1
|
Ricci A, Rubino E, Serra GP, Wallén-Mackenzie Å. Concerning neuromodulation as treatment of neurological and neuropsychiatric disorder: Insights gained from selective targeting of the subthalamic nucleus, para-subthalamic nucleus and zona incerta in rodents. Neuropharmacology 2024; 256:110003. [PMID: 38789078 DOI: 10.1016/j.neuropharm.2024.110003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Neuromodulation such as deep brain stimulation (DBS) is advancing as a clinical intervention in several neurological and neuropsychiatric disorders, including Parkinson's disease, dystonia, tremor, and obsessive-compulsive disorder (OCD) for which DBS is already applied to alleviate severely afflicted individuals of symptoms. Tourette syndrome and drug addiction are two additional disorders for which DBS is in trial or proposed as treatment. However, some major remaining obstacles prevent this intervention from reaching its full therapeutic potential. Side-effects have been reported, and not all DBS-treated individuals are relieved of their symptoms. One major target area for DBS electrodes is the subthalamic nucleus (STN) which plays important roles in motor, affective and associative functions, with impact on for example movement, motivation, impulsivity, compulsivity, as well as both reward and aversion. The multifunctionality of the STN is complex. Decoding the anatomical-functional organization of the STN could enhance strategic targeting in human patients. The STN is located in close proximity to zona incerta (ZI) and the para-subthalamic nucleus (pSTN). Together, the STN, pSTN and ZI form a highly heterogeneous and clinically important brain area. Rodent-based experimental studies, including opto- and chemogenetics as well as viral-genetic tract tracings, provide unique insight into complex neuronal circuitries and their impact on behavior with high spatial and temporal precision. This research field has advanced tremendously over the past few years. Here, we provide an inclusive review of current literature in the pre-clinical research fields centered around STN, pSTN and ZI in laboratory mice and rats; the three highly heterogeneous and enigmatic structures brought together in the context of relevance for treatment strategies. Specific emphasis is placed on methods of manipulation and behavioral impact.
Collapse
Affiliation(s)
- Alessia Ricci
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Eleonora Rubino
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Gian Pietro Serra
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Åsa Wallén-Mackenzie
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
2
|
Williams D. Why so slow? Models of parkinsonian bradykinesia. Nat Rev Neurosci 2024; 25:573-586. [PMID: 38937655 DOI: 10.1038/s41583-024-00830-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 06/29/2024]
Abstract
Bradykinesia, or slowness of movement, is a defining feature of Parkinson disease (PD) and a major contributor to the negative effects on quality of life associated with this disorder and related conditions. A dominant pathophysiological model of bradykinesia in PD has existed for approximately 30 years and has been the basis for the development of several therapeutic interventions, but accumulating evidence has made this model increasingly untenable. Although more recent models have been proposed, they also appear to be flawed. In this Perspective, I consider the leading prior models of bradykinesia in PD and argue that a more functionally related model is required, one that considers changes that disrupt the fundamental process of accurate information transmission. In doing so, I review emerging evidence of network level functional connectivity changes, information transfer dysfunction and potential motor code transmission error and present a novel model of bradykinesia in PD that incorporates this evidence. I hope that this model may reconcile inconsistencies in its predecessors and encourage further development of therapeutic interventions.
Collapse
Affiliation(s)
- David Williams
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
- Department of Neurology, Whipps Cross University Hospital, Barts Health NHS Trust, London, UK.
| |
Collapse
|
3
|
Zalasky NA, Luo F, Kim LH, Noor MS, Brown EC, Arantes AP, Ramasubbu R, Gruber AJ, Kiss ZHT, Clark DL. Integration of valence and conflict processing through cellular-field interactions in human subgenual cingulate during emotional face processing in treatment-resistant depression. Mol Psychiatry 2024:10.1038/s41380-024-02667-6. [PMID: 39030263 DOI: 10.1038/s41380-024-02667-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 07/21/2024]
Abstract
The subgenual anterior cingulate cortex (sgACC) has been identified as a key brain area involved in various cognitive and emotional processes. While the sgACC has been implicated in both emotional valuation and emotional conflict monitoring, it is still unclear how this area integrates multiple functions. We characterized both single neuron and local field oscillatory activity in 14 patients undergoing sgACC deep brain stimulation for treatment-resistant depression. During recording, patients were presented with a modified Stroop task containing emotional face images that varied in valence and congruence. We further analyzed spike-field interactions to understand how network dynamics influence single neuron activity in this area. Most single neurons responded to both valence and congruence, revealing that sgACC neuronal activity can encode multiple processes within the same task, indicative of multifunctionality. During peak neuronal response, we observed increased spectral power in low frequency oscillations, including theta-band synchronization (4-8 Hz), as well as desynchronization in beta-band frequencies (13-30 Hz). Theta activity was modulated by current trial congruency with greater increases in spectral power following non-congruent stimuli, while beta desynchronizations occurred regardless of emotional valence. Spike-field interactions revealed that local sgACC spiking was phase-locked most prominently to the beta band, whereas phase-locking to the theta band occurred in fewer neurons overall but was modulated more strongly for neurons that were responsive to task. Our findings provide the first direct evidence of spike-field interactions relating to emotional cognitive processing in the human sgACC. Furthermore, we directly related theta oscillatory dynamics in human sgACC to current trial congruency, demonstrating it as an important regulator during conflict detection. Our data endorse the sgACC as an integrative hub for cognitive emotional processing through modulation of beta and theta network activity.
Collapse
Affiliation(s)
- Nicole A Zalasky
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Feng Luo
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Linda H Kim
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - M Sohail Noor
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Elliot C Brown
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Mathison Centre for Mental Health Research & Education, University of Calgary, Calgary, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Ana P Arantes
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Rajamannar Ramasubbu
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Mathison Centre for Mental Health Research & Education, University of Calgary, Calgary, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Aaron J Gruber
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - Zelma H T Kiss
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada.
- Mathison Centre for Mental Health Research & Education, University of Calgary, Calgary, Canada.
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Darren L Clark
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Mathison Centre for Mental Health Research & Education, University of Calgary, Calgary, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
4
|
Chu HY, Smith Y, Lytton WW, Grafton S, Villalba R, Masilamoni G, Wichmann T. Dysfunction of motor cortices in Parkinson's disease. Cereb Cortex 2024; 34:bhae294. [PMID: 39066504 PMCID: PMC11281850 DOI: 10.1093/cercor/bhae294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/26/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
The cerebral cortex has long been thought to be involved in the pathophysiology of motor symptoms of Parkinson's disease. The impaired cortical function is believed to be a direct and immediate effect of pathologically patterned basal ganglia output, mediated to the cerebral cortex by way of the ventral motor thalamus. However, recent studies in humans with Parkinson's disease and in animal models of the disease have provided strong evidence suggesting that the involvement of the cerebral cortex is much broader than merely serving as a passive conduit for subcortical disturbances. In the present review, we discuss Parkinson's disease-related changes in frontal cortical motor regions, focusing on neuropathology, plasticity, changes in neurotransmission, and altered network interactions. We will also examine recent studies exploring the cortical circuits as potential targets for neuromodulation to treat Parkinson's disease.
Collapse
Affiliation(s)
- Hong-Yuan Chu
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Pharmacology and Physiology, Georgetown University Medical Center, 3900 Reservoir Rd N.W., Washington D.C. 20007, United States
| | - Yoland Smith
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Neurology, School of Medicine, Emory University, 12 Executive Drive N.E., Atlanta, GA 30329, United States
- Emory National Primate Research Center, 954 Gatewood Road N.E., Emory University, Atlanta, GA 30329, United States
| | - William W Lytton
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Physiology & Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, United States
- Department of Neurology, Kings County Hospital, 451 Clarkson Avenue,Brooklyn, NY 11203, United States
| | - Scott Grafton
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Psychological and Brain Sciences, University of California, 551 UCEN Road, Santa Barbara, CA 93106, United States
| | - Rosa Villalba
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Emory National Primate Research Center, 954 Gatewood Road N.E., Emory University, Atlanta, GA 30329, United States
| | - Gunasingh Masilamoni
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Emory National Primate Research Center, 954 Gatewood Road N.E., Emory University, Atlanta, GA 30329, United States
| | - Thomas Wichmann
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Neurology, School of Medicine, Emory University, 12 Executive Drive N.E., Atlanta, GA 30329, United States
- Emory National Primate Research Center, 954 Gatewood Road N.E., Emory University, Atlanta, GA 30329, United States
| |
Collapse
|
5
|
Vissani M, Bush A, Lipski WJ, Fischer P, Neudorfer C, Holt LL, Fiez JA, Turner RS, Richardson RM. Spike-phase coupling of subthalamic neurons to posterior opercular cortex predicts speech sound accuracy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.18.562969. [PMID: 37905141 PMCID: PMC10614892 DOI: 10.1101/2023.10.18.562969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Speech provides a rich context for understanding how cortical interactions with the basal ganglia contribute to unique human behaviors, but opportunities for direct intracranial recordings across cortical-basal ganglia networks are rare. We recorded electrocorticographic signals in the cortex synchronously with single units in the basal ganglia during awake neurosurgeries where subjects spoke syllable repetitions. We discovered that individual STN neurons have transient (200ms) spike-phase coupling (SPC) events with multiple cortical regions. The spike timing of STN neurons was coordinated with the phase of theta-alpha oscillations in the posterior supramarginal and superior temporal gyrus during speech planning and production. Speech sound errors occurred when this STN-cortical interaction was delayed. Our results suggest that the STN supports mechanisms of speech planning and auditory-sensorimotor integration during speech production that are required to achieve high fidelity of the phonological and articulatory representation of the target phoneme. These findings establish a framework for understanding cortical-basal ganglia interaction in other human behaviors, and additionally indicate that firing-rate based models are insufficient for explaining basal ganglia circuit behavior.
Collapse
Affiliation(s)
- Matteo Vissani
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Alan Bush
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Witold J. Lipski
- Department of Neurobiology, Systems Neuroscience Center and Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Petra Fischer
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, University Walk, BS8 1TD Bristol, United Kingdom
| | - Clemens Neudorfer
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Lori L. Holt
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712 USA
| | - Julie A. Fiez
- Department of Psychology, University of Pittsburgh, Pittsburgh 15260, PA, USA
| | - Robert S. Turner
- Department of Neurobiology, Systems Neuroscience Center and Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - R. Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
6
|
Bayman E, Chee K, Mendlen M, Denman DJ, Tien RN, Ojemann S, Kramer DR, Thompson JA. Subthalamic nucleus synchronization between beta band local field potential and single-unit activity in Parkinson's disease. Physiol Rep 2024; 12:e16001. [PMID: 38697943 PMCID: PMC11065686 DOI: 10.14814/phy2.16001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/24/2023] [Accepted: 03/26/2024] [Indexed: 05/05/2024] Open
Abstract
Local field potential (LFP) oscillations in the beta band (13-30 Hz) in the subthalamic nucleus (STN) of Parkinson's disease patients have been implicated in disease severity and treatment response. The relationship between single-neuron activity in the STN and regional beta power changes remains unclear. We used spike-triggered average (STA) to assess beta synchronization in STN. Beta power and STA magnitude at the beta frequency range were compared in three conditions: STN versus other subcortical structures, dorsal versus ventral STN, and high versus low beta power STN recordings. Magnitude of STA-LFP was greater within the STN compared to extra-STN structures along the trajectory path, despite no difference in percentage of the total power. Within the STN, there was a higher percent beta power in dorsal compared to ventral STN but no difference in STA-LFP magnitude. Further refining the comparison to high versus low beta peak power recordings inside the STN to evaluate if single-unit activity synchronized more strongly with beta band activity in areas of high beta power resulted in a significantly higher STA magnitude for areas of high beta power. Overall, these results suggest that STN single units strongly synchronize to beta activity, particularly units in areas of high beta power.
Collapse
Affiliation(s)
- Eric Bayman
- Department of NeurosurgeryUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Keanu Chee
- Department of NeurosurgeryUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Madelyn Mendlen
- Department of NeurosurgeryUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Daniel J. Denman
- Department of Neurophysiology and BiophysicsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Rex N. Tien
- Department of NeurosurgeryUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Steven Ojemann
- Department of NeurosurgeryUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Daniel R. Kramer
- Department of NeurosurgeryUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - John A. Thompson
- Department of NeurosurgeryUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
- Department of NeurologyUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| |
Collapse
|
7
|
Davidson B, Milosevic L, Kondrataviciute L, Kalia LV, Kalia SK. Neuroscience fundamentals relevant to neuromodulation: Neurobiology of deep brain stimulation in Parkinson's disease. Neurotherapeutics 2024; 21:e00348. [PMID: 38579455 PMCID: PMC11000190 DOI: 10.1016/j.neurot.2024.e00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 04/07/2024] Open
Abstract
Deep Brain Stimulation (DBS) has become a pivotal therapeutic approach for Parkinson's Disease (PD) and various neuropsychiatric conditions, impacting over 200,000 patients. Despite its widespread application, the intricate mechanisms behind DBS remain a subject of ongoing investigation. This article provides an overview of the current knowledge surrounding the local, circuit, and neurobiochemical effects of DBS, focusing on the subthalamic nucleus (STN) as a key target in PD management. The local effects of DBS, once thought to mimic a reversible lesion, now reveal a more nuanced interplay with myelinated axons, neurotransmitter release, and the surrounding microenvironment. Circuit effects illuminate the modulation of oscillatory activities within the basal ganglia and emphasize communication between the STN and the primary motor cortex. Neurobiochemical effects, encompassing changes in dopamine levels and epigenetic modifications, add further complexity to the DBS landscape. Finally, within the context of understanding the mechanisms of DBS in PD, the article highlights the controversial question of whether DBS exerts disease-modifying effects in PD. While preclinical evidence suggests neuroprotective potential, clinical trials such as EARLYSTIM face challenges in assessing long-term disease modification due to enrollment timing and methodology limitations. The discussion underscores the need for robust biomarkers and large-scale prospective trials to conclusively determine DBS's potential as a disease-modifying therapy in PD.
Collapse
Affiliation(s)
- Benjamin Davidson
- Division of Neurosurgery, Department of Surgery, University of Toronto, Canada.
| | - Luka Milosevic
- KITE, Toronto, Canada; CRANIA, Toronto, Canada; Krembil Research Institute, University Health Network Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada
| | - Laura Kondrataviciute
- CRANIA, Toronto, Canada; Krembil Research Institute, University Health Network Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada
| | - Lorraine V Kalia
- CRANIA, Toronto, Canada; Krembil Research Institute, University Health Network Toronto, Canada; Division of Neurology, Department of Medicine, University of Toronto, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, Department of Surgery, University of Toronto, Canada; KITE, Toronto, Canada; CRANIA, Toronto, Canada; Krembil Research Institute, University Health Network Toronto, Canada
| |
Collapse
|
8
|
Abdulbaki A, Doll T, Helgers S, Heissler HE, Voges J, Krauss JK, Schwabe K, Alam M. Subthalamic Nucleus Deep Brain Stimulation Restores Motor and Sensorimotor Cortical Neuronal Oscillatory Activity in the Free-Moving 6-Hydroxydopamine Lesion Rat Parkinson Model. Neuromodulation 2024; 27:489-499. [PMID: 37002052 DOI: 10.1016/j.neurom.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 03/31/2023]
Abstract
OBJECTIVES Enhanced beta oscillations in cortical-basal ganglia (BG) thalamic circuitries have been linked to clinical symptoms of Parkinson's disease. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) reduces beta band activity in BG regions, whereas little is known about activity in cortical regions. In this study, we investigated the effect of STN DBS on the spectral power of oscillatory activity in the motor cortex (MCtx) and sensorimotor cortex (SMCtx) by recording via an electrocorticogram (ECoG) array in free-moving 6-hydroxydopamine (6-OHDA) lesioned rats and sham-lesioned controls. MATERIALS AND METHODS Male Sprague-Dawley rats (250-350 g) were injected either with 6-OHDA or with saline in the right medial forebrain bundle, under general anesthesia. A stimulation electrode was then implanted in the ipsilateral STN, and an ECoG array was placed subdurally above the MCtx and SMCtx areas. Six days after the second surgery, the free-moving rats were individually recorded in three conditions: 1) basal activity, 2) during STN DBS, and 3) directly after STN DBS. RESULTS In 6-OHDA-lesioned rats (N = 8), the relative power of theta band activity was reduced, whereas activity of broad-range beta band (12-30 Hz) along with two different subbeta bands, that is, low (12-30 Hz) and high (20-30 Hz) beta band and gamma band, was higher in MCtx and SMCtx than in sham-lesioned controls (N = 7). This was, to some extent, reverted toward control level by STN DBS during and after stimulation. No major differences were found between contacts of the electrode grid or between MCtx and SMCtx. CONCLUSION Loss of nigrostriatal dopamine leads to abnormal oscillatory activity in both MCtx and SMCtx, which is compensated by STN stimulation, suggesting that parkinsonism-related oscillations in the cortex and BG are linked through their anatomic connections.
Collapse
Affiliation(s)
- Arif Abdulbaki
- Hannover Medical School, Department of Neurosurgery, Hannover, Germany.
| | - Theodor Doll
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Simeon Helgers
- Hannover Medical School, Department of Neurosurgery, Hannover, Germany
| | - Hans E Heissler
- Hannover Medical School, Department of Neurosurgery, Hannover, Germany
| | - Jürgen Voges
- Department of Stereotactic Neurosurgery, University Hospital Magdeburg, Magdeburg, Germany
| | - Joachim K Krauss
- Hannover Medical School, Department of Neurosurgery, Hannover, Germany
| | - Kerstin Schwabe
- Hannover Medical School, Department of Neurosurgery, Hannover, Germany
| | - Mesbah Alam
- Hannover Medical School, Department of Neurosurgery, Hannover, Germany
| |
Collapse
|
9
|
Farokhniaee A, Palmisano C, Del Vecchio Del Vecchio J, Pezzoli G, Volkmann J, Isaias IU. Gait-related beta-gamma phase amplitude coupling in the subthalamic nucleus of parkinsonian patients. Sci Rep 2024; 14:6674. [PMID: 38509158 PMCID: PMC10954750 DOI: 10.1038/s41598-024-57252-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
Analysis of coupling between the phases and amplitudes of neural oscillations has gained increasing attention as an important mechanism for large-scale brain network dynamics. In Parkinson's disease (PD), preliminary evidence indicates abnormal beta-phase coupling to gamma-amplitude in different brain areas, including the subthalamic nucleus (STN). We analyzed bilateral STN local field potentials (LFPs) in eight subjects with PD chronically implanted with deep brain stimulation electrodes during upright quiet standing and unperturbed walking. Phase-amplitude coupling (PAC) was computed using the Kullback-Liebler method, based on the modulation index. Neurophysiological recordings were correlated with clinical and kinematic measurements and individual molecular brain imaging studies ([123I]FP-CIT and single-photon emission computed tomography). We showed a dopamine-related increase in subthalamic beta-gamma PAC from standing to walking. Patients with poor PAC modulation and low PAC during walking spent significantly more time in the stance and double support phase of the gait cycle. Our results provide new insights into the subthalamic contribution to human gait and suggest cross-frequency coupling as a gateway mechanism to convey patient-specific information of motor control for human locomotion.
Collapse
Affiliation(s)
- AmirAli Farokhniaee
- Fondazione Grigioni Per Il Morbo Di Parkinson, Via Gianfranco Zuretti 35, 20125, Milano, Italy.
- Parkinson Institute Milan, ASST G. Pini CTO, Via Bignami 1, 20126, Milano, Italy.
| | - Chiara Palmisano
- Department of Neurology, University Hospital of Würzburg, and Julius Maximilian University of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Jasmin Del Vecchio Del Vecchio
- Department of Neurology, University Hospital of Würzburg, and Julius Maximilian University of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Gianni Pezzoli
- Fondazione Grigioni Per Il Morbo Di Parkinson, Via Gianfranco Zuretti 35, 20125, Milano, Italy
- Parkinson Institute Milan, ASST G. Pini CTO, Via Bignami 1, 20126, Milano, Italy
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg, and Julius Maximilian University of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Ioannis U Isaias
- Parkinson Institute Milan, ASST G. Pini CTO, Via Bignami 1, 20126, Milano, Italy
- Department of Neurology, University Hospital of Würzburg, and Julius Maximilian University of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| |
Collapse
|
10
|
Pardo-Valencia J, Fernández-García C, Alonso-Frech F, Foffani G. Oscillatory vs. non-oscillatory subthalamic beta activity in Parkinson's disease. J Physiol 2024; 602:373-395. [PMID: 38084073 DOI: 10.1113/jp284768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 11/13/2023] [Indexed: 01/16/2024] Open
Abstract
Parkinson's disease is characterized by exaggerated beta activity (13-35 Hz) in cortico-basal ganglia motor loops. Beta activity includes both periodic fluctuations (i.e. oscillatory activity) and aperiodic fluctuations reflecting spiking activity and excitation/inhibition balance (i.e. non-oscillatory activity). However, the relative contribution, dopamine dependency and clinical correlations of oscillatory vs. non-oscillatory beta activity remain unclear. We recorded, modelled and analysed subthalamic local field potentials in parkinsonian patients at rest while off or on medication. Autoregressive modelling with additive 1/f noise clarified the relationships between measures of beta activity in the time domain (i.e. amplitude and duration of beta bursts) or in the frequency domain (i.e. power and sharpness of the spectral peak) and oscillatory vs. non-oscillatory activity: burst duration and spectral sharpness are specifically sensitive to oscillatory activity, whereas burst amplitude and spectral power are ambiguously sensitive to both oscillatory and non-oscillatory activity. Our experimental data confirmed the model predictions and assumptions. We subsequently analysed the effect of levodopa, obtaining strong-to-extreme Bayesian evidence that oscillatory beta activity is reduced in patients on vs. off medication, with moderate evidence for absence of modulation of the non-oscillatory component. Finally, specifically the oscillatory component of beta activity correlated with the rate of motor progression of the disease. Methodologically, these results provide an integrative understanding of beta-based biomarkers relevant for adaptive deep brain stimulation. Biologically, they suggest that primarily the oscillatory component of subthalamic beta activity is dopamine dependent and may play a role not only in the pathophysiology but also in the progression of Parkinson's disease. KEY POINTS: Beta activity in Parkinson's disease includes both true periodic fluctuations (i.e. oscillatory activity) and aperiodic fluctuations reflecting spiking activity and synaptic balance (i.e. non-oscillatory activity). The relative contribution, dopamine dependency and clinical correlations of oscillatory vs. non-oscillatory beta activity remain unclear. Burst duration and spectral sharpness are specifically sensitive to oscillatory activity, while burst amplitude and spectral power are ambiguously sensitive to both oscillatory and non-oscillatory activity. Only the oscillatory component of subthalamic beta activity is dopamine-dependent. Stronger beta oscillatory activity correlates with faster motor progression of the disease.
Collapse
Affiliation(s)
- Jesús Pardo-Valencia
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
| | - Carla Fernández-García
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
| | - Fernando Alonso-Frech
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Department of Neurology, San Carlos Research Health Intitute (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Guglielmo Foffani
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
- Instituto de Salud Carlos III, CIBERNED, Madrid, Spain
| |
Collapse
|
11
|
Bougou V, Vanhoyland M, Decramer T, Van Hoylandt A, Smeijers S, Nuttin B, De Vloo P, Vandenberghe W, Nieuwboer A, Janssen P, Theys T. Active and Passive Cycling Decrease Subthalamic β Oscillations in Parkinson's Disease. Mov Disord 2024; 39:85-93. [PMID: 37860957 DOI: 10.1002/mds.29632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 09/08/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Preserved cycling capabilities in patients with Parkinson's disease, especially in those with freezing of gait are still poorly understood. Previous research with invasive local field potential recordings in the subthalamic nucleus has shown that cycling causes a stronger suppression of β oscillations compared to walking, which facilitates motor continuation. METHODS We recorded local field potentials from 12 patients with Parkinson's disease (six without freezing of gait, six with freezing of gait) who were bilaterally implanted with deep brain stimulation electrodes in the subthalamic nucleus. We investigated β (13-30 Hz) and high γ (60-100 Hz) power during both active and passive cycling with different cadences and compared patients with and without freezing of gait. The passive cycling experiment, where a motor provided a fixed cadence, allowed us to study the effect of isolated sensory inputs without physical exercise. RESULTS We found similarly strong suppression of pathological β activity for both active and passive cycling. In contrast, there was stronger high γ band activity for active cycling. Notably, the effects of active and passive cycling were all independent of cadence. Finally, β suppression was stronger for patients with freezing of gait, especially during passive cycling. CONCLUSIONS Our results provide evidence for a link between proprioceptive input during cycling and β suppression. These findings support the role of continuous external sensory input and proprioceptive feedback during rhythmic passive cycling movements and suggest that systematic passive mobilization might hold therapeutic potential. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Vasiliki Bougou
- Research Group of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven and the Leuven Brain Institute, Leuven, Belgium
- Laboratory for Neuro- and Psychophysiology, Research Group Neurophysiology, Department of Neurosciences, KU Leuven and the Leuven Brain Institute, Leuven, Belgium
| | - Michaël Vanhoyland
- Research Group of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven and the Leuven Brain Institute, Leuven, Belgium
- Laboratory for Neuro- and Psychophysiology, Research Group Neurophysiology, Department of Neurosciences, KU Leuven and the Leuven Brain Institute, Leuven, Belgium
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| | - Thomas Decramer
- Research Group of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven and the Leuven Brain Institute, Leuven, Belgium
- Laboratory for Neuro- and Psychophysiology, Research Group Neurophysiology, Department of Neurosciences, KU Leuven and the Leuven Brain Institute, Leuven, Belgium
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| | - Anaïs Van Hoylandt
- Research Group of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven and the Leuven Brain Institute, Leuven, Belgium
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| | - Steven Smeijers
- Research Group of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven and the Leuven Brain Institute, Leuven, Belgium
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| | - Bart Nuttin
- Research Group of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven and the Leuven Brain Institute, Leuven, Belgium
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| | - Philippe De Vloo
- Research Group of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven and the Leuven Brain Institute, Leuven, Belgium
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| | - Wim Vandenberghe
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Parkinson Research, Research Group Experimental Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Alice Nieuwboer
- Research Group of Neurorehabilitation, Department of Rehabilitation Sciences, KU Leuven and the Leuven Brain Institute, Leuven, Belgium
| | - Peter Janssen
- Laboratory for Neuro- and Psychophysiology, Research Group Neurophysiology, Department of Neurosciences, KU Leuven and the Leuven Brain Institute, Leuven, Belgium
| | - Tom Theys
- Research Group of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven and the Leuven Brain Institute, Leuven, Belgium
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Neumann WJ, Steiner LA, Milosevic L. Neurophysiological mechanisms of deep brain stimulation across spatiotemporal resolutions. Brain 2023; 146:4456-4468. [PMID: 37450573 PMCID: PMC10629774 DOI: 10.1093/brain/awad239] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/04/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
Deep brain stimulation is a neuromodulatory treatment for managing the symptoms of Parkinson's disease and other neurological and psychiatric disorders. Electrodes are chronically implanted in disease-relevant brain regions and pulsatile electrical stimulation delivery is intended to restore neurocircuit function. However, the widespread interest in the application and expansion of this clinical therapy has preceded an overarching understanding of the neurocircuit alterations invoked by deep brain stimulation. Over the years, various forms of neurophysiological evidence have emerged which demonstrate changes to brain activity across spatiotemporal resolutions; from single neuron, to local field potential, to brain-wide cortical network effects. Though fruitful, such studies have often led to debate about a singular putative mechanism. In this Update we aim to produce an integrative account of complementary instead of mutually exclusive neurophysiological effects to derive a generalizable concept of the mechanisms of deep brain stimulation. In particular, we offer a critical review of the most common historical competing theories, an updated discussion on recent literature from animal and human neurophysiological studies, and a synthesis of synaptic and network effects of deep brain stimulation across scales of observation, including micro-, meso- and macroscale circuit alterations.
Collapse
Affiliation(s)
- Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Leon A Steiner
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
- Department of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network, Toronto M5T 1M8, Canada
| | - Luka Milosevic
- Department of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network, Toronto M5T 1M8, Canada
- Institute of Biomedical Engineering, Institute of Medical Sciences, and CRANIA Neuromodulation Institute, University of Toronto, Toronto M5S 3G9, Canada
| |
Collapse
|
13
|
Radcliffe EM, Baumgartner AJ, Kern DS, Al Borno M, Ojemann S, Kramer DR, Thompson JA. Oscillatory beta dynamics inform biomarker-driven treatment optimization for Parkinson's disease. J Neurophysiol 2023; 129:1492-1504. [PMID: 37198135 DOI: 10.1152/jn.00055.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/23/2023] [Accepted: 05/17/2023] [Indexed: 05/19/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons and dysregulation of the basal ganglia. Cardinal motor symptoms include bradykinesia, rigidity, and tremor. Deep brain stimulation (DBS) of select subcortical nuclei is standard of care for medication-refractory PD. Conventional open-loop DBS delivers continuous stimulation with fixed parameters that do not account for a patient's dynamic activity state or medication cycle. In comparison, closed-loop DBS, or adaptive DBS (aDBS), adjusts stimulation based on biomarker feedback that correlates with clinical state. Recent work has identified several neurophysiological biomarkers in local field potential recordings from PD patients, the most promising of which are 1) elevated beta (∼13-30 Hz) power in the subthalamic nucleus (STN), 2) increased beta synchrony throughout basal ganglia-thalamocortical circuits, notably observed as coupling between the STN beta phase and cortical broadband gamma (∼50-200 Hz) amplitude, and 3) prolonged beta bursts in the STN and cortex. In this review, we highlight relevant frequency and time domain features of STN beta measured in PD patients and summarize how spectral beta power, oscillatory beta synchrony, phase-amplitude coupling, and temporal beta bursting inform PD pathology, neurosurgical targeting, and DBS therapy. We then review how STN beta dynamics inform predictive, biomarker-driven aDBS approaches for optimizing PD treatment. We therefore provide clinically useful and actionable insight that can be applied toward aDBS implementation for PD.
Collapse
Affiliation(s)
- Erin M Radcliffe
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Alexander J Baumgartner
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Drew S Kern
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Mazen Al Borno
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Computer Science and Engineering, University of Colorado Denver, Denver, Colorado, United States
| | - Steven Ojemann
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Daniel R Kramer
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - John A Thompson
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
14
|
Kons Z, Hadanny A, Bush A, Nanda P, Herrington TM, Richardson RM. Accurate Deep Brain Stimulation Lead Placement Concurrent With Research Electrocorticography. Oper Neurosurg (Hagerstown) 2023; 24:524-532. [PMID: 36701668 PMCID: PMC10158863 DOI: 10.1227/ons.0000000000000582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/14/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Using electrocorticography for research (R-ECoG) during deep brain stimulation (DBS) surgery has advanced our understanding of human cortical-basal ganglia neurophysiology and mechanisms of therapeutic circuit modulation. The safety of R-ECoG has been established, but potential effects of temporary ECoG strip placement on targeting accuracy have not been reported. OBJECTIVE To determine whether temporary subdural electrode strip placement during DBS implantation surgery affects lead implantation accuracy. METHODS Twenty-four consecutive patients enrolled in a prospective database who underwent awake DBS surgery were identified. Ten of 24 subjects participated in R-ECoG. Lead locations were determined after fusing postoperative computed tomography scans into the surgical planning software. The effect of brain shift was quantified using Lead-DBS and analyzed in a mixed-effects model controlling for time interval to postoperative computed tomography. Targeting accuracy was reported as radial and Euclidean distance errors and compared with Mann-Whitney tests. RESULTS Neither radial error nor Euclidean distance error differed significantly between R-ECoG participants and nonparticipants. Pneumocephalus volume did not differ between the 2 groups, but brain shift was slightly greater with R-ECoG. Pneumocephalus volume correlated with brain shift, but neither of these measures significantly correlated with Euclidean distance error. There were no complications in either group. CONCLUSION In addition to an excellent general safety profile as has been reported previously, these results suggest that performing R-ECoG during DBS implantation surgery does not affect the accuracy of lead placement.
Collapse
Affiliation(s)
- Zachary Kons
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA;
- Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA;
| | - Amir Hadanny
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA;
| | - Alan Bush
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA;
- Harvard Medical School, Boston, Massachusetts, USA;
| | - Pranav Nanda
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA;
| | - Todd M. Herrington
- Harvard Medical School, Boston, Massachusetts, USA;
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA;
| | - R. Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA;
- Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
15
|
Sun S, Wang X, Shi X, Fang H, Sun Y, Li M, Han H, He Q, Wang X, Zhang X, Zhu ZW, Chen F, Wang M. Neural pathway connectivity and discharge changes between M1 and STN in hemiparkinsonian rats. Brain Res Bull 2023; 196:1-19. [PMID: 36878325 DOI: 10.1016/j.brainresbull.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
Alterations of electrophysiological activities, such as changed spike firing rates, reshaping the firing patterns, and aberrant frequency oscillations between the subthalamic nucleus (STN) and the primary motor cortex (M1), are thought to contribute to motor impairment in Parkinson's disease (PD). However, the alterations of electrophysiological characteristics of STN and M1 in PD are still unclear, especially under specific treadmill movement. To examine the relationship between electrophysiological activity in the STN-M1 pathway, extracellular spike trains and local field potential (LFPs) of STN and M1 were simultaneously recorded during resting and movement in unilateral 6-hydroxydopamine (6-OHDA) lesioned rats. The results showed that the identified STN neurons and M1 neurons exhibited abnormal neuronal activity after dopamine loss. The dopamine depletion altered the LFP power in STN and M1 whatever in rest or movement states. Furthermore, the enhanced synchronization of LFP oscillations after dopamine loss was found in 12-35 Hz (beta frequencies) between the STN and M1 during rest and movement. In addition, STN neurons were phase-locked firing to M1 oscillations at 12-35 Hz during rest epochs in 6-OHDA lesioned rats. The dopamine depletion also impaired the anatomical connectivity between the M1 and STN by injecting anterograde neuroanatomical tracing virus into M1 in control and PD rats. Collectively, impairment of' electrophysiological activity and anatomical connectivity in the M1-STN pathway may be the basis for dysfunction of the cortico-basal ganglia circuit, correlating with motor symptoms of PD.
Collapse
Affiliation(s)
- Shuang Sun
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan 250014, China
| | - Xuenan Wang
- Shandong Institute of Brain Science and Brain-inspired Research, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan 250117, China
| | - Xiaoman Shi
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan 250014, China
| | - Heyi Fang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan 250014, China
| | - Yue Sun
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan 250014, China
| | - Min Li
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan 250014, China
| | - Hongyu Han
- Weifang Middle School, Weifang 261031, China
| | - Qin He
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan 250014, China
| | - Xiaojun Wang
- The First Hospital Affiliated with Shandong First Medicine University, Jinan 250014, China
| | - Xiao Zhang
- Editorial Department of Journal, Shandong Jianzhu University, Jinan 250014, China
| | - Zhi Wei Zhu
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan 250014, China
| | - Feiyu Chen
- School of International Education, Qilu University of Technology, Jinan 250014, China.
| | - Min Wang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan 250014, China.
| |
Collapse
|
16
|
Weiss AR, Korzeniewska A, Chrabaszcz A, Bush A, Fiez JA, Crone NE, Richardson RM. Lexicality-Modulated Influence of Auditory Cortex on Subthalamic Nucleus During Motor Planning for Speech. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2023; 4:53-80. [PMID: 37229140 PMCID: PMC10205077 DOI: 10.1162/nol_a_00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/18/2022] [Indexed: 05/27/2023]
Abstract
Speech requires successful information transfer within cortical-basal ganglia loop circuits to produce the desired acoustic output. For this reason, up to 90% of Parkinson's disease patients experience impairments of speech articulation. Deep brain stimulation (DBS) is highly effective in controlling the symptoms of Parkinson's disease, sometimes alongside speech improvement, but subthalamic nucleus (STN) DBS can also lead to decreases in semantic and phonological fluency. This paradox demands better understanding of the interactions between the cortical speech network and the STN, which can be investigated with intracranial EEG recordings collected during DBS implantation surgery. We analyzed the propagation of high-gamma activity between STN, superior temporal gyrus (STG), and ventral sensorimotor cortices during reading aloud via event-related causality, a method that estimates strengths and directionalities of neural activity propagation. We employed a newly developed bivariate smoothing model based on a two-dimensional moving average, which is optimal for reducing random noise while retaining a sharp step response, to ensure precise embedding of statistical significance in the time-frequency space. Sustained and reciprocal neural interactions between STN and ventral sensorimotor cortex were observed. Moreover, high-gamma activity propagated from the STG to the STN prior to speech onset. The strength of this influence was affected by the lexical status of the utterance, with increased activity propagation during word versus pseudoword reading. These unique data suggest a potential role for the STN in the feedforward control of speech.
Collapse
Affiliation(s)
- Alexander R. Weiss
- JHU Cognitive Neurophysiology and BMI Lab, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anna Korzeniewska
- JHU Cognitive Neurophysiology and BMI Lab, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anna Chrabaszcz
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alan Bush
- Brain Modulation Lab, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Julie A. Fiez
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Nathan E. Crone
- JHU Cognitive Neurophysiology and BMI Lab, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert M. Richardson
- Brain Modulation Lab, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Hwang YS, Jo S, Lee SH, Kim N, Kim MS, Jeon SR, Chung SJ. Long-term motor outcomes of deep brain stimulation of the globus pallidus interna in Parkinson's disease patients: Five-year follow-up. J Neurol Sci 2023; 444:120484. [PMID: 36463584 DOI: 10.1016/j.jns.2022.120484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/26/2022] [Accepted: 10/25/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) of globus pallidus interna (GPi) is an established treatment for advanced Parkinson's disease (PD). However, in contrast to subthalamic nucleus (STN)-DBS, long-term outcomes of GPi-DBS have rarely been studied. OBJECTIVE We investigated the long-term motor outcomes in PD patients at 5 years after GPi-DBS. METHODS We retrospectively analyzed the clinical data for PD patients who underwent GPi-DBS. Longitudinal changes of UPDRS scores from baseline to 5 years after surgery were assessed. RESULTS Forty PD patients with a mean age of 59.5 ± 7.9 years at DBS surgery (mean duration of PD: 11.4 ± 3.4 years) were included at baseline and 25 patients were included in 5-year evaluation after DBS. Compared to baseline, sub-scores for tremor, levodopa-induced dyskinesia (LID), and motor fluctuation indicated improved states up to 5 years after surgery (p < 0.001). However, UPDRS Part 3 total score and sub-score for postural instability and gait disturbance (PIGD) gradually worsened over time until 5 years after surgery (p > 0.017 after Bonferroni correction). In a logistic regression model, only preoperative levodopa response was associated with the long-term benefits on UPDRS Part 3 total score and PIGD sub-score (OR = 1.20; 95% CI = 1.04-1.39; p = 0.015 and OR = 4.99; 95% CI = 1.39-17.89; p = 0.014, respectively). CONCLUSIONS GPi-DBS provides long-term beneficial effects against tremor, motor fluctuation and LID, but PIGD symptoms gradually worsen. This selective long-term benefit has implications for the optimal application of DBS in PD patients.
Collapse
Affiliation(s)
- Yun Su Hwang
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology, Jeonbuk National University Medical School and Hospital, Jeonju, South Korea; Research Institute of Clinical Medicine of Jeonbuk National University - Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - Sungyang Jo
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seung Hyun Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Nayoung Kim
- Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Mi-Sun Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sang Ryong Jeon
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
18
|
Liu S, Duan M, Sun Y, Wang L, An L, Ming D. Neural responses to social decision-making in suicide attempters with mental disorders. BMC Psychiatry 2023; 23:19. [PMID: 36624426 PMCID: PMC9830736 DOI: 10.1186/s12888-022-04422-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/24/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Decision-making deficits have been reported in suicide attempters and may be a neuropsychological trait of vulnerability to suicidal behavior. However, little is known about how neural activity is altered in decision-making. This study aimed to investigate the neural responses in suicide attempters with mental disorders during social decision-making. Electroencephalography (EEG) were recorded from 52 patients with mental disorders with past suicide attempts (SAs = 26) and without past suicide attempts (NSAs = 26), as well as from 22 age- and sex- matched healthy controls (HCs) during the Ultimatum Game (UG), which is a typical paradigm to investigate the responses to fair and unfair decision-making. METHODS MINI 5.0 interview and self report questionnaire were used to make mental diagnosis and suicide behavior assessment for individuals. Event-related potential (ERP) and phase-amplitude coupling (PAC) were extracted to quantify the neural activity. Furthermore, Spearman correlation and logistic regression analyses were conducted to identify the risk factors of suicidal behavior. RESULTS ERP analysis demonstrated that SA patients had decreased P2 amplitude and prolonged P2 latency when receiving unfair offers. Moreover, SA patients exhibited greater negative-going feedback-related negativity (FRN) to unfair offers compared to fair ones, whereas such a phenomenon was absent in NSA and HC groups. These results revealed that SA patients had a stronger fairness principle and a disregard toward the cost of punishment in social decision-making. Furthermore, theta-gamma and beta-gamma PAC were involved in decision-making, with compromised neural coordination in the frontal, central, and temporal regions in SA patients, suggesting cognitive dysfunction during social interaction. Statistically significant variables were used in logistic regression analysis. The area under receiver operating characteristic curve in the logistic regression model was 0.91 for SA/HC and 0.84 for SA/NSA. CONCLUSIONS Our findings emphasize that suicide attempts in patients with mental disorders are associated with abnormal decision-making. P2, theta-gamma PAC, and beta-gamma PAC may be neuro-electrophysiological biomarkers associated with decision-making. These results provide neurophysiological signatures of suicidal behavior.
Collapse
Affiliation(s)
- Shuang Liu
- grid.33763.320000 0004 1761 2484Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| | - Moxin Duan
- grid.33763.320000 0004 1761 2484Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| | - Yiwei Sun
- grid.33763.320000 0004 1761 2484Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| | - Lingling Wang
- grid.33763.320000 0004 1761 2484School of Education, Tianjin University, Tianjin, China
| | - Li An
- School of Education, Tianjin University, Tianjin, China.
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China. .,School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China.
| |
Collapse
|
19
|
Bove F, Genovese D, Moro E. Developments in the mechanistic understanding and clinical application of deep brain stimulation for Parkinson's disease. Expert Rev Neurother 2022; 22:789-803. [PMID: 36228575 DOI: 10.1080/14737175.2022.2136030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION. Deep brain stimulation (DBS) is a life-changing treatment for patients with Parkinson's disease (PD) and gives the unique opportunity to directly explore how basal ganglia work. Despite the rapid technological innovation of the last years, the untapped potential of DBS is still high. AREAS COVERED. This review summarizes the developments in the mechanistic understanding of DBS and the potential clinical applications of cutting-edge technological advances. Rather than a univocal local mechanism, DBS exerts its therapeutic effects through several multimodal mechanisms and involving both local and network-wide structures, although crucial questions remain unexplained. Nonetheless, new insights in mechanistic understanding of DBS in PD have provided solid bases for advances in preoperative selection phase, prediction of motor and non-motor outcomes, leads placement and postoperative stimulation programming. EXPERT OPINION. DBS has not only strong evidence of clinical effectiveness in PD treatment, but technological advancements are revamping its role of neuromodulation of brain circuits and key to better understanding PD pathophysiology. In the next few years, the worldwide use of new technologies in clinical practice will provide large data to elucidate their role and to expand their applications for PD patients, providing useful insights to personalize DBS treatment and follow-up.
Collapse
Affiliation(s)
- Francesco Bove
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Danilo Genovese
- Fresco Institute for Parkinson's and Movement Disorders, Department of Neurology, New York University School of Medicine, New York, New York, USA
| | - Elena Moro
- Grenoble Alpes University, CHU of Grenoble, Division of Neurology, Grenoble, France.,Grenoble Institute of Neurosciences, INSERM, U1216, Grenoble, France
| |
Collapse
|
20
|
State space methods for phase amplitude coupling analysis. Sci Rep 2022; 12:15940. [PMID: 36153353 PMCID: PMC9509338 DOI: 10.1038/s41598-022-18475-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Phase amplitude coupling (PAC) is thought to play a fundamental role in the dynamic coordination of brain circuits and systems. There are however growing concerns that existing methods for PAC analysis are prone to error and misinterpretation. Improper frequency band selection can render true PAC undetectable, while non-linearities or abrupt changes in the signal can produce spurious PAC. Current methods require large amounts of data and lack formal statistical inference tools. We describe here a novel approach for PAC analysis that substantially addresses these problems. We use a state space model to estimate the component oscillations, avoiding problems with frequency band selection, nonlinearities, and sharp signal transitions. We represent cross-frequency coupling in parametric and time-varying forms to further improve statistical efficiency and estimate the posterior distribution of the coupling parameters to derive their credible intervals. We demonstrate the method using simulated data, rat local field potentials (LFP) data, and human EEG data.
Collapse
|
21
|
Chauhan K, Khaledi-Nasab A, Neiman AB, Tass PA. Dynamics of phase oscillator networks with synaptic weight and structural plasticity. Sci Rep 2022; 12:15003. [PMID: 36056151 PMCID: PMC9440105 DOI: 10.1038/s41598-022-19417-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/29/2022] [Indexed: 11/08/2022] Open
Abstract
We study the dynamics of Kuramoto oscillator networks with two distinct adaptation processes, one varying the coupling strengths and the other altering the network structure. Such systems model certain networks of oscillatory neurons where the neuronal dynamics, synaptic weights, and network structure interact with and shape each other. We model synaptic weight adaptation with spike-timing-dependent plasticity (STDP) that runs on a longer time scale than neuronal spiking. Structural changes that include addition and elimination of contacts occur at yet a longer time scale than the weight adaptations. First, we study the steady-state dynamics of Kuramoto networks that are bistable and can settle in synchronized or desynchronized states. To compare the impact of adding structural plasticity, we contrast the network with only STDP to one with a combination of STDP and structural plasticity. We show that the inclusion of structural plasticity optimizes the synchronized state of a network by allowing for synchronization with fewer links than a network with STDP alone. With non-identical units in the network, the addition of structural plasticity leads to the emergence of correlations between the oscillators' natural frequencies and node degrees. In the desynchronized regime, the structural plasticity decreases the number of contacts, leading to a sparse network. In this way, adding structural plasticity strengthens both synchronized and desynchronized states of a network. Second, we use desynchronizing coordinated reset stimulation and synchronizing periodic stimulation to induce desynchronized and synchronized states, respectively. Our findings indicate that a network with a combination of STDP and structural plasticity may require stronger and longer stimulation to switch between the states than a network with STDP only.
Collapse
Affiliation(s)
- Kanishk Chauhan
- Department of Physics and Astronomy, Ohio University, Athens, OH, 45701, USA.
- Neuroscience Program, Ohio University, Athens, OH, 45701, USA.
| | - Ali Khaledi-Nasab
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA
| | - Alexander B Neiman
- Department of Physics and Astronomy, Ohio University, Athens, OH, 45701, USA
- Neuroscience Program, Ohio University, Athens, OH, 45701, USA
| | - Peter A Tass
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
22
|
Schor JS, Gonzalez Montalvo I, Spratt PWE, Brakaj RJ, Stansil JA, Twedell EL, Bender KJ, Nelson AB. Therapeutic deep brain stimulation disrupts movement-related subthalamic nucleus activity in parkinsonian mice. eLife 2022; 11:e75253. [PMID: 35786442 PMCID: PMC9342952 DOI: 10.7554/elife.75253] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 07/01/2022] [Indexed: 12/02/2022] Open
Abstract
Subthalamic nucleus deep brain stimulation (STN DBS) relieves many motor symptoms of Parkinson's disease (PD), but its underlying therapeutic mechanisms remain unclear. Since its advent, three major theories have been proposed: (1) DBS inhibits the STN and basal ganglia output; (2) DBS antidromically activates motor cortex; and (3) DBS disrupts firing dynamics within the STN. Previously, stimulation-related electrical artifacts limited mechanistic investigations using electrophysiology. We used electrical artifact-free GCaMP fiber photometry to investigate activity in basal ganglia nuclei during STN DBS in parkinsonian mice. To test whether the observed changes in activity were sufficient to relieve motor symptoms, we then combined electrophysiological recording with targeted optical DBS protocols. Our findings suggest that STN DBS exerts its therapeutic effect through the disruption of movement-related STN activity, rather than inhibition or antidromic activation. These results provide insight into optimizing PD treatments and establish an approach for investigating DBS in other neuropsychiatric conditions.
Collapse
Affiliation(s)
- Jonathan S Schor
- Neuroscience Program, University of California, San FranciscoSan FranciscoUnited States
- Kavli Institute for Fundamental Neuroscience, University of CaliforniaSan FranciscoUnited States
- Weill Institute for Neuroscience, University of California,San FranciscoUnited States
| | - Isabelle Gonzalez Montalvo
- Neuroscience Program, University of California, San FranciscoSan FranciscoUnited States
- Kavli Institute for Fundamental Neuroscience, University of CaliforniaSan FranciscoUnited States
- Weill Institute for Neuroscience, University of California,San FranciscoUnited States
| | - Perry WE Spratt
- Neuroscience Program, University of California, San FranciscoSan FranciscoUnited States
- Kavli Institute for Fundamental Neuroscience, University of CaliforniaSan FranciscoUnited States
- Weill Institute for Neuroscience, University of California,San FranciscoUnited States
| | - Rea J Brakaj
- Kavli Institute for Fundamental Neuroscience, University of CaliforniaSan FranciscoUnited States
- Weill Institute for Neuroscience, University of California,San FranciscoUnited States
- Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - Jasmine A Stansil
- Kavli Institute for Fundamental Neuroscience, University of CaliforniaSan FranciscoUnited States
- Weill Institute for Neuroscience, University of California,San FranciscoUnited States
- Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Emily L Twedell
- Neuroscience Program, University of California, San FranciscoSan FranciscoUnited States
- Kavli Institute for Fundamental Neuroscience, University of CaliforniaSan FranciscoUnited States
- Weill Institute for Neuroscience, University of California,San FranciscoUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Kevin J Bender
- Neuroscience Program, University of California, San FranciscoSan FranciscoUnited States
- Kavli Institute for Fundamental Neuroscience, University of CaliforniaSan FranciscoUnited States
- Weill Institute for Neuroscience, University of California,San FranciscoUnited States
- Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - Alexandra B Nelson
- Neuroscience Program, University of California, San FranciscoSan FranciscoUnited States
- Kavli Institute for Fundamental Neuroscience, University of CaliforniaSan FranciscoUnited States
- Weill Institute for Neuroscience, University of California,San FranciscoUnited States
- Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| |
Collapse
|
23
|
Guest AC, O'Neill KJ, Graham D, Mirzadeh Z, Ponce FA, Greger B. Microscale electrophysiological functional connectivity in human cortico-basal ganglia network. Clin Neurophysiol 2022; 142:11-19. [DOI: 10.1016/j.clinph.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/16/2022] [Accepted: 06/30/2022] [Indexed: 11/03/2022]
|
24
|
Kulkarni AS, Burns MR, Brundin P, Wesson DW. Linking α-synuclein-induced synaptopathy and neural network dysfunction in early Parkinson's disease. Brain Commun 2022; 4:fcac165. [PMID: 35822101 PMCID: PMC9272065 DOI: 10.1093/braincomms/fcac165] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/11/2022] [Accepted: 06/20/2022] [Indexed: 01/18/2023] Open
Abstract
The prodromal phase of Parkinson's disease is characterized by aggregation of the misfolded pathogenic protein α-synuclein in select neural centres, co-occurring with non-motor symptoms including sensory and cognitive loss, and emotional disturbances. It is unclear whether neuronal loss is significant during the prodrome. Underlying these symptoms are synaptic impairments and aberrant neural network activity. However, the relationships between synaptic defects and network-level perturbations are not established. In experimental models, pathological α-synuclein not only impacts neurotransmission at the synaptic level, but also leads to changes in brain network-level oscillatory dynamics-both of which likely contribute to non-motor deficits observed in Parkinson's disease. Here we draw upon research from both human subjects and experimental models to propose a 'synapse to network prodrome cascade' wherein before overt cell death, pathological α-synuclein induces synaptic loss and contributes to aberrant network activity, which then gives rise to prodromal symptomology. As the disease progresses, abnormal patterns of neural activity ultimately lead to neuronal loss and clinical progression of disease. Finally, we outline goals and research needed to unravel the basis of functional impairments in Parkinson's disease and other α-synucleinopathies.
Collapse
Affiliation(s)
- Aishwarya S Kulkarni
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
| | - Matthew R Burns
- Department of Neurology, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
- Norman Fixel Institute for Neurological Disorders, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
| | - Patrik Brundin
- Pharma Research and Early Development (pRED), F. Hoffman-La Roche, Little Falls, NJ, USA
| | - Daniel W Wesson
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
- Norman Fixel Institute for Neurological Disorders, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
| |
Collapse
|
25
|
Yu Y, Han F, Wang Q. Exploring phase–amplitude coupling from primary motor cortex-basal ganglia-thalamus network model. Neural Netw 2022; 153:130-141. [DOI: 10.1016/j.neunet.2022.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/11/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
|
26
|
Wang MB, Boring MJ, Ward MJ, Richardson RM, Ghuman AS. Deep brain stimulation for parkinson's disease induces spontaneous cortical hypersynchrony in extended motor and cognitive networks. Cereb Cortex 2022; 32:4480-4491. [PMID: 35136991 PMCID: PMC9574237 DOI: 10.1093/cercor/bhab496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 11/14/2022] Open
Abstract
The mechanism of action of deep brain stimulation (DBS) to the basal ganglia for Parkinson's disease remains unclear. Studies have shown that DBS decreases pathological beta hypersynchrony between the basal ganglia and motor cortex. However, little is known about DBS's effects on long range corticocortical synchronization. Here, we use machine learning combined with graph theory to compare resting-state cortical connectivity between the off and on-stimulation states and to healthy controls. We found that turning DBS on increased high beta and gamma band synchrony (26 to 50 Hz) in a cortical circuit spanning the motor, occipitoparietal, middle temporal, and prefrontal cortices. The synchrony in this network was greater in DBS on relative to both DBS off and controls, with no significant difference between DBS off and controls. Turning DBS on also increased network efficiency and strength and subnetwork modularity relative to both DBS off and controls in the beta and gamma band. Thus, unlike DBS's subcortical normalization of pathological basal ganglia activity, it introduces greater synchrony relative to healthy controls in cortical circuitry that includes both motor and non-motor systems. This increased high beta/gamma synchronization may reflect compensatory mechanisms related to DBS's clinical benefits, as well as undesirable non-motor side effects.
Collapse
Affiliation(s)
- Maxwell B Wang
- Address correspondence to Maxwell B Wang, BS, Medical Scientist Training Program, University of Pittsburgh School of Medicine, Program of Neural Computation, Carnegie Mellon University, Pittsburgh, PA 15213. Tel: 815-200-9533;
| | - Matthew J Boring
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA 15213, USA,Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA 15213, USA,Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michael J Ward
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - R Mark Richardson
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA,Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA,Harvard Medical School, Boston, MA 02115, USA
| | - Avniel Singh Ghuman
- Program of Neural Computation, Carnegie Mellon University, Pittsburgh, PA 15213, USA,Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA 15213, USA,Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA 15213, USA,Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
27
|
Foffani G, Alegre M. Brain oscillations and Parkinson disease. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:259-271. [PMID: 35034740 DOI: 10.1016/b978-0-12-819410-2.00014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Brain oscillations have been associated with Parkinson's disease (PD) for a long time mainly due to the fundamental oscillatory nature of parkinsonian rest tremor. Over the years, this association has been extended to frequencies well above that of tremor, largely owing to the opportunities offered by deep brain stimulation (DBS) to record electrical activity directly from the patients' basal ganglia. This chapter reviews the results of research on brain oscillations in PD focusing on theta (4-7Hz), beta (13-35Hz), gamma (70-80Hz) and high-frequency oscillations (200-400Hz). For each of these oscillations, we describe localization and interaction with brain structures and between frequencies, changes due to dopamine intake, task-related modulation, and clinical relevance. The study of brain oscillations will also help to dissect the mechanisms of action of DBS. Overall, the chapter tentatively depicts PD in terms of "oscillopathy."
Collapse
Affiliation(s)
- Guglielmo Foffani
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; Neural Bioengineering, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain; CIBERNED, Instituto de Salud Carlos III, Madrid, Spain.
| | - Manuel Alegre
- Clinical Neurophysiology Section, Clínica Universidad de Navarra, Pamplona, Spain; Systems Neuroscience Lab, Program of Neuroscience, CIMA, Universidad de Navarra, Pamplona, Spain; IdisNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.
| |
Collapse
|
28
|
Pozzi NG, Isaias IU. Adaptive deep brain stimulation: Retuning Parkinson's disease. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:273-284. [PMID: 35034741 DOI: 10.1016/b978-0-12-819410-2.00015-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A brain-machine interface represents a promising therapeutic avenue for the treatment of many neurologic conditions. Deep brain stimulation (DBS) is an invasive, neuro-modulatory tool that can improve different neurologic disorders by delivering electric stimulation to selected brain areas. DBS is particularly successful in advanced Parkinson's disease (PD), where it allows sustained improvement of motor symptoms. However, this approach is still poorly standardized, with variable clinical outcomes. To achieve an optimal therapeutic effect, novel adaptive DBS (aDBS) systems are being developed. These devices operate by adapting stimulation parameters in response to an input signal that can represent symptoms, motor activity, or other behavioral features. Emerging evidence suggests greater efficacy with fewer adverse effects during aDBS compared with conventional DBS. We address this topic by discussing the basics principles of aDBS, reviewing current evidence, and tackling the many challenges posed by aDBS for PD.
Collapse
Affiliation(s)
- Nicoló G Pozzi
- Department of Neurology, University Hospital Würzburg and Julius Maximilian University Würzburg, Würzburg, Germany
| | - Ioannis U Isaias
- Department of Neurology, University Hospital Würzburg and Julius Maximilian University Würzburg, Würzburg, Germany.
| |
Collapse
|
29
|
Muthuraman M, Palotai M, Jávor-Duray B, Kelemen A, Koirala N, Halász L, Erőss L, Fekete G, Bognár L, Deuschl G, Tamás G. Frequency-specific network activity predicts bradykinesia severity in Parkinson's disease. Neuroimage Clin 2021; 32:102857. [PMID: 34662779 PMCID: PMC8526781 DOI: 10.1016/j.nicl.2021.102857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 09/15/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Bradykinesia has been associated with beta and gamma band interactions in the basal ganglia-thalamo-cortical circuit in Parkinson's disease. In this present cross-sectional study, we aimed to search for neural networks with electroencephalography whose frequency-specific actions may predict bradykinesia. METHODS Twenty Parkinsonian patients treated with bilateral subthalamic stimulation were first prescreened while we selected four levels of contralateral stimulation (0: OFF, 1-3: decreasing symptoms to ON state) individually, based on kinematics. In the screening period, we performed 64-channel electroencephalography measurements simultaneously with electromyography and motion detection during a resting state, finger tapping, hand grasping tasks, and pronation-supination of the arm, with the four levels of contralateral stimulation. We analyzed spectral power at the low (13-20 Hz) and high (21-30 Hz) beta frequency bands and low (31-60 Hz) and high (61-100 Hz) gamma frequency bands using the dynamic imaging of coherent sources. Structural equation modelling estimated causal relationships between the slope of changes in network beta and gamma activities and the slope of changes in bradykinesia measures. RESULTS Activity in different subnetworks, including predominantly the primary motor and premotor cortex, the subthalamic nucleus predicted the slopes in amplitude and speed while switching between stimulation levels. These subnetwork dynamics on their preferred frequencies predicted distinct types and parameters of the movement only on the contralateral side. DISCUSSION Concurrent subnetworks affected in bradykinesia and their activity changes in the different frequency bands are specific to the type and parameters of the movement; and the primary motor and premotor cortex are common nodes.
Collapse
Affiliation(s)
- Muthuraman Muthuraman
- Movement Disorders, Imaging and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Marcell Palotai
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | | | - Andrea Kelemen
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Nabin Koirala
- Movement Disorders, Imaging and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany; Haskins Laboratories, New Haven, USA
| | - László Halász
- National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Loránd Erőss
- National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Gábor Fekete
- Department of Neurosurgery, University of Debrecen, Debrecen, Hungary
| | - László Bognár
- Department of Neurosurgery, University of Debrecen, Debrecen, Hungary
| | - Günther Deuschl
- Department of Neurology, Christian-Albrechts University, Kiel, Germany
| | - Gertrúd Tamás
- Department of Neurology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
30
|
Caligiore D, Montedori F, Buscaglione S, Capirchio A. Increasing Serotonin to Reduce Parkinsonian Tremor. Front Syst Neurosci 2021; 15:682990. [PMID: 34354572 PMCID: PMC8331097 DOI: 10.3389/fnsys.2021.682990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/21/2021] [Indexed: 01/07/2023] Open
Abstract
While current dopamine-based drugs seem to be effective for most Parkinson's disease (PD) motor dysfunctions, they produce variable responsiveness for resting tremor. This lack of consistency could be explained by considering recent evidence suggesting that PD resting tremor can be divided into different partially overlapping phenotypes based on the dopamine response. These phenotypes may be associated with different pathophysiological mechanisms produced by a cortical-subcortical network involving even non-dopaminergic areas traditionally not directly related to PD. In this study, we propose a bio-constrained computational model to study the neural mechanisms underlying a possible type of PD tremor: the one mainly involving the serotoninergic system. The simulations run with the model demonstrate that a physiological serotonin increase can partially recover dopamine levels at the early stages of the disease before the manifestation of overt tremor. This result suggests that monitoring serotonin concentration changes could be critical for early diagnosis. The simulations also show the effectiveness of a new pharmacological treatment for tremor that acts on serotonin to recover dopamine levels. This latter result has been validated by reproducing existing data collected with human patients.
Collapse
Affiliation(s)
- Daniele Caligiore
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Francesco Montedori
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Silvia Buscaglione
- Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit (NeXT), Campus Bio-Medico University, Rome, Italy
| | - Adriano Capirchio
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| |
Collapse
|
31
|
Sisterson ND, Carlson AA, Rutishauser U, Mamelak AN, Flagg M, Pouratian N, Salimpour Y, Anderson WS, Richardson RM. Electrocorticography During Deep Brain Stimulation Surgery: Safety Experience From 4 Centers Within the National Institute of Neurological Disorders and Stroke Research Opportunities in Human Consortium. Neurosurgery 2021; 88:E420-E426. [PMID: 33575799 DOI: 10.1093/neuros/nyaa592] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Intraoperative research during deep brain stimulation (DBS) surgery has enabled major advances in understanding movement disorders pathophysiology and potential mechanisms for therapeutic benefit. In particular, over the last decade, recording electrocorticography (ECoG) from the cortical surface, simultaneously with subcortical recordings, has become an important research tool for assessing basal ganglia-thalamocortical circuit physiology. OBJECTIVE To provide confirmation of the safety of performing ECoG during DBS surgery, using data from centers involved in 2 BRAIN (Brain Research through Advancing Innovative Neurotechnologies) Initiative-funded basic human neuroscience projects. METHODS Data were collected separately at 4 centers. The primary endpoint was complication rate, defined as any intraoperative event, infection, or postoperative magnetic resonance imaging abnormality requiring clinical follow-up. Complication rates for explanatory variables were compared using point biserial correlations and Fisher exact tests. RESULTS A total of 367 DBS surgeries involving ECoG were reviewed. No cortical hemorrhages were observed. Seven complications occurred: 4 intraparenchymal hemorrhages and 3 infections (complication rate of 1.91%; CI = 0.77%-3.89%). The placement of 2 separate ECoG research electrodes through a single burr hole (84 cases) did not result in a significantly different rate of complications, compared to placement of a single electrode (3.6% vs 1.5%; P = .4). Research data were obtained successfully in 350 surgeries (95.4%). CONCLUSION Combined with the single report previously available, which described no ECoG-related complications in a single-center cohort of 200 cases, these findings suggest that research ECOG during DBS surgery did not significantly alter complication rates.
Collapse
Affiliation(s)
- Nathaniel D Sisterson
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - April A Carlson
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Computation and Neural Systems, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Adam N Mamelak
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Mitchell Flagg
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California, USA
| | - Nader Pouratian
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California, USA
| | - Yousef Salimpour
- Department of Neurological Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - William S Anderson
- Department of Neurological Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
32
|
Chen L, Daniels S, Kim Y, Chu HY. Cell Type-Specific Decrease of the Intrinsic Excitability of Motor Cortical Pyramidal Neurons in Parkinsonism. J Neurosci 2021; 41:5553-5565. [PMID: 34006589 PMCID: PMC8221604 DOI: 10.1523/jneurosci.2694-20.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 11/21/2022] Open
Abstract
The hypokinetic motor symptoms of Parkinson's disease (PD) are closely linked with a decreased motor cortical output as a consequence of elevated basal ganglia inhibition. However, whether and how the loss of dopamine (DA) alters the cellular properties of motor cortical neurons in PD remains undefined. We induced parkinsonism in adult C57BL/6 mice of both sexes by injecting neurotoxin, 6-hydroxydopamine (6-OHDA), into the medial forebrain bundle. By using ex vivo patch-clamp recording and retrograde tracing approach, we found that the intrinsic excitability of pyramidal tract neurons (PTNs) in the primary motor cortical (M1) layer (L)5b was greatly decreased in parkinsonism; but the intratelencephalic neurons (ITNs) were not affected. The cell type-specific intrinsic adaptations were associated with a depolarized threshold and broadened width of action potentials (APs) in PTNs. Moreover, the loss of midbrain dopaminergic neurons impaired the capability of M1 PTNs to sustain high-frequency firing, which could underlie their abnormal pattern of activity in the parkinsonian state. We also showed that the decreased excitability in parkinsonism was caused by an impaired function of both persistent sodium channels and the large conductance, Ca2+-activated K+ channels. Acute activation of dopaminergic receptors failed to rescue the impaired intrinsic excitability of M1 PTNs in parkinsonian mice. Altogether, our data demonstrated a cell type-specific decrease of the excitability of M1 pyramidal neurons in parkinsonism. Thus, intrinsic adaptations in the motor cortex provide novel insight in our understanding of the pathophysiology of motor deficits in PD.SIGNIFICANCE STATEMENT The degeneration of midbrain dopaminergic neurons in Parkinson's disease (PD) remodels the connectivity and function of cortico-basal ganglia-thalamocortical network. However, whether and how dopaminergic degeneration and the associated basal ganglia dysfunction alter motor cortical circuitry remain undefined. We found that pyramidal neurons in the layer (L)5b of the primary motor cortex (M1) exhibit distinct adaptations in response to the loss of midbrain dopaminergic neurons, depending on their long-range projections. Besides the decreased thalamocortical synaptic excitation as proposed by the classical model of Parkinson's pathophysiology, these results, for the first time, show novel cellular and molecular mechanisms underlying the abnormal motor cortical output in parkinsonism.
Collapse
Affiliation(s)
- Liqiang Chen
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan 49503
| | - Samuel Daniels
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan 49503
| | - Yerim Kim
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan 49503
| | - Hong-Yuan Chu
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan 49503
| |
Collapse
|
33
|
Tripathi R, Deogaonkar M. Fundamentals of Neuromodulation and Pathophysiology of Neural Networks in Health and Disease. Neurol India 2021; 68:S163-S169. [PMID: 33318346 DOI: 10.4103/0028-3886.302463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Neuromodulation involves altering neuronal circuitry and subsequent physiological changes with the aim to ameliorate neurological symptoms. Over the years several techniques have been used to obtain neuromodulatory effects for treatment of conditions including Parkinson disease, essential tremor, dystonia or seizures. We provide brief description of the various therapeutics that have been used and mechanisms involved in pathophysiology of these disorders as well as the therapeutic mechanisms of the treatment modalities.
Collapse
Affiliation(s)
- Richa Tripathi
- Department of Neurology, Rockefeller Neuroscience Institute, West Virginia University, 33 Medical Center Drive, Morgantown, WV, USA
| | - Milind Deogaonkar
- Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University, 33 Medical Center Drive, Morgantown, WV, USA
| |
Collapse
|
34
|
Abstract
There are many cases in which the separation of different sources from single channel recordings is important, for example, in fluorescence spectral overlap compensation, electrical impedance signaling, intramuscular electromyogram decomposition or in the case of spike sorting of neuron potentials from microelectrode arrays (MEA). Focusing on the latter, the problem can be faced by identifying spikes emerging from the background and clustering into different groups, indicating the activity of different neurons. Problems are found when more spikes are superimposed in overlapped waveforms. We discuss the application of Biogeography-Based Optimization (BBO) to resolve this specific problem. Our algorithm is compared with three spike-sorting methods (SpyKING Circus, Common Basis Pursuit and Klusta), showing statistically better performance (in terms of F1 score, True Positive Rate—TPR and Positive Predictive Value—PPV) in resolving overlaps in realistic, simulated data. Specifically, BBO showed median F1, TPR and PPV of 100%, 100% and about 75%, respectively, considering a simulated noise with the same spectral density as the experimental one and a similar power with highly statistically significant improvements of at least two performance indexes over each of the other three tested algorithms.
Collapse
|
35
|
Sharma A, Vidaurre D, Vesper J, Schnitzler A, Florin E. Differential dopaminergic modulation of spontaneous cortico-subthalamic activity in Parkinson's disease. eLife 2021; 10:66057. [PMID: 34085932 PMCID: PMC8177893 DOI: 10.7554/elife.66057] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/12/2021] [Indexed: 11/20/2022] Open
Abstract
Pathological oscillations including elevated beta activity in the subthalamic nucleus (STN) and between STN and cortical areas are a hallmark of neural activity in Parkinson’s disease (PD). Oscillations also play an important role in normal physiological processes and serve distinct functional roles at different points in time. We characterised the effect of dopaminergic medication on oscillatory whole-brain networks in PD in a time-resolved manner by employing a hidden Markov model on combined STN local field potentials and magnetoencephalography (MEG) recordings from 17 PD patients. Dopaminergic medication led to coherence within the medial and orbitofrontal cortex in the delta/theta frequency range. This is in line with known side effects of dopamine treatment such as deteriorated executive functions in PD. In addition, dopamine caused the beta band activity to switch from an STN-mediated motor network to a frontoparietal-mediated one. In contrast, dopamine did not modify local STN–STN coherence in PD. STN–STN synchrony emerged both on and off medication. By providing electrophysiological evidence for the differential effects of dopaminergic medication on the discovered networks, our findings open further avenues for electrical and pharmacological interventions in PD.
Collapse
Affiliation(s)
- Abhinav Sharma
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Diego Vidaurre
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom.,Department of Clinical Health, Aarhus University, Aarhus, Denmark
| | - Jan Vesper
- Department of Neurosurgery, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.,Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Esther Florin
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
36
|
Huang CS, Wang GH, Chuang HH, Chuang AY, Yeh JY, Lai YC, Yang YC. Conveyance of cortical pacing for parkinsonian tremor-like hyperkinetic behavior by subthalamic dysrhythmia. Cell Rep 2021; 35:109007. [PMID: 33882305 DOI: 10.1016/j.celrep.2021.109007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 12/01/2020] [Accepted: 03/25/2021] [Indexed: 10/21/2022] Open
Abstract
Parkinson's disease is characterized by both hypokinetic and hyperkinetic symptoms. While increased subthalamic burst discharges have a direct causal relationship with the hypokinetic manifestations (e.g., rigidity and bradykinesia), the origin of the hyperkinetic symptoms (e.g., resting tremor and propulsive gait) has remained obscure. Neuronal burst discharges are presumed to be autonomous or less responsive to synaptic input, thereby interrupting the information flow. We, however, demonstrate that subthalamic burst discharges are dependent on cortical glutamatergic synaptic input, which is enhanced by A-type K+ channel inhibition. Excessive top-down-triggered subthalamic burst discharges then drive highly correlative activities bottom-up in the motor cortices and skeletal muscles. This leads to hyperkinetic behaviors such as tremors, which are effectively ameliorated by inhibition of cortico-subthalamic AMPAergic synaptic transmission. We conclude that subthalamic burst discharges play an imperative role in cortico-subcortical information relay, and they critically contribute to the pathogenesis of both hypokinetic and hyperkinetic parkinsonian symptoms.
Collapse
Affiliation(s)
- Chen-Syuan Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Guan-Hsun Wang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Medical Education, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 333, Taiwan
| | - Hsiang-Hao Chuang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Ai-Yu Chuang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Jui-Yu Yeh
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Yi-Chen Lai
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Ya-Chin Yang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 333, Taiwan.
| |
Collapse
|
37
|
Gong R, Wegscheider M, Mühlberg C, Gast R, Fricke C, Rumpf JJ, Nikulin VV, Knösche TR, Classen J. Spatiotemporal features of β-γ phase-amplitude coupling in Parkinson's disease derived from scalp EEG. Brain 2021; 144:487-503. [PMID: 33257940 DOI: 10.1093/brain/awaa400] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/09/2020] [Accepted: 09/08/2020] [Indexed: 01/21/2023] Open
Abstract
Abnormal phase-amplitude coupling between β and broadband-γ activities has been identified in recordings from the cortex or scalp of patients with Parkinson's disease. While enhanced phase-amplitude coupling has been proposed as a biomarker of Parkinson's disease, the neuronal mechanisms underlying the abnormal coupling and its relationship to motor impairments in Parkinson's disease remain unclear. To address these issues, we performed an in-depth analysis of high-density EEG recordings at rest in 19 patients with Parkinson's disease and 20 age- and sex-matched healthy control subjects. EEG signals were projected onto the individual cortical surfaces using source reconstruction techniques and separated into spatiotemporal components using independent component analysis. Compared to healthy controls, phase-amplitude coupling of Parkinson's disease patients was enhanced in dorsolateral prefrontal cortex, premotor cortex, primary motor cortex and somatosensory cortex, the difference being statistically significant in the hemisphere contralateral to the clinically more affected side. β and γ signals involved in generating abnormal phase-amplitude coupling were not strictly phase-phase coupled, ruling out that phase-amplitude coupling merely reflects the abnormal activity of a single oscillator in a recurrent network. We found important differences for couplings between the β and γ signals from identical components as opposed to those from different components (originating from distinct spatial locations). While both couplings were abnormally enhanced in patients, only the latter were correlated with clinical motor severity as indexed by part III of the Movement Disorder Society Unified Parkinson's Disease Rating Scale. Correlations with parkinsonian motor symptoms of such inter-component couplings were found in premotor, primary motor and somatosensory cortex, but not in dorsolateral prefrontal cortex, suggesting motor domain specificity. The topography of phase-amplitude coupling demonstrated profound differences in patients compared to controls. These findings suggest, first, that enhanced phase-amplitude coupling in Parkinson's disease patients originates from the coupling between distinct neural networks in several brain regions involved in motor control. Because these regions included the somatosensory cortex, abnormal phase-amplitude coupling is not exclusively tied to the hyperdirect tract connecting cortical regions monosynaptically with the subthalamic nucleus. Second, only the coupling between β and γ signals from different components appears to have pathophysiological significance, suggesting that therapeutic approaches breaking the abnormal lateral coupling between neuronal circuits may be more promising than targeting phase-amplitude coupling per se.
Collapse
Affiliation(s)
- Ruxue Gong
- Department of Neurology, Leipzig University Medical Center, Leipzig, Germany.,Method and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Mirko Wegscheider
- Department of Neurology, Leipzig University Medical Center, Leipzig, Germany
| | - Christoph Mühlberg
- Department of Neurology, Leipzig University Medical Center, Leipzig, Germany
| | - Richard Gast
- Method and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Christopher Fricke
- Department of Neurology, Leipzig University Medical Center, Leipzig, Germany
| | - Jost-Julian Rumpf
- Department of Neurology, Leipzig University Medical Center, Leipzig, Germany
| | - Vadim V Nikulin
- Research Group Neural Interactions and Dynamics, Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Thomas R Knösche
- Method and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Joseph Classen
- Department of Neurology, Leipzig University Medical Center, Leipzig, Germany
| |
Collapse
|
38
|
DiMarzio M, Madhavan R, Hancu I, Fiveland E, Prusik J, Joel S, Gillogly M, Telkes I, Staudt MD, Durphy J, Shin D, Pilitsis JG. Use of Functional MRI to Assess Effects of Deep Brain Stimulation Frequency Changes on Brain Activation in Parkinson Disease. Neurosurgery 2021; 88:356-365. [PMID: 32985661 DOI: 10.1093/neuros/nyaa397] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 06/27/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Models have been developed for predicting ideal contact and amplitude for subthalamic nucleus (STN) deep brain stimulation (DBS) for Parkinson disease (PD). Pulse-width is generally varied to modulate the size of the energy field produced. Effects of varying frequency in humans have not been systematically evaluated. OBJECTIVE To examine how altered frequencies affect blood oxygen level-dependent activation in PD. METHODS PD subjects with optimized DBS programming underwent functional magnetic resonance imaging (fMRI). Frequency was altered and fMRI scans/Unified Parkinson Disease Rating Scale motor subunit (UPDRS-III) scores were obtained. Analysis using DBS-OFF data was used to determine which regions were activated during DBS-ON. Peak activity utilizing T-values was obtained and compared. RESULTS At clinically optimized settings (n = 14 subjects), thalamic, globus pallidum externa (GPe), and posterior cerebellum activation were present. Activation levels significantly decreased in the thalamus, anterior cerebellum, and the GPe when frequency was decreased (P < .001). Primary somatosensory cortex activation levels significantly decreased when frequency was increased by 30 Hz, but not 60 Hz. Sex, age, disease/DBS duration, and bilaterality did not significantly affect the data. Retrospective analysis of fMRI activation patterns predicted optimal frequency in 11/14 subjects. CONCLUSION We show the first data with fMRI of STN DBS-ON while synchronizing cycling with magnetic resonance scanning. At clinically optimized settings, an fMRI signature of thalamic, GPe, and posterior cerebellum activation was seen. Reducing frequency significantly decreased thalamic, GPe, and anterior cerebellum activation. Current standard-of-care programming can take up to 6 mo using UPDRS-III testing alone. We provide preliminary evidence that using fMRI signature of frequency may have clinical utility and feasibility.
Collapse
Affiliation(s)
- Marisa DiMarzio
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York
| | | | | | | | - Julia Prusik
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York.,Department of Neurosurgery, Albany Medical Center, Albany, New York
| | | | - Michael Gillogly
- Department of Neurosurgery, Albany Medical Center, Albany, New York
| | - Ilknur Telkes
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York
| | - Michael D Staudt
- Department of Neurosurgery, Albany Medical Center, Albany, New York
| | - Jennifer Durphy
- Department of Neurology, Albany Medical Center, Albany, New York
| | - Damian Shin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York.,Department of Neurology, Albany Medical Center, Albany, New York
| | - Julie G Pilitsis
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York.,Department of Neurosurgery, Albany Medical Center, Albany, New York
| |
Collapse
|
39
|
Mosher CP, Mamelak AN, Malekmohammadi M, Pouratian N, Rutishauser U. Distinct roles of dorsal and ventral subthalamic neurons in action selection and cancellation. Neuron 2021; 109:869-881.e6. [PMID: 33482087 PMCID: PMC7933114 DOI: 10.1016/j.neuron.2020.12.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/12/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022]
Abstract
The subthalamic nucleus (STN) supports action selection by inhibiting all motor programs except the desired one. Recent evidence suggests that STN can also cancel an already selected action when goals change, a key aspect of cognitive control. However, there is little neurophysiological evidence for dissociation between selecting and cancelling actions in the human STN. We recorded single neurons in the STN of humans performing a stop-signal task. Movement-related neurons suppressed their activity during successful stopping, whereas stop-signal neurons activated at low-latencies near the stop-signal reaction time. In contrast, STN and motor-cortical beta-bursting occurred only later in the stopping process. Task-related neuronal properties varied by recording location from dorsolateral movement to ventromedial stop-signal tuning. Therefore, action selection and cancellation coexist in STN but are anatomically segregated. These results show that human ventromedial STN neurons carry fast stop-related signals suitable for implementing cognitive control.
Collapse
Affiliation(s)
- Clayton P Mosher
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Adam N Mamelak
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mahsa Malekmohammadi
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nader Pouratian
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
40
|
Kehnemouyi YM, Wilkins KB, Anidi CM, Anderson RW, Afzal MF, Bronte-Stewart HM. Modulation of beta bursts in subthalamic sensorimotor circuits predicts improvement in bradykinesia. Brain 2021; 144:473-486. [PMID: 33301569 PMCID: PMC8240742 DOI: 10.1093/brain/awaa394] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/09/2020] [Indexed: 01/25/2023] Open
Abstract
No biomarker of Parkinson's disease exists that allows clinicians to adjust chronic therapy, either medication or deep brain stimulation, with real-time feedback. Consequently, clinicians rely on time-intensive, empirical, and subjective clinical assessments of motor behaviour and adverse events to adjust therapies. Accumulating evidence suggests that hypokinetic aspects of Parkinson's disease and their improvement with therapy are related to pathological neural activity in the beta band (beta oscillopathy) in the subthalamic nucleus. Additionally, effectiveness of deep brain stimulation may depend on modulation of the dorsolateral sensorimotor region of the subthalamic nucleus, which is the primary site of this beta oscillopathy. Despite the feasibility of utilizing this information to provide integrated, biomarker-driven precise deep brain stimulation, these measures have not been brought together in awake freely moving individuals. We sought to directly test whether stimulation-related improvements in bradykinesia were contingent on reduction of beta power and burst durations, and/or the volume of the sensorimotor subthalamic nucleus that was modulated. We recorded synchronized local field potentials and kinematic data in 16 subthalamic nuclei of individuals with Parkinson's disease chronically implanted with neurostimulators during a repetitive wrist-flexion extension task, while administering randomized different intensities of high frequency stimulation. Increased intensities of deep brain stimulation improved movement velocity and were associated with an intensity-dependent reduction in beta power and mean burst duration, measured during movement. The degree of reduction in this beta oscillopathy was associated with the improvement in movement velocity. Moreover, the reduction in beta power and beta burst durations was dependent on the theoretical degree of tissue modulated in the sensorimotor region of the subthalamic nucleus. Finally, the degree of attenuation of both beta power and beta burst durations, together with the degree of overlap of stimulation with the sensorimotor subthalamic nucleus significantly explained the stimulation-related improvement in movement velocity. The above results provide direct evidence that subthalamic nucleus deep brain stimulation-related improvements in bradykinesia are related to the reduction in beta oscillopathy within the sensorimotor region. With the advent of sensing neurostimulators, this beta oscillopathy combined with lead location could be used as a marker for real-time feedback to adjust clinical settings or to drive closed-loop deep brain stimulation in freely moving individuals with Parkinson's disease.
Collapse
Affiliation(s)
- Yasmine M Kehnemouyi
- Stanford University School of Medicine, Department of Neurology and Neurological Sciences, Stanford, CA, USA
| | - Kevin B Wilkins
- Stanford University School of Medicine, Department of Neurology and Neurological Sciences, Stanford, CA, USA
| | - Chioma M Anidi
- Stanford University School of Medicine, Department of Neurology and Neurological Sciences, Stanford, CA, USA
- The University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Ross W Anderson
- Stanford University School of Medicine, Department of Neurology and Neurological Sciences, Stanford, CA, USA
| | - Muhammad Furqan Afzal
- Stanford University School of Medicine, Department of Neurology and Neurological Sciences, Stanford, CA, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Helen M Bronte-Stewart
- Stanford University School of Medicine, Department of Neurology and Neurological Sciences, Stanford, CA, USA
- Stanford University School of Medicine, Department of Neurosurgery, Stanford, CA, USA
| |
Collapse
|
41
|
Mosley PE, Akram H. Neuropsychiatric effects of subthalamic deep brain stimulation. THE HUMAN HYPOTHALAMUS - MIDDLE AND POSTERIOR REGION 2021; 180:417-431. [DOI: 10.1016/b978-0-12-820107-7.00026-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
|
42
|
Mosley PE, Paliwal S, Robinson K, Coyne T, Silburn P, Tittgemeyer M, Stephan KE, Perry A, Breakspear M. The structural connectivity of subthalamic deep brain stimulation correlates with impulsivity in Parkinson's disease. Brain 2020; 143:2235-2254. [PMID: 32568370 DOI: 10.1093/brain/awaa148] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
Subthalamic deep brain stimulation (STN-DBS) for Parkinson's disease treats motor symptoms and improves quality of life, but can be complicated by adverse neuropsychiatric side-effects, including impulsivity. Several clinically important questions remain unclear: can 'at-risk' patients be identified prior to DBS; do neuropsychiatric symptoms relate to the distribution of the stimulation field; and which brain networks are responsible for the evolution of these symptoms? Using a comprehensive neuropsychiatric battery and a virtual casino to assess impulsive behaviour in a naturalistic fashion, 55 patients with Parkinson's disease (19 females, mean age 62, mean Hoehn and Yahr stage 2.6) were assessed prior to STN-DBS and 3 months postoperatively. Reward evaluation and response inhibition networks were reconstructed with probabilistic tractography using the participant-specific subthalamic volume of activated tissue as a seed. We found that greater connectivity of the stimulation site with these frontostriatal networks was related to greater postoperative impulsiveness and disinhibition as assessed by the neuropsychiatric instruments. Larger bet sizes in the virtual casino postoperatively were associated with greater connectivity of the stimulation site with right and left orbitofrontal cortex, right ventromedial prefrontal cortex and left ventral striatum. For all assessments, the baseline connectivity of reward evaluation and response inhibition networks prior to STN-DBS was not associated with postoperative impulsivity; rather, these relationships were only observed when the stimulation field was incorporated. This suggests that the site and distribution of stimulation is a more important determinant of postoperative neuropsychiatric outcomes than preoperative brain structure and that stimulation acts to mediate impulsivity through differential recruitment of frontostriatal networks. Notably, a distinction could be made amongst participants with clinically-significant, harmful changes in mood and behaviour attributable to DBS, based upon an analysis of connectivity and its relationship with gambling behaviour. Additional analyses suggested that this distinction may be mediated by the differential involvement of fibres connecting ventromedial subthalamic nucleus and orbitofrontal cortex. These findings identify a mechanistic substrate of neuropsychiatric impairment after STN-DBS and suggest that tractography could be used to predict the incidence of adverse neuropsychiatric effects. Clinically, these results highlight the importance of accurate electrode placement and careful stimulation titration in the prevention of neuropsychiatric side-effects after STN-DBS.
Collapse
Affiliation(s)
- Philip E Mosley
- Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,Neurosciences Queensland, St Andrew's War Memorial Hospital, Spring Hill, Queensland, Australia.,Queensland Brain Institute, University of Queensland, St Lucia, Queensland, Australia.,Faculty of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Saee Paliwal
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zürich and Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Katherine Robinson
- Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Terry Coyne
- Queensland Brain Institute, University of Queensland, St Lucia, Queensland, Australia.,Brizbrain and Spine, The Wesley Hospital, Auchenflower, Queensland, Australia
| | - Peter Silburn
- Neurosciences Queensland, St Andrew's War Memorial Hospital, Spring Hill, Queensland, Australia.,Queensland Brain Institute, University of Queensland, St Lucia, Queensland, Australia
| | | | - Klaas E Stephan
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zürich and Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland.,Max Planck Institute for Metabolism Research, Cologne, Germany.,Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Alistair Perry
- Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany.,Centre for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Michael Breakspear
- Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,Brain and Mind Priority Research Centre, Hunter Medical Research Institute, University of Newcastle, NSW, Australia
| |
Collapse
|
43
|
Mosley PE, Robinson K, Coyne T, Silburn P, Barker MS, Breakspear M, Robinson GA, Perry A. Subthalamic deep brain stimulation identifies frontal networks supporting initiation, inhibition and strategy use in Parkinson's disease. Neuroimage 2020; 223:117352. [DOI: 10.1016/j.neuroimage.2020.117352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/22/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
|
44
|
Subthalamic beta oscillations correlate with dopaminergic degeneration in experimental parkinsonism. Exp Neurol 2020; 335:113513. [PMID: 33148526 DOI: 10.1016/j.expneurol.2020.113513] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/06/2020] [Accepted: 10/20/2020] [Indexed: 01/17/2023]
Abstract
Excessive beta activity has been shown in local field potential recordings from the cortico-basal ganglia loop of Parkinson's disease patients and in its various animal models. Recent evidence suggests that enhanced beta oscillations may play a central role in the pathophysiology of the disorder and that beta activity may be directly linked to the motor impairment. However, the temporal evolution of exaggerated beta oscillations during the ongoing dopaminergic neurodegeneration and its relation to the motor impairment and histological changes are still unknown. We investigated motor behavioral, in-vivo electrophysiological (subthalamic nucleus, motor cortex) and histological changes (striatum, substantia nigra compacta) 2, 5, 10 and 20-30 days after a 6-hydroxydopamine injection into the medial forebrain bundle in Wistar rats. We found strong correlations between subthalamic beta power and motor impairment. No correlation was found for beta power in the primary motor cortex. Only subthalamic but not cortical beta power was strongly correlated with the histological markers of the dopaminergic neurodegeneration. Significantly increased subthalamic beta oscillations could be detected before this increase was found in primary motor cortex. At the latest observation time point, a significantly higher percentage of long beta bursts was found. Our study is the first to show a strong relation between subthalamic beta power and the dopaminergic neurodegeneration. Thus, we provide additional evidence for an important pathophysiological role of subthalamic beta oscillations and prolonged beta bursts in Parkinson's disease.
Collapse
|
45
|
Combrisson E, Nest T, Brovelli A, Ince RAA, Soto JLP, Guillot A, Jerbi K. Tensorpac: An open-source Python toolbox for tensor-based phase-amplitude coupling measurement in electrophysiological brain signals. PLoS Comput Biol 2020; 16:e1008302. [PMID: 33119593 PMCID: PMC7654762 DOI: 10.1371/journal.pcbi.1008302] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 11/10/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
Despite being the focus of a thriving field of research, the biological mechanisms that underlie information integration in the brain are not yet fully understood. A theory that has gained a lot of traction in recent years suggests that multi-scale integration is regulated by a hierarchy of mutually interacting neural oscillations. In particular, there is accumulating evidence that phase-amplitude coupling (PAC), a specific form of cross-frequency interaction, plays a key role in numerous cognitive processes. Current research in the field is not only hampered by the absence of a gold standard for PAC analysis, but also by the computational costs of running exhaustive computations on large and high-dimensional electrophysiological brain signals. In addition, various signal properties and analyses parameters can lead to spurious PAC. Here, we present Tensorpac, an open-source Python toolbox dedicated to PAC analysis of neurophysiological data. The advantages of Tensorpac include (1) higher computational efficiency thanks to software design that combines tensor computations and parallel computing, (2) the implementation of all most widely used PAC methods in one package, (3) the statistical analysis of PAC measures, and (4) extended PAC visualization capabilities. Tensorpac is distributed under a BSD-3-Clause license and can be launched on any operating system (Linux, OSX and Windows). It can be installed directly via pip or downloaded from Github (https://github.com/EtienneCmb/tensorpac). By making Tensorpac available, we aim to enhance the reproducibility and quality of PAC research, and provide open tools that will accelerate future method development in neuroscience.
Collapse
Affiliation(s)
- Etienne Combrisson
- Psychology Department, University of Montréal, QC, Canada
- Institut de Neurosciences de la Timone, UMR 7289, Aix Marseille Université, CNRS, 13385 Marseille, France
| | - Timothy Nest
- Psychology Department, University of Montréal, QC, Canada
- Département d’informatique et de recherche opérationnelle, University of Montréal, QC, Canada
| | - Andrea Brovelli
- Institut de Neurosciences de la Timone, UMR 7289, Aix Marseille Université, CNRS, 13385 Marseille, France
| | - Robin A. A. Ince
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Juan L. P. Soto
- Telecommunications and Control Engineering Department, University of Sao Paulo, Sao Paulo, Brazil
| | - Aymeric Guillot
- Univ. Lyon, UCBL-Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, EA 7424, F-69622 Villeurbanne, France
| | - Karim Jerbi
- Psychology Department, University of Montréal, QC, Canada
- MEG Center, University of Montréal, QC, Canada
- Mila - Quebec Artificial Intelligence Institute, QC, Canada
| |
Collapse
|
46
|
Baaske MK, Kormann E, Holt AB, Gulberti A, McNamara CG, Pötter-Nerger M, Westphal M, Engel AK, Hamel W, Brown P, Moll CKE, Sharott A. Parkinson's disease uncovers an underlying sensitivity of subthalamic nucleus neurons to beta-frequency cortical input in vivo. Neurobiol Dis 2020; 146:105119. [PMID: 32991998 PMCID: PMC7710979 DOI: 10.1016/j.nbd.2020.105119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 09/13/2020] [Accepted: 09/24/2020] [Indexed: 11/26/2022] Open
Abstract
Abnormally sustained beta-frequency synchronisation between the motor cortex and subthalamic nucleus (STN) is associated with motor symptoms in Parkinson's disease (PD). It is currently unclear whether STN neurons have a preference for beta-frequency input (12-35 Hz), rather than cortical input at other frequencies, and how such a preference would arise following dopamine depletion. To address this question, we combined analysis of cortical and STN recordings from awake human PD patients undergoing deep brain stimulation surgery with recordings of identified STN neurons in anaesthetised rats. In these patients, we demonstrate that a subset of putative STN neurons is strongly and selectively sensitive to magnitude fluctuations of cortical beta oscillations over time, linearly increasing their phase-locking strength with respect to the full range of instantaneous amplitude in the beta-frequency range. In rats, we probed the frequency response of STN neurons in the cortico-basal-ganglia-network more precisely, by recording spikes evoked by short bursts of cortical stimulation with variable frequency (4-40 Hz) and constant amplitude. In both healthy and dopamine-depleted rats, only beta-frequency stimulation led to a progressive reduction in the variability of spike timing through the stimulation train. This suggests, that the interval of beta-frequency input provides an optimal window for eliciting the next spike with high fidelity. We hypothesize, that abnormal activation of the indirect pathway, via dopamine depletion and/or cortical stimulation, could trigger an underlying sensitivity of the STN microcircuit to beta-frequency input. STN-neurons are selectively entrained to cortical beta oscillations in PD patients. Phase-locking of STN-neurons is linearly dependent on oscillation magnitude. Beta bursts in LFP/EEG are accompanied by transient synchronisation of STN spiking. STN neurons are selectively entrained to cortical beta stimulation in rats. Beta-selectivity of STN neurons is present in control and dopamine-depleted rats.
Collapse
Affiliation(s)
- Magdalena K Baaske
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK; Department of Neurology, University of Lübeck, 23538 Lübeck, Germany; Institute of Neurogenetics, University of Lübeck, 23538 Lübeck, Germany
| | - Eszter Kormann
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK
| | - Abbey B Holt
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK
| | - Alessandro Gulberti
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Colin G McNamara
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK
| | - Monika Pötter-Nerger
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Wolfgang Hamel
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Peter Brown
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK; Department of Neurology, University of Lübeck, 23538 Lübeck, Germany
| | - Christian K E Moll
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Andrew Sharott
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK.
| |
Collapse
|
47
|
Hwang BY, Salimpour Y, Tsehay YK, Anderson WS, Mills KA. Perspective: Phase Amplitude Coupling-Based Phase-Dependent Neuromodulation in Parkinson's Disease. Front Neurosci 2020; 14:558967. [PMID: 33132822 PMCID: PMC7550534 DOI: 10.3389/fnins.2020.558967] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/13/2020] [Indexed: 11/13/2022] Open
Abstract
Deep brain stimulation (DBS) is an effective surgical therapy for Parkinson's disease (PD). However, limitations of the DBS systems have led to great interest in adaptive neuromodulation systems that can dynamically adjust stimulation parameters to meet concurrent therapeutic demand. Constant high-frequency motor cortex stimulation has not been remarkably efficacious, which has led to greater focus on modulation of subcortical targets. Understanding of the importance of timing in both cortical and subcortical stimulation has generated an interest in developing more refined, parsimonious stimulation techniques based on critical oscillatory activities of the brain. Concurrently, much effort has been put into identifying biomarkers of both parkinsonian and physiological patterns of neuronal activities to drive next generation of adaptive brain stimulation systems. One such biomarker is beta-gamma phase amplitude coupling (PAC) that is detected in the motor cortex. PAC is strongly correlated with parkinsonian specific motor signs and symptoms and respond to therapies in a dose-dependent manner. PAC may represent the overall state of the parkinsonian motor network and have less instantaneously dynamic fluctuation during movement. These findings raise the possibility of novel neuromodulation paradigms that are potentially less invasiveness than DBS. Successful application of PAC in neuromodulation may necessitate phase-dependent stimulation technique, which aims to deliver precisely timed stimulation pulses to a specific phase to predictably modulate to selectively modulate pathological network activities and behavior in real time. Overcoming current technical challenges can lead to deeper understanding of the parkinsonian pathophysiology and development of novel neuromodulatory therapies with potentially less side-effects and higher therapeutic efficacy.
Collapse
Affiliation(s)
- Brian Y Hwang
- Functional Neurosurgery Laboratory, Division of Functional Neurosurgery, Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Yousef Salimpour
- Functional Neurosurgery Laboratory, Division of Functional Neurosurgery, Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Yohannes K Tsehay
- Functional Neurosurgery Laboratory, Division of Functional Neurosurgery, Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - William S Anderson
- Functional Neurosurgery Laboratory, Division of Functional Neurosurgery, Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Kelly A Mills
- Neuromodulation and Advanced Therapies Clinic, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
48
|
McIver EL, Atherton JF, Chu HY, Cosgrove KE, Kondapalli J, Wokosin D, Surmeier DJ, Bevan MD. Maladaptive Downregulation of Autonomous Subthalamic Nucleus Activity following the Loss of Midbrain Dopamine Neurons. Cell Rep 2020; 28:992-1002.e4. [PMID: 31340159 PMCID: PMC6699776 DOI: 10.1016/j.celrep.2019.06.076] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 05/22/2019] [Accepted: 06/19/2019] [Indexed: 01/13/2023] Open
Abstract
Abnormal subthalamic nucleus (STN) activity is linked to impaired movement in Parkinson’s disease (PD). The autonomous firing of STN neurons, which contributes to their tonic excitation of the extrastriatal basal ganglia and shapes their integration of synaptic input, is downregulated in PD models. Using electrophysiological, chemogenetic, genetic, and optical approaches, we find that chemogenetic activation of indirect pathway striatopallidal neurons downregulates intrinsic STN activity in normal mice but this effect is occluded in Parkinsonian mice. Loss of autonomous spiking in PD mice is prevented by STN N-methyl-D-aspartate receptor (NMDAR) knockdown and reversed by reactive oxygen species breakdown or KATP channel inhibition. Chemogenetic activation of hM3D(Gq) in STN neurons in Parkinsonian mice rescues their intrinsic activity, modifies their synaptic integration, and ameliorates motor dysfunction. Together these data argue that in PD mice increased indirect pathway activity leads to disinhibition of the STN, which triggers maladaptive NMDAR-dependent downregulation of autonomous firing. McIver et al. describe the cellular and circuit mechanisms responsible for the loss of autonomous subthalamic nucleus (STN) spiking in dopamine-depleted mice and demonstrate that chemogenetic rescue of intrinsic STN activity reduces Parkinsonian motor dysfunction.
Collapse
Affiliation(s)
- Eileen L McIver
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - Jeremy F Atherton
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - Hong-Yuan Chu
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - Kathleen E Cosgrove
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - Jyothisri Kondapalli
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - David Wokosin
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - Mark D Bevan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Chicago, IL 60611, USA.
| |
Collapse
|
49
|
Wozny TA, Wang DD, Starr PA. Simultaneous cortical and subcortical recordings in humans with movement disorders: Acute and chronic paradigms. Neuroimage 2020; 217:116904. [PMID: 32387742 DOI: 10.1016/j.neuroimage.2020.116904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 11/20/2022] Open
Abstract
Invasive basal ganglia recordings in humans have significantly advanced our understanding of the neurophysiology of movement disorders. A recent technical advance has been the addition of electrocorticography to basal ganglia recording, for evaluating distributed motor networks. Here we review the rationale, results, and ethics of this multisite recording technique in movement disorders, as well as its application in chronic recording paradigms utilizing implantable neural interfaces that include a sensing function.
Collapse
Affiliation(s)
- Thomas A Wozny
- Department of Neurological Surgery, University of California, 505 Parnassus Avenue, San Francisco, CA, 94143, USA.
| | - Doris D Wang
- Department of Neurological Surgery, University of California, 505 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Philip A Starr
- Department of Neurological Surgery, University of California, 505 Parnassus Avenue, San Francisco, CA, 94143, USA
| |
Collapse
|
50
|
Belardinelli P, Azodi-Avval R, Ortiz E, Naros G, Grimm F, Weiss D, Gharabaghi A. Intraoperative localization of spatially and spectrally distinct resting-state networks in Parkinson's disease. J Neurosurg 2020; 132:1234-1242. [PMID: 30835693 DOI: 10.3171/2018.11.jns181684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 11/21/2018] [Indexed: 11/06/2022]
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for symptomatic Parkinson's disease (PD); the clinical benefit may not only mirror modulation of local STN activity but also reflect consecutive network effects on cortical oscillatory activity. Moreover, STN-DBS selectively suppresses spatially and spectrally distinct patterns of synchronous oscillatory activity within cortical-subcortical loops. These STN-cortical circuits have been described in PD patients using magnetoencephalography after surgery. This network information, however, is currently not available during surgery to inform the implantation strategy.The authors recorded spontaneous brain activity in 3 awake patients with PD (mean age 67 ± 14 years; mean disease duration 13 ± 7 years) during implantation of DBS electrodes into the STN after overnight withdrawal of dopaminergic medication. Intraoperative propofol was discontinued at least 30 minutes prior to the electrophysiological recordings. The authors used a novel approach for performing simultaneous recordings of STN local field potentials (LFPs) and multichannel electroencephalography (EEG) at rest. Coherent oscillations between LFP and EEG sensors were computed, and subsequent dynamic imaging of coherent sources was performed.The authors identified coherent activity in the upper beta range (21-35 Hz) between the STN and the ipsilateral mesial (pre)motor area. Coherence in the theta range (4-6 Hz) was detected in the ipsilateral prefrontal area.These findings demonstrate the feasibility of detecting frequency-specific and spatially distinct synchronization between the STN and cortex during DBS surgery. Mapping the STN with this technique may disentangle different functional loops relevant for refined targeting during DBS implantation.
Collapse
Affiliation(s)
- Paolo Belardinelli
- 1Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience
- 2Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research; and
| | - Ramin Azodi-Avval
- 1Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience
| | - Erick Ortiz
- 1Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience
| | - Georgios Naros
- 1Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience
| | - Florian Grimm
- 1Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience
| | - Daniel Weiss
- 3Department for Neurodegenerative Diseases, and Hertie Institute for Clinical Brain Research, and German Centre of Neurodegenerative Diseases (DZNE), Eberhard Karls University Tübingen, Germany
| | - Alireza Gharabaghi
- 1Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience
| |
Collapse
|