1
|
Cehlar O, Njemoga S, Horvath M, Cizmazia E, Bednarikova Z, Barrera EE. Structures of Oligomeric States of Tau Protein, Amyloid-β, α-Synuclein and Prion Protein Implicated in Alzheimer's Disease, Parkinson's Disease and Prionopathies. Int J Mol Sci 2024; 25:13049. [PMID: 39684761 DOI: 10.3390/ijms252313049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
In this review, we focus on the biophysical and structural aspects of the oligomeric states of physiologically intrinsically disordered proteins and peptides tau, amyloid-β and α-synuclein and partly disordered prion protein and their isolations from animal models and human brains. These protein states may be the most toxic agents in the pathogenesis of Alzheimer's and Parkinson's disease. It was shown that oligomers are important players in the aggregation cascade of these proteins. The structural information about these structural states has been provided by methods such as solution and solid-state NMR, cryo-EM, crosslinking mass spectrometry, AFM, TEM, etc., as well as from hybrid structural biology approaches combining experiments with computational modelling and simulations. The reliable structural models of these protein states may provide valuable information for future drug design and therapies.
Collapse
Affiliation(s)
- Ondrej Cehlar
- Institute of Neuroimmunology, Slovak Academy of Sciences, 84510 Bratislava, Slovakia
| | - Stefana Njemoga
- Institute of Neuroimmunology, Slovak Academy of Sciences, 84510 Bratislava, Slovakia
| | - Marian Horvath
- Institute of Neuroimmunology, Slovak Academy of Sciences, 84510 Bratislava, Slovakia
| | - Erik Cizmazia
- Institute of Neuroimmunology, Slovak Academy of Sciences, 84510 Bratislava, Slovakia
| | - Zuzana Bednarikova
- Institute of Experimental Physics, Slovak Academy of Sciences, 04001 Kosice, Slovakia
| | - Exequiel E Barrera
- Instituto de Histología y Embriología (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CC56, Universidad Nacional de Cuyo, Mendoza M5502JMA, Argentina
| |
Collapse
|
2
|
Abioye A, Akintade D, Mitchell J, Olorode S, Adejare A. Nonintuitive Immunogenicity and Plasticity of Alpha-Synuclein Conformers: A Paradigm for Smart Delivery of Neuro-Immunotherapeutics. Pharmaceutics 2024; 16:609. [PMID: 38794271 PMCID: PMC11124533 DOI: 10.3390/pharmaceutics16050609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Despite the extensive research successes and continuous developments in modern medicine in terms of diagnosis, prevention, and treatment, the lack of clinically useful disease-modifying drugs or immunotherapeutic agents that can successfully treat or prevent neurodegenerative diseases is an ongoing challenge. To date, only one of the 244 drugs in clinical trials for the treatment of neurodegenerative diseases has been approved in the past decade, indicating a failure rate of 99.6%. In corollary, the approved monoclonal antibody did not demonstrate significant cognitive benefits. Thus, the prevalence of neurodegenerative diseases is increasing rapidly. Therefore, there is an urgent need for creative approaches to identifying and testing biomarkers for better diagnosis, prevention, and disease-modifying strategies for the treatment of neurodegenerative diseases. Overexpression of the endogenous α-synuclein has been identified as the driving force for the formation of the pathogenic α-synuclein (α-Syn) conformers, resulting in neuroinflammation, hypersensitivity, endogenous homeostatic responses, oxidative dysfunction, and degeneration of dopaminergic neurons in Parkinson's disease (PD). However, the conformational plasticity of α-Syn proffers that a certain level of α-Syn is essential for the survival of neurons. Thus, it exerts both neuroprotective and neurotoxic (regulatory) functions on neighboring neuronal cells. Furthermore, the aberrant metastable α-Syn conformers may be subtle and difficult to detect but may trigger cellular and molecular events including immune responses. It is well documented in literature that the misfolded α-Syn and its conformers that are released into the extracellular space from damaged or dead neurons trigger the innate and adaptive immune responses in PD. Thus, in this review, we discuss the nonintuitive plasticity and immunogenicity of the α-Syn conformers in the brain immune cells and their physiological and pathological consequences on the neuroimmune responses including neuroinflammation, homeostatic remodeling, and cell-specific interactions that promote neuroprotection in PD. We also critically reviewed the novel strategies for immunotherapeutic delivery interventions in PD pathogenesis including immunotherapeutic targets and potential nanoparticle-based smart drug delivery systems. It is envisioned that a greater understanding of the nonintuitive immunogenicity of aberrant α-Syn conformers in the brain's microenvironment would provide a platform for identifying valid therapeutic targets and developing smart brain delivery systems for clinically effective disease-modifying immunotherapeutics that can aid in the prevention and treatment of PD in the future.
Collapse
Affiliation(s)
- Amos Abioye
- College of Pharmacy and Health Sciences, Belmont University, Nashville, TN 37212, USA
| | - Damilare Akintade
- Department of Biomedical Sciences, School of Health, Leeds Beckett University, Leeds LS1 3HE, UK; (D.A.); (J.M.); (S.O.)
| | - James Mitchell
- Department of Biomedical Sciences, School of Health, Leeds Beckett University, Leeds LS1 3HE, UK; (D.A.); (J.M.); (S.O.)
| | - Simisade Olorode
- Department of Biomedical Sciences, School of Health, Leeds Beckett University, Leeds LS1 3HE, UK; (D.A.); (J.M.); (S.O.)
| | - Adeboye Adejare
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, PA 19131, USA;
| |
Collapse
|
3
|
Dey P, Biswas P. Effect of caffeine on the aggregation of amyloid-β-A 3D RISM study. J Chem Phys 2024; 160:125101. [PMID: 38516974 DOI: 10.1063/5.0202636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024] Open
Abstract
Alzheimer's disease is a detrimental neurological disorder caused by the formation of amyloid fibrils due to the aggregation of amyloid-β peptide. The primary therapeutic approaches for treating Alzheimer's disease are targeted to prevent this amyloid fibril formation using potential inhibitor molecules. The discovery of such inhibitor molecules poses a formidable challenge to the design of anti-amyloid drugs. This study investigates the effect of caffeine on dimer formation of the full-length amyloid-β using a combined approach of all-atom, explicit water molecular dynamics simulations and the three-dimensional reference interaction site model theory. The change in the hydration free energy of amyloid-β dimer, with and without the inhibitor molecules, is calculated with respect to the monomeric amyloid-β, where the hydration free energy is decomposed into energetic and entropic components, respectively. Dimerization is accompanied by a positive change in the partial molar volume. Dimer formation is spontaneous, which implies a decrease in the hydration free energy. However, a reverse trend is observed for the dimer with inhibitor molecules. It is observed that the negatively charged residues primarily contribute for the formation of the amyloid-β dimer. A residue-wise decomposition reveals that hydration/dehydration of the side-chain atoms of the charged amino acid residues primarily contribute to dimerization.
Collapse
Affiliation(s)
- Priya Dey
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Parbati Biswas
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
4
|
Dey P, Biswas P. Exploring the aggregation of amyloid-β 42 through Monte Carlo simulations. Biophys Chem 2023; 297:107011. [PMID: 37037120 DOI: 10.1016/j.bpc.2023.107011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/25/2023] [Accepted: 03/26/2023] [Indexed: 04/09/2023]
Abstract
Coarse-grained Monte Carlo simulations are performed for a disordered protein, amyloid-β 42 to identify the interactions and understand the mechanism of its aggregation. A statistical potential is developed from a selected dataset of intrinsically disordered proteins, which accounts for the respective contributions of the bonded and non-bonded potentials. While, the bonded potential comprises the bond, bend, and dihedral constraints, the nonbonded interactions include van der Waals interactions, hydrogen bonds, and the two-body potential. The two-body potential captures the features of both hydrophobic and electrostatic interactions that brings the chains at a contact distance, while the repulsive van der Waals interactions prevent them from a collapse. Increased two-body hydrophobic interactions facilitate the formation of amorphous aggregates rather than the fibrillar ones. The formation of aggregates is validated from the interchain distances, and the total energy of the system. The aggregate is structurally characterized by the root-mean-square deviation, root-mean-square fluctuation and the radius of gyration. The aggregates are characterized by a decrease in SASA, an increase in the non-local interactions and a distinct free energy minimum relative to that of the monomeric state of amyloid-β 42. The hydrophobic residues help in nucleation, while the charged residues help in oligomerization and aggregation.
Collapse
|
5
|
Gray ALH, Norman V, Oluwatoba DS, Prosser RA, Do TD. Potential Protective Function of Aβ 42 Monomer on Tauopathies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:472-483. [PMID: 36693165 DOI: 10.1021/jasms.2c00343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
While soluble forms of amyloid-β (Aβ) and Tau work together to drive healthy neurons into a disease state, how their interaction may control the prion-like propagation and neurotoxicity of Tau is not fully understood. The cross-linking via disulfide bond formation is crucial for Tau oligomers to obtain stable conformers and spread between cells. This work thus focuses on how Aβ42 regulates this critical process. By studying the interactions between Aβ42 and TauPHF43, a construct that mimics the Tau R3 isoform, has a similar length to Aβ42, and contains one cysteine (Cys-322), we discovered that fresh Aβ42 could protect Tau against the formation of disulfide cross-linked dimers. We showed that the monomeric and small Aβ oligomers (the "nonamyloidogenic Aβ") efficiently disassembled tau dimers and heparin-induced Tau oligomers to recover Tau monomers. Interestingly, Aβ serves the role of an antioxidant to prevent disulfide bond formation, as supported by the experiments of Aβ with cystine. Furthermore, using cyclosporine A (CycA), a macrocyclic β-sheet disruptor, we demonstrated that targeting amyloidogenic Aβ with CycA does not affect the TauPHF43 disassembly driven by Aβ42. Separately, we assessed the initial toxicity of Aβ42 and TauPHF43 in acute brain slices and found that Aβ42 is more toxic than TauPHF43 or the two peptides combined. Our work highlights a potential protective role of Aβ42 monomers in AD that was previously overlooked while focusing on the mechanism behind Aβ42 aggregation leading to tau dysfunction.
Collapse
Affiliation(s)
- Amber L H Gray
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Victoria Norman
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Damilola S Oluwatoba
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Rebecca A Prosser
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Thanh D Do
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
6
|
Khan A, Nayeem SM. Stability of the Aβ42 Peptide in Mixed Solutions of Denaturants and Proline. J Phys Chem B 2023; 127:1572-1585. [PMID: 36786778 DOI: 10.1021/acs.jpcb.2c08505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Amyloid β-peptide (Aβ) is responsible for the neuronal damage and death of a patient with Alzheimer's disease (AD). Aβ42 oligomeric forms are dominant neurotoxins and are related to neurodegeneration. Their different forms are related to various pathological conditions in the brain. We investigated Aβ42 peptides in different environments of proline, urea, and GdmCl solutions (in pure and mixed binary forms) through atomistic molecular dynamics simulations. Preferential exclusion from the protein surface and facile formation of a large number of weak molecular interactions are the driving forces for the osmolyte's action. We have focused on these interactions between peptide monomers and pure/mixed osmolytes and denaturants. Urea, as usual, denatures the peptide strongly compared to the GdmCl by accumulation around the peptide. GdmCl shows lesser build-up around protein in contrast to urea but is involved in destabilizing the salt bridge formation of Asp23 and Lys28. Proline as an osmolyte protects the peptide from aggregation when mixed with urea and GdmCl solutions. In mixed solutions of two denaturants and osmolyte plus denaturant, the peptide shows enhanced stability as compared to pure denaturant urea solution. The enhanced stability of peptides in proline may be attributed to its exclusion from the peptide surface and favoring salt bridge formation.
Collapse
Affiliation(s)
- Ashma Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Shahid M Nayeem
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, UP, India
| |
Collapse
|
7
|
Das A, Sah P, Saraogi I. Dual Role of a Fluorescent Small Molecule as a Sensor and Inhibitor of Protein Fibrillation. Chem Asian J 2023; 18:e202201309. [PMID: 36594929 DOI: 10.1002/asia.202201309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/04/2023]
Abstract
Ordered fibrillar aggregates of proteins, called amyloids, are prevalent in several diseases like Alzheimer's, Parkinson's, and Type II diabetes. The key challenge in the treatment of such diseases is the early detection of protein fibrillation and its effective inhibition using extrinsic agents. Thus, molecules that can both detect and inhibit protein fibril formation have great diagnostic and therapeutic utility. Using insulin as a model protein, we report the dual action of an isoquinoline based molecule, named MK14 which detects and prevents insulin fibrillation. Dose dependent inhibition of insulin fibrillation by MK14 gave an IC50 value of 9 μM, and mechanistic investigations suggested that MK14 prevented the elongation of fibrils by interacting with pre-fibrillar intermediates. The fluorescence of MK14 enhanced upon binding to fibrils of insulin as well as those of α-synuclein, the protein involved in Parkinson's disease. MK14 is an environmentally sensitive fluorophore, which could also detect amorphous aggregates of insulin. The dual nature of MK14 as an inhibitor and detector of protein fibrillation makes it an attractive lead compound for monitoring and disrupting protein amyloidogenesis.
Collapse
Affiliation(s)
- Anirban Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, MP, India
| | - Pooja Sah
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, MP, India
| | - Ishu Saraogi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, MP, India.,Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, MP, India
| |
Collapse
|
8
|
Fazelinejad H, Zahedi E, Nazarian S, Kaffash Siuki Z, Nasri S, Dadmehr M, Mehrabi M, Khodarahmi R. Neuroprotective effect of Bis(Indolyl)phenylmethane in Alzheimer’s disease rat model through inhibition of hen Lysozyme amyloid fibril-induced neurotoxicity. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02692-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Banerjee S, Holcombe B, Ringold S, Foes A, Naik T, Baghel D, Ghosh A. Nanoscale Infrared Spectroscopy Identifies Structural Heterogeneity in Individual Amyloid Fibrils and Prefibrillar Aggregates. J Phys Chem B 2022; 126:5832-5841. [PMID: 35914320 DOI: 10.1021/acs.jpcb.2c04797] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Amyloid plaques are one of the central manifestations of Alzheimer's disease pathology. Aggregation of the amyloid beta (Aβ) protein from amorphous oligomeric species to mature fibrils has been extensively studied. However, structural heterogeneities in prefibrillar species, and how that affects the structure of later-stage aggregates are not yet well understood. The integration of infrared spectroscopy with atomic force microscopy (AFM-IR) allows for identifying the signatures of individual nanoscale aggregates by spatially resolving spectra. We use AFM-IR to demonstrate that amyloid oligomers exhibit significant structural variations as evidenced in their infrared spectra. This heterogeneity is transmitted to and retained in protofibrils and fibrils. We show that amyloid fibrils do not always conform to their putative ordered structure and structurally different domains exist in the same fibril. We further demonstrate that these structural heterogeneities manifest themselves as a lack of β sheet structure in amyloid plaques in Alzheimer's tissue using infrared imaging.
Collapse
Affiliation(s)
- Siddhartha Banerjee
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Brooke Holcombe
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Sydney Ringold
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Abigail Foes
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Tanmayee Naik
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Divya Baghel
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Ayanjeet Ghosh
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
10
|
Das A, Gangarde YM, Pariary R, Bhunia A, Saraogi I. An amphiphilic small molecule drives insulin aggregation inhibition and amyloid disintegration. Int J Biol Macromol 2022; 218:981-991. [PMID: 35907468 DOI: 10.1016/j.ijbiomac.2022.07.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022]
Abstract
The aggregation of proteins into ordered fibrillar structures called amyloids, and their disintegration represent major unsolved problems that limit the therapeutic applications of several proteins. For example, insulin, commonly used for the treatment of diabetes, is susceptible to amyloid formation upon exposure to non-physiological conditions, resulting in a loss of its biological activity. Here, we report a novel amphiphilic molecule called PAD-S, which acts as a chemical chaperone and completely inhibits fibrillation of insulin and its biosimilars. Mechanistic investigations and molecular docking lead to the conclusion that PAD-S binds to key hydrophobic regions of native insulin, thereby preventing its self-assembly. PAD-S treated insulin was biologically active as indicated by its ability to phosphorylate Akt, a protein in the insulin signalling pathway. PAD-S is non-toxic and protects cells from insulin amyloid induced cytotoxicity. The high aqueous solubility and easy synthetic accessibility of PAD-S facilitates its potential use in commercial insulin formulations. Notably, PAD-S successfully disintegrated preformed insulin fibrils to non-toxic smaller fragments. Since the structural and mechanistic features of amyloids are common to several human pathologies, the understanding of the amyloid disaggregation activity of PAD-S will inform the development of small molecule disaggregators for other amyloids.
Collapse
Affiliation(s)
- Anirban Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Yogesh M Gangarde
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Ranit Pariary
- Department of Biophysics, Bose Institute, Sector V, EN 80, Bidhan Nagar, Kolkata 700 091, India
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, Sector V, EN 80, Bidhan Nagar, Kolkata 700 091, India
| | - Ishu Saraogi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India; Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India.
| |
Collapse
|
11
|
Couzijn S, Nollen EA. A sudden collapse: the disaggregation of amyloid fibres. EMBO J 2022; 41:e111700. [PMID: 35791595 DOI: 10.15252/embj.2022111700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/22/2022] [Indexed: 11/09/2022] Open
Abstract
A hallmark of age-related neurodegenerative diseases is the presence of highly stable protein aggregates, also known as amyloid fibres. As these fibres are strongly associated with disease, it is thought that clearance of these fibres could delay or prevent disease progression. In this issue of The EMBO Journal, Beton et al unravel how the Hsc70/DNAJB1/Apg2 disaggregase machinery disassembles amyloid fibres, using α-synuclein fibrils implicated in Parkinson's Disease as a model substrate.
Collapse
Affiliation(s)
- Suzanne Couzijn
- European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Ellen Aa Nollen
- European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
12
|
Das A, Shah M, Saraogi I. Molecular Aspects of Insulin Aggregation and Various Therapeutic Interventions. ACS BIO & MED CHEM AU 2022; 2:205-221. [PMID: 37101572 PMCID: PMC10114644 DOI: 10.1021/acsbiomedchemau.1c00054] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Protein aggregation leading to the formation of amyloid fibrils has various adverse effects on human health ranging from fatigue and numbness to organ failure and death in extreme cases. Insulin, a peptide hormone commonly used to treat diabetes, undergoes aggregation at the site of repeated injections in diabetic patients as well as during its industrial production and transport. The reduced bioavailability of insulin due to aggregation hinders the proper control of glucose levels in diabetic patients. Thus, it is necessary to develop rational approaches for inhibiting insulin aggregation, which in turn requires a detailed understanding of the mechanism of fibrillation. Given the relative simplicity of insulin and ease of access, insulin has also served as a model system for studying amyloids. Approaches to inhibit insulin aggregation have included the use of natural molecules, synthetic peptides or small molecules, and bacterial chaperone machinery. This review focuses on insulin aggregation with an emphasis on its mechanism, the structural features of insulin fibrils, and the reported inhibitors that act at different stages in the aggregation pathway. We discuss molecules that can serve as leads for improved inhibitors for use in commercial insulin formulations. We also discuss the aggregation propensity of fast- and slow-acting insulin biosimilars, commonly administered to diabetic patients. The development of better insulin aggregation inhibitors and insights into their mechanism of action will not only aid diabetic therapies, but also enhance our knowledge of protein amyloidosis.
Collapse
Affiliation(s)
- Anirban Das
- Department
of Chemistry and Department of Biological Sciences, Indian
Institute of Science Education and Research
Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Mosami Shah
- Department
of Chemistry and Department of Biological Sciences, Indian
Institute of Science Education and Research
Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Ishu Saraogi
- Department
of Chemistry and Department of Biological Sciences, Indian
Institute of Science Education and Research
Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
13
|
Beton JG, Monistrol J, Wentink A, Johnston EC, Roberts AJ, Bukau BG, Hoogenboom BW, Saibil HR. Cooperative amyloid fibre binding and disassembly by the Hsp70 disaggregase. EMBO J 2022; 41:e110410. [PMID: 35698800 PMCID: PMC9379549 DOI: 10.15252/embj.2021110410] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 01/05/2023] Open
Abstract
Although amyloid fibres are highly stable protein aggregates, a specific combination of human Hsp70 system chaperones can disassemble them, including fibres formed of α-synuclein, huntingtin, or Tau. Disaggregation requires the ATPase activity of the constitutively expressed Hsp70 family member, Hsc70, together with the J domain protein DNAJB1 and the nucleotide exchange factor Apg2. Clustering of Hsc70 on the fibrils appears to be necessary for disassembly. Here we use atomic force microscopy to show that segments of in vitro assembled α-synuclein fibrils are first coated with chaperones and then undergo bursts of rapid, unidirectional disassembly. Cryo-electron tomography and total internal reflection fluorescence microscopy reveal fibrils with regions of densely bound chaperones, preferentially at one end of the fibre. Sub-stoichiometric amounts of Apg2 relative to Hsc70 dramatically increase recruitment of Hsc70 to the fibres, creating localised active zones that then undergo rapid disassembly at a rate of ~ 4 subunits per second. The observed unidirectional bursts of Hsc70 loading and unravelling may be explained by differences between the two ends of the polar fibre structure.
Collapse
Affiliation(s)
- Joseph George Beton
- Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck University of London, London, UK
| | - Jim Monistrol
- Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck University of London, London, UK
| | - Anne Wentink
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Erin C Johnston
- Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck University of London, London, UK
| | - Anthony John Roberts
- Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck University of London, London, UK
| | - Bernd Gerhard Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London, UK.,Department of Physics & Astronomy, University College London, London, UK
| | - Helen R Saibil
- Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck University of London, London, UK
| |
Collapse
|
14
|
Cuddy SAM, Jerosch-Herold M, Falk RH, Kijewski MF, Singh V, Ruberg FL, Sanchorawala V, Landau H, Maurer MS, Yee AJ, Bianchi G, Di Carli MF, Liao R, Kwong RY, Dorbala S. Myocardial Composition in Light-Chain Cardiac Amyloidosis More Than 1 Year After Successful Therapy. JACC Cardiovasc Imaging 2022; 15:594-603. [PMID: 34922860 PMCID: PMC8995332 DOI: 10.1016/j.jcmg.2021.09.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/09/2021] [Accepted: 09/27/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVES The goals of this study were to characterize myocardial composition during the active and remission phases of light-chain (AL) cardiac amyloidosis. BACKGROUND Cardiac dysfunction in AL amyloidosis is characterized by dual insults to the myocardium from infiltration and toxicity from light chains during the active phase and by infiltration alone in the remission phase. METHODS Prospectively enrolled subjects with cardiac AL amyloidosis (21 remission AL amyloidosis; age: 63.4 ± 7.3 years; 47.6% male; and 48 active AL amyloidosis; age: 62.5 ± 7.4 years; 60.4% male) underwent contrast-enhanced cardiac magnetic resonance with T1 and T2 mapping and measurement of extracellular volume (ECV). By definition, serum free light-chain levels were normal for at least 1 year following successful AL therapy in the remission group and abnormal in the active group. RESULTS Myocardial ECV was similarly expanded in the remission and active AL amyloidosis groups (0.488 ± 0.082 vs 0.519 ± 0.083, respectively; P = 0.15). However, myocardial T2 relaxation times (47.7 ± 3.2 ms vs 45.5 ± 3.0 ms; P = 0.008) as well as native T1 times (1,368 ms [IQR: 1,290-1,422 ms] vs 1,264 ms [IQR: 1,203-1,380 ms]; P = 0.024) were significantly higher in the remission compared to the active AL amyloidosis group. CONCLUSIONS Myocardial ECV is substantially expanded in the active AL and remission AL cardiac amyloidosis groups, but native T1 values were higher, suggesting a different myocardial composition. There is no evidence of myocardial edema in active AL cardiac amyloidosis. Future phenotyping studies of AL cardiac amyloidosis need to consider complementary myocardial markers that define the interstitial milieu in addition to changes in extracellular volume. (Molecular Imaging of Primary Amyloid Cardiomyopathy; NCT02641145).
Collapse
Affiliation(s)
- Sarah A M Cuddy
- Cardiac Amyloidosis Program, Division of Cardiology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Cardiovascular Imaging Program, Cardiovascular Division and Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Michael Jerosch-Herold
- Cardiovascular Imaging Program, Cardiovascular Division and Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Rodney H Falk
- Cardiac Amyloidosis Program, Division of Cardiology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Marie Foley Kijewski
- Division of Nuclear Medicine, Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Vasvi Singh
- Cardiovascular Imaging Program, Cardiovascular Division and Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA; Division of Nuclear Medicine, Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Frederick L Ruberg
- Section of Cardiovascular Medicine, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Vaishali Sanchorawala
- Section of Cardiovascular Medicine, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Heather Landau
- Division of Medical Oncology, Memorial Sloan Kettering Medical Center, New York, New York, USA
| | - Matthew S Maurer
- Division of Cardiology, Columbia University Irving Medical Center, New York, New York, USA
| | - Andrew J Yee
- Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Giada Bianchi
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Marcelo F Di Carli
- Cardiovascular Imaging Program, Cardiovascular Division and Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA; Division of Nuclear Medicine, Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Ronglih Liao
- Amyloidosis Program, Stanford University, Stanford, California, USA
| | - Raymond Y Kwong
- Cardiovascular Imaging Program, Cardiovascular Division and Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA; Division of Nuclear Medicine, Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Sharmila Dorbala
- Cardiac Amyloidosis Program, Division of Cardiology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Cardiovascular Imaging Program, Cardiovascular Division and Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA; Division of Nuclear Medicine, Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
15
|
Gharibyan AL, Wasana Jayaweera S, Lehmann M, Anan I, Olofsson A. Endogenous Human Proteins Interfering with Amyloid Formation. Biomolecules 2022; 12:biom12030446. [PMID: 35327638 PMCID: PMC8946693 DOI: 10.3390/biom12030446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 01/09/2023] Open
Abstract
Amyloid formation is a pathological process associated with a wide range of degenerative disorders, including Alzheimer’s disease, Parkinson’s disease, and diabetes mellitus type 2. During disease progression, abnormal accumulation and deposition of proteinaceous material are accompanied by tissue degradation, inflammation, and dysfunction. Agents that can interfere with the process of amyloid formation or target already formed amyloid assemblies are consequently of therapeutic interest. In this context, a few endogenous proteins have been associated with an anti-amyloidogenic activity. Here, we review the properties of transthyretin, apolipoprotein E, clusterin, and BRICHOS protein domain which all effectively interfere with amyloid in vitro, as well as displaying a clinical impact in humans or animal models. Their involvement in the amyloid formation process is discussed, which may aid and inspire new strategies for therapeutic interventions.
Collapse
Affiliation(s)
- Anna L. Gharibyan
- Department of Clinical Microbiology, Umeå University, 901 87 Umeå, Sweden;
- Correspondence: (A.L.G.); (A.O.)
| | | | - Manuela Lehmann
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden; (M.L.); (I.A.)
| | - Intissar Anan
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden; (M.L.); (I.A.)
| | - Anders Olofsson
- Department of Clinical Microbiology, Umeå University, 901 87 Umeå, Sweden;
- Correspondence: (A.L.G.); (A.O.)
| |
Collapse
|
16
|
Choudhary S, Lopus M, Hosur RV. Targeting disorders in unstructured and structured proteins in various diseases. Biophys Chem 2021; 281:106742. [PMID: 34922214 DOI: 10.1016/j.bpc.2021.106742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 12/31/2022]
Abstract
Intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs) are proteins and protein segments that usually do not acquire well-defined folded structures even under physiological conditions. They are abundantly present and challenge the "one sequence-one structure-one function" theory due to a lack of stable secondary and/or tertiary structure. Due to conformational flexibility, IDPs/IDPRs can bind with multiple interacting partners with high-specificity and low-affinity and perform essential biological functions associated with signalling, recognition and regulation. Mis-functioning and mis-regulation of IDPs and IDPRs causes disorder in disordered proteins and disordered protein segments which results in numerous human diseases, such as cancer, Parkinson's disease (PD), Alzheimer's disease (AD), diabetes, metabolic disorders, systemic disorders and so on. Due to the strong connection of IDPs/IDPRs with human diseases they are considered potentential targets for drug therapy. Since they disobey the "one sequence-one structure-one function" concept, IDPs/IDPRs are complex systems for drug targeting. This review summarises various protein disorder diseases and different methods for therapeutic targeting of disordered proteins/segments. Targeting IDPs/IDPRs for diseases will open up a new era of rational drug design and drug discovery.
Collapse
Affiliation(s)
- Sinjan Choudhary
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidhyanagri Campus, Kalina, Mumbai 400098, India.
| | - Manu Lopus
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidhyanagri Campus, Kalina, Mumbai 400098, India.
| | - Ramakrishna V Hosur
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidhyanagri Campus, Kalina, Mumbai 400098, India.
| |
Collapse
|
17
|
Poma AB, Thu TTM, Tri LTM, Nguyen HL, Li MS. Nanomechanical Stability of Aβ Tetramers and Fibril-like Structures: Molecular Dynamics Simulations. J Phys Chem B 2021; 125:7628-7637. [PMID: 34253022 PMCID: PMC8389904 DOI: 10.1021/acs.jpcb.1c02322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/25/2021] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder and one of the main causes of dementia. The disease is associated with amyloid beta (Aβ) peptide aggregation forming initial clusters and then fibril structure and plaques. Other neurodegenerative diseases such as type 2 diabetes, amyotrophic lateral sclerosis, and Parkinson's disease follow a similar mechanism. Therefore, inhibition of Aβ aggregation is considered an effective way to prevent AD. Recent experiments have provided evidence that oligomers are more toxic agents than mature fibrils, prompting researchers to investigate various factors that may influence their properties. One of these factors is nanomechanical stability, which plays an important role in the self-assembly of Aβ and possibly other proteins. This stability is also likely to be related to cell toxicity. In this work, we compare the mechanical stability of Aβ-tetramers and fibrillar structures using a structure-based coarse-grained (CG) approach and all-atom molecular dynamics simulation. Our results support the evidence for an increase in mechanical stability during the Aβ fibrillization process, which is consistent with in vitro AFM characterization of Aβ42 oligomers. Namely, using a CG model, we showed that the Young modulus of tetramers is lower than that of fibrils and, as follows from the experiment, is about 1 GPa. Hydrogen bonds are the dominant contribution to the detachment of one chain from the Aβ fibril fragment. They tend to be more organized along the pulling direction, whereas in the Aβ tetramers no preference is observed.
Collapse
Affiliation(s)
- Adolfo B. Poma
- Institute
of Fundamental Technological Research, Polish
Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
- International
Center for Research on Innovative Biobased Materials (ICRI-BioM)—International
Research Agenda, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - Tran Thi Minh Thu
- Institute
for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh
Hiep Ward, District 12, Ho Chi Minh City, Vietnam
- Faculty
of Materials Science and Technology, Ho
Chi Minh City University of Science - VNUHCM, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam
- Vietnam
National University, Ho Chi Minh
City 700000, Vietnam
| | - Lam Tang Minh Tri
- Faculty
of Materials Science and Technology, Ho
Chi Minh City University of Science - VNUHCM, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam
- Vietnam
National University, Ho Chi Minh
City 700000, Vietnam
| | - Hoang Linh Nguyen
- Institute
for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh
Hiep Ward, District 12, Ho Chi Minh City, Vietnam
- Ho
Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam
- Vietnam
National University, Ho Chi Minh
City 700000, Vietnam
| | - Mai Suan Li
- Institute
of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
18
|
Perni M, Mannini B, Xu CK, Kumita JR, Dobson CM, Chiti F, Vendruscolo M. Exogenous misfolded protein oligomers can cross the intestinal barrier and cause a disease phenotype in C. elegans. Sci Rep 2021; 11:14391. [PMID: 34257326 PMCID: PMC8277765 DOI: 10.1038/s41598-021-93527-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Misfolded protein oligomers are increasingly recognized as highly cytotoxic agents in a wide range of human disorders associated with protein aggregation. In this study, we assessed the possible uptake and resulting toxic effects of model protein oligomers administered to C. elegans through the culture medium. We used an automated machine-vision, high-throughput screening procedure to monitor the phenotypic changes in the worms, in combination with confocal microscopy to monitor the diffusion of the oligomers, and oxidative stress assays to detect their toxic effects. Our results suggest that the oligomers can diffuse from the intestinal lumen to other tissues, resulting in a disease phenotype. We also observed that pre-incubation of the oligomers with a molecular chaperone (αB-crystallin) or a small molecule inhibitor of protein aggregation (squalamine), reduced the oligomer absorption. These results indicate that exogenous misfolded protein oligomers can be taken up by the worms from their environment and spread across tissues, giving rise to pathological effects in regions distant from their place of absorbance.
Collapse
Affiliation(s)
- Michele Perni
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Benedetta Mannini
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Catherine K Xu
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Janet R Kumita
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Christopher M Dobson
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| |
Collapse
|
19
|
Leal-Lasarte M, Mannini B, Chiti F, Vendruscolo M, Dobson CM, Roodveldt C, Pozo D. Distinct responses of human peripheral blood cells to different misfolded protein oligomers. Immunology 2021; 164:358-371. [PMID: 34043816 PMCID: PMC8442237 DOI: 10.1111/imm.13377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 01/10/2023] Open
Abstract
Increasing evidence indicates that peripheral immune cells play a prominent role in neurodegeneration connected to protein misfolding, which are associated with formation of aberrant aggregates, including soluble protein misfolded oligomers. The precise links, however, between the physicochemical features of diverse oligomers and their effects on the immune system, particularly on adaptive immunity, remain currently unexplored, due partly to the transient and heterogeneous nature of the oligomers themselves. To overcome these limitations, we took advantage of two stable and well‐characterized types of model oligomers (A and B), formed by HypF‐N bacterial protein, type B oligomers displaying lower solvent‐exposed hydrophobicity. Exposure to oligomers of human peripheral blood mononuclear cells (PBMCs) revealed differential effects, with type B, but not type A, oligomers leading to a reduction in CD4+ cells. Type A oligomers promoted enhanced differentiation towards CD4+CD25HighFoxP3+ Tregs and displayed a higher suppressive effect on lymphocyte proliferation than Tregs treated with oligomers B or untreated cells. Moreover, our results reveal Th1 and Th17 lymphocyte differentiation mediated by type A oligomers and a differential balance of TGF‐β, IL‐6, IL‐23, IFN‐γ and IL‐10 mediators. These results indicate that type B oligomers recapitulate some of the biological responses associated with Parkinson's disease in peripheral immunocompetent cells, while type A oligomers resemble responses associated with Alzheimer's disease. We anticipate that further studies characterizing the differential effects of protein misfolded oligomers on the peripheral immune system may lead to the development of blood‐based diagnostics, which could report on the type and properties of oligomers present in patients.
Collapse
Affiliation(s)
- Magdalena Leal-Lasarte
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Seville, Spain
| | - Benedetta Mannini
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.,Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Michele Vendruscolo
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Christopher M Dobson
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Cintia Roodveldt
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Seville, Spain.,Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - David Pozo
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Seville, Spain.,Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
20
|
Wells C, Brennan S, Keon M, Ooi L. The role of amyloid oligomers in neurodegenerative pathologies. Int J Biol Macromol 2021; 181:582-604. [PMID: 33766600 DOI: 10.1016/j.ijbiomac.2021.03.113] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/18/2021] [Accepted: 03/19/2021] [Indexed: 11/25/2022]
Abstract
Many neurodegenerative diseases are rooted in the activities of amyloid-like proteins which possess conformations that spread to healthy proteins. These include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). While their clinical manifestations vary, their protein-level mechanisms are remarkably similar. Aberrant monomeric proteins undergo conformational shifts, facilitating aggregation and formation of solid fibrils. However, there is growing evidence that intermediate oligomeric stages are key drivers of neuronal toxicity. Analysis of protein dynamics is complicated by the fact that nucleation and growth of amyloid-like proteins is not a linear pathway. Feedback within this pathway results in exponential acceleration of aggregation, but activities exerted by oligomers and fibrils can alter cellular interactions and the cellular environment as a whole. The resulting cascade of effects likely contributes to the late onset and accelerating progression of amyloid-like protein disorders and the widespread effects they have on the body. In this review we explore the amyloid-like proteins associated with AD, PD, HD and ALS, as well as the common mechanisms of amyloid-like protein nucleation and aggregation. From this, we identify core elements of pathological progression which have been targeted for therapies, and which may become future therapeutic targets.
Collapse
Affiliation(s)
- Cameron Wells
- GenieUs Genomics, Sydney, NSW 2010, Australia; University of New South Wales, Sydney, NSW 2052, Australia
| | | | - Matt Keon
- GenieUs Genomics, Sydney, NSW 2010, Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; School of Chemistry and Molecular Bioscience, and Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia; GenieUs Genomics, Sydney, NSW 2010, Australia
| |
Collapse
|
21
|
Milardi D, Gazit E, Radford SE, Xu Y, Gallardo RU, Caflisch A, Westermark GT, Westermark P, Rosa CL, Ramamoorthy A. Proteostasis of Islet Amyloid Polypeptide: A Molecular Perspective of Risk Factors and Protective Strategies for Type II Diabetes. Chem Rev 2021; 121:1845-1893. [PMID: 33427465 PMCID: PMC10317076 DOI: 10.1021/acs.chemrev.0c00981] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The possible link between hIAPP accumulation and β-cell death in diabetic patients has inspired numerous studies focusing on amyloid structures and aggregation pathways of this hormone. Recent studies have reported on the importance of early oligomeric intermediates, the many roles of their interactions with lipid membrane, pH, insulin, and zinc on the mechanism of aggregation of hIAPP. The challenges posed by the transient nature of amyloid oligomers, their structural heterogeneity, and the complex nature of their interaction with lipid membranes have resulted in the development of a wide range of biophysical and chemical approaches to characterize the aggregation process. While the cellular processes and factors activating hIAPP-mediated cytotoxicity are still not clear, it has recently been suggested that its impaired turnover and cellular processing by proteasome and autophagy may contribute significantly toward toxic hIAPP accumulation and, eventually, β-cell death. Therefore, studies focusing on the restoration of hIAPP proteostasis may represent a promising arena for the design of effective therapies. In this review we discuss the current knowledge of the structures and pathology associated with hIAPP self-assembly and point out the opportunities for therapy that a detailed biochemical, biophysical, and cellular understanding of its aggregation may unveil.
Collapse
Affiliation(s)
- Danilo Milardi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via P. Gaifami 18, 95126 Catania, Italy
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Yong Xu
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Rodrigo U Gallardo
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zürich, Zürich CH-8057, Switzerland
| | - Gunilla T Westermark
- Department of Medical Cell Biology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Per Westermark
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Carmelo La Rosa
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 41809-1055, United States
| |
Collapse
|
22
|
Meng F, Lu T, Wang Y, Zhao Y, Li Z, Li F. Role of Chain Extension in the Ability of Peptide Oligomers to Damage the Lipid Membrane Studied by the l- to d-Amino Acid Substitutions of hIAPP 18-27. J Phys Chem B 2020; 124:10147-10156. [PMID: 33140962 DOI: 10.1021/acs.jpcb.0c07656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Exploration of the relation between the structural feature of oligomers and the ability of oligomers to damage the membrane has been an important subject in the study of the cytotoxic mechanism of amyloid proteins. In this work, we selected the hIAPP18-27 fragment as a model peptide and modified it by an alternating substitution of a d-amino acid for an l-amino acid in the hydrophilic N-terminal region, the hydrophobic C-terminal region, and the entire sequence. We prepared the oligomers using these peptides and investigated the effects of chain extension in different regions of the peptide on the ability of the oligomers to damage the membrane composed of POPC/POPG 4:1. We examined the morphology, structure, surface hydrophobicity, and packing compactness of the oligomers and monitored the changes in the structure and aggregation of the peptides upon interaction with the membrane. We found that the surface hydrophobicity and the disruptive ability of the oligomers are increased by an alternating l- and d-amino acid arrangement in the hydrophobic region of the peptide, while the packing compactness of the oligomers is increased and the disruptive ability of the oligomers decreased by an alternating l- and d-amino acid arrangement only in the hydrophilic region. The extension of the hydrophobic chain plays a significant role in the disruptive ability of the oligomers. Our results suggest that a positive relation between the surface hydrophobicity and the disruptive ability could be established only for the oligomers in which the peptide chains are flexible and loosely packed.
Collapse
Affiliation(s)
- Feihong Meng
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Avenue, Changchun, 130012, P. R. China
| | - Tong Lu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Avenue, Changchun, 130012, P. R. China
| | - Yajie Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Avenue, Changchun, 130012, P. R. China
| | - Yanping Zhao
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, 2699 Qianjin Avenue, Changchun, 130012, P. R. China
| | - Zhengqiang Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, 2699 Qianjin Avenue, Changchun, 130012, P. R. China
| | - Fei Li
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Avenue, Changchun, 130012, P. R. China
| |
Collapse
|
23
|
Biophysical studies of protein misfolding and aggregation in in vivo models of Alzheimer's and Parkinson's diseases. Q Rev Biophys 2020; 49:e22. [PMID: 32493529 DOI: 10.1017/s0033583520000025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurodegenerative disorders, including Alzheimer's (AD) and Parkinson's diseases (PD), are characterised by the formation of aberrant assemblies of misfolded proteins. The discovery of disease-modifying drugs for these disorders is challenging, in part because we still have a limited understanding of their molecular origins. In this review, we discuss how biophysical approaches can help explain the formation of the aberrant conformational states of proteins whose neurotoxic effects underlie these diseases. We discuss in particular models based on the transgenic expression of amyloid-β (Aβ) and tau in AD, and α-synuclein in PD. Because biophysical methods have enabled an accurate quantification and a detailed understanding of the molecular mechanisms underlying protein misfolding and aggregation in vitro, we expect that the further development of these methods to probe directly the corresponding mechanisms in vivo will open effective routes for diagnostic and therapeutic interventions.
Collapse
|
24
|
Das A, Gangarde YM, Tomar V, Shinde O, Upadhyay T, Alam S, Ghosh S, Chaudhary V, Saraogi I. Small-Molecule Inhibitor Prevents Insulin Fibrillogenesis and Preserves Activity. Mol Pharm 2020; 17:1827-1834. [PMID: 32347728 DOI: 10.1021/acs.molpharmaceut.9b01080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Amyloidosis is a well-known but poorly understood phenomenon caused by the aggregation of proteins, often leading to pathological conditions. For example, the aggregation of insulin poses significant challenges during the preparation of pharmaceutical insulin formulations commonly used to treat diabetic patients. Therefore, it is essential to develop inhibitors of insulin aggregation for potential biomedical applications and for important mechanistic insights into amyloidogenic pathways. Here, we have identified a small molecule M1, which causes a dose-dependent reduction in insulin fibril formation. Biophysical analyses and docking results suggest that M1 likely binds to partially unfolded insulin intermediates. Further, M1-treated insulin had lower cytotoxicity and remained functionally active in regulating cell proliferation in cultured Drosophila wing epithelium. Thus, M1 is of great interest as a novel agent for inhibiting insulin aggregation during biopharmaceutical manufacturing.
Collapse
|
25
|
Lin X, Galaqin N, Tainaka R, Shimamori K, Kuragano M, Noguchi TQP, Tokuraku K. Real-Time 3D Imaging and Inhibition Analysis of Various Amyloid Aggregations Using Quantum Dots. Int J Mol Sci 2020; 21:E1978. [PMID: 32183170 PMCID: PMC7139405 DOI: 10.3390/ijms21061978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/01/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Amyloidosis refers to aggregates of protein that accumulate and are deposited as amyloid fibrils into plaques. When these are detected in organs, they are the main hallmark of Alzheimer's disease, Parkinson's disease, and other related diseases. Recent medical advances have shown that many precursors and proteins can induce amyloidosis even though the mechanism of amyloid aggregation and the relationship of these proteins to amyloidosis remains mostly unclear. In this study, we report the real-time 3D-imaging and inhibition analysis of amyloid β (Aβ), tau, and α-synuclein aggregation utilizing the affinity between quantum dots (QD) and amyloid aggregates. We successfully visualized these amyloid aggregations in real-time using fluorescence microscopy and confocal microscopy simply by adding commercially available QD. The observation by transmission electron microscopy (TEM) showed that QD particles bound to all amyloid fibrils. The 3D-imaging with QD revealed differences between amyloid aggregates composed of different amyloid peptides that could not be detected by TEM. We were also able to quantify the inhibition activities of these proteins by rosmarinic acid, which has high activity for Aβ aggregation, from fluorescence micrographs as half-maximal effective concentrations. These imaging techniques with QD serve as quick, easy, and powerful tools to understand amyloidosis and to discover drugs for therapies.
Collapse
Affiliation(s)
- Xuguang Lin
- Department of Applied Science and Engineering, Muroran Institute of Technology, Muroran 050-8585, Japan; (X.L.); (N.G.); (R.T.); (K.S.); (M.K.)
| | - Nuomin Galaqin
- Department of Applied Science and Engineering, Muroran Institute of Technology, Muroran 050-8585, Japan; (X.L.); (N.G.); (R.T.); (K.S.); (M.K.)
| | - Reina Tainaka
- Department of Applied Science and Engineering, Muroran Institute of Technology, Muroran 050-8585, Japan; (X.L.); (N.G.); (R.T.); (K.S.); (M.K.)
| | - Keiya Shimamori
- Department of Applied Science and Engineering, Muroran Institute of Technology, Muroran 050-8585, Japan; (X.L.); (N.G.); (R.T.); (K.S.); (M.K.)
| | - Masahiro Kuragano
- Department of Applied Science and Engineering, Muroran Institute of Technology, Muroran 050-8585, Japan; (X.L.); (N.G.); (R.T.); (K.S.); (M.K.)
| | - Taro Q. P. Noguchi
- Department of Chemical Science and Engineering, National Institute of Technology, Miyakonojo College, Miyakonojo 885-8567, Japan;
| | - Kiyotaka Tokuraku
- Department of Applied Science and Engineering, Muroran Institute of Technology, Muroran 050-8585, Japan; (X.L.); (N.G.); (R.T.); (K.S.); (M.K.)
| |
Collapse
|
26
|
Francis N, Robison LS, Popescu DL, Michaelos M, Hatfield J, Xu F, Zhu X, Davis J, Anderson ME, Anderson BJ, Van Nostrand WE, Robinson JK. Voluntary Wheel Running Reduces Amyloid-β42 and Rescues Behavior in Aged Tg2576 Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2020; 73:359-374. [PMID: 31796673 PMCID: PMC11686454 DOI: 10.3233/jad-190810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Exercise has been shown to be protective against the risk of dementias, including Alzheimer's disease (AD). Intervention studies have demonstrated its ability to mitigate cognitive and behavioral impairments and reduce disease in both humans and animals. However, information is lacking in regard to the volume and intensity, as well as timing of exercise onset with respect to disease stage, which produces optimal benefits. Here, utilizing the Tg2576 mouse, a model of AD-like parenchymal amyloid pathology and cognitive impairment, we sought to understand the effects of different lengths of daily access to a running wheel on advanced stage disease. This study is the first to determine the benefits of long-term exercise (4 months of voluntary running) and different periods of daily access to a running wheel (0 h, 1 h, 3 h, and 12 h running wheel access) beginning in 14-month-old Tg2576 mice, an age with significant amyloid pathology. We found that exercising Tg2576 animals showed lower levels of some aspects of AD pathology and reduced behavioral dysfunction compared to sedentary Tg2576 animals. High intensity exercise, rather than high volume exercise, was generally most beneficial in reducing amyloid pathology. Our results suggest that engaging in vigorous exercise programs, even after living a sedentary life, may lead to a measurable reduction in AD pathology and preservation of some cognitive abilities.
Collapse
Affiliation(s)
- Nikita Francis
- Department of Psychology, Stony Brook University, Stony Brook, NY, USA
- George & Anne Ryan Institute for Neuroscience and Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Lisa S. Robison
- Department of Psychology, Stony Brook University, Stony Brook, NY, USA
| | - Dominique L. Popescu
- Department of Psychology, Stony Brook University, Stony Brook, NY, USA
- George & Anne Ryan Institute for Neuroscience and Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | | | - Joshua Hatfield
- George & Anne Ryan Institute for Neuroscience and Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Feng Xu
- George & Anne Ryan Institute for Neuroscience and Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Xiaoyue Zhu
- George & Anne Ryan Institute for Neuroscience and Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Judianne Davis
- George & Anne Ryan Institute for Neuroscience and Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Maria E. Anderson
- Department of Psychology, Stony Brook University, Stony Brook, NY, USA
| | | | - William E. Van Nostrand
- George & Anne Ryan Institute for Neuroscience and Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - John K. Robinson
- Department of Psychology, Stony Brook University, Stony Brook, NY, USA
- George & Anne Ryan Institute for Neuroscience and Department of Psychology, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
27
|
Challenging Proteostasis: Role of the Chaperone Network to Control Aggregation-Prone Proteins in Human Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1243:53-68. [PMID: 32297211 DOI: 10.1007/978-3-030-40204-4_4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein homeostasis (Proteostasis) is essential for correct and efficient protein function within the living cell. Among the critical components of the Proteostasis Network (PN) are molecular chaperones that serve widely in protein biogenesis under physiological conditions, and prevent protein misfolding and aggregation enhanced by conditions of cellular stress. For Alzheimer's, Parkinson's, Huntington's diseases and ALS, multiple classes of molecular chaperones interact with the highly aggregation-prone proteins amyloid-β, tau, α-synuclein, huntingtin and SOD1 to influence the course of proteotoxicity associated with these neurodegenerative diseases. Accordingly, overexpression of molecular chaperones and induction of the heat shock response have been shown to be protective in a wide range of animal models of these diseases. In contrast, for cancer cells the upregulation of chaperones has the undesirable effect of promoting cellular survival and tumor growth by stabilizing mutant oncoproteins. In both situations, physiological levels of molecular chaperones eventually become functionally compromised by the persistence of misfolded substrates, leading to a decline in global protein homeostasis and the dysregulation of diverse cellular pathways. The phenomenon of chaperone competition may underlie the broad pathology observed in aging and neurodegenerative diseases, and restoration of physiological protein homeostasis may be a suitable therapeutic avenue for neurodegeneration as well as for cancer.
Collapse
|
28
|
Identification of Novel 1,3,5-Triphenylbenzene Derivative Compounds as Inhibitors of Hen Lysozyme Amyloid Fibril Formation. Int J Mol Sci 2019; 20:ijms20225558. [PMID: 31703381 PMCID: PMC6888386 DOI: 10.3390/ijms20225558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/02/2019] [Indexed: 11/16/2022] Open
Abstract
Deposition of soluble proteins as insoluble amyloid fibrils is associated with a number of pathological states. There is a growing interest in the identification of small molecules that can prevent proteins from undergoing amyloid fibril formation. In the present study, a series of small aromatic compounds with different substitutions of 1,3,5-triphenylbenzene have been synthesized and their possible effects on amyloid fibril formation by hen egg white lysozyme (HEWL), a model protein for amyloid formation, and of their resulting toxicity were examined. The inhibitory effect of the compounds against HEWL amyloid formation was analyzed using thioflavin T and Congo red binding assays, atomic force microscopy, Fourier-transform infrared spectroscopy, and cytotoxicity assays, such as the 3-(4,5-Dimethylthiazol)-2,5-Diphenyltetrazolium Bromide (MTT) reduction assay and caspase-3 activity measurements. We found that all compounds in our screen were efficient inhibitors of HEWL fibril formation and their associated toxicity. We showed that electron-withdrawing substituents such as –F and –NO2 potentiated the inhibitory potential of 1,3,5-triphenylbenzene, whereas electron-donating groups such as –OH, –OCH3, and –CH3 lowered it. These results may ultimately find applications in the development of potential inhibitors against amyloid fibril formation and its biologically adverse effects.
Collapse
|
29
|
Iadanza MG, Jackson MP, Hewitt EW, Ranson NA, Radford SE. A new era for understanding amyloid structures and disease. Nat Rev Mol Cell Biol 2019; 19:755-773. [PMID: 30237470 DOI: 10.1038/s41580-018-0060-8] [Citation(s) in RCA: 640] [Impact Index Per Article: 106.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aggregation of proteins into amyloid fibrils and their deposition into plaques and intracellular inclusions is the hallmark of amyloid disease. The accumulation and deposition of amyloid fibrils, collectively known as amyloidosis, is associated with many pathological conditions that can be associated with ageing, such as Alzheimer disease, Parkinson disease, type II diabetes and dialysis-related amyloidosis. However, elucidation of the atomic structure of amyloid fibrils formed from their intact protein precursors and how fibril formation relates to disease has remained elusive. Recent advances in structural biology techniques, including cryo-electron microscopy and solid-state NMR spectroscopy, have finally broken this impasse. The first near-atomic-resolution structures of amyloid fibrils formed in vitro, seeded from plaque material and analysed directly ex vivo are now available. The results reveal cross-β structures that are far more intricate than anticipated. Here, we describe these structures, highlighting their similarities and differences, and the basis for their toxicity. We discuss how amyloid structure may affect the ability of fibrils to spread to different sites in the cell and between organisms in a prion-like manner, along with their roles in disease. These molecular insights will aid in understanding the development and spread of amyloid diseases and are inspiring new strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Matthew G Iadanza
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Matthew P Jackson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Eric W Hewitt
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
30
|
Mannini B, Vecchi G, Labrador-Garrido A, Fabre B, Fani G, Franco JM, Lilley K, Pozo D, Vendruscolo M, Chiti F, Dobson CM, Roodveldt C. Differential Interactome and Innate Immune Response Activation of Two Structurally Distinct Misfolded Protein Oligomers. ACS Chem Neurosci 2019; 10:3464-3478. [PMID: 31313906 DOI: 10.1021/acschemneuro.9b00088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The formation of misfolded protein oligomers during early stages of amyloid aggregation and the activation of neuroinflammatory responses are two key events associated with neurodegenerative diseases. Although it has been established that misfolded oligomers are involved in the neuroinflammatory process, the links between their structural features and their functional effects on the immune response remain unknown. To explore such links, we took advantage of two structurally distinct soluble oligomers (type A and B) of protein HypF-N and compared the elicited microglial inflammatory responses. By using confocal microscopy, protein pull-down, and high-throughput mass spectrometry, we found that, even though both types bound to a common pool of microglial proteins, type B oligomers-with a lower solvent-exposed hydrophobicity-showed enhanced protein binding, correlating with the observed inflammatory response. Furthermore, the interactome associated with inflammatory-mediated neurodegeneration revealed previously unidentified receptors and signaling molecules likely to be involved in the oligomer-elicited innate immune response.
Collapse
Affiliation(s)
- Benedetta Mannini
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, U.K
| | - Giulia Vecchi
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, U.K
| | - Adahir Labrador-Garrido
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER) - Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, 41092 Seville, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, University of Seville, 41092 Seville, Spain
| | - Bertrand Fabre
- Cambridge Centre for Proteomics, Systems Biology Centre, Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge, U.K
| | - Giulia Fani
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, U.K
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, 50134 Florence, Italy
| | - Jaime M. Franco
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER) - Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, 41092 Seville, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, University of Seville, 41092 Seville, Spain
| | - Kathryn Lilley
- Cambridge Centre for Proteomics, Systems Biology Centre, Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge, U.K
| | - David Pozo
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER) - Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, 41092 Seville, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, University of Seville, 41092 Seville, Spain
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, U.K
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, 50134 Florence, Italy
| | - Christopher M. Dobson
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, U.K
| | - Cintia Roodveldt
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER) - Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, 41092 Seville, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, University of Seville, 41092 Seville, Spain
| |
Collapse
|
31
|
Choi H, Lee W, Lee G, Yoon DS, Na S. The Formation Mechanism of Segmented Ring-Shaped Aβ Oligomers and Protofibrils. ACS Chem Neurosci 2019; 10:3830-3838. [PMID: 31313912 DOI: 10.1021/acschemneuro.9b00324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A clear understanding of amyloid formation with diverse morphologies is critical to overcoming the fatal disease amyloidosis. Studies have revealed that monomer concentration is a crucial factor for determining amyloid morphologies, such as protofibrils, annular, or spherical oligomers. However, gaining a complete understanding of the mechanism of formation of the various amyloid morphologies has been limited by the lack of experimental devices and insufficient knowledge. In this study, we demonstrate that the monomer concentration is an essential factor in determining the morphology of beta-amyloid (Aβ) oligomers or protofibrils. By computational and experimental approaches, we investigated the strategies for structural stabilization of amyloid protein, the morphological changes, and amyloid aggregation. In particular, we found unprecedented conformations, e.g., single bent oligomers and segmented ring-shaped protofibrils, the formation of which was explained by the computational analysis. Our findings provide insight into the structural features of amyloid molecules formed at low concentrations of monomer, which will help determine the clinical targets (in therapy) to effectively inhibit amyloid formation in the early stages of the amyloid growth phase.
Collapse
Affiliation(s)
| | - Wonseok Lee
- Department of Control and Instrumentation Engineering , Korea University , Sejong 30019 , Republic of Korea
| | | | | | | |
Collapse
|
32
|
Nguyen HL, Krupa P, Hai NM, Linh HQ, Li MS. Structure and Physicochemical Properties of the Aβ42 Tetramer: Multiscale Molecular Dynamics Simulations. J Phys Chem B 2019; 123:7253-7269. [DOI: 10.1021/acs.jpcb.9b04208] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hoang Linh Nguyen
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software
City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Biomedical Engineering Department, Ho Chi Minh City University of Technology-VNU HCM, 268 Ly Thuong Kiet Street, Distr. 10, Ho Chi Minh City 700000, Vietnam
| | - Pawel Krupa
- Institute of Physics Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Nguyen Minh Hai
- Faculty of Physics and Engineering Physics, University of Science-VNU HCM, Ho Chi Minh City 700000, Vietnam
| | - Huynh Quang Linh
- Biomedical Engineering Department, Ho Chi Minh City University of Technology-VNU HCM, 268 Ly Thuong Kiet Street, Distr. 10, Ho Chi Minh City 700000, Vietnam
| | - Mai Suan Li
- Institute of Physics Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
33
|
Agrawal N, Skelton AA. Structure and Function of Alzheimer’s Amyloid βeta Proteins from Monomer to Fibrils: A Mini Review. Protein J 2019; 38:425-434. [DOI: 10.1007/s10930-019-09854-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Robison LS, Popescu DL, Anderson ME, Francis N, Hatfield J, Sullivan JK, Beigelman SI, Xu F, Anderson BJ, Van Nostrand WE, Robinson JK. Long-term voluntary wheel running does not alter vascular amyloid burden but reduces neuroinflammation in the Tg-SwDI mouse model of cerebral amyloid angiopathy. J Neuroinflammation 2019; 16:144. [PMID: 31296239 PMCID: PMC6621983 DOI: 10.1186/s12974-019-1534-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/26/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cardiovascular exercise (CVE) has been shown to be protective against cognitive decline in aging and the risk for dementias, including Alzheimer's Disease (AD). CVE has also been shown to have several beneficial effects on brain pathology and behavioral impairments in mouse models of AD; however, no studies have specifically examined the effects of CVE on cerebral amyloid angiopathy (CAA), which is the accumulation of amyloid-beta (Aβ) in the cerebral vasculature. CAA may be uniquely susceptible to beneficial effects of CVE interventions due to the location and nature of the pathology. Alternatively, CVE may exacerbate CAA pathology, due to added stress on already compromised cerebral vasculature. METHODS In the current study, we examined the effects of CVE over many months in mice, thereby modeling a lifelong commitment to CVE in humans. We assessed this voluntary CVE in Tg-SwDI mice, a transgenic mouse model of CAA that exhibits behavioral deficits, fibrillar vascular Aβ pathology, and significant perivascular neuroinflammation. Various "doses" of exercise intervention (0 h ("Sedentary"), 1 h, 3 h, 12 h access to running wheel) were assessed from ~ 4 to 12 months of age for effects on physiology, behavior/cognitive performance, and pathology. RESULTS The 12 h group performed the greatest volume of exercise, whereas the 1 h and 3 h groups showed high levels of exercise intensity, as defined by more frequent and longer duration running bouts. Tg-SwDI mice exhibited significant cerebral vascular Aβ pathology and increased expression of pro-inflammatory cytokines as compared to WT controls. Tg-SwDI mice did not show motor dysfunction or altered levels of anxiety or sociability compared to WT controls, though Tg-SwDI animals did appear to exhibit a reduced tendency to explore novel environments. At all running levels, CAA pathology in Tg-SwDI mice was not significantly altered, but 12-h high-volume exercise showed increased insoluble Aβ burden. However, CVE attenuated the expression of pro-inflammatory cytokines TNF-α and IL-6 and was generally effective at enhancing motor function and reducing anxiety-like behavior in Tg-SwDI mice, though alterations in learning and memory tasks were varied. CONCLUSIONS Taken together, these results suggest that CAA can still develop regardless of a lifespan of substantial CVE, although downstream effects on neuroinflammation may be reduced and functional outcomes improved.
Collapse
Affiliation(s)
- Lisa S Robison
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, 11794, USA.,Present Address: Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA
| | - Dominique L Popescu
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, 11794, USA.,Present Address: George and Anne Ryan Institute for Neuroscience and Department of Psychology, University of Rhode Island, 130 Flagg Road, Kingston, RI, 02881, USA
| | - Maria E Anderson
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, 11794, USA.,Present Address: Department of Psychology, Farmingdale State University, 2350 Broadhollow Rd, Farmingdale, NY, 11735, USA
| | - Nikita Francis
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, 11794, USA.,Present Address: George and Anne Ryan Institute for Neuroscience and Department of Psychology, University of Rhode Island, 130 Flagg Road, Kingston, RI, 02881, USA
| | - Joshua Hatfield
- George & Anne Ryan Institute for Neuroscience and Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, 130 Flagg Road, Kingston, RI, 02881, USA
| | - Joseph K Sullivan
- Present Address: New York Medical College, School of Medicine, 40 Sunshine Cottage Rd, Valhalla, NY, 10595, USA
| | - Steven I Beigelman
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Feng Xu
- George & Anne Ryan Institute for Neuroscience and Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, 130 Flagg Road, Kingston, RI, 02881, USA
| | - Brenda J Anderson
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, 11794, USA
| | - William E Van Nostrand
- George & Anne Ryan Institute for Neuroscience and Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, 130 Flagg Road, Kingston, RI, 02881, USA
| | - John K Robinson
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, 11794, USA. .,Present Address: George and Anne Ryan Institute for Neuroscience and Department of Psychology, University of Rhode Island, 130 Flagg Road, Kingston, RI, 02881, USA.
| |
Collapse
|
35
|
La Manna S, Roviello V, Scognamiglio PL, Diaferia C, Giannini C, Sibillano T, Morelli G, Novellino E, Marasco D. Amyloid fibers deriving from the aromatic core of C-terminal domain of nucleophosmin 1. Int J Biol Macromol 2019; 122:517-525. [DOI: 10.1016/j.ijbiomac.2018.10.210] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/24/2018] [Accepted: 10/29/2018] [Indexed: 10/28/2022]
|
36
|
Protein Nanofibrils as Storage Forms of Peptide Drugs and Hormones. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1174:265-290. [PMID: 31713202 DOI: 10.1007/978-981-13-9791-2_8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyloids are highly organized cross β-sheet protein nanofibrils that are associated with both diseases and functions. Thermodynamically amyloids are stable structures as they represent the lowest free energy state that proteins can attain. However, recent studies suggest that amyloid fibrils can be dissociated by a change in environmental parameters such as pH and ionic strength. This reversibility of amyloids can not only be associated with disease, but function as well. In disease-associated amyloids, fibrils can act as reservoirs of cytotoxic oligomers. Recently, in higher organisms such as mammals, hormones were found to be stored in amyloid-like state, where these were reported to act as a reservoir of functional monomers. These hormone amyloids can dissociate to monomers upon release from the secretory granules, and subsequently bind to their respective receptors and perform their functions. In this book chapter, we describe in detail how these protein nanofibrils represent the densest possible peptide packing and are suitable for long-term storage. Thus, mimicking the feature of amyloids to release functional monomers, it is possible to formulate amyloid-based peptide/protein drugs, which can be used for sustained release.
Collapse
|
37
|
Bhasne K, Mukhopadhyay S. Formation of Heterotypic Amyloids: α-Synuclein in Co-Aggregation. Proteomics 2018; 18:e1800059. [PMID: 30216674 DOI: 10.1002/pmic.201800059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/28/2018] [Indexed: 12/13/2022]
Abstract
Protein misfolding resulting in the formation of ordered amyloid aggregates is associated with a number of devastating human diseases. Intrinsically disordered proteins (IDPs) do not autonomously fold up into a unique stable conformation and remain as an ensemble of rapidly fluctuating conformers. Many IDPs are prone to convert into the β-rich amyloid state. One such amyloidogenic IDP is α-synuclein that is involved in Parkinson's disease. Recent studies have indicated that other neuronal proteins, especially IDPs, can co-aggregate with α-synuclein in many pathological ailments. This article describes several such observations highlighting the role of heterotypic protein-protein interactions in the formation of hetero-amyloids. It is believed that the characterizations of molecular cross talks between amyloidogenic proteins as well as the mechanistic studies of heterotypic protein aggregation will allow us to decipher the role of the interacting proteins in amyloid proteomics.
Collapse
Affiliation(s)
- Karishma Bhasne
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab 140306, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab 140306, India
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab 140306, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab 140306, India
| |
Collapse
|
38
|
Ebrahimi T, Rust M, Kaiser SN, Slowik A, Beyer C, Koczulla AR, Schulz JB, Habib P, Bach JP. α1-antitrypsin mitigates NLRP3-inflammasome activation in amyloid β 1-42-stimulated murine astrocytes. J Neuroinflammation 2018; 15:282. [PMID: 30261895 PMCID: PMC6158809 DOI: 10.1186/s12974-018-1319-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 09/19/2018] [Indexed: 12/28/2022] Open
Abstract
Background Neuroinflammation has an essential impact on the pathogenesis and progression of Alzheimer’s disease (AD). Mostly mediated by microglia and astrocytes, inflammatory processes lead to degeneration of neuronal cells. The NLRP3-inflammasome (NOD-like receptor family, pyrin domain containing 3) is a key component of the innate immune system and its activation results in secretion of the proinflammatory effectors interleukin-1β (IL-1β) and interleukin-18 (IL-18). Under physiological conditions, cytosolic NLRP3-inflammsome is maintained in an inactive form, not able to oligomerize. Amyloid β1–42 (Aβ1–42) triggers activation of NLRP3-inflammasome in microglia and astrocytes, inducing oligomerization and thus recruitment of proinflammatory proteases. NLRP3-inflammasome was found highly expressed in human brains diagnosed with AD. Moreover, NLRP3-deficient mice carrying mutations associated with familial AD were partially protected from deficits associated with AD. The endogenous protease inhibitor α1-antitrypsin (A1AT) is known for its anti-inflammatory and anti-apoptotic properties and thus could serve as therapeutic agent for NLRP3-inhibition. A1AT protects neurons from glutamate-induced toxicity and reduces Aβ1–42-induced inflammation in microglial cells. In this study, we investigated the effect of Aβ1–42-induced NLRP3-inflammasome upregulation in primary murine astrocytes and its regulation by A1AT. Methods Primary cortical astrocytes from BALB/c mice were stimulated with Aβ1–42 and treated with A1AT. Regulation of NLRP3-inflammasome was examined by immunocytochemistry, PCR, western blot and ELISA. Our studies included an inhibitor of NLRP3 to elucidate direct interactions between A1AT and NLRP3-inflammasome components. Results Our study revealed that A1AT reduces Aβ1–42-dependent upregulation of NLRP3 at the mRNA and protein levels. Furthermore, A1AT time-dependently mitigated the expression of caspase 1 and its cleavage product IL-1β in Aβ1–42-stimulated astrocytes. Conclusion We conclude that Aβ1–42-stimulation results in an upregulation of NLRP3, caspase 1, and its cleavage products in astrocytes. A1AT time-dependently hampers neuroinflammation by downregulation of Aβ1–42-mediated NLRP3-inflammasome expression and thus may serve as a pharmaceutical opportunity for the treatment of Alzheimer’s disease. Electronic supplementary material The online version of this article (10.1186/s12974-018-1319-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Taraneh Ebrahimi
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Marcus Rust
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| | | | - Alexander Slowik
- Institute of Neuroanatomy, RWTH Aachen University, Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH Aachen University, Aachen, Germany
| | - Andreas Rembert Koczulla
- Department of Internal Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Marburg, Germany
| | - Jörg B Schulz
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Pardes Habib
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Jan Philipp Bach
- Department of Neurology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
39
|
Törnquist M, Michaels TCT, Sanagavarapu K, Yang X, Meisl G, Cohen SIA, Knowles TPJ, Linse S. Secondary nucleation in amyloid formation. Chem Commun (Camb) 2018; 54:8667-8684. [PMID: 29978862 DOI: 10.1039/c8cc02204f] [Citation(s) in RCA: 309] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nucleation of new peptide and protein aggregates on the surfaces of amyloid fibrils of the same peptide or protein has emerged in the past two decades as a major pathway for both the generation of molecular species responsible for cellular toxicity and for the autocatalytic proliferation of peptide and protein aggregates. A key question in current research is the molecular mechanism and driving forces governing such processes, known as secondary nucleation. In this context, the analogies with other self-assembling systems for which monomer-dependent secondary nucleation has been studied for more than a century provide a valuable source of inspiration. Here, we present a short overview of this background and then review recent results regarding secondary nucleation of amyloid-forming peptides and proteins, focusing in particular on the amyloid β peptide (Aβ) from Alzheimer's disease, with some examples regarding α-synuclein from Parkinson's disease. Monomer-dependent secondary nucleation of Aβ was discovered using a combination of kinetic experiments, global analysis, seeding experiments and selective isotope-enrichment, which pinpoint the monomer as the origin of new aggregates in a fibril-catalyzed reaction. Insights into driving forces are gained from variations of solution conditions, temperature and peptide sequence. Selective inhibition of secondary nucleation is explored as an effective means to limit oligomer production and toxicity. We also review experiments aimed at finding interaction partners of oligomers generated by secondary nucleation in an ongoing aggregation process. At the end of this feature article we bring forward outstanding questions and testable mechanistic hypotheses regarding monomer-dependent secondary nucleation in amyloid formation.
Collapse
Affiliation(s)
- Mattias Törnquist
- Lund University, Department of Biochemistry and Structural Biology, Chemical Centre, PO Box 124, SE221 00 Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Kell DB, Pretorius E. No effects without causes: the Iron Dysregulation and Dormant Microbes hypothesis for chronic, inflammatory diseases. Biol Rev Camb Philos Soc 2018; 93:1518-1557. [PMID: 29575574 PMCID: PMC6055827 DOI: 10.1111/brv.12407] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/12/2018] [Accepted: 02/15/2018] [Indexed: 12/11/2022]
Abstract
Since the successful conquest of many acute, communicable (infectious) diseases through the use of vaccines and antibiotics, the currently most prevalent diseases are chronic and progressive in nature, and are all accompanied by inflammation. These diseases include neurodegenerative (e.g. Alzheimer's, Parkinson's), vascular (e.g. atherosclerosis, pre-eclampsia, type 2 diabetes) and autoimmune (e.g. rheumatoid arthritis and multiple sclerosis) diseases that may appear to have little in common. In fact they all share significant features, in particular chronic inflammation and its attendant inflammatory cytokines. Such effects do not happen without underlying and initially 'external' causes, and it is of interest to seek these causes. Taking a systems approach, we argue that these causes include (i) stress-induced iron dysregulation, and (ii) its ability to awaken dormant, non-replicating microbes with which the host has become infected. Other external causes may be dietary. Such microbes are capable of shedding small, but functionally significant amounts of highly inflammagenic molecules such as lipopolysaccharide and lipoteichoic acid. Sequelae include significant coagulopathies, not least the recently discovered amyloidogenic clotting of blood, leading to cell death and the release of further inflammagens. The extensive evidence discussed here implies, as was found with ulcers, that almost all chronic, infectious diseases do in fact harbour a microbial component. What differs is simply the microbes and the anatomical location from and at which they exert damage. This analysis offers novel avenues for diagnosis and treatment.
Collapse
Affiliation(s)
- Douglas B. Kell
- School of ChemistryThe University of Manchester, 131 Princess StreetManchesterLancsM1 7DNU.K.
- The Manchester Institute of BiotechnologyThe University of Manchester, 131 Princess StreetManchesterLancsM1 7DNU.K.
- Department of Physiological SciencesStellenbosch University, Stellenbosch Private Bag X1Matieland7602South Africa
| | - Etheresia Pretorius
- Department of Physiological SciencesStellenbosch University, Stellenbosch Private Bag X1Matieland7602South Africa
| |
Collapse
|
41
|
Choi H, Yoon T, Na S. Length-Dependent Manifestation of Vibration Modes Regulates a Specific Intermediate Morphology of Aβ17-42 in Different Environments. Chemphyschem 2018; 19:1643-1654. [PMID: 29575445 DOI: 10.1002/cphc.201800010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Indexed: 12/25/2022]
Abstract
Various cytotoxic mechanisms for neurodegenerative disease are induced by specific conformations of Aβ intermediates. The efforts to understand the diverse intermediate forms of amyloid oligomers have been focused on understanding the aggregation mechanism of specific morphologies for Aβ intermediates. However, these are still not easy tasks to be accomplished because the diverse conformations of Aβ intermediates can be altered during the aggregation process, even though the same Aβ monomers are present. Thus, efforts to reveal the conformational change mechanism could be a fundamental process to understand the formation of diverse Aβ intermediate conformations. Here, we evaluate the conformational characteristics of Aβ17-42 fibrillar oligomers in different environments according to the length. We observed that Aβ fibrillar oligomers optimize their inherent hydrogen bonds and configurational entropy to stabilize their structure according to the simulation time and their length increase. In addition, we revealed the role of the expressed vibration mode shape in the fibrillar oligomers' elongation and deformation processes. Our results suggest that limitations in amyloid oligomer growth and transformations of their morphologies can be regulated and controlled by modifying the vibration features.
Collapse
Affiliation(s)
- Hyunsung Choi
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Taeyoung Yoon
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sungsoo Na
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
42
|
Ulicna K, Bednarikova Z, Hsu WT, Holztragerova M, Wu JW, Hamulakova S, Wang SSS, Gazova Z. Lysozyme amyloid fibrillization in presence of tacrine/acridone-coumarin heterodimers. Colloids Surf B Biointerfaces 2018; 166:108-118. [DOI: 10.1016/j.colsurfb.2018.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/14/2018] [Accepted: 03/08/2018] [Indexed: 10/17/2022]
|
43
|
Polverino A, Grimaldi M, Sorrentino P, Jacini F, D'Ursi AM, Sorrentino G. Effects of Acetylcholine on β-Amyloid-Induced cPLA2 Activation in the TB Neuroectodermal Cell Line: Implications for the Pathogenesis of Alzheimer's Disease. Cell Mol Neurobiol 2018; 38:817-826. [PMID: 28993924 PMCID: PMC11481997 DOI: 10.1007/s10571-017-0555-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/03/2017] [Indexed: 12/17/2022]
Abstract
The role of β-amyloid (Aβ) in the pathogenesis of Alzheimer's disease (AD) is still considered crucial. The state of Aβ aggregation is critical in promoting neuronal loss and neuronal function impairment. Recently, we demonstrated that Acetylcholine (ACh) is neuroprotective against the toxic effects of Aβ in the cholinergic LAN-2 cells. In biophysical experiments, ACh promotes the soluble Aβ peptide conformation rather than the aggregation-prone β-sheet conformation. In order to better understand the biological role of ACh in AD, we studied the effect of Aβ on the phosphorylation of the cytosolic phospholipase A2 (cPLA2) in the TB neuroectodermal cell line, which differentiates toward a neuronal phenotype when cultured in the presence of retinoic acid (RA). We chose the phosphorylated form of cPLA2 (Ser505, Phospho-cPLA2) as a biomarker to test the influence of ACh on the effects of Aβ in both undifferentiated and RA-differentiated TB cells. Our results show that TB cells are responsive to Aβ. Moreover, in undifferentiated cells 1 h treatment with Aβ induces a 2.5-fold increase of the Phospho-cPLA2 level compared to the control after 24 h in vitro, while no significant difference is observed between Aβ-treated and non-treated cells after 4 and 7 days in vitro. The RA-differentiated cells are not sensitive to Aβ. In TB cell line ACh is able to blunt the effects of Aβ. The ability of ACh to protect non-cholinergic cells against Aβ reinforces the hypothesis that, in addition to its role in cholinergic transmission, ACh could also act as a neuroprotective agent.
Collapse
Affiliation(s)
- Arianna Polverino
- Department of Motor Sciences and Wellness, University of Naples Parthenope, Via Medina, 40, 80133, Naples, NA, Italy
- Institute of Diagnosis and Treatment Hermitage, Via Cupa delle Tozzole, 2, 80131, Naples, NA, Italy
| | - Manuela Grimaldi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Salerno, SA, Italy
| | - Pierpaolo Sorrentino
- Department of Engineering, University of Naples Parthenope, Centro Direzionale di Napoli, isola C4, 80143, Naples, NA, Italy
| | - Francesca Jacini
- Department of Motor Sciences and Wellness, University of Naples Parthenope, Via Medina, 40, 80133, Naples, NA, Italy
| | - Anna Maria D'Ursi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Salerno, SA, Italy
| | - Giuseppe Sorrentino
- Department of Motor Sciences and Wellness, University of Naples Parthenope, Via Medina, 40, 80133, Naples, NA, Italy.
- Institute of Diagnosis and Treatment Hermitage, Via Cupa delle Tozzole, 2, 80131, Naples, NA, Italy.
| |
Collapse
|
44
|
Thellung S, Scoti B, Corsaro A, Villa V, Nizzari M, Gagliani MC, Porcile C, Russo C, Pagano A, Tacchetti C, Cortese K, Florio T. Pharmacological activation of autophagy favors the clearing of intracellular aggregates of misfolded prion protein peptide to prevent neuronal death. Cell Death Dis 2018; 9:166. [PMID: 29416016 PMCID: PMC5833808 DOI: 10.1038/s41419-017-0252-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 12/22/2022]
Abstract
According to the “gain-of-toxicity mechanism”, neuronal loss during cerebral proteinopathies is caused by accumulation of aggregation-prone conformers of misfolded cellular proteins, although it is still debated which aggregation state actually corresponds to the neurotoxic entity. Autophagy, originally described as a variant of programmed cell death, is now emerging as a crucial mechanism for cell survival in response to a variety of cell stressors, including nutrient deprivation, damage of cytoplasmic organelles, or accumulation of misfolded proteins. Impairment of autophagic flux in neurons often associates with neurodegeneration during cerebral amyloidosis, suggesting a role in clearing neurons from aggregation-prone misfolded proteins. Thus, autophagy may represent a target for innovative therapies. In this work, we show that alterations of autophagy progression occur in neurons following in vitro exposure to the amyloidogenic and neurotoxic prion protein-derived peptide PrP90-231. We report that the increase of autophagic flux represents a strategy adopted by neurons to survive the intracellular accumulation of misfolded PrP90-231. In particular, PrP90-231 internalization in A1 murine mesencephalic neurons occurs in acidic structures, showing electron microscopy hallmarks of autophagosomes and autophagolysosomes. However, these structures do not undergo resolution and accumulate in cytosol, suggesting that, in the presence of PrP90-231, autophagy is activated but its progression is impaired; the inability to clear PrP90-231 via autophagy induces cytotoxicity, causing impairment of lysosomal integrity and cytosolic diffusion of hydrolytic enzymes. Conversely, the induction of autophagy by pharmacological blockade of mTOR kinase or trophic factor deprivation restored autophagy resolution, reducing intracellular PrP90-231 accumulation and neuronal death. Taken together, these data indicate that PrP90-231 internalization induces an autophagic defensive response in A1 neurons, although incomplete and insufficient to grant survival; the pharmacological enhancement of this process exerts neuroprotection favoring the clearing of the internalized peptide and could represents a promising neuroprotective tool for neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- Stefano Thellung
- Section of Pharmacology, Department of Internal Medicine (DiMI), and Centre of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy
| | - Beatrice Scoti
- Section of Pharmacology, Department of Internal Medicine (DiMI), and Centre of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy
| | - Alessandro Corsaro
- Section of Pharmacology, Department of Internal Medicine (DiMI), and Centre of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy
| | - Valentina Villa
- Section of Pharmacology, Department of Internal Medicine (DiMI), and Centre of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy
| | - Mario Nizzari
- Section of Pharmacology, Department of Internal Medicine (DiMI), and Centre of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy
| | - Maria Cristina Gagliani
- Section of Human Anatomy, Department of Experimental Medicine (DIMES), School of Medicine, University of Genova, Genova, Italy
| | - Carola Porcile
- Department of Health Sciences, University of Molise, Campobasso, Italy
| | - Claudio Russo
- Department of Health Sciences, University of Molise, Campobasso, Italy
| | - Aldo Pagano
- Section of Human Anatomy, Department of Experimental Medicine (DIMES), School of Medicine, University of Genova, Genova, Italy.,Ospedale Policlinico San Martino, IRCCS per l'Oncologia, Genova, Italy
| | - Carlo Tacchetti
- Centro Imaging Sperimentale, IRCCS Istituto Scientifico San Raffaele, Milano, Italy.,Vita-Salute San Raffaele University, Milano, Italy
| | - Katia Cortese
- Section of Human Anatomy, Department of Experimental Medicine (DIMES), School of Medicine, University of Genova, Genova, Italy
| | - Tullio Florio
- Section of Pharmacology, Department of Internal Medicine (DiMI), and Centre of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy.
| |
Collapse
|
45
|
Oropesa-Nuñez R, Seghezza S, Dante S, Diaspro A, Cascella R, Cecchi C, Stefani M, Chiti F, Canale C. Interaction of toxic and non-toxic HypF-N oligomers with lipid bilayers investigated at high resolution with atomic force microscopy. Oncotarget 2018; 7:44991-45004. [PMID: 27391440 PMCID: PMC5216700 DOI: 10.18632/oncotarget.10449] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/26/2016] [Indexed: 11/25/2022] Open
Abstract
Protein misfolded oligomers are considered the most toxic species amongst those formed in the process of amyloid formation and the molecular basis of their toxicity, although not completely understood, is thought to originate from the interaction with the cellular membrane. Here, we sought to highlight the molecular determinants of oligomer-membrane interaction by atomic force microscopy. We monitored the interaction between multiphase supported lipid bilayers and two types of HypF-N oligomers displaying different structural features and cytotoxicities. By our approach we imaged with unprecedented resolution the ordered and disordered lipid phases of the bilayer and different oligomer structures interacting with either phase. We identified the oligomers and lipids responsible for toxicity and, more generally, we established the importance of the membrane lipid component in mediating oligomer toxicity. Our findings support the importance of GM1 ganglioside in mediating the oligomer-bilayer interaction and support a mechanism of oligomer cytotoxicity involving bilayer destabilization by globular oligomers within GM1-rich ordered raft regions rather than by annular oligomers in the surrounding disordered membrane domains.
Collapse
Affiliation(s)
- Reinier Oropesa-Nuñez
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy.,DIBRIS Department, University of Genova, Genova, Italy
| | - Silvia Seghezza
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy
| | - Silvia Dante
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy
| | - Alberto Diaspro
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Physics, University of Genova, Genova, Italy
| | - Roberta Cascella
- Section of Biochemistry, Department of Biomedical Experimental and Clinical Sciences, University of Florence, Firenze, Italy
| | - Cristina Cecchi
- Section of Biochemistry, Department of Biomedical Experimental and Clinical Sciences, University of Florence, Firenze, Italy
| | - Massimo Stefani
- Section of Biochemistry, Department of Biomedical Experimental and Clinical Sciences, University of Florence, Firenze, Italy
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Biomedical Experimental and Clinical Sciences, University of Florence, Firenze, Italy
| | - Claudio Canale
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
46
|
Martire S, Fuso A, Mosca L, Forte E, Correani V, Fontana M, Scarpa S, Maras B, d'Erme M. Bioenergetic Impairment in Animal and Cellular Models of Alzheimer's Disease: PARP-1 Inhibition Rescues Metabolic Dysfunctions. J Alzheimers Dis 2018; 54:307-24. [PMID: 27567805 DOI: 10.3233/jad-151040] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Amyloid-beta peptide accumulation in the brain is one of the main hallmarks of Alzheimer's disease. The amyloid aggregation process is associated with the generation of free radical species responsible for mitochondrial impairment and DNA damage that in turn activates poly(ADP-ribose)polymerase 1 (PARP-1). PARP-1 catalyzes the poly(ADP-ribosylation), a post-translational modification of proteins, cleaving the substrate NAD+ and transferring the ADP-ribose moieties to the enzyme itself or to an acceptor protein to form branched polymers of ADP-ribose. In this paper, we demonstrate that a mitochondrial dysfunction occurs in Alzheimer's transgenic mice TgCRND8, in SH-SY5Y treated with amyloid-beta and in 7PA2 cells. Moreover, PARP-1 activation contributes to the functional energetic decline affecting cytochrome oxidase IV protein levels, oxygen consumption rates, and membrane potential, resulting in cellular bioenergetic deficit. We also observed, for the first time, an increase of pyruvate kinase 2 expression, suggesting a modulation of the glycolytic pathway by PARP-1. PARP-1 inhibitors are able to restore both mitochondrial impairment and pyruvate kinase 2 expression. The overall data here presented indicate a pivotal role for this enzyme in the bioenergetic network of neuronal cells and open new perspectives for investigating molecular mechanisms underlying energy charge decline in Alzheimer's disease. In this scenario, PARP-1 inhibitors might represent a novel therapeutic intervention to rescue cellular energetic metabolism.
Collapse
Affiliation(s)
- Sara Martire
- Department of Biochemical Sciences, Sapienza University, Roma, Italy
| | - Andrea Fuso
- Department of Psychology, and European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation, Sapienza University, Roma, Italy
| | - Luciana Mosca
- Department of Biochemical Sciences, Sapienza University, Roma, Italy
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University, Roma, Italy
| | - Virginia Correani
- Department of Biochemical Sciences, Sapienza University, Roma, Italy
| | - Mario Fontana
- Department of Biochemical Sciences, Sapienza University, Roma, Italy
| | - Sigfrido Scarpa
- Department of Surgery "P. Valdoni", Sapienza University, Roma, Italy
| | - Bruno Maras
- Department of Biochemical Sciences, Sapienza University, Roma, Italy
| | - Maria d'Erme
- Department of Biochemical Sciences, Sapienza University, Roma, Italy
| |
Collapse
|
47
|
De Santis A, La Manna S, Krauss IR, Malfitano AM, Novellino E, Federici L, De Cola A, Di Matteo A, D'Errico G, Marasco D. Nucleophosmin-1 regions associated with acute myeloid leukemia interact differently with lipid membranes. Biochim Biophys Acta Gen Subj 2018; 1862:967-978. [PMID: 29330024 DOI: 10.1016/j.bbagen.2018.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/04/2017] [Accepted: 01/08/2018] [Indexed: 01/25/2023]
Affiliation(s)
- Augusta De Santis
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy; CSGI - Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Florence, Italy
| | - Sara La Manna
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134, Naples, Italy
| | - Irene Russo Krauss
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy; CSGI - Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Florence, Italy
| | - Anna Maria Malfitano
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134, Naples, Italy
| | - Ettore Novellino
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134, Naples, Italy
| | - Luca Federici
- Department of Medical, Oral and Biotechnological Sciences and CeSI-MeT, University of Chieti "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy
| | - Antonella De Cola
- Department of Medical, Oral and Biotechnological Sciences and CeSI-MeT, University of Chieti "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy
| | - Adele Di Matteo
- Institute of Molecular Biology and Pathology, CNR, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Gerardino D'Errico
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy; CSGI - Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Florence, Italy
| | - Daniela Marasco
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134, Naples, Italy.
| |
Collapse
|
48
|
Jackson MP, Hewitt EW. Why are Functional Amyloids Non-Toxic in Humans? Biomolecules 2017; 7:biom7040071. [PMID: 28937655 PMCID: PMC5745454 DOI: 10.3390/biom7040071] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 12/26/2022] Open
Abstract
Amyloids were first identified in association with amyloidoses, human diseases in which proteins and peptides misfold into amyloid fibrils. Subsequent studies have identified an array of functional amyloid fibrils that perform physiological roles in humans. Given the potential for the production of toxic species in amyloid assembly reactions, it is remarkable that cells can produce these functional amyloids without suffering any obvious ill effect. Although the precise mechanisms are unclear, there are a number of ways in which amyloid toxicity may be prevented. These include regulating the level of the amyloidogenic peptides and proteins, minimising the production of prefibrillar oligomers in amyloid assembly reactions, sequestrating amyloids within membrane bound organelles, controlling amyloid assembly by other molecules, and disassembling the fibrils under physiological conditions. Crucially, a better understanding of how toxicity is avoided in the production of functional amyloids may provide insights into the prevention of amyloid toxicity in amyloidoses.
Collapse
Affiliation(s)
- Matthew P Jackson
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Eric W Hewitt
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
49
|
Inhibitory effect of safranal and crocin, two principle compounds of Crocus sativus, on fibrillation of lysozyme. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2017. [DOI: 10.1007/s13738-017-1175-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
50
|
Kell DB, Pretorius E. To What Extent Are the Terminal Stages of Sepsis, Septic Shock, Systemic Inflammatory Response Syndrome, and Multiple Organ Dysfunction Syndrome Actually Driven by a Prion/Amyloid Form of Fibrin? Semin Thromb Hemost 2017; 44:224-238. [PMID: 28778104 PMCID: PMC6193370 DOI: 10.1055/s-0037-1604108] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A well-established development of increasing disease severity leads from sepsis through systemic inflammatory response syndrome, septic shock, multiple organ dysfunction syndrome, and cellular and organismal death. Less commonly discussed are the equally well-established coagulopathies that accompany this. We argue that a lipopolysaccharide-initiated (often disseminated intravascular) coagulation is accompanied by a proteolysis of fibrinogen such that formed fibrin is both inflammatory and resistant to fibrinolysis. In particular, we argue that the form of fibrin generated is amyloid in nature because much of its normal α-helical content is transformed to β-sheets, as occurs with other proteins in established amyloidogenic and prion diseases. We hypothesize that these processes of amyloidogenic clotting and the attendant coagulopathies play a role in the passage along the aforementioned pathways to organismal death, and that their inhibition would be of significant therapeutic value, a claim for which there is considerable emerging evidence.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry, The University of Manchester, Manchester, United Kingdom.,Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom.,Centre for Synthetic Biology of Fine and Speciality Chemicals, The University of Manchester, Manchester, United Kingdom
| | - Etheresia Pretorius
- Department of Physiological Sciences, Stellenbosch University, Matieland, South Africa
| |
Collapse
|