1
|
Gherri E, White F, Venables E. On the spread of spatial attention in touch: Evidence from Event-Related Brain potentials. Biol Psychol 2023; 178:108544. [PMID: 36931591 DOI: 10.1016/j.biopsycho.2023.108544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/27/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
To investigate the distribution of tactile spatial attention near the current attentional focus, participants were cued to attend to one of four body locations (hand or shoulder on the left or right side) to respond to infrequent tactile targets. In this Narrow attention task, effects of spatial attention on the ERPs elicited by tactile stimuli delivered to the hands were compared as a function of the distance from the attentional focus (Focus on the hand vs. Focus on the shoulder). When participants focused on the hand, attentional modulations of the sensory-specific P100 and N140 components were followed by the longer latency Nd component. Notably, when participants focused on the shoulder, they were unable to restrict their attentional resources to the cued location, as revealed by the presence of reliable attentional modulations at the hands. This effect of attention outside the attentional focus was delayed and reduced compared to that observed within the attentional focus, revealing the presence of an attentional gradient. In addition, to investigate whether the size of the attentional focus modulated the effects of tactile spatial attention on somatosensory processing, participants also completed the Broad attention task, in which they were cued to attend to two locations (both the hand and the shoulder) on the left or right side. Attentional modulations at the hands emerged later and were reduced in the Broad compared to the Narrow attention task, suggesting reduced attentional resources for a wider attentional focus.
Collapse
Affiliation(s)
- Elena Gherri
- Human Cognitive Neuroscience, University of Edinburgh, UK; Università di Bologna, Italy.
| | - Felicity White
- Human Cognitive Neuroscience, University of Edinburgh, UK
| | | |
Collapse
|
2
|
Darki F, Ferrario A, Rankin J. Hierarchical processing underpins competition in tactile perceptual bistability. J Comput Neurosci 2022; 51:343-360. [PMID: 37204542 PMCID: PMC10404575 DOI: 10.1007/s10827-023-00852-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/20/2023]
Abstract
Ambiguous sensory information can lead to spontaneous alternations between perceptual states, recently shown to extend to tactile perception. The authors recently proposed a simplified form of tactile rivalry which evokes two competing percepts for a fixed difference in input amplitudes across antiphase, pulsatile stimulation of the left and right fingers. This study addresses the need for a tactile rivalry model that captures the dynamics of perceptual alternations and that incorporates the structure of the somatosensory system. The model features hierarchical processing with two stages. The first and the second stages of model could be located at the secondary somatosensory cortex (area S2), or in higher areas driven by S2. The model captures dynamical features specific to the tactile rivalry percepts and produces general characteristics of perceptual rivalry: input strength dependence of dominance times (Levelt's proposition II), short-tailed skewness of dominance time distributions and the ratio of distribution moments. The presented modelling work leads to experimentally testable predictions. The same hierarchical model could generalise to account for percept formation, competition and alternations for bistable stimuli that involve pulsatile inputs from the visual and auditory domains.
Collapse
Affiliation(s)
- Farzaneh Darki
- Department of Mathematics, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Andrea Ferrario
- Biorobotics Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - James Rankin
- Department of Mathematics, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
3
|
Arslanova I, Takamuku S, Gomi H, Haggard P. Multi-digit tactile perception I: motion integration benefits for tactile trajectories presented bimanually. J Neurophysiol 2022; 128:418-433. [PMID: 35822710 PMCID: PMC9359661 DOI: 10.1152/jn.00022.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interactions with objects involve simultaneous contact with multiple, not necessarily adjacent, skin regions. While advances have been made in understanding the capacity to selectively attend to a single tactile element among distracting stimulations, here, we examine how multiple stimulus elements are explicitly integrated into an overall tactile percept. Across four experiments, participants averaged the direction of two simultaneous tactile motion trajectories of varying discrepancy delivered to different fingerpads. Averaging performance differed between within- and between-hands conditions in terms of sensitivity and precision but was unaffected by somatotopic proximity between stimulated fingers. First, precision was greater in between-hand compared to within-hand conditions, demonstrating a bimanual perceptual advantage in multi-touch integration. Second, sensitivity to the average direction was influenced by the discrepancy between individual motion signals, but only for within-hand conditions. Overall, our experiments identify key factors that influence perception of simultaneous tactile events. In particular, we show that multi-touch integration is constrained by hand-specific rather than digit-specific mechanisms.
Collapse
Affiliation(s)
- Irena Arslanova
- Institute of Cognitive Neuroscience, grid.83440.3bUniversity College London, London, United Kingdom
| | - Shinya Takamuku
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Atsugi, Kanagawa, Japan
| | - Hiroaki Gomi
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Atsugi, Kanagawa, Japan
| | - Patrick Haggard
- Institute of Cognitive Neuroscience, grid.83440.3bUniversity College London, London, United Kingdom
| |
Collapse
|
4
|
Del Vecchio M, Fossataro C, Zauli FM, Sartori I, Pigorini A, d'Orio P, Abarrategui B, Russo S, Mikulan EP, Caruana F, Rizzolatti G, Garbarini F, Avanzini P. Tonic somatosensory responses and deficits of tactile awareness converge in the parietal operculum. Brain 2021; 144:3779-3787. [PMID: 34633436 PMCID: PMC8719842 DOI: 10.1093/brain/awab384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/13/2021] [Accepted: 09/18/2021] [Indexed: 01/02/2023] Open
Abstract
Although clinical neuroscience and the neuroscience of consciousness have long sought mechanistic explanations of tactile-awareness disorders, mechanistic insights are rare, mainly because of the difficulty of depicting the fine-grained neural dynamics underlying somatosensory processes. Here, we combined the stereo-EEG responses to somatosensory stimulation with the lesion mapping of patients with a tactile-awareness disorder, namely tactile extinction. Whereas stereo-EEG responses present different temporal patterns, including early/phasic and long-lasting/tonic activities, tactile-extinction lesion mapping co-localizes only with the latter. Overlaps are limited to the posterior part of the perisylvian regions, suggesting that tonic activities may play a role in sustaining tactile awareness. To assess this hypothesis further, we correlated the prevalence of tonic responses with the tactile-extinction lesion mapping, showing that they follow the same topographical gradient. Finally, in parallel with the notion that visuotactile stimulation improves detection in tactile-extinction patients, we demonstrated an enhancement of tonic responses to visuotactile stimuli, with a strong voxel-wise correlation with the lesion mapping. The combination of these results establishes tonic responses in the parietal operculum as the ideal neural correlate of tactile awareness.
Collapse
Affiliation(s)
- Maria Del Vecchio
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, 43125 Parma, Italy
| | - Carlotta Fossataro
- MANIBUS Laboratory, Department of Psychology, University of Turin, 10124 Turin, Italy
| | - Flavia Maria Zauli
- Dipartimento di Scienze Biomediche e Cliniche 'L. Sacco,' Università degli Studi di Milano, 20157 Milano, Italy
| | - Ivana Sartori
- Centro per la Chirurgia dell'Epilessia 'Claudio Munari,' Ospedale Ca' Granda-Niguarda, 20162 Milano, Italy
| | - Andrea Pigorini
- Dipartimento di Scienze Biomediche e Cliniche 'L. Sacco,' Università degli Studi di Milano, 20157 Milano, Italy
| | - Piergiorgio d'Orio
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, 43125 Parma, Italy.,Centro per la Chirurgia dell'Epilessia 'Claudio Munari,' Ospedale Ca' Granda-Niguarda, 20162 Milano, Italy
| | - Belen Abarrategui
- Dipartimento di Scienze Biomediche e Cliniche 'L. Sacco,' Università degli Studi di Milano, 20157 Milano, Italy
| | - Simone Russo
- Dipartimento di Scienze Biomediche e Cliniche 'L. Sacco,' Università degli Studi di Milano, 20157 Milano, Italy
| | - Ezequiel Pablo Mikulan
- Dipartimento di Scienze Biomediche e Cliniche 'L. Sacco,' Università degli Studi di Milano, 20157 Milano, Italy
| | - Fausto Caruana
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, 43125 Parma, Italy
| | - Giacomo Rizzolatti
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, 43125 Parma, Italy.,Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, 43125 Parma, Italy
| | - Francesca Garbarini
- MANIBUS Laboratory, Department of Psychology, University of Turin, 10124 Turin, Italy.,Neuroscience Institute of Turin (NIT), 10124 Turin, Italy
| | - Pietro Avanzini
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, 43125 Parma, Italy
| |
Collapse
|
5
|
Kuroki 黒木 忍 S, Sawayama 澤山 正貴 M, Nishida 西田 眞也 S. The roles of lower- and higher-order surface statistics in tactile texture perception. J Neurophysiol 2021; 126:95-111. [PMID: 34038163 DOI: 10.1152/jn.00577.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Humans can haptically discriminate surface textures when there is a significant difference in the statistics of the surface profile. Previous studies on tactile texture discrimination have emphasized the perceptual effects of lower-order statistical features such as carving depth, inter-ridge distance, and anisotropy, which can be characterized by local amplitude spectra or spatial-frequency/orientation subband histograms. However, the real-world surfaces we encounter in everyday life also differ in the higher-order statistics, such as statistics about correlations of nearby spatial-frequencies/orientations. For another modality, vision, the human brain has the ability to use the textural differences in both higher- and lower-order image statistics. In this work, we examined whether the haptic texture perception can use higher-order surface statistics as visual texture perception does, by three-dimensional (3-D)-printing textured surfaces transcribed from different "photos" of natural scenes such as stones and leaves. Even though the maximum carving depth was well above the haptic detection threshold, some texture pairs were hard to discriminate. Specifically, those texture pairs with similar amplitude spectra were difficult to discriminate, which suggests that the lower-order statistics have the dominant effect on tactile texture discrimination. To directly test the poor sensitivity of the tactile texture perception to higher-order surface statistics, we matched the lower-order statistics across different textures using a texture synthesis algorithm and found that haptic discrimination of the matched textures was nearly impossible unless the stimuli contained salient local features. We found no evidence for the ability of the human tactile system to use higher-order surface statistics for texture discrimination.NEW & NOTEWORTHY Humans can discriminate subtle spatial patterns differences in the surrounding world through their hands, but the underlying computation remains poorly understood. Here, we 3-D-printed textured surfaces and analyzed the tactile discrimination performance regarding the sensitivity to surface statistics. The results suggest that observers have sensitivity to lower-order statistics whereas not to higher-order statistics. That is, touch differs from vision not only in spatiotemporal resolution but also in (in)sensitivity to high-level surface statistics.
Collapse
Affiliation(s)
| | - Masataka Sawayama 澤山 正貴
- NTT Communication Science Laboratories, NTT Corporation, Atsugi, Japan.,Inria, Bordeaux, France
| | - Shin'ya Nishida 西田 眞也
- NTT Communication Science Laboratories, NTT Corporation, Atsugi, Japan.,Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Arslanova I, Wang K, Gomi H, Haggard P. Somatosensory evoked potentials that index lateral inhibition are modulated according to the mode of perceptual processing: comparing or combining multi-digit tactile motion. Cogn Neurosci 2020; 13:47-59. [PMID: 33307992 DOI: 10.1080/17588928.2020.1839403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Many perceptual studies focus on the brain's capacity to discriminate between stimuli. However, our normal experience of the world also involves integrating multiple stimuli into a single perceptual event. Neural mechanisms such as lateral inhibition are believed to enhance local differences between sensory inputs from nearby regions of the receptor surface. However, this mechanism would seem dysfunctional when sensory inputs need to be combined rather than contrasted. Here, we investigated whether the brain can strategically regulate the strength of suppressive interactions that underlie lateral inhibition between finger representations in human somatosensory processing. To do this, we compared sensory processing between conditions that required either comparing or combining information. We delivered two simultaneous tactile motion trajectories to index and middle fingertips of the right hand. Participants had to either compare the directions of the two stimuli, or to combine them to form their average direction. To reveal preparatory tuning of somatosensory cortex, we used an established event-related potential design to measure the interaction between cortical representations evoked by digital nerve shocks immediately before each tactile stimulus. Consistent with previous studies, we found a clear suppression between cortical activations when participants were instructed to compare the tactile motion directions. Importantly, this suppression was significantly reduced when participants had to combine the same stimuli. These findings suggest that the brain can strategically switch between a comparative and a combinative mode of somatosensory processing, according to the perceptual goal, by preparatorily adjusting the strength of a process akin to lateral inhibition.
Collapse
Affiliation(s)
- Irena Arslanova
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Keying Wang
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Hiroaki Gomi
- NTT Communication Science Laboratories, NTT Corporation, Atsugishi, Japan
| | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London, London, UK
| |
Collapse
|
7
|
Perini F, Powell T, Watt SJ, Downing PE. Neural representations of haptic object size in the human brain revealed by multivoxel fMRI patterns. J Neurophysiol 2020; 124:218-231. [PMID: 32519597 DOI: 10.1152/jn.00160.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The brain must interpret sensory input from diverse receptor systems to estimate object properties. Much has been learned about the brain mechanisms behind these processes in vision, but our understanding of haptic perception remains less clear. Here we examined haptic judgments of object size, which require integrating multiple cutaneous and proprioceptive afferent signals, as a model problem. To identify candidate human brain regions that support this process, participants (n = 16) in an event-related functional MRI experiment grasped objects to categorize them as one of four sizes. Object sizes were calibrated psychophysically to be equally distinct for each participant. We applied representational similarity logic to whole brain, multivoxel searchlight analyses to identify brain regions that exhibit size-relevant voxelwise activity patterns. Of particular interest was to identify regions for which more similar sizes produce more similar patterns of activity, which constitutes evidence of a metric size code. Regions of the intraparietal sulcus and the lateral prefrontal cortex met this criterion, both within hands and across hands. We suggest that these regions compute representations of haptic size that abstract over the specific peripheral afferent signals generated in a grasp. Results of a matched visual size task, performed by the same participants and analyzed in the same fashion, identified similar regions, indicating that these representations may be partly modality general. We consider these results with respect to perspectives on magnitude estimation in general and to computational views on perceptual signal integration.NEW & NOTEWORTHY Our understanding of the neural basis of haptics (perceiving the world through touch) remains incomplete. We used functional MRI to study human haptic judgments of object size, which require integrating multiple afferent signals. Multivoxel pattern analyses identified intraparietal and prefrontal regions that encode size haptically in a metric and hand-invariant fashion. Effector-independent haptic size estimates are useful on their own and in combination with other sensory estimates for a variety of perceptual and motor tasks.
Collapse
Affiliation(s)
- Francesca Perini
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thomas Powell
- Netherlands Applied Science Organisation (TNO), Oude Waalsdorperweg 63, Den Haag, The Netherlands
| | - Simon J Watt
- School of Psychology, Bangor University, Bangor, United Kingdom
| | - Paul E Downing
- School of Psychology, Bangor University, Bangor, United Kingdom
| |
Collapse
|
8
|
Kim Y, Usui N, Miyazaki A, Haji T, Matsumoto K, Taira M, Nakamura K, Katsuyama N. Cortical Regions Encoding Hardness Perception Modulated by Visual Information Identified by Functional Magnetic Resonance Imaging With Multivoxel Pattern Analysis. Front Syst Neurosci 2019; 13:52. [PMID: 31632245 PMCID: PMC6779815 DOI: 10.3389/fnsys.2019.00052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 09/11/2019] [Indexed: 01/09/2023] Open
Abstract
Recent studies have revealed that hardness perception is determined by visual information along with the haptic input. This study investigated the cortical regions involved in hardness perception modulated by visual information using functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis (MVPA). Twenty-two healthy participants were enrolled. They were required to place their left and right hands at the front and back, respectively, of a mirror attached to a platform placed above them while lying in a magnetic resonance scanner. In conditions SFT, MED, and HRD, one of three polyurethane foam pads of varying hardness (soft, medium, and hard, respectively) was presented to the left hand in a given trial, while only the medium pad was presented to the right hand in all trials. MED was defined as the control condition, because the visual and haptic information was congruent. During the scan, the participants were required to push the pad with the both hands while observing the reflection of the left hand and estimate the hardness of the pad perceived by the right (hidden) hand based on magnitude estimation. Behavioral results showed that the perceived hardness was significantly biased toward softer or harder in >73% of the trials in conditions SFT and HRD; we designated these trials as visually modulated (SFTvm and HRDvm, respectively). The accuracy map was calculated individually for each of the pair-wise comparisons of (SFTvm vs. MED), (HRDvm vs. MED), and (SFTvm vs. HRDvm) by a searchlight MVPA, and the cortical regions encoding the perceived hardness with visual modulation were identified by conjunction of the three accuracy maps in group analysis. The cluster was observed in the right sensory motor cortex, left anterior intraparietal sulcus (aIPS), bilateral parietal operculum (PO), and occipito-temporal cortex (OTC). Together with previous findings on such cortical regions, we conclude that the visual information of finger movements processed in the OTC may be integrated with haptic input in the left aIPS, and the subjective hardness perceived by the right hand with visual modulation may be processed in the cortical network between the left PO and aIPS.
Collapse
Affiliation(s)
- Yuri Kim
- Primate Research Institute, Kyoto University, Inuyama, Japan.,Department of Cognitive Neurobiology, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nobuo Usui
- Department of Cognitive Neurobiology, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Tomoki Haji
- Tamagawa University Brain Science Institute, Tokyo, Japan
| | | | - Masato Taira
- Department of Cognitive Neurobiology, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Narumi Katsuyama
- Primate Research Institute, Kyoto University, Inuyama, Japan.,Department of Cognitive Neurobiology, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
9
|
Kida T, Tanaka E, Kakigi R. Adaptive flexibility of the within-hand attentional gradient in touch: An MEG study. Neuroimage 2018; 179:373-384. [DOI: 10.1016/j.neuroimage.2018.06.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 10/28/2022] Open
|
10
|
Delhaye BP, Long KH, Bensmaia SJ. Neural Basis of Touch and Proprioception in Primate Cortex. Compr Physiol 2018; 8:1575-1602. [PMID: 30215864 PMCID: PMC6330897 DOI: 10.1002/cphy.c170033] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The sense of proprioception allows us to keep track of our limb posture and movements and the sense of touch provides us with information about objects with which we come into contact. In both senses, mechanoreceptors convert the deformation of tissues-skin, muscles, tendons, ligaments, or joints-into neural signals. Tactile and proprioceptive signals are then relayed by the peripheral nerves to the central nervous system, where they are processed to give rise to percepts of objects and of the state of our body. In this review, we first examine briefly the receptors that mediate touch and proprioception, their associated nerve fibers, and pathways they follow to the cerebral cortex. We then provide an overview of the different cortical areas that process tactile and proprioceptive information. Next, we discuss how various features of objects-their shape, motion, and texture, for example-are encoded in the various cortical fields, and the susceptibility of these neural codes to attention and other forms of higher-order modulation. Finally, we summarize recent efforts to restore the senses of touch and proprioception by electrically stimulating somatosensory cortex. © 2018 American Physiological Society. Compr Physiol 8:1575-1602, 2018.
Collapse
Affiliation(s)
- Benoit P Delhaye
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, USA
| | - Katie H Long
- Committee on Computational Neuroscience, University of Chicago, Chicago, USA
| | - Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, USA.,Committee on Computational Neuroscience, University of Chicago, Chicago, USA
| |
Collapse
|
11
|
Tactile learning transfer from the hand to the face but not to the forearm implies a special hand-face relationship. Sci Rep 2018; 8:11752. [PMID: 30082760 PMCID: PMC6079060 DOI: 10.1038/s41598-018-30183-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/20/2018] [Indexed: 02/04/2023] Open
Abstract
In the primary somatosensory cortex, large-scale cortical and perceptual changes have been demonstrated following input deprivation. Recently, we found that the cortical and perceptual changes induced by repetitive somatosensory stimulation (RSS) at a finger transfer to the face. However, whether such cross-border changes are specific to the face remains elusive. Here, we investigated whether RSS-induced acuity changes at the finger can also transfer to the forearm, which is the body part represented on the other side of the hand representation. Our results confirmed the transfer of tactile learning from the stimulated finger to the lip, but no significant changes were observed at the forearm. A second experiment revealed that the same regions on the forearm exhibited improved tactile acuity when RSS was applied there, excluding the possibility of low plastic ability at the arm representation. This provides also the first evidence that RSS can be efficient on body parts other than the hand. These results suggest that RSS-induced tactile learning transfers preferentially from the hand to the face rather than to the forearm. This specificity could arise from a stronger functional connectivity between the cortical hand and face representations, reflecting a fundamental coupling between these body parts.
Collapse
|
12
|
Abstract
Somatosensory areas containing topographic maps of the body surface are a major feature of parietal cortex. In primates, parietal cortex contains four somatosensory areas, each with its own map, with the primary cutaneous map in area 3b. Rodents have at least three parietal somatosensory areas. Maps are not isomorphic to the body surface, but magnify behaviorally important skin regions, which include the hands and face in primates, and the whiskers in rodents. Within each map, intracortical circuits process tactile information, mediate spatial integration, and support active sensation. Maps may also contain fine-scale representations of touch submodalities, or direction of tactile motion. Functional representations are more overlapping than suggested by textbook depictions of map topography. The whisker map in rodent somatosensory cortex is a canonic system for studying cortical microcircuits, sensory coding, and map plasticity. Somatosensory maps are plastic throughout life in response to altered use or injury. This chapter reviews basic principles and recent findings in primate, human, and rodent somatosensory maps.
Collapse
Affiliation(s)
- Samuel Harding-Forrester
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States
| | - Daniel E Feldman
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States.
| |
Collapse
|
13
|
Abstract
An extensive program of research in the past 2 decades has focused on the role of modal sensory, motor, and affective brain systems in storing and retrieving concept knowledge. This focus has led in some circles to an underestimation of the need for more abstract, supramodal conceptual representations in semantic cognition. Evidence for supramodal processing comes from neuroimaging work documenting a large, well-defined cortical network that responds to meaningful stimuli regardless of modal content. The nodes in this network correspond to high-level "convergence zones" that receive broadly crossmodal input and presumably process crossmodal conjunctions. It is proposed that highly conjunctive representations are needed for several critical functions, including capturing conceptual similarity structure, enabling thematic associative relationships independent of conceptual similarity, and providing efficient "chunking" of concept representations for a range of higher order tasks that require concepts to be configured as situations. These hypothesized functions account for a wide range of neuroimaging results showing modulation of the supramodal convergence zone network by associative strength, lexicality, familiarity, imageability, frequency, and semantic compositionality. The evidence supports a hierarchical model of knowledge representation in which modal systems provide a mechanism for concept acquisition and serve to ground individual concepts in external reality, whereas broadly conjunctive, supramodal representations play an equally important role in concept association and situation knowledge.
Collapse
|
14
|
Integration of vibrotactile frequency information beyond the mechanoreceptor channel and somatotopy. Sci Rep 2017; 7:2758. [PMID: 28584282 PMCID: PMC5459808 DOI: 10.1038/s41598-017-02922-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/19/2017] [Indexed: 11/08/2022] Open
Abstract
A wide variety of tactile sensations arise from the activation of several types of mechanoreceptor-afferent channels scattered all over the body, and their projections create a somatotopic map in the somatosensory cortex. Recent findings challenge the traditional view that tactile signals from different mechanoreceptor-channels/locations are independently processed in the brain, though the contribution of signal integration to perception remains obscure. Here we show that vibrotactile frequency perception is functionally enriched by signal integration across different mechanoreceptor channels and separate skin locations. When participants touched two sinusoidal vibrations of far-different frequency, which dominantly activated separate channels with the neighboring fingers or the different hand and judged the frequency of one vibration, the perceived frequency shifted toward the other (assimilation effect). Furthermore, when the participants judged the frequency of the pair as a whole, they consistently reported an intensity-based interpolation of the two vibrations (averaging effect). Both effects were similar in magnitude between the same and different hand conditions and significantly diminished by asynchronous presentation of the vibration pair. These findings indicate that human tactile processing is global and flexible in that it can estimate the ensemble property of a large-scale tactile event sensed by various receptors distributed over the body.
Collapse
|
15
|
Case LK, Laubacher CM, Richards EA, Spagnolo PA, Olausson H, Bushnell MC. Inhibitory rTMS of secondary somatosensory cortex reduces intensity but not pleasantness of gentle touch. Neurosci Lett 2017; 653:84-91. [PMID: 28529174 DOI: 10.1016/j.neulet.2017.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 12/22/2022]
Abstract
Research suggests that the discriminative and affective aspects of touch are processed differently in the brain. Primary somatosensory cortex is strongly implicated in touch discrimination, whereas insular and prefronal regions have been associated with pleasantness aspects of touch. However, the role of secondary somatosensory cortex (S2) is less clear. In the current study we used inhibitory repetitive transcranial magnetic stimulation (rTMS) to temporarily deactivate S2 and probe its role in touch perception. Nineteen healthy adults received two sessions of 1-Hz rTMS on separate days, one targeting right S2 and the other targeting the vertex (control). Before and after rTMS, subjects rated the intensity and pleasantness of slow and fast gentle brushing of the hand and performed a 2-point tactile discrimination task, followed by fMRI during additional brushing. rTMS to S2 (but not vertex) decreased intensity ratings of fast brushing, without altering touch pleasantness or spatial discrimination. MRI showed a reduced response to brushing in S2 (but not in S1 or insula) after S2 rTMS. Together, our results show that reducing touch-evoked activity in S2 decreases perceived touch intensity, suggesting a causal role of S2 in touch intensity perception.
Collapse
Affiliation(s)
- Laura K Case
- National Center for Complementary and Integrative Health, NIH, Bethesda, MD, USA.
| | - Claire M Laubacher
- National Center for Complementary and Integrative Health, NIH, Bethesda, MD, USA
| | - Emily A Richards
- National Center for Complementary and Integrative Health, NIH, Bethesda, MD, USA
| | - P A Spagnolo
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Håkan Olausson
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - M Catherine Bushnell
- National Center for Complementary and Integrative Health, NIH, Bethesda, MD, USA
| |
Collapse
|
16
|
Adaptation aftereffects reveal that tactile distance is a basic somatosensory feature. Proc Natl Acad Sci U S A 2017; 114:4555-4560. [PMID: 28396426 DOI: 10.1073/pnas.1614979114] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The stage at which processing of tactile distance occurs is still debated. We addressed this issue by implementing an adaptation-aftereffect paradigm with passive touch. We demonstrated the presence of a strong aftereffect, induced by the simultaneous presentation of pairs of tactile stimuli. After adaptation to two different distances, one on each hand, participants systematically perceived a subsequent stimulus delivered to the hand adapted to the smaller distance as being larger. We further investigated the nature of the aftereffects, demonstrating that they are orientation- and skin-region-specific, occur even when just one hand is adapted, do not transfer either contralaterally or across the palm and dorsum, and are defined in a skin-centered, rather than an external, reference frame. These characteristics of tactile distance aftereffects are similar to those of low-level visual aftereffects, supporting the idea that distance perception arises at early stages of tactile processing.
Collapse
|
17
|
Thermal referral: evidence for a thermoceptive uniformity illusion without touch. Sci Rep 2016; 6:35286. [PMID: 27775034 PMCID: PMC5075768 DOI: 10.1038/srep35286] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 09/23/2016] [Indexed: 11/13/2022] Open
Abstract
When warm thermal stimulators are placed on the ring and index fingers of one hand, and a neutral-temperature stimulator on the middle finger, all three fingers feel warm. This illusion is known as thermal referral (TR). On one interpretation, the heterogenous thermal signals are overridden by homogenous tactile signals. This cross-modal thermo-tactile interaction could reflect a process of object recognition, based on the prior that many objects are thermally homogenous. Interestingly, the illusion was reported to disappear when the middle digit was lifted off the thermal stimulator, suggesting that tactile stimulation is necessary. However, no study has investigated whether purely thermal stimulation might induce TR, without any tactile object to which temperature can be attributed. We used radiant thermal stimulation to deliver purely thermal stimuli, which either were or were not accompanied by simultaneous touch. We found identical TR effects in both the original thermo-tactile condition, and in a purely thermoceptive condition where no tactile object was present. Control experiments ruled out explanations based on poor spatial discrimination of warm signals. Our purely thermoceptive results suggest that TR could reflect low-level organization of the thermoceptive pathway, rather than a cognitive intermodal modulation based on tactile object perception.
Collapse
|
18
|
Walsh L, Critchlow J, Beck B, Cataldo A, de Boer L, Haggard P. Salience-driven overestimation of total somatosensory stimulation. Cognition 2016; 154:118-129. [DOI: 10.1016/j.cognition.2016.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 05/03/2016] [Accepted: 05/12/2016] [Indexed: 10/21/2022]
|
19
|
Taoka M, Toda T, Hihara S, Tanaka M, Iriki A, Iwamura Y. A systematic analysis of neurons with large somatosensory receptive fields covering multiple body regions in the secondary somatosensory area of macaque monkeys. J Neurophysiol 2016; 116:2152-2162. [PMID: 27559139 PMCID: PMC5102307 DOI: 10.1152/jn.00241.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/12/2016] [Indexed: 11/22/2022] Open
Abstract
Previous neurophysiological studies performed in macaque monkeys have revealed complex somatosensory responses in the secondary somatosensory area (SII), such as large receptive fields (RFs), as well as bilateral ones. However, systematic analyses of neurons with large RFs have not been performed. In the present study, we recorded single-unit activities in SII of awake macaque monkeys to investigate systematically large RFs by dividing the whole body into four body regions (head, trunk, forelimb, and hindlimb). Recorded neurons were classified into two types, according to whether the RFs were confined to one body region: single (n = 817) and combined (n = 282) body-region types. These two types were distinct in terms of the percentage of bilateral RFs: 55% in the single-region type and 90% in the combined type, demonstrating that two types of RF enlargement occur simultaneously in the combined type, namely, RF convergence from different body regions and RF convergence from both hemibodies. Among the combined-type RFs, two tendencies of RF convergence were found: 1) the distal parts of the limbs (i.e., hand and foot) and the mouth are interconnected, and 2) the trunk RFs extend continuously toward the distal parts of the limb and head to cover the entire body surface. Our distribution analysis on unfolded maps clarified that neurons having RFs with these two tendencies were distributed within specific subregions in SII.
Collapse
Affiliation(s)
- M Taoka
- Department of Physiology, Toho University School of Medicine, Tokyo, Japan; .,Section of Cognitive Neurobiology, Department of Maxillofacial Biology, Tokyo Medical and Dental University, Tokyo, Japan; and.,Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - T Toda
- Department of Physiology, Toho University School of Medicine, Tokyo, Japan
| | - S Hihara
- Section of Cognitive Neurobiology, Department of Maxillofacial Biology, Tokyo Medical and Dental University, Tokyo, Japan; and.,Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - M Tanaka
- Department of Physiology, Toho University School of Medicine, Tokyo, Japan.,Section of Cognitive Neurobiology, Department of Maxillofacial Biology, Tokyo Medical and Dental University, Tokyo, Japan; and.,Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - A Iriki
- Department of Physiology, Toho University School of Medicine, Tokyo, Japan.,Section of Cognitive Neurobiology, Department of Maxillofacial Biology, Tokyo Medical and Dental University, Tokyo, Japan; and.,Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Y Iwamura
- Department of Physiology, Toho University School of Medicine, Tokyo, Japan
| |
Collapse
|
20
|
Gomez-Ramirez M, Hysaj K, Niebur E. Neural mechanisms of selective attention in the somatosensory system. J Neurophysiol 2016; 116:1218-31. [PMID: 27334956 DOI: 10.1152/jn.00637.2015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 06/09/2016] [Indexed: 11/22/2022] Open
Abstract
Selective attention allows organisms to extract behaviorally relevant information while ignoring distracting stimuli that compete for the limited resources of their central nervous systems. Attention is highly flexible, and it can be harnessed to select information based on sensory modality, within-modality feature(s), spatial location, object identity, and/or temporal properties. In this review, we discuss the body of work devoted to understanding mechanisms of selective attention in the somatosensory system. In particular, we describe the effects of attention on tactile behavior and corresponding neural activity in somatosensory cortex. Our focus is on neural mechanisms that select tactile stimuli based on their location on the body (somatotopic-based attention) or their sensory feature (feature-based attention). We highlight parallels between selection mechanisms in touch and other sensory systems and discuss several putative neural coding schemes employed by cortical populations to signal the behavioral relevance of sensory inputs. Specifically, we contrast the advantages and disadvantages of using a gain vs. spike-spike correlation code for representing attended sensory stimuli. We favor a neural network model of tactile attention that is composed of frontal, parietal, and subcortical areas that controls somatosensory cells encoding the relevant stimulus features to enable preferential processing throughout the somatosensory hierarchy. Our review is based on data from noninvasive electrophysiological and imaging data in humans as well as single-unit recordings in nonhuman primates.
Collapse
Affiliation(s)
- Manuel Gomez-Ramirez
- Department of Neuroscience, Brown University, Providence, Rhode Island; The Zanvyl Krieger Mind/Brain Institute, The Johns Hopkins University, Baltimore, Maryland; and The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Kristjana Hysaj
- The Zanvyl Krieger Mind/Brain Institute, The Johns Hopkins University, Baltimore, Maryland; and
| | - Ernst Niebur
- The Zanvyl Krieger Mind/Brain Institute, The Johns Hopkins University, Baltimore, Maryland; and The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
21
|
Cardini F, Longo MR. Congruency of body-related information induces somatosensory reorganization. Neuropsychologia 2016; 84:213-21. [DOI: 10.1016/j.neuropsychologia.2016.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 01/16/2016] [Accepted: 02/18/2016] [Indexed: 10/22/2022]
|
22
|
Qi HX, Reed JL, Franca JG, Jain N, Kajikawa Y, Kaas JH. Chronic recordings reveal tactile stimuli can suppress spontaneous activity of neurons in somatosensory cortex of awake and anesthetized primates. J Neurophysiol 2016; 115:2105-23. [PMID: 26912593 DOI: 10.1152/jn.00634.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 02/19/2016] [Indexed: 01/05/2023] Open
Abstract
In somatosensory cortex, tactile stimulation within the neuronal receptive field (RF) typically evokes a transient excitatory response with or without postexcitatory inhibition. Here, we describe neuronal responses in which stimulation on the hand is followed by suppression of the ongoing discharge. With the use of 16-channel microelectrode arrays implanted in the hand representation of primary somatosensory cortex of New World monkeys and prosimian galagos, we recorded neuronal responses from single units and neuron clusters. In 66% of our sample, neuron activity tended to display suppression of firing when regions of skin outside of the excitatory RF were stimulated. In a small proportion of neurons, single-site indentations suppressed firing without initial increases in response to any of the tested sites on the hand. Latencies of suppressive responses to skin indentation (usually 12-34 ms) were similar to excitatory response latencies. The duration of inhibition varied across neurons. Although most observations were from anesthetized animals, we also found similar neuron response properties in one awake galago. Notably, suppression of ongoing neuronal activity did not require conditioning stimuli or multi-site stimulation. The suppressive effects were generally seen following single-site skin indentations outside of the neuron's minimal RF and typically on different digits and palm pads, which have not often been studied in this context. Overall, the characteristics of widespread suppressive or inhibitory response properties with and without initial facilitative or excitatory responses add to the growing evidence that neurons in primary somatosensory cortex provide essential processing for integrating sensory stimulation from across the hand.
Collapse
Affiliation(s)
- Hui-Xin Qi
- Department of Psychology, Vanderbilt University, Nashville, Tennessee; and
| | - Jamie L Reed
- Department of Psychology, Vanderbilt University, Nashville, Tennessee; and
| | - Joao G Franca
- Department of Psychology, Vanderbilt University, Nashville, Tennessee; and Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Neeraj Jain
- Department of Psychology, Vanderbilt University, Nashville, Tennessee; and
| | - Yoshinao Kajikawa
- Department of Psychology, Vanderbilt University, Nashville, Tennessee; and
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, Tennessee; and
| |
Collapse
|
23
|
Yau JM, Kim SS, Thakur PH, Bensmaia SJ. Feeling form: the neural basis of haptic shape perception. J Neurophysiol 2016; 115:631-42. [PMID: 26581869 PMCID: PMC4752307 DOI: 10.1152/jn.00598.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/23/2015] [Indexed: 11/22/2022] Open
Abstract
The tactile perception of the shape of objects critically guides our ability to interact with them. In this review, we describe how shape information is processed as it ascends the somatosensory neuraxis of primates. At the somatosensory periphery, spatial form is represented in the spatial patterns of activation evoked across populations of mechanoreceptive afferents. In the cerebral cortex, neurons respond selectively to particular spatial features, like orientation and curvature. While feature selectivity of neurons in the earlier processing stages can be understood in terms of linear receptive field models, higher order somatosensory neurons exhibit nonlinear response properties that result in tuning for more complex geometrical features. In fact, tactile shape processing bears remarkable analogies to its visual counterpart and the two may rely on shared neural circuitry. Furthermore, one of the unique aspects of primate somatosensation is that it contains a deformable sensory sheet. Because the relative positions of cutaneous mechanoreceptors depend on the conformation of the hand, the haptic perception of three-dimensional objects requires the integration of cutaneous and proprioceptive signals, an integration that is observed throughout somatosensory cortex.
Collapse
Affiliation(s)
- Jeffrey M Yau
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas;
| | - Sung Soo Kim
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia
| | | | - Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
| |
Collapse
|
24
|
Wardak C, Guipponi O, Pinède S, Ben Hamed S. Tactile representation of the head and shoulders assessed by fMRI in the nonhuman primate. J Neurophysiol 2015; 115:80-91. [PMID: 26467517 DOI: 10.1152/jn.00633.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/13/2015] [Indexed: 11/22/2022] Open
Abstract
In nonhuman primates, tactile representation at the cortical level has mostly been studied using single-cell recordings targeted to specific cortical areas. In this study, we explored the representation of tactile information delivered to the face or the shoulders at the whole brain level, using functional magnetic resonance imaging (fMRI) in the nonhuman primate. We used air puffs delivered to the center of the face, the periphery of the face, or the shoulders. These stimulations elicited activations in numerous cortical areas, encompassing the primary and secondary somatosensory areas, prefrontal and premotor areas, and parietal, temporal, and cingulate areas as well as low-level visual cortex. Importantly, a specific parieto-temporo-prefrontal network responded to the three stimulations but presented a marked preference for air puffs directed to the center of the face. This network corresponds to areas that are also involved in near-space representation, as well as in the multisensory integration of information at the interface between this near space and the skin of the face, and is probably involved in the construction of a peripersonal space representation around the head.
Collapse
Affiliation(s)
- Claire Wardak
- Centre de Neuroscience Cognitive, UMR 5229, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Bron, France
| | - Olivier Guipponi
- Centre de Neuroscience Cognitive, UMR 5229, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Bron, France
| | - Serge Pinède
- Centre de Neuroscience Cognitive, UMR 5229, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Bron, France
| | - Suliann Ben Hamed
- Centre de Neuroscience Cognitive, UMR 5229, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Bron, France
| |
Collapse
|
25
|
Peters RM, Staibano P, Goldreich D. Tactile orientation perception: an ideal observer analysis of human psychophysical performance in relation to macaque area 3b receptive fields. J Neurophysiol 2015; 114:3076-96. [PMID: 26354318 DOI: 10.1152/jn.00631.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/05/2015] [Indexed: 11/22/2022] Open
Abstract
The ability to resolve the orientation of edges is crucial to daily tactile and sensorimotor function, yet the means by which edge perception occurs is not well understood. Primate cortical area 3b neurons have diverse receptive field (RF) spatial structures that may participate in edge orientation perception. We evaluated five candidate RF models for macaque area 3b neurons, previously recorded while an oriented bar contacted the monkey's fingertip. We used a Bayesian classifier to assign each neuron a best-fit RF structure. We generated predictions for human performance by implementing an ideal observer that optimally decoded stimulus-evoked spike counts in the model neurons. The ideal observer predicted a saturating reduction in bar orientation discrimination threshold with increasing bar length. We tested 24 humans on an automated, precision-controlled bar orientation discrimination task and observed performance consistent with that predicted. We next queried the ideal observer to discover the RF structure and number of cortical neurons that best matched each participant's performance. Human perception was matched with a median of 24 model neurons firing throughout a 1-s period. The 10 lowest-performing participants were fit with RFs lacking inhibitory sidebands, whereas 12 of the 14 higher-performing participants were fit with RFs containing inhibitory sidebands. Participants whose discrimination improved as bar length increased to 10 mm were fit with longer RFs; those who performed well on the 2-mm bar, with narrower RFs. These results suggest plausible RF features and computational strategies underlying tactile spatial perception and may have implications for perceptual learning.
Collapse
Affiliation(s)
- Ryan M Peters
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada; School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Phillip Staibano
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Daniel Goldreich
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada; McMaster Integrative Neuroscience Discovery and Study, Hamilton, Ontario, Canada; and McMaster University Origins Institute, Hamilton, Ontario, Canada
| |
Collapse
|
26
|
Hogendoorn H, Kammers M, Haggard P, Verstraten F. Self-touch modulates the somatosensory evoked P100. Exp Brain Res 2015; 233:2845-58. [PMID: 26105753 PMCID: PMC4575392 DOI: 10.1007/s00221-015-4355-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 06/09/2015] [Indexed: 11/28/2022]
Abstract
It has recently been shown that contact between one's own limbs (self-touch) reduces the perceived intensity of pain, over and above the well-known modulation of pain by simultaneous colocalized tactile input Kammers et al. (Curr Biol 20:1819-1822, 2010). Here, we investigate how self-touch modulates somatosensory evoked potentials (SEPs) evoked by afferent somatosensory input. We show that the P100 SEP component, which has previously been implicated in the conscious perception of a tactile stimulus, is enhanced during self-touch, as compared to when one is touching nothing, an inanimate object, or another person. A follow-up experiment showed that there was no effect of self-touch on SEPs when the body parts in contact were not symmetric. Altogether, our findings suggest the interpretation that the secondary somatosensory cortex might underlie the specific analgesic effect of self-touch.
Collapse
Affiliation(s)
- Hinze Hogendoorn
- Experimental Psychology Division, Helmholtz Institute, Universiteit Utrecht, Utrecht, The Netherlands.
| | - Marjolein Kammers
- Experimental Psychology Division, Helmholtz Institute, Universiteit Utrecht, Utrecht, The Netherlands
| | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Frans Verstraten
- Experimental Psychology Division, Helmholtz Institute, Universiteit Utrecht, Utrecht, The Netherlands.,Department of Psychology, University of Sydney, Sydney, Australia
| |
Collapse
|
27
|
Kim SS, Gomez-Ramirez M, Thakur PH, Hsiao SS. Multimodal Interactions between Proprioceptive and Cutaneous Signals in Primary Somatosensory Cortex. Neuron 2015; 86:555-66. [PMID: 25864632 DOI: 10.1016/j.neuron.2015.03.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/09/2015] [Accepted: 03/03/2015] [Indexed: 11/29/2022]
Abstract
The classical view of somatosensory processing holds that proprioceptive and cutaneous inputs are conveyed to cortex through segregated channels, initially synapsing in modality-specific areas 3a (proprioception) and 3b (cutaneous) of primary somatosensory cortex (SI). These areas relay their signals to areas 1 and 2 where multimodal convergence first emerges. However, proprioceptive and cutaneous maps have traditionally been characterized using unreliable stimulation tools. Here, we employed a mechanical stimulator that reliably positioned animals' hands in different postures and presented tactile stimuli with superb precision. Single-unit recordings in SI revealed that most neurons responded to cutaneous and proprioceptive stimuli, including cells in areas 3a and 3b. Multimodal responses were characterized by linear and nonlinear effects that emerged during early (∼20 ms) and latter (> 100 ms) stages of stimulus processing, respectively. These data are incompatible with the modality specificity model in SI, and provide evidence for distinct mechanisms of multimodal processing in the somatosensory system.
Collapse
Affiliation(s)
- Sung Soo Kim
- The Zanvyl Krieger Mind/Brain Institute, The Johns Hopkins University, Baltimore, MD 21218, USA; The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, MD 21218, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA.
| | - Manuel Gomez-Ramirez
- The Zanvyl Krieger Mind/Brain Institute, The Johns Hopkins University, Baltimore, MD 21218, USA; The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, MD 21218, USA.
| | - Pramodsingh H Thakur
- The Zanvyl Krieger Mind/Brain Institute, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Steven S Hsiao
- The Zanvyl Krieger Mind/Brain Institute, The Johns Hopkins University, Baltimore, MD 21218, USA; The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, MD 21218, USA; Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
28
|
Burman KJ, Bakola S, Richardson KE, Yu HH, Reser DH, Rosa MG. Cortical and thalamic projections to cytoarchitectural areas 6Va and 8C of the marmoset monkey: Connectionally distinct subdivisions of the lateral premotor cortex. J Comp Neurol 2015; 523:1222-47. [DOI: 10.1002/cne.23734] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 01/05/2023]
Affiliation(s)
- Kathleen J. Burman
- Department of Physiology; Monash University; Clayton Victoria 3800 Australia
| | - Sophia Bakola
- Department of Physiology; Monash University; Clayton Victoria 3800 Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function; Monash University Node; Clayton Victoria 3800 Australia
| | - Karyn E. Richardson
- Department of Physiology; Monash University; Clayton Victoria 3800 Australia
| | - Hsin-Hao Yu
- Department of Physiology; Monash University; Clayton Victoria 3800 Australia
| | - David H. Reser
- Department of Physiology; Monash University; Clayton Victoria 3800 Australia
| | - Marcello G.P. Rosa
- Department of Physiology; Monash University; Clayton Victoria 3800 Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function; Monash University Node; Clayton Victoria 3800 Australia
| |
Collapse
|
29
|
Oral somatosensory awareness. Neurosci Biobehav Rev 2014; 47:469-84. [DOI: 10.1016/j.neubiorev.2014.09.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 09/03/2014] [Accepted: 09/10/2014] [Indexed: 12/19/2022]
|
30
|
Ishida H, Suzuki K, Grandi LC. Predictive coding accounts of shared representations in parieto-insular networks. Neuropsychologia 2014; 70:442-54. [PMID: 25447372 DOI: 10.1016/j.neuropsychologia.2014.10.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 10/07/2014] [Accepted: 10/14/2014] [Indexed: 12/15/2022]
Abstract
The discovery of mirror neurons in the ventral premotor cortex (area F5) and inferior parietal cortex (area PFG) in the macaque monkey brain has provided the physiological evidence for direct matching of the intrinsic motor representations of the self and the visual image of the actions of others. The existence of mirror neurons implies that the brain has mechanisms reflecting shared self and other action representations. This may further imply that the neural basis self-body representations may also incorporate components that are shared with other-body representations. It is likely that such a mechanism is also involved in predicting other's touch sensations and emotions. However, the neural basis of shared body representations has remained unclear. Here, we propose a neural basis of body representation of the self and of others in both human and non-human primates. We review a series of behavioral and physiological findings which together paint a picture that the systems underlying such shared representations require integration of conscious exteroception and interoception subserved by a cortical sensory-motor network involving parieto-inner perisylvian circuits (the ventral intraparietal area [VIP]/inferior parietal area [PFG]-secondary somatosensory cortex [SII]/posterior insular cortex [pIC]/anterior insular cortex [aIC]). Based on these findings, we propose a computational mechanism of the shared body representation in the predictive coding (PC) framework. Our mechanism proposes that processes emerging from generative models embedded in these specific neuronal circuits play a pivotal role in distinguishing a self-specific body representation from a shared one. The model successfully accounts for normal and abnormal shared body phenomena such as mirror-touch synesthesia and somatoparaphrenia. In addition, it generates a set of testable experimental predictions.
Collapse
Affiliation(s)
- Hiroaki Ishida
- Istituto Italiano di Tecnologia (IIT), Brain Center for Social and Motor Cognition (BCSMC), Parma, Italy; Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | - Keisuke Suzuki
- Sackler Center for Consciousness Science, University of Sussex, Brighton, UK; School of Informatics and Engineering, University of Sussex, Brighton, UK
| | - Laura Clara Grandi
- Department of Neuroscience, Unit of Physiology, Parma University, Parma, Italy
| |
Collapse
|
31
|
Abstract
The manipulation of objects commonly involves motion between object and skin. In this review, we discuss the neural basis of tactile motion perception and its similarities with its visual counterpart. First, much like in vision, the perception of tactile motion relies on the processing of spatiotemporal patterns of activation across populations of sensory receptors. Second, many neurons in primary somatosensory cortex are highly sensitive to motion direction, and the response properties of these neurons draw strong analogies to those of direction-selective neurons in visual cortex. Third, tactile speed may be encoded in the strength of the response of cutaneous mechanoreceptive afferents and of a subpopulation of speed-sensitive neurons in cortex. However, both afferent and cortical responses are strongly dependent on texture as well, so it is unclear how texture and speed signals are disambiguated. Fourth, motion signals from multiple fingers must often be integrated during the exploration of objects, but the way these signals are combined is complex and remains to be elucidated. Finally, visual and tactile motion perception interact powerfully, an integration process that is likely mediated by visual association cortex.
Collapse
Affiliation(s)
- Yu-Cheng Pei
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois; and Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois
| |
Collapse
|
32
|
Maule F, Barchiesi G, Brochier T, Cattaneo L. Haptic Working Memory for Grasping: the Role of the Parietal Operculum. Cereb Cortex 2013; 25:528-37. [DOI: 10.1093/cercor/bht252] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
33
|
Wang Z, Qi HX, Kaas JH, Roe AW, Chen LM. Functional signature of recovering cortex: dissociation of local field potentials and spiking activity in somatosensory cortices of spinal cord injured monkeys. Exp Neurol 2013; 249:132-43. [PMID: 24017995 DOI: 10.1016/j.expneurol.2013.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/08/2013] [Accepted: 08/22/2013] [Indexed: 11/27/2022]
Abstract
After disruption of dorsal column afferents at high cervical spinal levels in adult monkeys, somatosensory cortical neurons recover responsiveness to tactile stimulation of the hand; this reactivation correlates with a recovery of hand use. However, it is not known if all neuronal response properties recover, and whether different cortical areas recover in a similar manner. To address this, we recorded neuronal activity in cortical area 3b and S2 in adult squirrel monkeys weeks after unilateral lesion of the dorsal columns. We found that in response to vibrotactile stimulation, local field potentials remained robust at all frequency ranges. However, neuronal spiking activity failed to follow at high frequencies (≥15 Hz). We suggest that the failure to generate spiking activity at high stimulus frequency reflects a changed balance of inhibition and excitation in both area 3b and S2, and that this mismatch in spiking and local field potential is a signature of an early phase of recovering cortex (<two months).
Collapse
Affiliation(s)
- Zheng Wang
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | | | | | | | | |
Collapse
|
34
|
Somato-motor haptic processing in posterior inner perisylvian region (SII/pIC) of the macaque monkey. PLoS One 2013; 8:e69931. [PMID: 23936121 PMCID: PMC3728371 DOI: 10.1371/journal.pone.0069931] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/12/2013] [Indexed: 12/02/2022] Open
Abstract
The posterior inner perisylvian region including the secondary somatosensory cortex (area SII) and the adjacent region of posterior insular cortex (pIC) has been implicated in haptic processing by integrating somato-motor information during hand-manipulation, both in humans and in non-human primates. However, motor-related properties during hand-manipulation are still largely unknown. To investigate a motor-related activity in the hand region of SII/pIC, two macaque monkeys were trained to perform a hand-manipulation task, requiring 3 different grip types (precision grip, finger exploration, side grip) both in light and in dark conditions. Our results showed that 70% (n = 33/48) of task related neurons within SII/pIC were only activated during monkeys’ active hand-manipulation. Of those 33 neurons, 15 (45%) began to discharge before hand-target contact, while the remaining neurons were tonically active after contact. Thirty-percent (n = 15/48) of studied neurons responded to both passive somatosensory stimulation and to the motor task. A consistent percentage of task-related neurons in SII/pIC was selectively activated during finger exploration (FE) and precision grasping (PG) execution, suggesting they play a pivotal role in control skilled finger movements. Furthermore, hand-manipulation-related neurons also responded when visual feedback was absent in the dark. Altogether, our results suggest that somato-motor neurons in SII/pIC likely contribute to haptic processing from the initial to the final phase of grasping and object manipulation. Such motor-related activity could also provide the somato-motor binding principle enabling the translation of diachronic somatosensory inputs into a coherent image of the explored object.
Collapse
|
35
|
Yau JM, Connor CE, Hsiao SS. Representation of tactile curvature in macaque somatosensory area 2. J Neurophysiol 2013; 109:2999-3012. [PMID: 23536717 DOI: 10.1152/jn.00804.2012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tactile shape information is elaborated in a cortical hierarchy spanning primary (SI) and secondary somatosensory cortex (SII). Indeed, SI neurons in areas 3b and 1 encode simple contour features such as small oriented bars and edges, whereas higher order SII neurons represent large curved contour features such as angles and arcs. However, neural coding of these contour features has not been systematically characterized in area 2, the most caudal SI subdivision in the postcentral gyrus. In the present study, we analyzed area 2 neural responses to embossed oriented bars and curved contour fragments to establish whether curvature representations are generated in the postcentral gyrus. We found that many area 2 neurons (26 of 112) exhibit clear curvature tuning, preferring contours pointing in a particular direction. Fewer area 2 neurons (15 of 112) show preferences for oriented bars. Because area 2 response patterns closely resembled SII patterns, we also compared area 2 and SII response time courses to characterize the temporal dynamics of curvature synthesis in the somatosensory system. We found that curvature representations develop and peak concurrently in area 2 and SII. These results reveal that transitions from orientation tuning to curvature selectivity in the somatosensory cortical hierarchy occur within SI rather than between SI and SII.
Collapse
Affiliation(s)
- Jeffrey M Yau
- Zanvyl Krieger Mind/Brain Institute and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA.
| | | | | |
Collapse
|
36
|
Wohrer A, Humphries MD, Machens CK. Population-wide distributions of neural activity during perceptual decision-making. Prog Neurobiol 2012; 103:156-93. [PMID: 23123501 DOI: 10.1016/j.pneurobio.2012.09.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 09/09/2012] [Accepted: 09/26/2012] [Indexed: 01/14/2023]
Abstract
Cortical activity involves large populations of neurons, even when it is limited to functionally coherent areas. Electrophysiological recordings, on the other hand, involve comparatively small neural ensembles, even when modern-day techniques are used. Here we review results which have started to fill the gap between these two scales of inquiry, by shedding light on the statistical distributions of activity in large populations of cells. We put our main focus on data recorded in awake animals that perform simple decision-making tasks and consider statistical distributions of activity throughout cortex, across sensory, associative, and motor areas. We transversally review the complexity of these distributions, from distributions of firing rates and metrics of spike-train structure, through distributions of tuning to stimuli or actions and of choice signals, and finally the dynamical evolution of neural population activity and the distributions of (pairwise) neural interactions. This approach reveals shared patterns of statistical organization across cortex, including: (i) long-tailed distributions of activity, where quasi-silence seems to be the rule for a majority of neurons; that are barely distinguishable between spontaneous and active states; (ii) distributions of tuning parameters for sensory (and motor) variables, which show an extensive extrapolation and fragmentation of their representations in the periphery; and (iii) population-wide dynamics that reveal rotations of internal representations over time, whose traces can be found both in stimulus-driven and internally generated activity. We discuss how these insights are leading us away from the notion of discrete classes of cells, and are acting as powerful constraints on theories and models of cortical organization and population coding.
Collapse
Affiliation(s)
- Adrien Wohrer
- Group for Neural Theory, INSERM U960, École Normale Supérieure Département d'Études Cognitives, 29 rue d'Ulm, 75005 Paris, France
| | | | | |
Collapse
|
37
|
Spatiotemporal dynamics of bimanual integration in human somatosensory cortex and their relevance to bimanual object manipulation. J Neurosci 2012; 32:5667-77. [PMID: 22514328 DOI: 10.1523/jneurosci.5957-11.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Little is known about the spatiotemporal dynamics of cortical responses that integrate slightly asynchronous somatosensory inputs from both hands. This study aimed to clarify the timing and magnitude of interhemispheric interactions during early integration of bimanual somatosensory information in different somatosensory regions and their relevance for bimanual object manipulation and exploration. Using multi-fiber probabilistic diffusion tractography and MEG source analysis of conditioning-test (C-T) median nerve somatosensory evoked fields in healthy human subjects, we sought to extract measures of structural and effective callosal connectivity between different somatosensory cortical regions and correlated them with bimanual tactile task performance. Neuromagnetic responses were found in major somatosensory regions, i.e., primary somatosensory cortex SI, secondary somatosensory cortex SII, posterior parietal cortex, and premotor cortex. Contralateral to the test stimulus, SII activity was maximally suppressed by 51% at C-T intervals of 40 and 60 ms. This interhemispheric inhibition of the contralateral SII source activity correlated directly and topographically specifically with the fractional anisotropy of callosal fibers interconnecting SII. Thus, the putative pathway that mediated inhibitory interhemispheric interactions in SII was a transcallosal route from ipsilateral to contralateral SII. Moreover, interhemispheric inhibition of SII source activity correlated directly with bimanual tactile task performance. These findings were exclusive to SII. Our data suggest that early interhemispheric somatosensory integration primarily occurs in SII, is mediated by callosal fibers that interconnect homologous SII areas, and has behavioral importance for bimanual object manipulation and exploration.
Collapse
|
38
|
Imitation components in the human brain: An fMRI study. Neuroimage 2012; 59:1622-30. [DOI: 10.1016/j.neuroimage.2011.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/01/2011] [Accepted: 09/02/2011] [Indexed: 11/20/2022] Open
|
39
|
Haggard P, Giovagnoli G. Spatial patterns in tactile perception: is there a tactile field? Acta Psychol (Amst) 2011; 137:65-75. [PMID: 21470584 DOI: 10.1016/j.actpsy.2011.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 02/26/2011] [Accepted: 03/02/2011] [Indexed: 11/29/2022] Open
Abstract
Previous studies of tactile spatial perception focussed either on a single point of stimulation, on local patterns within a single skin region such as the fingertip, on tactile motion, or on active touch. It remains unclear whether we should speak of a tactile field, analogous to the visual field, and supporting spatial relations between stimulus locations. Here we investigate this question by studying perception of large-scale tactile spatial patterns on the hand, arm and back. Experiment 1 investigated the relation between perception of tactile patterns and the identification of subsets of those patterns. The results suggest that perception of tactile spatial patterns is based on representing the spatial relations between locations of individual stimuli. Experiment 2 investigated the spatial and temporal organising principles underlying these relations. Experiment 3 showed that tactile pattern perception makes reference to structural representations of the body, such as body parts separated by joints. Experiment 4 found that precision of pattern perception is poorer for tactile patterns that extend across the midline, compared to unilateral patterns. Overall, the results suggest that the human sense of touch involves a tactile field, analogous to the visual field. The tactile field supports computation of spatial relations between individual stimulus locations, and thus underlies tactile pattern perception.
Collapse
Affiliation(s)
- Patrick Haggard
- Institute of Cognitive Neuroscience, University College London, UK.
| | | |
Collapse
|
40
|
Overvliet KE, Anema HA, Brenner E, Dijkerman HC, Smeets JBJ. Relative finger position influences whether you can localize tactile stimuli. Exp Brain Res 2010; 208:245-55. [PMID: 21080157 PMCID: PMC3015175 DOI: 10.1007/s00221-010-2475-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 10/23/2010] [Indexed: 11/29/2022]
Abstract
To investigate whether the relative positions of the fingers influence tactile localization, participants were asked to localize tactile stimuli applied to their fingertips. We measured the location and rate of errors for three finger configurations: fingers stretched out and together so that they are touching each other, fingers stretched out and spread apart maximally and fingers stretched out with the two hands on top of each other so that the fingers are interwoven. When the fingers contact each other, it is likely that the error rate to the adjacent fingers will be higher than when the fingers are spread apart. In particular, we reasoned that localization would probably improve when the fingers are spread. We aimed at assessing whether such adjacency was measured in external coordinates (taking proprioception into account) or on the body (in skin coordinates). The results confirmed that the error rate was lower when the fingers were spread. However, there was no decrease in error rate to neighbouring fingertips in the fingers spread condition in comparison with the fingers together condition. In an additional experiment, we showed that the lower error rate when the fingers were spread was not related to the continuous tactile input from the neighbouring fingers when the fingers were together. The current results suggest that information from proprioception is taken into account in perceiving the location of a stimulus on one of the fingertips.
Collapse
Affiliation(s)
- K E Overvliet
- Research Institute MOVE, Faculty of Human Movement Sciences, VU University Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
41
|
Kammers MPM, de Vignemont F, Haggard P. Cooling the thermal grill illusion through self-touch. Curr Biol 2010; 20:1819-22. [PMID: 20869246 DOI: 10.1016/j.cub.2010.08.038] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Revised: 07/25/2010] [Accepted: 08/18/2010] [Indexed: 11/24/2022]
Abstract
Acute peripheral pain is reduced by multisensory interactions at the spinal level [1]. Central pain is reduced by reorganization of cortical body representations [2, 3]. We show here that acute pain can also be reduced by multisensory integration through self-touch, which provides proprioceptive, thermal, and tactile input forming a coherent body representation [4, 5]. We combined self-touch with the thermal grill illusion (TGI) [6]. In the traditional TGI, participants press their fingers on two warm objects surrounding one cool object. The warm surround unmasks pain pathways, which paradoxically causes the cool object to feel painfully hot. Here, we warmed the index and ring fingers of each hand while cooling the middle fingers. Immediately after, these three fingers of the right hand were touched against the same three fingers on the left hand. This self-touch caused a dramatic 64% reduction in perceived heat. We show that this paradoxical release from paradoxical heat cannot be explained by low-level touch-temperature interactions alone. To reduce pain, we often clutch a painful hand with the other hand. We show here that self-touch not only gates pain signals reaching the brain [7-9] but also, via multisensory integration, increases coherence of cognitive body representations to which pain afferents project [10].
Collapse
Affiliation(s)
- Marjolein P M Kammers
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17 Queen Square, London, UK.
| | | | | |
Collapse
|
42
|
Anatomical and functional connectivity of cytoarchitectonic areas within the human parietal operculum. J Neurosci 2010; 30:6409-21. [PMID: 20445067 DOI: 10.1523/jneurosci.5664-09.2010] [Citation(s) in RCA: 283] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In monkeys, the somatosensory cortex on the parietal operculum can be differentiated into several distinct cortical fields. Potential human homologues for these areas have already been defined by cytoarchitectonic mapping and functional imaging experiments. Differences between the two most widely studied areas [operculum parietale (OP) 1 and OP 4] within this region particularly pertain to their connection with either the perceptive parietal network or the frontal motor areas. In the present study, we investigated differences in anatomical connection patterns probed by probabilistic tractography on diffusion tensor imaging data. Functional connectivity was then mapped by coordinate-based meta-analysis of imaging studies. Comparison between these two aspects of connectivity showed a good congruency and hence converging evidence for an involvement of these areas in matching brain networks. There were, however, also several instances in which anatomical and functional connectivity diverged, underlining the independence of these measures and the need for multimodal characterization of brain connectivity. The connectivity analyses performed showed that the two largest areas within the human parietal operculum region display considerable differences in their connectivity to frontoparietal brain regions. In particular, relative to OP 1, area OP 4 is more closely integrated with areas responsible for basic sensorimotor processing and action control, while OP 1 is more closely connected to the parietal networks for higher order somatosensory processing. These results are largely congruent with data on nonhuman primates. Differences between anatomical and functional connectivity as well as between species, however, highlight the need for an integrative view on connectivity, including comparison and cross-validation of results from different approaches.
Collapse
|
43
|
Li Hegner Y, Lee Y, Grodd W, Braun C. Comparing Tactile Pattern and Vibrotactile Frequency Discrimination: A Human fMRI Study. J Neurophysiol 2010; 103:3115-22. [DOI: 10.1152/jn.00940.2009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated to which extent the discrimination of tactile patterns and vibrotactile frequencies share common cortical areas. An adaptation paradigm has been used to identify cortical areas specific for processing particular features of tactile stimuli. Healthy right-handed subjects performed a delayed-match-to-sample (DMTS) task discriminating between pairs of tactile patterns or vibrotactile frequencies in separate functional MRI sessions. The tactile stimuli were presented to the right middle fingertip sequentially with a 5.5 s delay. Regions of interest (ROIs) were defined by cortical areas commonly activated in both tasks and those that showed differential activation between both tasks. Results showed recruitment of many common brain regions along the sensory motor pathway (such as bilateral somatosensory, premotor areas, and anterior insula) in both tasks. Three cortical areas, the right intraparietal sulcus (IPS), supramarginal gyrus (SMG)/parietal operculum (PO), and PO, were significantly more activated during the pattern than in the frequency task. Further BOLD time course analysis was performed in the ROIs. Significant BOLD adaptation was found in bilateral IPS, right anterior insula, and SMG/PO in the pattern task, whereas there was no significant BOLD adaptation found in the frequency task. In addition, the right hemisphere was found to be more dominant in the pattern than in the frequency task, which could be attributed to the differences between spatial (pattern) and temporal (frequency) processing. From the different spatio-temporal characteristics of BOLD activation in the pattern and frequency tasks, we concluded that different neuronal mechanisms are underlying the tactile spatial and temporal processing.
Collapse
Affiliation(s)
- Yiwen Li Hegner
- Institute of Medical Psychology and Behavioral Neurobiology,
- MEG Center,
| | - Ying Lee
- Graduate School of Neural and Behavioural Sciences, International Max Planck Research School, and
| | - Wolfgang Grodd
- Section of MR Imaging of the CNS, Neuroradiology, University of Tübingen, Tubingen, Germany; and
| | - Christoph Braun
- Center for Mind/Brain Sciences and
- Department of Cognitive and Education Sciences, University of Trento, Trento, Italy
| |
Collapse
|
44
|
Roberts RD, Humphreys GW. The role of somatotopy and body posture in the integration of texture across the fingers. Psychol Sci 2010; 21:476-83. [PMID: 20424086 DOI: 10.1177/0956797610363405] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In two experiments, we investigated the automatic integration of touch across the fingers. Participants made judgments about the roughness of sequences of textures presented to one finger while simultaneously feeling textures of varying roughness with another finger (the distractor digit) on the same hand. Integration across digits was evident when the thumb and index finger were used together, whereas there was a general disruption of attention when the thumb and little finger were used together. In addition, interference was greater when the distractor digit was above the touched surface than when it was below the touched surface. These results suggest that there is integration of information across fingers when people feel textures, but that this integration pattern does not conform to a spread of activation across somatosensory maps.
Collapse
Affiliation(s)
- Roberta D Roberts
- Behavioural Brain Sciences Centre, University of Birmingham, Birmingham, UK.
| | | |
Collapse
|
45
|
Brain mechanisms supporting discrimination of sensory features of pain: a new model. J Neurosci 2010; 29:14924-31. [PMID: 19940188 DOI: 10.1523/jneurosci.5538-08.2009] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pain can be very intense or only mild, and can be well localized or diffuse. To date, little is known as to how such distinct sensory aspects of noxious stimuli are processed by the human brain. Using functional magnetic resonance imaging and a delayed match-to-sample task, we show that discrimination of pain intensity, a nonspatial aspect of pain, activates a ventrally directed pathway extending bilaterally from the insular cortex to the prefrontal cortex. This activation is distinct from the dorsally directed activation of the posterior parietal cortex and right dorsolateral prefrontal cortex that occurs during spatial discrimination of pain. Both intensity and spatial discrimination tasks activate highly similar aspects of the anterior cingulate cortex, suggesting that this structure contributes to common elements of the discrimination task such as the monitoring of sensory comparisons and response selection. Together, these results provide the foundation for a new model of pain in which bidirectional dorsal and ventral streams preferentially amplify and process distinct sensory features of noxious stimuli according to top-down task demands.
Collapse
|
46
|
Lane JW, Fitzgerald PJ, Yau JM, Pembeci I, Hsiao SS. A tactile stimulator for studying passive shape perception. J Neurosci Methods 2009; 185:221-9. [PMID: 19800916 DOI: 10.1016/j.jneumeth.2009.09.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 09/24/2009] [Accepted: 09/24/2009] [Indexed: 11/28/2022]
Abstract
We describe a computer-controlled tactile stimulator for use in human psychophysical and monkey neurophysiological studies of 3D shape perception. The stimulator is constructed primarily of commercially available parts, as well as a few custom-built pieces for which we will supply diagrams upon request. There are two components to the stimulator: a tactile component and a hand positioner component. The tactile component consists of multiple stimulating units that move about in a Cartesian plane above the restrained hand. Each stimulating unit contains a servo-controlled linear motor with an attached small rotary stepper motor, allowing arbitrary stimulus shapes to contact the skin through vibration, static indentation, or scanning. The hand positioner component modifies the conformation of the restrained hand through a set of mechanical linkages under motorized control. The present design controls the amount of spread between digits 2 and 3, the spread between digits 4 and 3, and the degree to which digit 3 is flexed or extended, thereby simulating different conformations of the hand in contact with objects. This design is easily modified to suit the needs of the experimenter. Because the two components of the stimulator are independently controlled, the stimulator allows for parametric study of the mechanoreceptive and proprioceptive contributions to 3D tactile shape perception.
Collapse
Affiliation(s)
- John W Lane
- Zanvyl Krieger Mind/Brain Institute, Department of Neuroscience, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA
| | | | | | | | | |
Collapse
|
47
|
Tommerdahl M, Favorov OV, Whitsel BL. Dynamic representations of the somatosensory cortex. Neurosci Biobehav Rev 2009; 34:160-70. [PMID: 19732790 DOI: 10.1016/j.neubiorev.2009.08.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 04/15/2009] [Accepted: 08/26/2009] [Indexed: 11/26/2022]
Abstract
Neural representation of somatosensory events undergoes major transformation in the primary somatosensory cortex (SI) from its original, more or less isomorphic, form found at the level of peripheral receptors. A large body of SI optical imaging, neural recording and psychophysical studies suggests that SI representation of stimuli encountered in everyday life is a product of dynamic processes that involve competitive interactions at multiple levels of cortical organization. Such interactions take place among neighboring neurons, among local groups of minicolumns, among neighboring macrocolumns, between SI and SII, between Pacinian and non-Pacinian channels, and bilaterally between homotopic somatosensory regions of the opposite hemispheres. Together these interactions sharpen SI response to suprathreshold and time-extended tactile stimuli by funneling the initially widespread stimulus-triggered activity in SI into the local group of macrocolumns most directly driven by the stimulus. Those macrocolumns in turn fractionate into stimulus-specific patterns of differentially active minicolumns. Thus SI dynamically shapes its representation of a tactile stimulus by selecting among all of its neurons initially activated by the stimulus a subset of neurons with receptive-field and feature-tuning properties closely matching those of the stimulus. Through this stimulus-directed dynamical selection process, which operates on a scale of hundreds of milliseconds, SI achieves a more faithful representation of stimulus properties, which is reflected in improved performance on tactile perceptual tasks.
Collapse
Affiliation(s)
- Mark Tommerdahl
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, United States.
| | | | | |
Collapse
|
48
|
Krueger J, Royal DW, Fister MC, Wallace MT. Spatial receptive field organization of multisensory neurons and its impact on multisensory interactions. Hear Res 2009; 258:47-54. [PMID: 19698773 DOI: 10.1016/j.heares.2009.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 08/05/2009] [Accepted: 08/12/2009] [Indexed: 11/18/2022]
Abstract
Previous work has established that the spatial receptive fields (SRFs) of multisensory neurons in the cerebral cortex are strikingly heterogeneous, and that SRF architecture plays an important deterministic role in sensory responsiveness and multisensory integrative capacities. The initial part of this contribution serves to review these findings detailing the key features of SRF organization in cortical multisensory populations by highlighting work from the cat anterior ectosylvian sulcus (AES). In addition, we have recently conducted parallel studies designed to examine SRF architecture in the classic model for multisensory studies, the cat superior colliculus (SC), and we present some of the preliminary observations from the SC here. An examination of individual SC neurons revealed marked similarities between their unisensory (i.e., visual and auditory) SRFs, as well as between these unisensory SRFs and the multisensory SRF. Despite these similarities within individual neurons, different SC neurons had SRFs that ranged from a single area of greatest activation (hot spot) to multiple and spatially discrete hot spots. Similar to cortical multisensory neurons, the interactive profile of SC neurons was correlated strongly to SRF architecture, closely following the principle of inverse effectiveness. Thus, large and often superadditive multisensory response enhancements were typically seen at SRF locations where visual and auditory stimuli were weakly effective. Conversely, subadditive interactions were seen at SRF locations where stimuli were highly effective. Despite the unique functions characteristic of cortical and subcortical multisensory circuits, our results suggest a strong mechanistic interrelationship between SRF microarchitecture and integrative capacity.
Collapse
Affiliation(s)
- Juliane Krueger
- Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA.
| | | | | | | |
Collapse
|
49
|
Sambo CF, Gillmeister H, Forster B. Viewing the body modulates neural mechanisms underlying sustained spatial attention in touch. Eur J Neurosci 2009; 30:143-50. [PMID: 19519638 DOI: 10.1111/j.1460-9568.2009.06791.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cross-modal links between vision and touch have been extensively shown with a variety of paradigms. The present event-related potential (ERP) study aimed to clarify whether neural mechanisms underlying sustained tactile-spatial attention may be modulated by visual input, and the sight of the stimulated body part (i.e. hands) in particular. Participants covertly attended to one of their hands throughout a block to detect infrequent tactile target stimuli at that hand while ignoring tactile targets at the unattended hand, and all tactile non-targets. In different blocks, participants performed this task under three viewing conditions: full vision; hands covered from view; and blindfolded. When the participants' hands were visible attention was found to modulate somatosensory ERPs at early latencies (i.e. in the time range of the somatosensory P100 and the N140 components), as well as at later time intervals, from 200 ms after stimulus onset. By contrast, when participants were blindfolded and, crucially, even when only their hands were not visible, attentional modulations were found to arise only at later intervals (i.e. from 200 ms post-stimulus), while earlier somatosensory components were not affected by spatial attention. The behavioural results tallied with these electrophysiological findings, showing faster response times to tactile targets under the full vision condition compared with conditions when participants' hands were covered, and when participants were blindfolded. The results from this study provide the first evidence of the profound impact of vision on mechanisms underlying sustained tactile-spatial attention, which is enhanced by the sight of the body parts (i.e. hands).
Collapse
|
50
|
Rusconi E, Gonzaga M, Adriani M, Braun C, Haggard P. Know thyself: behavioral evidence for a structural representation of the human body. PLoS One 2009; 4:e5418. [PMID: 19412538 PMCID: PMC2671600 DOI: 10.1371/journal.pone.0005418] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 03/24/2009] [Indexed: 12/02/2022] Open
Abstract
Background Representing one's own body is often viewed as a basic form of self-awareness. However, little is known about structural representations of the body in the brain. Methods and Findings We developed an inter-manual version of the classical “in-between” finger gnosis task: participants judged whether the number of untouched fingers between two touched fingers was the same on both hands, or different. We thereby dissociated structural knowledge about fingers, specifying their order and relative position within a hand, from tactile sensory codes. Judgments following stimulation on homologous fingers were consistently more accurate than trials with no or partial homology. Further experiments showed that structural representations are more enduring than purely sensory codes, are used even when number of fingers is irrelevant to the task, and moreover involve an allocentric representation of finger order, independent of hand posture. Conclusions Our results suggest the existence of an allocentric representation of body structure at higher stages of the somatosensory processing pathway, in addition to primary sensory representation.
Collapse
Affiliation(s)
- Elena Rusconi
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
- Center for Mind/Brain Sciences, University of Trento, Mattarello, Italy
| | - Mirandola Gonzaga
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Michela Adriani
- Center for Mind/Brain Sciences, University of Trento, Mattarello, Italy
| | - Christoph Braun
- Center for Mind/Brain Sciences, University of Trento, Mattarello, Italy
- Department of Cognitive and Education Sciences, University of Trento, Rovereto, Italy
| | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|