P, Weiss T, Flor H, Graimann B, Aszmann OC, Farina D. Relieving phantom limb pain with multimodal sensory-motor training. J Neural Eng 2018; 15:066022. [PMID: 30229747 DOI: 10.1088/1741-2552/aae271] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The causes for the disabling condition of phantom limb pain (PLP), affecting 85% of amputees, are so far unknown, with few effective treatments available. Sensory feedback based strategies to normalize the motor commands to control the phantom limb offer important targets for new effective treatments as the correlation between phantom limb motor control and sensory feedback from the motor intention has been identified as a possible mechanism for PLP development. APPROACH Ten upper-limb amputees, suffering from chronic PLP, underwent 16 days of intensive training on phantom-limb movement control. Visual and tactile feedback, driven by muscular activity at the stump, was provided with the aim of reducing PLP intensity. MAIN RESULTS A 32.1% reduction of PLP intensity was obtained at the follow-up (6 weeks after the end of the training, with an initial 21.6% reduction immediately at the end of the training) reaching clinical effectiveness for chronic pain reduction. Multimodal sensory-motor training on phantom-limb movements with visual and tactile feedback is a new method for PLP reduction. SIGNIFICANCE The study results revealed a substantial reduction in phantom limb pain intensity, obtained with a new training protocol focused on improving phantom limb motor output using visual and tactile feedback from the stump muscular activity executed to move the phantom limb.
Collapse
Affiliation(s)
- A M De Nunzio
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B152TT, Birmingham, United Kingdom. Applied Surgical and Rehabilitation Technology Lab, Department of Trauma Surgery, Orthopedic Surgery and Hand Surgery, University Medical Center Göttingen, Göttingen, Germany. Department of Translational Research and Knowledge Management, Otto Bock HealthCare GmbH, Duderstadt, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Fernández-García L, Pérez-Rigueiro J, Martinez-Murillo R, Panetsos F, Ramos M, Guinea GV, González-Nieto D. Cortical Reshaping and Functional Recovery Induced by Silk Fibroin Hydrogels-Encapsulated Stem Cells Implanted in Stroke Animals. Front Cell Neurosci 2018; 12:296. [PMID: 30237762 PMCID: PMC6135908 DOI: 10.3389/fncel.2018.00296] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 08/16/2018] [Indexed: 01/07/2023] Open
Abstract
The restitution of damaged circuitry and functional remodeling of peri-injured areas constitute two main mechanisms for sustaining recovery of the brain after stroke. In this study, a silk fibroin-based biomaterial efficiently supports the survival of intracerebrally implanted mesenchymal stem cells (mSCs) and increases functional outcomes over time in a model of cortical stroke that affects the forepaw sensory and motor representations. We show that the functional mechanisms underlying recovery are related to a substantial preservation of cortical tissue in the first days after mSCs-polymer implantation, followed by delayed cortical plasticity that involved a progressive functional disconnection between the forepaw sensory (FLs1) and caudal motor (cFLm1) representations and an emergent sensory activity in peri-lesional areas belonging to cFLm1. Our results provide evidence that mSCs integrated into silk fibroin hydrogels attenuate the cerebral damage after brain infarction inducing a delayed cortical plasticity in the peri-lesional tissue, this later a functional change described during spontaneous or training rehabilitation-induced recovery. This study shows that brain remapping and sustained recovery were experimentally favored using a stem cell-biomaterial-based approach.
Collapse
Affiliation(s)
| | - José Pérez-Rigueiro
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain,Departamento de Ciencia de Materiales, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain,Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine, Madrid, Spain
| | - Ricardo Martinez-Murillo
- Department of Translational Neuroscience, Instituto Cajal – Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Fivos Panetsos
- Neurocomputing and Neurorobotics Research Group, Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid, Madrid, Spain,Neural Plasticity Research Group, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Milagros Ramos
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain,Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine, Madrid, Spain,Departamento de Tecnología Fotónica y Bioingeniería, Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
| | - Gustavo V. Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain,Departamento de Ciencia de Materiales, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain,Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine, Madrid, Spain
| | - Daniel González-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain,Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine, Madrid, Spain,Departamento de Tecnología Fotónica y Bioingeniería, Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain,*Correspondence: Daniel González-Nieto,
| |
Collapse
|
46
|
Cutaneous sensitivity in unilateral trans-tibial amputees. PLoS One 2018; 13:e0197557. [PMID: 29856766 PMCID: PMC5983436 DOI: 10.1371/journal.pone.0197557] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 05/05/2018] [Indexed: 11/19/2022] Open
Abstract
Aim To examine tactile sensitivity in the leg and foot sole of below-knee amputees (diabetic n = 3, traumatic n = 1), and healthy control subjects (n = 4), and examine the association between sensation and balance. Method Vibration perception threshold (VPT; 3, 40, 250Hz) and monofilaments (MF) were used to examine vibration and light touch sensitivity on the intact limb, residual limb, and homologous locations on controls. A functional reach test was performed to assess functional balance. Results Tactile sensitivity was lower for diabetic amputee subjects compared to age matched controls for both VPT and MF; which was expected due to presence of diabetic peripheral neuropathy. In contrast, the traumatic amputee participant showed increased sensitivity for VPT at 40Hz and 250Hz vibration in both the intact and residual limbs compared to controls. Amputees with lower tactile sensitivity had shorter reach distances compared to those with higher sensitivity. Conclusion Changes in tactile sensitivity in the residual limb of trans-tibial amputees may have implications for the interaction between the amputee and the prosthetic device. The decreased skin sensitivity observed in the residual limb of subjects with diabetes is of concern as changes in skin sensitivity may be important in 1) identification/prevention of excessive pressure and 2) for functional stability. Interestingly, we saw increased residual limb skin sensitivity in the individual with the traumatic amputation. Although not measured directly in the present study, this increase in tactile sensitivity may be related to cortical reorganisation, which is known to occur following amputation, and would support similar findings observed in upper limb amputees.
Collapse
|
47
|
Cho NS, Jenabi M, Arevalo-Perez J, Brennan N, Young RJ, Karimi S, Holodny AI, Peck KK. Diffusion Tensor Imaging Shows Corpus Callosum Differences between High-Grade Gliomas and Metastases. J Neuroimaging 2017; 28:199-205. [PMID: 29064137 DOI: 10.1111/jon.12478] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/20/2017] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND AND PURPOSE The corpus callosum (CC) has an important role in regulating interhemispheric transfer and is thought to be instrumental in contralateral brain reorganization in patients with brain tumors, as suggested by a previous study reporting callosal differences between language dominance groups through diffusion tensor imaging (DTI) characteristics. The purpose of this study was to explore the structural differences in the CC between high-grade gliomas (HGGs) and metastatic tumors (METs) using the DTI characteristics of fractional anisotropy (FA), mean diffusivity (MD), and axial diffusivity (AD). METHODS HGG (n = 30) and MET (n = 20) subjects with Magnetic Resonance Imaging (MRI) scans including DTI were retrospectively studied. The tumor and CC were segmented using the 3-dimensional T1-weighted scans to determine their volumes. The region of interest (ROI; mean volume of the ROI = 3,090 ± 464 mm3 ) of the body of the CC was overlaid onto the DTI parametric maps to obtain the averaged FA, MD, and AD values. RESULTS There were significant differences in the distributions of FA and MD values between the two patient groups (mean FA for HGG/MET = .691/.646, P < .05; mean MD for HGG/MET = .894×10-3 mm 2/ second /.992×10-3 mm2 /second, P < .01), while there was no correlation between the DTI parameters and the anatomical volumes. CONCLUSION These results suggest that there is more contralateral brain reorganization in HGG patients than MET patients and that neither the tumor nor callosal volume impact the degree of contralateral brain reorganization.
Collapse
Affiliation(s)
- Nicholas S Cho
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY.,Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Mehrnaz Jenabi
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY.,Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Julio Arevalo-Perez
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY.,Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Nicole Brennan
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY.,Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Robert J Young
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY.,Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Sasan Karimi
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY.,Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Andrei I Holodny
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY.,Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Kyung K Peck
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY.,Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY
| |
Collapse
|
48
|
Lee SY, Kang SH, Kim DK, Seo KM, Ro HJ, Kim JK. Changes in the corticospinal tract after wearing prosthesis in bilateral transtibial amputation. Prosthet Orthot Int 2017; 41:507-511. [PMID: 28094680 DOI: 10.1177/0309364616684216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND After amputation, the brain is known to be reorganized especially in the primary motor cortex. We report a case to show changes in the corticospinal tract in a patient with serial bilateral transtibial amputations using diffusion tensor imaging. Case Description and Methods: A 78-year-old man had a transtibial amputation on his left side in 2008 and he underwent a right transtibial amputation in 2011. An initial brain magnetic resonance imaging with a diffusion tensor imaging was performed before starting rehabilitation on his right transtibial prosthesis, and a follow-up magnetic resonance imaging with diffusion tensor imaging was performed 2 years after this. Findings and Outcomes: In the initial diffusion tensor imaging, the number of fiber lines in his right corticospinal tract was larger than that in his left corticospinal tract. At follow-up diffusion tensor imaging, there was no definite difference in the number of fiber lines between both corticospinal tracts. CONCLUSION We found that side-to-side corticospinal tract differences were equalized after using bilateral prostheses. Clinical relevance This case report suggests that diffusion tensor imaging tractography could be a useful method to understand corticomotor reorganization after using prosthesis in transtibial amputation.
Collapse
Affiliation(s)
- Sang Yoon Lee
- 1 Department of Physical Medicine & Rehabilitation, Chung-Ang University College of Medicine, Seoul, Korea
| | - Si Hyun Kang
- 1 Department of Physical Medicine & Rehabilitation, Chung-Ang University College of Medicine, Seoul, Korea
| | - Don-Kyu Kim
- 1 Department of Physical Medicine & Rehabilitation, Chung-Ang University College of Medicine, Seoul, Korea
| | - Kyung Mook Seo
- 1 Department of Physical Medicine & Rehabilitation, Chung-Ang University College of Medicine, Seoul, Korea
| | - Hee Joon Ro
- 1 Department of Physical Medicine & Rehabilitation, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jae Kyun Kim
- 2 Department of Radiology, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
49
|
Wheaton LA. Neurorehabilitation in upper limb amputation: understanding how neurophysiological changes can affect functional rehabilitation. J Neuroeng Rehabil 2017; 14:41. [PMID: 28532464 PMCID: PMC5441064 DOI: 10.1186/s12984-017-0256-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 05/15/2017] [Indexed: 11/19/2022] Open
Abstract
Background Significant advances have been made in developing new prosthetic technologies with the goal of restoring function to persons that suffer partial or complete loss of the upper limb. Despite these technological advances, many challenges remain in understanding barriers in patient adoption of technology, and what critical factors should be of focus in prosthetics development from a motor control perspective. This points to a potential opportunity to improve our understanding of amputation using neurophysiology and plasticity, and integrate this knowledge into the development of prosthetics technology in novel ways. Here, argument will be made to include a stronger focus on the neural and behavioral changes that result from amputation, and a better appreciation of the time-scale of changes which may significantly affect device adaptation, functional device utility, and motor learning implemented in rehabilitation environments. Conclusion By strengthening our understanding of the neuroscience of amputation, we may improve the ability to couple neurorehabilitation with neuroengineering to support clinician needs in yielding improved outcomes in patients.
Collapse
Affiliation(s)
- Lewis A Wheaton
- School of Biological Sciences, Georgia Institute of Technology, 555 14th Street, Atlanta, GA, 30332-0356, USA.
| |
Collapse
|
50
|
Chen Q, Zheng W, Chen X, Wan L, Qin W, Qi Z, Chen N, Li K. Brain Gray Matter Atrophy after Spinal Cord Injury: A Voxel-Based Morphometry Study. Front Hum Neurosci 2017; 11:211. [PMID: 28503142 PMCID: PMC5408078 DOI: 10.3389/fnhum.2017.00211] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 04/11/2017] [Indexed: 01/15/2023] Open
Abstract
The aim of this study was to explore possible changes in whole brain gray matter volume (GMV) after spinal cord injury (SCI) using voxel-based morphometry (VBM), and to study their associations with the injury duration, severity, and clinical variables. In total, 21 patients with SCI (10 with complete and 11 with incomplete SCI) and 21 age- and sex-matched healthy controls (HCs) were recruited. The 3D high-resolution T1-weighted structural images of all subjects were obtained using a 3.0 Tesla MRI system. Disease duration and American Spinal Injury Association (ASIA) Scale scores were also obtained from each patient. Voxel-based morphometry analysis was carried out to investigate the differences in GMV between patients with SCI and HCs, and between the SCI sub-groups. Associations between GMV and clinical variables were also analyzed. Compared with HCs, patients with SCI showed significant GMV decrease in the dorsal anterior cingulate cortex, bilateral anterior insular cortex, bilateral orbital frontal cortex (OFC), and right superior temporal gyrus. No significant difference in GMV in these areas was found either between the complete and incomplete SCI sub-groups, or between the sub-acute (duration <1 year) and chronic (duration >1 year) sub-groups. Finally, the GMV of the right OFC was correlated with the clinical motor scores of left extremities in not only all SCI patients, but especially the CSCI subgroup. In the sub-acute subgroup, we found a significant positive correlation between the dACC GMV and the total clinical motor scores, and a significant negative correlation between right OFC GMV and the injury duration. These findings indicate that SCI can cause remote atrophy of brain gray matter, especially in the salient network. In general, the duration and severity of SCI may be not associated with the degree of brain atrophy in total SCI patients, but there may be associations between them in subgroups.
Collapse
Affiliation(s)
- Qian Chen
- Department of Radiology, Xuanwu Hospital, Capital Medical UniversityBeijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijing, China
| | - Weimin Zheng
- Department of Radiology, Xuanwu Hospital, Capital Medical UniversityBeijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijing, China.,Department of Radiology, Dongfang Hospital Beijing University of Chinese MedicineBeijing, China
| | - Xin Chen
- Department of Radiology, Xuanwu Hospital, Capital Medical UniversityBeijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijing, China
| | - Lu Wan
- Department of Radiology, Xuanwu Hospital, Capital Medical UniversityBeijing, China
| | - Wen Qin
- Department of Radiology, Tianjin Medical University General HospitalTianjin, China
| | - Zhigang Qi
- Department of Radiology, Xuanwu Hospital, Capital Medical UniversityBeijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijing, China
| | - Nan Chen
- Department of Radiology, Xuanwu Hospital, Capital Medical UniversityBeijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijing, China
| | - Kuncheng Li
- Department of Radiology, Xuanwu Hospital, Capital Medical UniversityBeijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijing, China
| |
Collapse
|