1
|
Ivankovic K, Principe A, Montoya-Gálvez J, Manubens-Gil L, Zucca R, Villoslada P, Dierssen M, Rocamora R. A novel way to use cross-validation to measure connectivity by machine learning allows epilepsy surgery outcome prediction. Neuroimage 2025; 306:120990. [PMID: 39733864 DOI: 10.1016/j.neuroimage.2024.120990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/25/2024] [Accepted: 12/27/2024] [Indexed: 12/31/2024] Open
Abstract
The rate of success of epilepsy surgery, ensuring seizure-freedom, is limited by the lack of epileptogenicity biomarkers. Previous evidence supports the critical role of functional connectivity during seizure generation to characterize the epileptogenic network (EN). However, EN dynamics is highly variable across patients, hindering the development of diagnostic biomarkers. Without relying on specific connectivity variables, we focused on a general hypothesis that the EN undergoes the greatest magnitude of connectivity change during seizure generation, compared to other brain networks. To test this hypothesis, we developed a novel method for quantifying connectivity change between network states and applied it to identify surgical resection areas. A network state was represented by random snapshots of connectivity within a defined time interval of an intracranial EEG recording. A binary classifier was applied to classify two network states. The classifier generalization performance estimated by cross-validation was employed as a continuous measure of connectivity change. The algorithm generated a network by iteratively adding nodes until the connectivity change magnitude decreased. The resulting network was compared to the surgical resection, and the overlap score was used to predict post-surgical outcomes. The framework was evaluated in a consecutive cohort of 21 patients with a post-surgical follow-up of minimum 3 years. The best overlap between connectivity change networks and resections was obtained at the transition from pre-seizure to seizure (surgical outcome prediction ROC-AUC=90.3 %). However, all patients except one were correctly classified when considering the most informative time intervals. Time intervals proportional to seizure length were more informative than the almost universally used fixed intervals. This study demonstrates that connectivity can be successfully classified with a machine learning analysis and provide information for distinguishing a separate epileptogenic functional network. In summary, the connectivity change analysis could accurately identify epileptogenic networks validated by surgery outcome classification. Connectivity change magnitude at seizure transition could potentially serve as an EN biomarker. The tool provided by this study may aid surgical decision-making.
Collapse
Affiliation(s)
- Karla Ivankovic
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Alessandro Principe
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; Universitat Pompeu Fabra, 08003 Barcelona, Spain; Epilepsy Unit - Neurology Dept. Hospital del Mar, 08003 Barcelona, Spain.
| | | | - Linus Manubens-Gil
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, State Key Laboratory of Digital Medical Engineering, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu 210096, China
| | - Riccardo Zucca
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; Radboud University, Nijmegen, the Netherlands
| | - Pablo Villoslada
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Mara Dierssen
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; Universitat Pompeu Fabra, 08003 Barcelona, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST) 08003 Barcelona, Spain; Biomedical Research Networking Center on Rare Diseases (CIBERER), Barcelona, Spain
| | - Rodrigo Rocamora
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; Universitat Pompeu Fabra, 08003 Barcelona, Spain; Epilepsy Unit - Neurology Dept. Hospital del Mar, 08003 Barcelona, Spain
| |
Collapse
|
2
|
Niitani K, Ito S, Wada S, Izumi S, Nishitani N, Deyama S, Kaneda K. Noradrenergic stimulation of α 1 adrenoceptors in the medial prefrontal cortex mediates acute stress-induced facilitation of seizures in mice. Sci Rep 2023; 13:8089. [PMID: 37208473 DOI: 10.1038/s41598-023-35242-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/15/2023] [Indexed: 05/21/2023] Open
Abstract
Stress is one of the critical facilitators for seizure induction in patients with epilepsy. However, the neural mechanisms underlying this facilitation remain poorly understood. Here, we investigated whether noradrenaline (NA) transmission enhanced by stress exposure facilitates the induction of medial prefrontal cortex (mPFC)-originated seizures. In mPFC slices, whole-cell current-clamp recordings revealed that bath application of picrotoxin induced sporadic epileptiform activities (EAs), which consisted of depolarization with bursts of action potentials in layer 5 pyramidal cells. Addition of NA dramatically shortened the latency and increased the number of EAs. Simultaneous whole-cell and field potential recordings revealed that the EAs are synchronous in the mPFC local circuit. Terazosin, but not atipamezole or timolol, inhibited EA facilitation, indicating the involvement of α1 adrenoceptors. Intra-mPFC picrotoxin infusion induced seizures in mice in vivo. Addition of NA substantially shortened the seizure latency, while co-infusion of terazosin into the mPFC inhibited the effect of NA. Finally, acute restraint stress shortened the latency of intra-mPFC picrotoxin infusion-induced seizures, whereas prior infusion of terazosin reversed this stress-induced shortening of seizure latency. Our findings suggest that stress facilitates the induction of mPFC-originated seizures via NA stimulation of α1 adrenoceptors.
Collapse
Affiliation(s)
- Kazuhei Niitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Shiho Ito
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Shintaro Wada
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Shoma Izumi
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Naoya Nishitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
3
|
Han X, Matsuda N, Ishibashi Y, Odawara A, Takahashi S, Tooi N, Kinoshita K, Suzuki I. A functional neuron maturation device provides convenient application on microelectrode array for neural network measurement. Biomater Res 2022; 26:84. [PMID: 36539898 PMCID: PMC9768978 DOI: 10.1186/s40824-022-00324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Microelectrode array (MEA) systems are valuable for in vitro assessment of neurotoxicity and drug efficiency. However, several difficulties such as protracted functional maturation and high experimental costs hinder the use of MEA analysis requiring human induced pluripotent stem cells (hiPSCs). Neural network functional parameters are also needed for in vitro to in vivo extrapolation. METHODS In the present study, we produced a cost effective nanofiber culture platform, the SCAD device, for long-term culture of hiPSC-derived neurons and primary peripheral neurons. The notable advantage of SCAD device is convenient application on multiple MEA systems for neuron functional analysis. RESULTS We showed that the SCAD device could promote functional maturation of cultured hiPSC-derived neurons, and neurons responded appropriately to convulsant agents. Furthermore, we successfully analyzed parameters for in vitro to in vivo extrapolation, i.e., low-frequency components and synaptic propagation velocity of the signal, potentially reflecting neural network functions from neurons cultured on SCAD device. Finally, we measured the axonal conduction velocity of peripheral neurons. CONCLUSIONS Neurons cultured on SCAD devices might constitute a reliable in vitro platform to investigate neuron functions, drug efficacy and toxicity, and neuropathological mechanisms by MEA.
Collapse
Affiliation(s)
- Xiaobo Han
- grid.444756.00000 0001 2165 0596Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-Ku, Sendai, Miyagi 982-8577 Japan
| | - Naoki Matsuda
- grid.444756.00000 0001 2165 0596Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-Ku, Sendai, Miyagi 982-8577 Japan
| | - Yuto Ishibashi
- grid.444756.00000 0001 2165 0596Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-Ku, Sendai, Miyagi 982-8577 Japan
| | - Aoi Odawara
- grid.444756.00000 0001 2165 0596Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-Ku, Sendai, Miyagi 982-8577 Japan
| | - Sayuri Takahashi
- grid.444756.00000 0001 2165 0596Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-Ku, Sendai, Miyagi 982-8577 Japan
| | - Norie Tooi
- Stem Cell & Device Laboratory, Inc. (SCAD), OFFICE-ONE Shijo Karasuma 11F, 480, Niwatoriboko-Cho, Shimogyo-Ku, Kyoto, 600-8491 Japan
| | - Koshi Kinoshita
- Stem Cell & Device Laboratory, Inc. (SCAD), OFFICE-ONE Shijo Karasuma 11F, 480, Niwatoriboko-Cho, Shimogyo-Ku, Kyoto, 600-8491 Japan
| | - Ikuro Suzuki
- grid.444756.00000 0001 2165 0596Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-Ku, Sendai, Miyagi 982-8577 Japan
| |
Collapse
|
4
|
Zhai SR, Ehrens D, Li A, Assaf F, Schiller Y, Sarma SV, Smith RJ. Temporal and morphological characteristics of high-frequency oscillations in an acute in vivo model of epilepsy. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:4896-4899. [PMID: 36086062 DOI: 10.1109/embc48229.2022.9871323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Approximately 30% of patients with epilepsy do not respond to anti-epileptogenic drugs. Surgical removal of the epileptogenic zone (EZ), the brain regions where the seizures originate and spread, can be a possible therapy for these patients, but localizing the EZ is challenging due to a variety of clinical factors. High-frequency oscillations (HFOs) in intracranial electroencephalography (EEG) are a promising biomarker of the EZ, but it is currently unknown whether HFO rates and HFO morphology modulate as pathological brain networks evolve in a way that gives rise to seizures. To address this question, we assessed the temporal evolution of the duration of HFO events, amplitude of HFO events, and rates of HFOs per minute. HFO events were quantified using the 4AP in vivo rodent model of epilepsy, inducing seizures in two different brain areas. We found that the duration and amplitude of HFO events were significantly increased for the cortex model when compared to the hippocampus model. Additionally, the duration and amplitude increased significantly between baseline and pre-ictal HFOs in both models. On the other hand, the two models did not display a consistent increasing or decreasing trend in amplitude, duration or rate when comparing ictal and postictal intervals. Clinical Relevance- We assessed the amplitude, duration, and rate of HFOs in two acute in vivo rodent models of epilepsy. The significant modulation of HFO morphology from baseline to pre-ictal periods suggests that these features may be a robust biomarker for pathological tissue involved in epileptogenesis. Moreover, the differences in HFO morphology observed between cortex and hippocampus animal models possibly indicate that different structural network characteristics of the EZ cause this modulation. In all, we found that HFO features modulate significantly with the onset of seizures, further highlighting the need to consider of HFO morphology in EZ-localizing studies.
Collapse
|
5
|
Kosugi K, Iijima K, Yokosako S, Takayama Y, Kimura Y, Kaneko Y, Sumitomo N, Saito T, Nakagawa E, Sato N, Iwasaki M. Low EEG Gamma Entropy and Glucose Hypometabolism After Corpus Callosotomy Predicts Seizure Outcome After Subsequent Surgery. Front Neurol 2022; 13:831126. [PMID: 35401399 PMCID: PMC8989433 DOI: 10.3389/fneur.2022.831126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundPatients with generalized epilepsy who had lateralized EEG abnormalities after corpus callosotomy (CC) occasionally undergo subsequent surgeries to control intractable epilepsy.ObjectivesThis study evaluated retrospectively the combination of EEG multiscale entropy (MSE) and FDG-PET for identifying lateralization of the epileptogenic zone after CC.MethodsThis study included 14 patients with pharmacoresistant epilepsy who underwent curative epilepsy surgery after CC. Interictal scalp EEG and FDG-PET obtained after CC were investigated to determine (1) whether the MSE calculated from the EEG and FDG-PET findings was lateralized to the surgical side, and (2) whether the lateralization was associated with seizure outcomes.ResultsSeizure reduction rate was higher in patients with lateralized findings to the surgical side than those without (MSE: p < 0.05, FDG-PET: p < 0.05, both: p < 0.01). Seizure free rate was higher in patients with lateralized findings in both MSE and FDG-PET than in those without (p < 0.05).ConclusionsThis study demonstrated that patients with lateralization of MSE and FDG-PET to the surgical side had better seizure outcomes. The combination of MSE and conventional FDG-PET may help to select surgical candidates for additional surgery after CC with good postoperative seizure outcomes.
Collapse
Affiliation(s)
- Kenzo Kosugi
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Keiya Iijima
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Suguru Yokosako
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yutaro Takayama
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yuiko Kimura
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yuu Kaneko
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Noriko Sumitomo
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Takashi Saito
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Eiji Nakagawa
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Noriko Sato
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Masaki Iwasaki
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
- *Correspondence: Masaki Iwasaki
| |
Collapse
|
6
|
Zhang M, Li B, Lv X, Liu S, Liu Y, Tang R, Lang Y, Huang Q, He J. Low-Intensity Focused Ultrasound-Mediated Attenuation of Acute Seizure Activity Based on EEG Brain Functional Connectivity. Brain Sci 2021; 11:brainsci11060711. [PMID: 34071964 PMCID: PMC8228165 DOI: 10.3390/brainsci11060711] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 11/30/2022] Open
Abstract
(1) Background: Ultrasound has been used for noninvasive stimulation and is a promising technique for treating neurological diseases. Epilepsy is a common neurological disorder, that is attributed to uncontrollable abnormal neuronal hyperexcitability. Abnormal synchronized activities can be observed across multiple brain regions during a seizure. (2) Methods: we used low-intensity focused ultrasound (LIFU) to sonicate the brains of epileptic rats, analyzed the EEG functional brain network to explore the effect of LIFU on the epileptic brain network, and continued to explore the mechanism of ultrasound neuromodulation. LIFU was used in the hippocampus of epileptic rats in which a seizure was induced by kainic acid. (3) Results: By comparing the brain network characteristics before and after sonication, we found that LIFU significantly impacted the functional brain network, especially in the low-frequency band. The brain network connection strength across multiple brain regions significantly decreased after sonication compared to the connection strength in the control group. The brain network indicators (the path length, clustering coefficient, small-worldness, local efficiency and global efficiency) all changed significantly in the low-frequency. (4) Conclusions: These results revealed that LIFU could reduce the network connections of epilepsy circuits and change the structure of the brain network at the whole-brain level.
Collapse
Affiliation(s)
- Minjian Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (M.Z.); (B.L.); (S.L.); (Y.L.); (Q.H.); (J.H.)
| | - Bo Li
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (M.Z.); (B.L.); (S.L.); (Y.L.); (Q.H.); (J.H.)
| | - Xiaodong Lv
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China; (X.L.); (Y.L.)
| | - Sican Liu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (M.Z.); (B.L.); (S.L.); (Y.L.); (Q.H.); (J.H.)
| | - Yafei Liu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (M.Z.); (B.L.); (S.L.); (Y.L.); (Q.H.); (J.H.)
| | - Rongyu Tang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China; (X.L.); (Y.L.)
- Correspondence:
| | - Yiran Lang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China; (X.L.); (Y.L.)
| | - Qiang Huang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (M.Z.); (B.L.); (S.L.); (Y.L.); (Q.H.); (J.H.)
| | - Jiping He
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (M.Z.); (B.L.); (S.L.); (Y.L.); (Q.H.); (J.H.)
| |
Collapse
|
7
|
Comparison of the toxicokinetics of the convulsants picrotoxinin and tetramethylenedisulfotetramine (TETS) in mice. Arch Toxicol 2020; 94:1995-2007. [PMID: 32239239 PMCID: PMC7303059 DOI: 10.1007/s00204-020-02728-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/26/2020] [Indexed: 12/15/2022]
Abstract
Acute intoxication with picrotoxin or the rodenticide tetramethylenedisulfotetramine (TETS) can cause seizures that rapidly progress to status epilepticus and death. Both compounds inhibit γ-aminobutyric acid type-A (GABAA) receptors with similar potency. However, TETS is approximately 100 × more lethal than picrotoxin. Here, we directly compared the toxicokinetics of the two compounds following intraperitoneal administration in mice. Using LC/MS analysis we found that picrotoxinin, the active component of picrotoxin, hydrolyses quickly into picrotoxic acid, has a short in vivo half-life, and is moderately brain penetrant (brain/plasma ratio 0.3). TETS, in contrast, is not metabolized by liver microsomes and persists in the body following intoxication. Using both GC/MS and a TETS-selective immunoassay we found that mice administered TETS at the LD50 of 0.2 mg/kg in the presence of rescue medications exhibited serum levels that remained constant around 1.6 μM for 48 h before falling slowly over the next 10 days. TETS showed a similar persistence in tissues. Whole-cell patch-clamp demonstrated that brain and serum extracts prepared from mice at 2 and 14 days after TETS administration significantly blocked heterologously expressed α2β3γ2 GABAA-receptors confirming that TETS remains pharmacodynamically active in vivo. This observed persistence may contribute to the long-lasting and recurrent seizures observed following human exposures. We suggest that countermeasures to neutralize TETS or accelerate its elimination should be explored for this highly dangerous threat agent.
Collapse
|
8
|
DAS A, Cash SS, Sejnowski TJ. Heterogeneity of Preictal Dynamics in Human Epileptic Seizures. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2020; 8:52738-52748. [PMID: 32411567 PMCID: PMC7224217 DOI: 10.1109/access.2020.2981017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It is generally understood that there is a preictal phase in the development of a seizure and this precictal period is the basis for seizure prediction attempts. The focus of this study is the preictal global spatiotemporal dynamics and its intra-patient variability. We analyzed preictal broadband brain connectivity from human electrocorticography (ECoG) recordings of 185 seizures (which included 116 clinical seizures) collected from 12 patients. ECoG electrodes record from only a part of the cortex, leaving large regions of the brain unobserved. Brain connectivity was therefore estimated using the sparse-plus-latent-regularized precision matrix (SLRPM) method, which calculates connectivity from partial correlations of the conditional statistics of the observed regions given the unobserved latent regions. Brain connectivity was quantified using eigenvector centrality (EC), from which a degree of heterogeneity was calculated for the preictal periods of all seizures in each patient. Results from the SLRPM method are compared to those from the sparse-regularized precision matrix (SRPM) and correlation methods, which do not account for the unobserved inputs when estimating brain connectivity. The degree of heterogeneity estimated by the SLRPM method is higher than those estimated by the SRPM and correlation methods for the preictal periods in most patients. These results reveal substantial heterogeneity or desynchronization among brain areas in the preictal period of human epileptic seizures. Furthermore, the SLRPM method identifies more onset channels from the preictal active electrodes compared to the SRPM and correlation methods. Finally, the correlation between the degree of heterogeneity and seizure severity of patients for SLRPM and SRPM methods were lower than that obtained from the correlation method. These results support recent findings suggesting that inhibitory neurons can have anti-seizure effects by inducing variability or heterogeneity across seizures. Understanding how this variability is linked to seizure initiation may lead to better predictions and controlling therapies.
Collapse
Affiliation(s)
- Anup DAS
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford University, Stanford, CA 94305 USA
| | - Sydney S Cash
- Massachusetts General Hospital, Boston, MA 02114 USA
| | - Terrence J Sejnowski
- Division of Biological Sciences and Institute of Neural Computation, University of California, San Diego, La Jolla, CA 92093 USA
| |
Collapse
|
9
|
Ehrens D, Assaf F, Cowan NJ, Sarma SV, Schiller Y. Ultra Broad Band Neural Activity Portends Seizure Onset in a Rat Model of Epilepsy. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:2276-2279. [PMID: 30440860 DOI: 10.1109/embc.2018.8512769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Epilepsy affects over 70 million people worldwide and 30% of patients' seizures cannot be controlled with medications, motivating the development of alternative therapies such as electrical stimulation. Current stimulation strategies attempt to stop seizures after they start, but none aim to prevent seizures altogether. Preventing seizures requires knowing when the brain is entering a preictal state (i.e., approaching seizure onset). Here we show that such preictal activity can be detected by an informative neural signal that progressively and monotonically changes as the brain approaches a seizure event. Specifically, we use local field potentials (LFP) from a rat model of epilepsy to develop an innovative measure of signal novelty relative to nonseizure activity, that shows the presence of progressive neural dynamics in an ultra broad band (4 Hz - 5 kHz). The measure is extracted from functional connectivity features computed from the LFPs which are used as an input to a one-class Support Vector Machine (SVM). The SVM outputs a scalar signal which quantifies how novel the current activity looks relative to baseline (non-seizure) activity and shows a progression towards seizure onset minutes ahead of time. The use of ultra broad band multivariate features into the SVM results in a novelty signal that has a significantly higher slope in the progression to seizure onset when compared to using power in conventional frequency bands (4 - 500 Hz) on individual channels as input features to the SVM. Functional connectivity in conjunction with the SVM is a strategy that generates a new measurement of novelty that can be used by closed-loop systems for seizure forecasting and prevention.
Collapse
|
10
|
Sato Y, Ochi A, Mizutani T, Otsubo H. Low entropy of interictal gamma oscillations is a biomarker of the seizure onset zone in focal cortical dysplasia type II. Epilepsy Behav 2019; 96:155-159. [PMID: 31150993 DOI: 10.1016/j.yebeh.2019.01.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/20/2019] [Accepted: 01/22/2019] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Dynamic changes in the regularity of interictal gamma oscillations (GOs, 30-70 Hz) on intracranial electroencephalography (EEG) reflect focal ictogenesis with epileptogenic neuronal synchronization in focal cortical dysplasia (FCD). We investigated whether the regularity of interictal GOs is a biomarker of the seizure onset zone (SOZ) using multiscale entropy analysis. METHODS We quantified the regularity of interictal GOs using intracranial EEG data from 1164 electrodes in 13 patients with FCD who were seizure-free postoperatively. The regularity of interictal GOs was quantified as entropy values. Low entropy represents high regularity. We standardized entropy values using Z values for each SOZ, resection area (RA), and the region outside the RA. The cutoff Z values, sensitivity, and specificity for detecting each area were calculated using area under the receiver operating characteristics curves (AUCs). RESULTS Low Z values represent higher regularity of GOs. The cutoff Z value of ≤-2.09 for the SOZ had a sensitivity of 100% and specificity of 97.1% (AUC = 0.992 ± 0.002). The cutoff Z value of ≤-0.12 for the RA had a sensitivity of 54.2% and specificity of 73.8% (AUC = 0.673 ± 0.019). The cutoff Z value of ≥-0.11 for the region outside the RA had a sensitivity of 73.8% and specificity of 54.2% (AUC = 0.673 ± 0.019). CONCLUSIONS Low entropy of interictal GOs was a reliable biomarker for the SOZ. Maintained high entropy of interictal GOs may be an auxiliary biomarker for nonepileptogenic regions. SIGNIFICANCE Low entropy of interictal GOs may be a biomarker for the SOZ in FCD type II.
Collapse
Affiliation(s)
- Yosuke Sato
- Department of Neurosurgery, Showa University School of Medicine, Tokyo, Japan; Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada.
| | - Ayako Ochi
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tohru Mizutani
- Department of Neurosurgery, Showa University School of Medicine, Tokyo, Japan
| | - Hiroshi Otsubo
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
11
|
Miri ML, Vinck M, Pant R, Cardin JA. Altered hippocampal interneuron activity precedes ictal onset. eLife 2018; 7:40750. [PMID: 30387711 PMCID: PMC6245730 DOI: 10.7554/elife.40750] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/02/2018] [Indexed: 12/29/2022] Open
Abstract
Although failure of GABAergic inhibition is a commonly hypothesized mechanism underlying seizure disorders, the series of events that precipitate a rapid shift from healthy to ictal activity remain unclear. Furthermore, the diversity of inhibitory interneuron populations poses a challenge for understanding local circuit interactions during seizure initiation. Using a combined optogenetic and electrophysiological approach, we examined the activity of identified mouse hippocampal interneuron classes during chemoconvulsant seizure induction in vivo. Surprisingly, synaptic inhibition from parvalbumin- (PV) and somatostatin-expressing (SST) interneurons remained intact throughout the preictal period and early ictal phase. However, these two sources of inhibition exhibited cell-type-specific differences in their preictal firing patterns and sensitivity to input. Our findings suggest that the onset of ictal activity is not associated with loss of firing by these interneurons or a failure of synaptic inhibition but is instead linked with disruptions of the respective roles these interneurons play in the hippocampal circuit.
Collapse
Affiliation(s)
- Mitra L Miri
- Department of Neuroscience, Yale University School of Medicine, New Haven, United States
| | - Martin Vinck
- Department of Neuroscience, Yale University School of Medicine, New Haven, United States
| | - Rima Pant
- Department of Neuroscience, Yale University School of Medicine, New Haven, United States
| | - Jessica A Cardin
- Department of Neuroscience, Yale University School of Medicine, New Haven, United States.,Kavli Institute for Neuroscience, Yale University, New Haven, United States
| |
Collapse
|
12
|
Hashimoto A, Sawada T, Natsume K. The change of picrotoxin-induced epileptiform discharges to the beta oscillation by carbachol in rat hippocampal slices. Biophys Physicobiol 2017; 14:137-146. [PMID: 28989834 PMCID: PMC5627988 DOI: 10.2142/biophysico.14.0_137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/08/2017] [Indexed: 12/01/2022] Open
Abstract
The study aimed to determine whether and how the activation of the acetylcholine receptor affects epileptiform discharges in the CA3 region in a rat hippocampus. Picrotoxin (100 μM), a GABAA receptor antagonist, was applied to a hippocampal slice to induce epileptiform discharges. The effects of the cholinergic agonist, carbachol, on the discharges were examined at the several concentrations (1–30 μM). Carbachol had different impacts on epileptiform discharges at the different concentrations. Relatively low concentrations of carbachol (<10 μM) increased the frequency but decreased the amplitude of the discharges. At 10 μM, carbachol induced the discharges, including bursts of theta frequency oscillations. At 30 μM, carbachol could induce bursts of beta frequency oscillations instead of epileptiform discharges. The amplitudes of the oscillations were smaller than those of the discharges. Carbachol suppressed the evoked population EPSPs (pEPSPs) in a dose-dependent manner. These effects were blocked by the muscarinic cholinergic receptor antagonist atropine sulfate. The high level of muscarinic receptor activation can replace epileptiform discharges with theta or beta oscillation. These results suggest that the dose-dependent alternation of the acetylcholine receptor activation may provide the three different stages the epileptiform discharges, the bursts of theta oscillation, and the bursts of the beta oscillation.
Collapse
Affiliation(s)
- Ayumi Hashimoto
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Fukuoka 808-0196, Japan
| | - Toyohiro Sawada
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Fukuoka 808-0196, Japan
| | - Kiyohisa Natsume
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Fukuoka 808-0196, Japan
| |
Collapse
|
13
|
Sato Y, Wong SM, Iimura Y, Ochi A, Doesburg SM, Otsubo H. Spatiotemporal changes in regularity of gamma oscillations contribute to focal ictogenesis. Sci Rep 2017; 7:9362. [PMID: 28839247 PMCID: PMC5570997 DOI: 10.1038/s41598-017-09931-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 08/02/2017] [Indexed: 01/10/2023] Open
Abstract
In focal ictogenesis, gamma oscillations (30–70 Hz) recorded by electroencephalography (EEG) are related to the epileptiform synchronization of interneurons that links the seizure onset zone (SOZ) to the surrounding epileptogenic zone. We hypothesized that the synchronization of interneurons could be detected as changes in the regularity of gamma oscillation rhythmicity. We used multiscale entropy (MSE) analysis, which can quantify the regularity of EEG rhythmicity, to investigate how the regularity of gamma oscillations changes over the course of a seizure event. We analyzed intracranial EEG data from 13 pediatric patients with focal cortical dysplasia. The MSE analysis revealed the following characteristic changes of MSE score (gamma oscillations): (1) during the interictal periods, the lowest MSE score (the most regular gamma oscillations) was always found in the SOZ; (2) during the preictal periods, the SOZ became more similar to the epileptogenic zone as the MSE score increased in the SOZ (gamma oscillations became less regular in the SOZ); and (3) during the ictal periods, a decreasing MSE score (highly regular gamma oscillations) propagated over the epileptogenic zone. These spatiotemporal changes in regularity of gamma oscillations constitute an important demonstration that focal ictogenesis is caused by dynamic changes in interneuron synchronization.
Collapse
Affiliation(s)
- Yosuke Sato
- Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada. .,Department of Neurosurgery, Showa University School of Medicine, Tokyo, Japan.
| | - Simeon M Wong
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Yasushi Iimura
- Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ayako Ochi
- Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sam M Doesburg
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Hiroshi Otsubo
- Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
14
|
High frequency spectral changes induced by single-pulse electric stimulation: Comparison between physiologic and pathologic networks. Clin Neurophysiol 2016; 128:1053-1060. [PMID: 28131532 DOI: 10.1016/j.clinph.2016.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/05/2016] [Accepted: 12/15/2016] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To investigate functional coupling between brain networks using spectral changes induced by single-pulse electric stimulation (SPES). METHOD We analyzed 20 patients with focal epilepsy, implanted with depth electrodes. SPES was applied to each pair of adjacent contacts, and responses were recorded from all other contacts. The mean response amplitude value was quantified in three time-periods after stimulation (10-60, 60-255, 255-500ms) for three frequency-ranges (Gamma, Ripples, Fast-Ripples), and compared to baseline. A total of 30,755 responses were analyzed, taking into consideration three dichotomous pairs: stimulating in primary sensory areas (S1-V1) vs. outside them, to test the interaction in physiologic networks; stimulating in seizure onset zone (SOZ) vs. non-SOZ, to test pathologic interactions; recording in default mode network (DMN) vs. non-DMN. RESULTS Overall, we observed an early excitation (10-60ms) and a delayed inhibition (60-500ms). More specifically, in the delayed period, stimulation in S1-V1 produced a higher gamma-inhibition in the DMN, while stimulation in the SOZ induced a higher inhibition in the epilepsy-related higher frequencies (Ripples and Fast-Ripples). CONCLUSION Physiologic and pathologic interactions can be assessed using spectral changes induced by SPES. SIGNIFICANCE This is a promising method for connectivity studies in patients with drug-resistant focal epilepsy.
Collapse
|
15
|
Exploring human epileptic activity at the single-neuron level. Epilepsy Behav 2016; 58:11-7. [PMID: 26994366 DOI: 10.1016/j.yebeh.2016.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 11/21/2022]
Abstract
Today, localization of the seizure focus heavily relies on EEG monitoring (scalp or intracranial). However, current technology enables much finer resolutions. The activity of hundreds of single neurons in the human brain can now be simultaneously explored before, during, and after a seizure or in association with an interictal discharge. This technology opens up new horizons to understanding epilepsy at a completely new level. This review therefore begins with a brief description of the basis of the technology, the microelectrodes, and the setup for their implantation in patients with epilepsy. Using these electrodes, recent studies provide novel insights into both the time domain and firing patterns of epileptic activity of single neurons. In the time domain, seizure-related activity may occur even minutes before seizure onset (in its current, EEG-based definition). Seizure-related neuronal interactions exhibit complex heterogeneous dynamics. In the seizure-onset zone, changes in firing patterns correlate with cell loss; in the penumbra, neurons maintain their spike stereotypy during a seizure. Hence, investigation of the extracellular electrical activity is expected to provide a better understanding of the mechanisms underlying the disease; it may, in the future, serve for a more accurate localization of the seizure focus; and it may also be employed to predict the occurrence of seizures prior to their behavioral manifestation in order to administer automatic therapeutic interventions.
Collapse
|
16
|
Li JJ, Li YH, Gong HQ, Liang PJ, Zhang PM, Lu QC. The Spatiotemporal Dynamics of Phase Synchronization during Epileptogenesis in Amygdala-Kindling Mice. PLoS One 2016; 11:e0153897. [PMID: 27100891 PMCID: PMC4839716 DOI: 10.1371/journal.pone.0153897] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 04/05/2016] [Indexed: 11/23/2022] Open
Abstract
The synchronization among the activities of neural populations in functional regions is one of the most important electrophysiological phenomena in epileptic brains. The spatiotemporal dynamics of phase synchronization was investigated to reveal the reciprocal interaction between different functional regions during epileptogenesis. Local field potentials (LFPs) were recorded simultaneously from the basolateral amygdala (BLA), the cornu ammonis 1 of hippocampus (CA1) and the mediodorsal nucleus of thalamus (MDT) in the mouse amygdala-kindling models during the development of epileptic seizures. The synchronization of LFPs was quantified between BLA, CA1 and MDT using phase-locking value (PLV). During amygdala kindling, behavioral changes (from stage 0 to stage 5) of mice were accompanied by after-discharges (ADs) of similar waveforms appearing almost simultaneously in CA1, MDT, as well as BLA. AD durations were positively related to the intensity of seizures. During seizures at stages 1~2, PLVs remained relatively low and increased dramatically shortly after the termination of the seizures; by contrast, for stages 3~5, PLVs remained a relatively low level during the initial period but increased dramatically before the seizure termination. And in the theta band, the degree of PLV enhancement was positively associated with seizure intensity. The results suggested that during epileptogenesis, the functional regions were kept desynchronized rather than hyper-synchronized during either the initial or the entire period of the seizures; so different dynamic patterns of phase synchronization may be involved in different periods of the epileptogenesis, and this might also reflect that during seizures at different stages, the mechanisms underlying the dynamics of phase synchronization were different.
Collapse
Affiliation(s)
- Jia-Jia Li
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| | - Yong-Hua Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Hai-Qing Gong
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Pei-Ji Liang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Pu-Ming Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- * E-mail: (Q-CL); (P-MZ)
| | - Qin-Chi Lu
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
- * E-mail: (Q-CL); (P-MZ)
| |
Collapse
|
17
|
de Curtis M, Avoli M. GABAergic networks jump-start focal seizures. Epilepsia 2016; 57:679-87. [PMID: 27061793 DOI: 10.1111/epi.13370] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2016] [Indexed: 01/20/2023]
Abstract
Abnormally enhanced glutamatergic excitation is commonly believed to mark the onset of a focal seizure. This notion, however, is not supported by firm evidence, and it will be challenged here. A general reduction of unit firing has been indeed observed in association with low-voltage fast activity at the onset of seizures recorded during presurgical intracranial monitoring in patients with focal, drug-resistant epilepsies. Moreover, focal seizures in animal models start with increased γ-aminobutyric acid (GABA)ergic interneuronal activity that silences principal cells. In vitro studies have shown that synchronous activation of GABAA receptors occurs at seizure onset and causes sizeable elevations in extracellular potassium, thus facilitating neuronal recruitment and seizure progression. A paradoxical involvement of GABAergic networks is required for the initiation of focal seizures characterized by low-voltage fast activity, which represents the most common seizure-onset pattern in focal epilepsies.
Collapse
Affiliation(s)
| | - Massimo Avoli
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada.,Faculty of Medicine and Dentistry, La Sapienza University, Rome, Italy
| |
Collapse
|
18
|
Bui A, Kim HK, Maroso M, Soltesz I. Microcircuits in Epilepsy: Heterogeneity and Hub Cells in Network Synchronization. Cold Spring Harb Perspect Med 2015; 5:5/11/a022855. [PMID: 26525454 DOI: 10.1101/cshperspect.a022855] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Epilepsy is a complex disorder involving neurological alterations that lead to the pathological development of spontaneous, recurrent seizures. For decades, seizures were thought to be largely repetitive, and had been examined at the macrocircuit level using electrophysiological recordings. However, research mapping the dynamics of large neuronal populations has revealed that seizures are not simply recurrent bursts of hypersynchrony. Instead, it is becoming clear that seizures involve a complex interplay of different neurons and circuits. Herein, we will review studies examining microcircuit changes that may underlie network hyperexcitability, discussing observations from network theory, computational modeling, and optogenetics. We will delve into the idea of hub cells as pathological centers for seizure activity, and will explore optogenetics as a novel avenue to target and treat pathological circuits. Finally, we will conclude with a discussion on future directions in the field.
Collapse
Affiliation(s)
- Anh Bui
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697
| | - Hannah K Kim
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697
| | - Mattia Maroso
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697
| | - Ivan Soltesz
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697
| |
Collapse
|
19
|
Shin H, Lee HJ, Chae U, Kim H, Kim J, Choi N, Woo J, Cho Y, Lee CJ, Yoon ES, Cho IJ. Neural probes with multi-drug delivery capability. LAB ON A CHIP 2015; 15:3730-7. [PMID: 26235309 DOI: 10.1039/c5lc00582e] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Multi-functional neural probes are promising platforms to conduct efficient and effective in-depth studies of brain by recording neural signals as well as modulating the signals with various stimuli. Here we present a neural probe with an embedded microfluidic channel (chemtrode) with multi-drug delivery capability suitable for small animal experiments. We integrated a staggered herringbone mixer (SHM) in a 3-inlet microfluidic chip directly into our chemtrode. This chip, which also serves as a compact interface for the chemtrode, allows for efficient delivery of small volumes of multiple or concentration-modulated drugs via chaotic mixing. We demonstrated the successful infusion of combinatorial inputs of three chemicals with a low flow rate (170 nl min(-1)). By sequentially delivering red, green, and blue inks from each inlet and conducting visual inspections at the tip of the chemtrode, we measured a short residence time of 14 s which corresponds to a small swept volume of 66 nl. Finally, we demonstrated the potential of our proposed chemtrode as an enabling tool through extensive in vivo mice experiments. Through simultaneous infusions of a chemical (pilocarpine or tetrodotoxin (TTX) at inlet 1), a buffer solution (saline at inlet 2), and 4',6-diamidino-2-phenylindole (DAPI at inlet 3) locally into a mouse brain, we not only modulated the neural activities by varying the concentration of the chemical but also locally stained the cells at our target region (CA1 in hippocampus). More specifically, infusion of pilocarpine with a higher concentration resulted in an increase in neural activities while infusion of TTX with a higher concentration resulted in a distinctive reduction. For each chemical, we acquired multiple sets of data using only one mouse through a single implantation of the chemtrode. Our proposed chemtrode offers 1) multiplexed delivery of three drugs through a compact packaging with a small swept volume and 2) simultaneous recording to monitor near real-time effects on neural signals, which allows for more versatile in vivo experiments with a minimum number of animals to be sacrificed.
Collapse
Affiliation(s)
- Hyogeun Shin
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Gulyás AI, Freund TT. Generation of physiological and pathological high frequency oscillations: the role of perisomatic inhibition in sharp-wave ripple and interictal spike generation. Curr Opin Neurobiol 2015; 31:26-32. [DOI: 10.1016/j.conb.2014.07.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 07/16/2014] [Accepted: 07/19/2014] [Indexed: 02/08/2023]
|
21
|
Pittau F, Mégevand P, Sheybani L, Abela E, Grouiller F, Spinelli L, Michel CM, Seeck M, Vulliemoz S. Mapping epileptic activity: sources or networks for the clinicians? Front Neurol 2014; 5:218. [PMID: 25414692 PMCID: PMC4220689 DOI: 10.3389/fneur.2014.00218] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/08/2014] [Indexed: 01/03/2023] Open
Abstract
Epileptic seizures of focal origin are classically considered to arise from a focal epileptogenic zone and then spread to other brain regions. This is a key concept for semiological electro-clinical correlations, localization of relevant structural lesions, and selection of patients for epilepsy surgery. Recent development in neuro-imaging and electro-physiology and combinations, thereof, have been validated as contributory tools for focus localization. In parallel, these techniques have revealed that widespread networks of brain regions, rather than a single epileptogenic region, are implicated in focal epileptic activity. Sophisticated multimodal imaging and analysis strategies of brain connectivity patterns have been developed to characterize the spatio-temporal relationships within these networks by combining the strength of both techniques to optimize spatial and temporal resolution with whole-brain coverage and directional connectivity. In this paper, we review the potential clinical contribution of these functional mapping techniques as well as invasive electrophysiology in human beings and animal models for characterizing network connectivity.
Collapse
Affiliation(s)
- Francesca Pittau
- EEG and Epilepsy Unit, Neurology Department, University Hospitals and Faculty of Medicine of Geneva , Geneva , Switzerland
| | - Pierre Mégevand
- Laboratory for Multimodal Human Brain Mapping, Hofstra North Shore LIJ School of Medicine , Manhasset, NY , USA
| | - Laurent Sheybani
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, University of Geneva , Geneva , Switzerland
| | - Eugenio Abela
- Support Center of Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, University Hospital Inselspital , Bern , Switzerland
| | - Frédéric Grouiller
- Radiology Department, University Hospitals and Faculty of Medicine of Geneva , Geneva , Switzerland
| | - Laurent Spinelli
- EEG and Epilepsy Unit, Neurology Department, University Hospitals and Faculty of Medicine of Geneva , Geneva , Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, University of Geneva , Geneva , Switzerland
| | - Margitta Seeck
- EEG and Epilepsy Unit, Neurology Department, University Hospitals and Faculty of Medicine of Geneva , Geneva , Switzerland
| | - Serge Vulliemoz
- EEG and Epilepsy Unit, Neurology Department, University Hospitals and Faculty of Medicine of Geneva , Geneva , Switzerland
| |
Collapse
|
22
|
Abstract
Seizures are classically characterized as the expression of hypersynchronous neural activity, yet the true degree of synchrony in neuronal spiking (action potentials) during human seizures remains a fundamental question. We quantified the temporal precision of spike synchrony in ensembles of neocortical neurons during seizures in people with pharmacologically intractable epilepsy. Two seizure types were analyzed: those characterized by sustained gamma (∼40-60 Hz) local field potential (LFP) oscillations or by spike-wave complexes (SWCs; ∼3 Hz). Fine (<10 ms) temporal synchrony was rarely present during gamma-band seizures, where neuronal spiking remained highly irregular and asynchronous. In SWC seizures, phase locking of neuronal spiking to the SWC spike phase induced synchrony at a coarse 50-100 ms level. In addition, transient fine synchrony occurred primarily during the initial ∼20 ms period of the SWC spike phase and varied across subjects and seizures. Sporadic coherence events between neuronal population spike counts and LFPs were observed during SWC seizures in high (∼80 Hz) gamma-band and during high-frequency oscillations (∼130 Hz). Maximum entropy models of the joint neuronal spiking probability, constrained only on single neurons' nonstationary coarse spiking rates and local network activation, explained most of the fine synchrony in both seizure types. Our findings indicate that fine neuronal ensemble synchrony occurs mostly during SWC, not gamma-band, seizures, and primarily during the initial phase of SWC spikes. Furthermore, these fine synchrony events result mostly from transient increases in overall neuronal network spiking rates, rather than changes in precise spiking correlations between specific pairs of neurons.
Collapse
|
23
|
Gheyara AL, Ponnusamy R, Djukic B, Craft RJ, Ho K, Guo W, Finucane MM, Sanchez PE, Mucke L. Tau reduction prevents disease in a mouse model of Dravet syndrome. Ann Neurol 2014; 76:443-56. [PMID: 25042160 PMCID: PMC4338764 DOI: 10.1002/ana.24230] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 12/12/2022]
Abstract
Objective Reducing levels of the microtubule-associated protein tau has shown promise as a potential treatment strategy for diseases with secondary epileptic features such as Alzheimer disease. We wanted to determine whether tau reduction may also be of benefit in intractable genetic epilepsies. Methods We studied a mouse model of Dravet syndrome, a severe childhood epilepsy caused by mutations in the human SCN1A gene encoding the voltage-gated sodium channel subunit Nav1.1. We genetically deleted 1 or 2 Tau alleles in mice carrying an Nav1.1 truncation mutation (R1407X) that causes Dravet syndrome in humans, and examined their survival, epileptic activity, related hippocampal alterations, and behavioral abnormalities using observation, electroencephalographic recordings, acute slice electrophysiology, immunohistochemistry, and behavioral assays. Results Tau ablation prevented the high mortality of Dravet mice and reduced the frequency of spontaneous and febrile seizures. It reduced interictal epileptic spikes in vivo and drug-induced epileptic activity in brain slices ex vivo. Tau ablation also prevented biochemical changes in the hippocampus indicative of epileptic activity and ameliorated abnormalities in learning and memory, nest building, and open field behaviors in Dravet mice. Deletion of only 1 Tau allele was sufficient to suppress epileptic activity and improve survival and nesting performance. Interpretation Tau reduction may be of therapeutic benefit in Dravet syndrome and other intractable genetic epilepsies. Ann Neurol 2014;76:443–456
Collapse
Affiliation(s)
- Ania L Gheyara
- Gladstone Institute of Neurological Disease, University of California, San Francisco, San Francisco, CA; Departments of Pathology, University of California, San Francisco, San Francisco, CA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Information dissipation as an early-warning signal for the Lehman Brothers collapse in financial time series. Sci Rep 2014; 3:1898. [PMID: 23719567 PMCID: PMC3667490 DOI: 10.1038/srep01898] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 05/09/2013] [Indexed: 11/08/2022] Open
Abstract
In financial markets, participants locally optimize their profit which can result in a globally unstable state leading to a catastrophic change. The largest crash in the past decades is the bankruptcy of Lehman Brothers which was followed by a trust-based crisis between banks due to high-risk trading in complex products. We introduce information dissipation length (IDL) as a leading indicator of global instability of dynamical systems based on the transmission of Shannon information, and apply it to the time series of USD and EUR interest rate swaps (IRS). We find in both markets that the IDL steadily increases toward the bankruptcy, then peaks at the time of bankruptcy, and decreases afterwards. Previously introduced indicators such as ‘critical slowing down' do not provide a clear leading indicator. Our results suggest that the IDL may be used as an early-warning signal for critical transitions even in the absence of a predictive model.
Collapse
|
25
|
Mishra AM, Bai X, Sanganahalli BG, Waxman SG, Shatillo O, Grohn O, Hyder F, Pitkänen A, Blumenfeld H. Decreased resting functional connectivity after traumatic brain injury in the rat. PLoS One 2014; 9:e95280. [PMID: 24748279 PMCID: PMC3991600 DOI: 10.1371/journal.pone.0095280] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 03/25/2014] [Indexed: 01/19/2023] Open
Abstract
Traumatic brain injury (TBI) contributes to about 10% of acquired epilepsy. Even though the mechanisms of post-traumatic epileptogenesis are poorly known, a disruption of neuronal networks predisposing to altered neuronal synchrony remains a viable candidate mechanism. We tested a hypothesis that resting state BOLD-fMRI functional connectivity can reveal network abnormalities in brain regions that are connected to the lesioned cortex, and that these changes associate with functional impairment, particularly epileptogenesis. TBI was induced using lateral fluid-percussion injury in seven adult male Sprague-Dawley rats followed by functional imaging at 9.4T 4 months later. As controls we used six sham-operated animals that underwent all surgical operations but were not injured. Electroencephalogram (EEG)-functional magnetic resonance imaging (fMRI) was performed to measure resting functional connectivity. A week after functional imaging, rats were implanted with bipolar skull electrodes. After recovery, rats underwent pentyleneterazol (PTZ) seizure-susceptibility test under EEG. For image analysis, four pairs of regions of interests were analyzed in each hemisphere: ipsilateral and contralateral frontal and parietal cortex, hippocampus, and thalamus. High-pass and low-pass filters were applied to functional imaging data. Group statistics comparing injured and sham-operated rats and correlations over time between each region were calculated. In the end, rats were perfused for histology. None of the rats had epileptiform discharges during functional imaging. PTZ-test, however revealed increased seizure susceptibility in injured rats as compared to controls. Group statistics revealed decreased connectivity between the ipsilateral and contralateral parietal cortex and between the parietal cortex and hippocampus on the side of injury as compared to sham-operated animals. Injured animals also had abnormal negative connectivity between the ipsilateral and contralateral parietal cortex and other regions. Our data provide the first evidence on abnormal functional connectivity after experimental TBI assessed with resting state BOLD-fMRI.
Collapse
Affiliation(s)
- Asht Mangal Mishra
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Core Center for Quantitative Neuroscience with Magnetic Resonance, Yale University, New Haven, Connecticut, United States of America
| | - Xiaoxiao Bai
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Basavaraju G. Sanganahalli
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Core Center for Quantitative Neuroscience with Magnetic Resonance, Yale University, New Haven, Connecticut, United States of America
| | - Stephen G. Waxman
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Center for Neuroscience and Regeneration Research, West Haven, Connecticut, United States of America
| | - Olena Shatillo
- Department of Neurobiology, A. I. Virtanen Institute of Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Olli Grohn
- Biomedical NMR research group, Biomedical Imaging Unit, University of Eastern Finland, Kuopio, Finland
| | - Fahmeed Hyder
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Biomedical Engineering, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Core Center for Quantitative Neuroscience with Magnetic Resonance, Yale University, New Haven, Connecticut, United States of America
| | - Asla Pitkänen
- Department of Neurobiology, A. I. Virtanen Institute of Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Hal Blumenfeld
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Core Center for Quantitative Neuroscience with Magnetic Resonance, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
26
|
Involvement of thalamus in initiation of epileptic seizures induced by pilocarpine in mice. Neural Plast 2014; 2014:675128. [PMID: 24778885 PMCID: PMC3981117 DOI: 10.1155/2014/675128] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 02/05/2014] [Indexed: 01/31/2023] Open
Abstract
Studies have suggested that thalamus is involved in temporal lobe epilepsy, but the role of thalamus is still unclear. We obtained local filed potentials (LFPs) and single-unit activities from CA1 of hippocampus and parafascicular nucleus of thalamus during the development of epileptic seizures induced by pilocarpine in mice. Two measures, redundancy and directionality index, were used to analyze the electrophysiological characters of neuronal activities and the information flow between thalamus and hippocampus. We found that LFPs became more regular during the seizure in both hippocampus and thalamus, and in some cases LFPs showed a transient disorder at seizure onset. The variation tendency of the peak values of cross-correlation function between neurons matched the variation tendency of the redundancy of LFPs. The information tended to flow from thalamus to hippocampus during seizure initiation period no matter what the information flow direction was before the seizure. In some cases the information flow was symmetrically bidirectional, but none was found in which the information flowed from hippocampus to thalamus during the seizure initiation period. In addition, inactivation of thalamus by tetrodotoxin (TTX) resulted in a suppression of seizures. These results suggest that thalamus may play an important role in the initiation of epileptic seizures.
Collapse
|
27
|
Ingram J, Zhang C, Cressman JR, Hazra A, Wei Y, Koo YE, Žiburkus J, Kopelman R, Xu J, Schiff SJ. Oxygen and seizure dynamics: I. Experiments. J Neurophysiol 2014; 112:205-12. [PMID: 24598521 DOI: 10.1152/jn.00540.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We utilized a novel ratiometric nanoquantum dot fluorescence resonance energy transfer (NQD-FRET) optical sensor to quantitatively measure oxygen dynamics from single cell microdomains during hypoxic episodes as well as during 4-aminopyridine (4-AP)-induced spontaneous seizure-like events in rat hippocampal slices. Coupling oxygen sensing with electrical recordings, we found the greatest reduction in the O2 concentration ([O2]) in the densely packed cell body stratum (st.) pyramidale layer of the CA1 and differential layer-specific O2 dynamics between the st. pyramidale and st. oriens layers. These hypoxic decrements occurred up to several seconds before seizure onset could be electrically measured extracellularly. Without 4-AP, we quantified a narrow range of [O2], similar to the endogenous hypoxia found before epileptiform activity, which permits a quiescent network to enter into a seizure-like state. We demonstrated layer-specific patterns of O2 utilization accompanying layer-specific neuronal interplay in seizure. None of the oxygen overshoot artifacts seen with polarographic measurement techniques were observed. We therefore conclude that endogenously generated hypoxia may be more than just a consequence of increased cellular excitability but an influential and critical factor for orchestrating network dynamics associated with epileptiform activity.
Collapse
Affiliation(s)
- Justin Ingram
- Center for Neural Engineering, The Pennsylvania State University, University Park, Pennsylvania; Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania
| | - Chunfeng Zhang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania; Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, China
| | - John R Cressman
- Department of Physics, Astronomy, and Computational Sciences, George Mason University, Fairfax, Virginia
| | - Anupam Hazra
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Yina Wei
- Center for Neural Engineering, The Pennsylvania State University, University Park, Pennsylvania; Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania
| | - Yong-Eun Koo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan; and
| | - Jokūbas Žiburkus
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Raoul Kopelman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan; and
| | - Jian Xu
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania
| | - Steven J Schiff
- Center for Neural Engineering, The Pennsylvania State University, University Park, Pennsylvania; Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania; Departments of Neurosurgery and Physics, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
28
|
Ibrahim GM, Anderson R, Akiyama T, Ochi A, Otsubo H, Singh-Cadieux G, Donner E, Rutka JT, Snead OC, Doesburg SM. Neocortical pathological high-frequency oscillations are associated with frequency-dependent alterations in functional network topology. J Neurophysiol 2013; 110:2475-83. [DOI: 10.1152/jn.00034.2013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Synchronization of neural oscillations is thought to integrate distributed neural populations into functional cell assemblies. Epilepsy is widely regarded as a disorder of neural synchrony. Knowledge is scant, however, regarding whether ictal changes in synchrony involving epileptogenic cortex are expressed similarly across various frequency ranges. Cortical regions involved in epileptic networks also exhibit pathological high-frequency oscillations (pHFOs, >80 Hz), which are increasingly utilized as biomarkers of epileptogenic tissue. It is uncertain how pHFO amplitudes are related to epileptic network connectivity. By calculating phase-locking values among intracranial electrodes implanted in children with intractable epilepsy, we constructed ictal connectivity networks and performed graph theoretical analysis to characterize their network properties at distinct frequency bands. Ictal data from 17 children were analyzed with a hierarchical mixed-effects model adjusting for patient-level covariates. Epileptogenic cortex was defined in two ways: 1) a hypothesis-driven method using the visually defined seizure-onset zone and 2) a data-agnostic method using the high-frequency amplitude of each electrode. Epileptogenic cortex exhibited a logarithmic decrease in interregional functional connectivity at high frequencies (>30 Hz) during seizure initiation and propagation but not at termination. At slower frequencies, conversely, epileptogenic cortex expressed a relative increase in functional connectivity. Our findings suggest that pHFOs reflect epileptogenic network interactions, yielding theoretical support for their utility in the presurgical evaluation of intractable epilepsy. The view that abnormal network synchronization plays a critical role in ictogenesis and seizure dynamics is supported by the observation that functional isolation of epileptogenic cortex at high frequencies is absent at seizure termination.
Collapse
Affiliation(s)
- George M. Ibrahim
- Division of Neurosurgery, Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ryan Anderson
- Neuroscience and Mental Health Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tomoyuki Akiyama
- Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada; and
| | - Ayako Ochi
- Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada; and
| | - Hiroshi Otsubo
- Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada; and
| | - Gabrielle Singh-Cadieux
- Neuroscience and Mental Health Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Elizabeth Donner
- Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada; and
| | - James T. Rutka
- Division of Neurosurgery, Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - O. Carter Snead
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Neuroscience and Mental Health Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada; and
| | - Sam M. Doesburg
- Neuroscience and Mental Health Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Termination of Chemoconvulsant-Induced Seizures by Synchronous and Asynchronous Electrical Stimulation of the Hippocampus In-Vivo. Brain Stimul 2013; 6:727-36. [DOI: 10.1016/j.brs.2013.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 03/17/2013] [Accepted: 03/18/2013] [Indexed: 11/23/2022] Open
|
30
|
Ali I, O'Brien P, Kumar G, Zheng T, Jones NC, Pinault D, French C, Morris MJ, Salzberg MR, O'Brien TJ. Enduring Effects of Early Life Stress on Firing Patterns of Hippocampal and Thalamocortical Neurons in Rats: Implications for Limbic Epilepsy. PLoS One 2013; 8:e66962. [PMID: 23825595 PMCID: PMC3688984 DOI: 10.1371/journal.pone.0066962] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 05/13/2013] [Indexed: 12/03/2022] Open
Abstract
Early life stress results in an enduring vulnerability to kindling-induced epileptogenesis in rats, but the underlying mechanisms are not well understood. Recent studies indicate the involvement of thalamocortical neuronal circuits in the progression of kindling epileptogenesis. Therefore, we sought to determine in vivo the effects of early life stress and amygdala kindling on the firing pattern of hippocampus as well as thalamic and cortical neurons. Eight week old male Wistar rats, previously exposed to maternal separation (MS) early life stress or early handling (EH), underwent amygdala kindling (or sham kindling). Once fully kindled, in vivo juxtacellular recordings in hippocampal, thalamic and cortical regions were performed under neuroleptic analgesia. In the thalamic reticular nucleus cells both kindling and MS independently lowered firing frequency and enhanced burst firing. Further, burst firing in the thalamic reticular nucleus was significantly increased in kindled MS rats compared to kindled EH rats (p<0.05). In addition, MS enhanced burst firing of hippocampal pyramidal neurons. Following a stimulation-induced seizure, somatosensory cortical neurons exhibited a more pronounced increase in burst firing in MS rats than in EH rats. These data demonstrate changes in firing patterns in thalamocortical and hippocampal regions resulting from both MS and amygdala kindling, which may reflect cellular changes underlying the enhanced vulnerability to kindling in rats that have been exposed to early life stress.
Collapse
Affiliation(s)
- Idrish Ali
- Department of Medicine, the Royal Melbourne Hospital, University of Melbourne, Victoria, Australia
| | - Patrick O'Brien
- Department of Medicine, the Royal Melbourne Hospital, University of Melbourne, Victoria, Australia
| | - Gaurav Kumar
- Department of Medicine, the Royal Melbourne Hospital, University of Melbourne, Victoria, Australia
| | - Thomas Zheng
- Department of Medicine, the Royal Melbourne Hospital, University of Melbourne, Victoria, Australia
| | - Nigel C. Jones
- Department of Medicine, the Royal Melbourne Hospital, University of Melbourne, Victoria, Australia
| | - Didier Pinault
- INSERM U1114, Physiopathologie et psychopathologie de la schizophrénie, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Chris French
- Department of Medicine, the Royal Melbourne Hospital, University of Melbourne, Victoria, Australia
| | - Margaret J. Morris
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, New South Wales, Australia
| | - Michael R. Salzberg
- Department of Medicine, the Royal Melbourne Hospital, University of Melbourne, Victoria, Australia
- Department of Psychiatry, St. Vincent's Hospital, University of Melbourne, Victoria, Australia
| | - Terence J. O'Brien
- Department of Medicine, the Royal Melbourne Hospital, University of Melbourne, Victoria, Australia
- Department of Neurology, the Royal Melbourne Hospital, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
31
|
Žiburkus J, Cressman JR, Schiff SJ. Seizures as imbalanced up states: excitatory and inhibitory conductances during seizure-like events. J Neurophysiol 2012; 109:1296-306. [PMID: 23221405 DOI: 10.1152/jn.00232.2012] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Precisely timed and dynamically balanced excitatory (E) and inhibitory (I) conductances underlie the basis of neural network activity. Normal E/I balance is often shifted in epilepsy, resulting in neuronal network hyperexcitability and recurrent seizures. However, dynamics of the actual excitatory and inhibitory synaptic conductances (ge and gi, respectively) during seizures remain unknown. To study the dynamics of E and I network balance, we calculated ge and gi during the initiation, body, and termination of seizure-like events (SLEs) in the rat hippocampus in vitro. Repetitive emergent SLEs in 4-aminopyridine (100 μM) and reduced extracellular magnesium (0.6 mM) were recorded in the identified CA1 pyramidal cells (PC) and oriens-lacunosum moleculare (O-LM) interneurons. Calculated ge/gi ratio dynamics showed that the initiation stage of the SLEs was dominated by inhibition in the PCs and was more balanced in the O-LM cells. During the body of the SLEs, the balance shifted toward excitation, with ge and gi peaking in both cell types at nearly the same time. In the termination phase, PCs were again dominated by inhibition, whereas O-LM cells experienced persistent excitatory synaptic barrage. In this way, increased excitability of interneurons may play roles in both seizure initiation (žiburkus J, Cressman JR, Barreto E, Schiff SJ. J Neurophysiol 95: 3948-3954, 2006) and in their termination. Overall, SLE stages can be characterized in PC and O-LM cells by dynamically distinct changes in the balance of ge and gi, where a temporal sequence of imbalance shifts with the changing firing patterns of the cellular subtypes comprising the hyperexcitable microcircuits.
Collapse
Affiliation(s)
- Jokubas Žiburkus
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
| | | | | |
Collapse
|
32
|
Varotto G, Tassi L, Franceschetti S, Spreafico R, Panzica F. Epileptogenic networks of type II focal cortical dysplasia: A stereo-EEG study. Neuroimage 2012; 61:591-8. [PMID: 22510255 DOI: 10.1016/j.neuroimage.2012.03.090] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 03/27/2012] [Accepted: 03/30/2012] [Indexed: 11/28/2022] Open
Affiliation(s)
- Giulia Varotto
- Neurophysiology and Diagnostic Epileptology Unit, Epilepsy Centre, C. Besta Neurological Institute IRCCS Foundation, Milan, Italy
| | | | | | | | | |
Collapse
|
33
|
Hippocampal desynchronization of functional connectivity prior to the onset of status epilepticus in pilocarpine-treated rats. PLoS One 2012; 7:e39763. [PMID: 22768120 PMCID: PMC3387264 DOI: 10.1371/journal.pone.0039763] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 05/27/2012] [Indexed: 11/29/2022] Open
Abstract
Status epilepticus (SE), a pro-epileptogenic brain insult in rodent models of temporal lobe epilepsy, is successfully induced by pilocarpine in some, but not all, rats. This study aimed to identify characteristic alterations within the hippocampal neural network prior to the onset of SE. Sixteen microwire electrodes were implanted into the left hippocampus of male Sprague-Dawley rats. After a 7-day recovery period, animal behavior, hippocampal neuronal ensemble activities, and local field potentials (LFP) were recorded before and after an intra-peritoneal injection of pilocarpine (350 mg/kg). The single-neuron firing, population neuronal correlation, and coincident firing between neurons were compared between SE (n = 9) and nonSE rats (n = 12). A significant decrease in the strength of functional connectivity prior to the onset of SE, as measured by changes in coincident spike timing between pairs of hippocampal neurons, was exclusively found in SE rats. However, single-neuron firing and LFP profiles did not show a significant difference between SE and nonSE rats. These results suggest that desynchronization in the functional circuitry of the hippocampus, likely associated with a change in synaptic strength, may serve as an electrophysiological marker prior to SE in pilocarpine-treated rats.
Collapse
|
34
|
Karunakaran S, Grasse DW, Moxon KA. Changes in network dynamics during status epilepticus. Exp Neurol 2012; 234:454-65. [PMID: 22309830 DOI: 10.1016/j.expneurol.2012.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 12/29/2011] [Accepted: 01/19/2012] [Indexed: 10/14/2022]
Affiliation(s)
- S Karunakaran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
35
|
Staba RJ, Ekstrom AD, Suthana NA, Burggren A, Fried I, Engel J, Bookheimer SY. Gray matter loss correlates with mesial temporal lobe neuronal hyperexcitability inside the human seizure-onset zone. Epilepsia 2012; 53:25-34. [PMID: 22126325 PMCID: PMC3253228 DOI: 10.1111/j.1528-1167.2011.03333.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Patient studies have not provided consistent evidence for interictal neuronal hyperexcitability inside the seizure-onset zone (SOZ). We hypothesized that gray matter (GM) loss could have important effects on neuronal firing, and quantifying these effects would reveal significant differences in neuronal firing inside versus outside the SOZ. METHODS Magnetic resonance imaging (MRI) and computational unfolding of mesial temporal lobe (MTL) subregions was used to construct anatomic maps to compute GM loss in presurgical patients with medically intractable focal seizures in relation to controls. In patients, these same maps were used to locate the position of microelectrodes that recorded interictal neuronal activity. Single neuron firing and burst rates were evaluated in relation to GM loss and MTL subregions inside and outside the SOZ. KEY FINDINGS MTL GM thickness was reduced inside and outside the SOZ in patients with respect to controls, yet GM loss was associated more strongly with firing and burst rates in several MTL subregions inside the SOZ. Adjusting single neuron firing and burst rates for the effects of GM loss revealed significantly higher firing rates in the subregion consisting of dentate gyrus and CA2 and CA3 (CA23DG), as well as CA1 and entorhinal cortex (EC) inside versus outside the SOZ where normalized MRI GM loss was ≥1.40 mm. Firing rates were higher in subicular cortex inside the SOZ at GM loss ≥1.97 mm, whereas burst rates were higher in CA23DG, CA1, and EC inside than outside the SOZ at similar levels of GM loss. SIGNIFICANCE The correlation between GM loss and increased firing and burst rates suggests GM structural alterations in MTL subregions are associated with interictal neuronal hyperexcitability inside the SOZ. Significant differences in firing rates and bursting in areas with GM loss inside compared to outside the SOZ indicate that synaptic reorganization following cell loss could be associated with varying degrees of epileptogenicity in patients with intractable focal seizures.
Collapse
Affiliation(s)
- Richard J Staba
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Cymerblit-Sabba A, Schiller Y. Development of hypersynchrony in the cortical network during chemoconvulsant-induced epileptic seizures in vivo. J Neurophysiol 2011; 107:1718-30. [PMID: 22190619 DOI: 10.1152/jn.00327.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The prevailing view of epileptic seizures is that they are caused by increased hypersynchronous activity in the cortical network. However, this view is based mostly on electroencephalography (EEG) recordings that do not directly monitor neuronal synchronization of action potential firing. In this study, we used multielectrode single-unit recordings from the hippocampus to investigate firing of individual CA1 neurons and directly monitor synchronization of action potential firing between neurons during the different ictal phases of chemoconvulsant-induced epileptic seizures in vivo. During the early phase of seizures manifesting as low-amplitude rhythmic β-electrocorticography (ECoG) activity, the firing frequency of most neurons markedly increased. To our surprise, the average overall neuronal synchronization as measured by the cross-correlation function was reduced compared with control conditions with ~60% of neuronal pairs showing no significant correlated firing. However, correlated firing was not uniform and a minority of neuronal pairs showed a high degree of correlated firing. Moreover, during the early phase of seizures, correlated firing between 9.8 ± 5.1% of all stably recorded pairs increased compared with control conditions. As seizures progressed and high-frequency ECoG polyspikes developed, the firing frequency of neurons further increased and enhanced correlated firing was observed between virtually all neuronal pairs. These findings indicated that epileptic seizures represented a hyperactive state with widespread increase in action potential firing. Hypersynchrony also characterized seizures. However, it initially developed in a small subset of neurons and gradually spread to involve the entire cortical network only in the later more intense ictal phases.
Collapse
Affiliation(s)
- Adi Cymerblit-Sabba
- Department of Physiology, Bruce Rappaport Faculty of Medicine, Technion, Israel
| | | |
Collapse
|
37
|
Boison D, Masino SA, Geiger JD. Homeostatic bioenergetic network regulation - a novel concept to avoid pharmacoresistance in epilepsy. Expert Opin Drug Discov 2011; 6:713-724. [PMID: 21731576 DOI: 10.1517/17460441.2011.575777] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION: Despite epilepsy being one of the most prevalent neurological disorders, one third of all patients with epilepsy cannot adequately be treated with available antiepileptic drugs. One of the significant causes for the failure of conventional pharmacotherapeutic treatment is the development of pharmacoresistance in many forms of epilepsy. The problem of pharmacoresistance has called for the development of new conceptual strategies that improve future drug development efforts. AREAS COVERED: A thorough review of the recent literature on pharmacoresistance in epilepsy was completed and select examples were chosen to highlight the mechanisms of pharmacoresistance in epilepsy and to demonstrate how those mechanistic findings might lead to improved treatment of pharmacoresistant epilepsy. The reader will gain a thorough understanding of pharmacoresistance in epilepsy and an appreciation of the limitations of conventional drug development strategies. EXPERT OPINION: Conventional drug development efforts aim to achieve specificity of symptom control by enhancing the selectivity of drugs acting on specific downstream targets; this conceptual strategy bears the undue risk of development of pharmacoresistance. Modulation of homeostatic bioenergetic network regulation is a novel conceptual strategy to affect whole neuronal networks synergistically by mobilizing multiple endogenous biochemical and receptor-dependent molecular pathways. In our expert opinion we conclude that homeostatic bioenergetic network regulation might thus be used as an innovative strategy for the control of pharmacoresistant seizures. Recent focal adenosine augmentation strategies support the feasibility of this strategy.
Collapse
Affiliation(s)
- Detlev Boison
- RS Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR 97232, USA
| | | | | |
Collapse
|
38
|
Truccolo W, Donoghue JA, Hochberg LR, Eskandar EN, Madsen JR, Anderson WS, Brown EN, Halgren E, Cash SS. Single-neuron dynamics in human focal epilepsy. Nat Neurosci 2011; 14:635-41. [PMID: 21441925 DOI: 10.1038/nn.2782] [Citation(s) in RCA: 346] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 02/15/2011] [Indexed: 11/09/2022]
Abstract
Epileptic seizures are traditionally characterized as the ultimate expression of monolithic, hypersynchronous neuronal activity arising from unbalanced runaway excitation. Here we report the first examination of spike train patterns in large ensembles of single neurons during seizures in persons with epilepsy. Contrary to the traditional view, neuronal spiking activity during seizure initiation and spread was highly heterogeneous, not hypersynchronous, suggesting complex interactions among different neuronal groups even at the spatial scale of small cortical patches. In contrast to earlier stages, seizure termination is a nearly homogenous phenomenon followed by an almost complete cessation of spiking across recorded neuronal ensembles. Notably, even neurons outside the region of seizure onset showed significant changes in activity minutes before the seizure. These findings suggest a revision of current thinking about seizure mechanisms and point to the possibility of seizure prevention based on spiking activity in neocortical neurons.
Collapse
Affiliation(s)
- Wilson Truccolo
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Warren CP, Hu S, Stead M, Brinkmann BH, Bower MR, Worrell GA. Synchrony in normal and focal epileptic brain: the seizure onset zone is functionally disconnected. J Neurophysiol 2010; 104:3530-9. [PMID: 20926610 DOI: 10.1152/jn.00368.2010] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Synchronization of local and distributed neuronal assemblies is thought to underlie fundamental brain processes such as perception, learning, and cognition. In neurological disease, neuronal synchrony can be altered and in epilepsy may play an important role in the generation of seizures. Linear cross-correlation and mean phase coherence of local field potentials (LFPs) are commonly used measures of neuronal synchrony and have been studied extensively in epileptic brain. Multiple studies have reported that epileptic brain is characterized by increased neuronal synchrony except possibly prior to seizure onset when synchrony may decrease. Previous studies using intracranial electroencephalography (EEG), however, have been limited to patients with epilepsy. Here we investigate neuronal synchrony in epileptic and control brain using intracranial EEG recordings from patients with medically resistant partial epilepsy and control subjects with intractable facial pain. For both epilepsy and control patients, average LFP synchrony decreases with increasing interelectrode distance. Results in epilepsy patients show lower LFP synchrony between seizure-generating brain and other brain regions. This relative isolation of seizure-generating brain underlies the paradoxical finding that control patients without epilepsy have greater average LFP synchrony than patients with epilepsy. In conclusion, we show that in patients with focal epilepsy, the region of epileptic brain generating seizures is functionally isolated from surrounding brain regions. We further speculate that this functional isolation may contribute to spontaneous seizure generation and may represent a clinically useful electrophysiological signature for mapping epileptic brain.
Collapse
Affiliation(s)
- Christopher P Warren
- Mayo Systems Electrophysiology Laboratory, Department of Neurology, Division of Epilepsy and Electroencephalography, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
40
|
Mathews GC. Out of (Dis)order? The Dynamics of Seizure Initiation. Epilepsy Curr 2010; 10:133-4. [PMID: 20944827 PMCID: PMC2951696 DOI: 10.1111/j.1535-7511.2010.01380.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Network Dynamics During Development of Pharmacologically Induced Epileptic Seizures in Rats in Vivo. Cymerblit-Sabba A, Schiller Y. J Neurosci 2010;30(5):1619–1630. In epilepsy, the cortical network fluctuates between the asymptomatic interictal state and the symptomatic ictal state of seizures. Despite their importance, the network dynamics responsible for the transition between the interictal and ictal states are largely unknown. Here we used multielectrode single-unit recordings from the hippocampus to investigate the network dynamics during the development of seizures evoked by various chemoconvulsants in vivo. In these experiments, we detected a typical network dynamics signature that preceded seizure initiation. The preictal state preceding pilocarpine-, kainate-, and picrotoxin-induced seizures was characterized by biphasic network dynamics composed of an early desynchronization phase in which the tendency of neurons to fire correlated action potentials decreased, followed by a late resynchronization phase in which the activity and synchronization of the network gradually increased. This biphasic network dynamics preceded the initiation both of the initial seizure and of recurrent spontaneous seizures that followed. During seizures, firing of individual neurons and interneuronal synchronization further increased. These findings advance our understanding of the network dynamics leading to seizure initiation and may in future help in the development of novel seizure prediction algorithms.
Collapse
|