1
|
Zhang C, Burger RM. Cholinergic modulation in the vertebrate auditory pathway. Front Cell Neurosci 2024; 18:1414484. [PMID: 38962512 PMCID: PMC11220170 DOI: 10.3389/fncel.2024.1414484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Acetylcholine (ACh) is a prevalent neurotransmitter throughout the nervous system. In the brain, ACh is widely regarded as a potent neuromodulator. In neurons, ACh signals are conferred through a variety of receptors that influence a broad range of neurophysiological phenomena such as transmitter release or membrane excitability. In sensory circuitry, ACh modifies neural responses to stimuli and coordinates the activity of neurons across multiple levels of processing. These factors enable individual neurons or entire circuits to rapidly adapt to the dynamics of complex sensory stimuli, underscoring an essential role for ACh in sensory processing. In the auditory system, histological evidence shows that acetylcholine receptors (AChRs) are expressed at virtually every level of the ascending auditory pathway. Despite its apparent ubiquity in auditory circuitry, investigation of the roles of this cholinergic network has been mainly focused on the inner ear or forebrain structures, while less attention has been directed at regions between the cochlear nuclei and midbrain. In this review, we highlight what is known about cholinergic function throughout the auditory system from the ear to the cortex, but with a particular emphasis on brainstem and midbrain auditory centers. We will focus on receptor expression, mechanisms of modulation, and the functional implications of ACh for sound processing, with the broad goal of providing an overview of a newly emerging view of impactful cholinergic modulation throughout the auditory pathway.
Collapse
Affiliation(s)
- Chao Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - R. Michael Burger
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| |
Collapse
|
2
|
Weimann SR, Zhang C, Burger RM. A Developmental Switch in Cholinergic Mechanisms of Modulation in the Medial Nucleus of the Trapezoid Body. J Neurosci 2024; 44:e0356232023. [PMID: 38383485 PMCID: PMC10883614 DOI: 10.1523/jneurosci.0356-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 02/23/2024] Open
Abstract
The medial nucleus of the trapezoid body (MNTB) has been intensively investigated as a primary source of inhibition in brainstem auditory circuitry. MNTB-derived inhibition plays a critical role in the computation of sound location, as temporal features of sounds are precisely conveyed through the calyx of Held/MNTB synapse. In adult gerbils, cholinergic signaling influences sound-evoked responses of MNTB neurons via nicotinic acetylcholine receptors (nAChRs; Zhang et al., 2021) establishing a modulatory role for cholinergic input to this nucleus. However, the cellular mechanisms through which acetylcholine (ACh) mediates this modulation in the MNTB remain obscure. To investigate these mechanisms, we used whole-cell current and voltage-clamp recordings to examine cholinergic physiology in MNTB neurons from Mongolian gerbils (Meriones unguiculatus) of both sexes. Membrane excitability was assessed in brain slices, in pre-hearing (postnatal days 9-13) and post-hearing onset (P18-20) MNTB neurons during bath application of agonists and antagonists of nicotinic (nAChRs) and muscarinic receptors (mAChRs). Muscarinic activation induced a potent increase in excitability most prominently prior to hearing onset with nAChR modulation emerging at later time points. Pharmacological manipulations further demonstrated that the voltage-gated K+ channel KCNQ (Kv7) is the downstream effector of mAChR activation that impacts excitability early in development. Cholinergic modulation of Kv7 reduces outward K+ conductance and depolarizes resting membrane potential. Immunolabeling revealed expression of Kv7 channels as well as mAChRs containing M1 and M3 subunits. Together, our results suggest that mAChR modulation is prominent but transient in the developing MNTB and that cholinergic modulation functions to shape auditory circuit development.
Collapse
Affiliation(s)
- Sonia R Weimann
- Department of Biological Sciences, Lehigh University, Bethlehem 18015, Pennsylvania
| | - Chao Zhang
- Department of Biological Sciences, Lehigh University, Bethlehem 18015, Pennsylvania
| | - R Michael Burger
- Department of Biological Sciences, Lehigh University, Bethlehem 18015, Pennsylvania
| |
Collapse
|
3
|
Ionescu CM, Jones MA, Wagle SR, Kovacevic B, Foster T, Mikov M, Mooranian A, Al-Salami H. Bile Acid Application in Cell-Targeting for Molecular Receptors in Relation to Hearing: A Comprehensive Review. Curr Drug Targets 2024; 25:158-170. [PMID: 38192136 DOI: 10.2174/0113894501278292231223035733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/26/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024]
Abstract
Bile acids play important roles in the human body, and changes in their pool can be used as markers for various liver pathologies. In addition to their functional effects in modulating inflammatory responses and cellular survivability, the unconjugated or conjugated, secondary, or primary nature of bile acids accounts for their various ligand effects. The common hydrophilic bile acids have been used successfully as local treatment to resolve drug-induced cell damage or to ameliorate hearing loss. From various literature references, bile acids show concentration and tissue-dependent effects. Some hydrophobic bile acids act as ligands modulating vitamin D receptors, muscarinic receptors, and calcium-activated potassium channels, important proteins in the inner ear system. Currently, there are limited resources investigating the therapeutic effects of bile acid on hearing loss and little to no information on detecting bile acids in the remote ear system, let alone baseline bile acid levels and their prevalence in healthy and disease conditions. This review presents both hydrophilic and hydrophobic human bile acids and their tissue-specific effects in modulating cellular integrity, thus considering the possible effects and extended therapeutic applicability of bile acids to the inner ear tissue.
Collapse
Affiliation(s)
- Corina M Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Melissa A Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Susbin R Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- School of Pharmacy, University of Otago, Dunedin, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Medical School, University of Western Australia, Perth 6009, Western Australia, Australia
| |
Collapse
|
4
|
Modulation of Asymmetry in Auditory Perception through a Bilateral Auditory Intervention. Symmetry (Basel) 2022. [DOI: 10.3390/sym14122490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The objective of this work was to analyze the modulating effect of an auditory intervention (AI) on the threshold and symmetry of auditory perception in people with different emotional states. The effects of AI were compared 3 months after using threshold audiometry (air conduction). The studied groups were emotional well-being (EWB) (n = 50, 14 with AI, 36 without AI); anxiety (ANX) (n = 31, 10 with AI, 21 without AI); and mixed group (MIX) (n = 45, 19 with AI, 26 without AI). The EWB group with AI lost the advantage of the left ear due to the hearing gain of the right ear, whereas in EWB without AI, no changes were observed. The ANX group with AI showed a non-significant improvement in both ears, maintaining the left interaural advantage. Interestingly, in the group without AI, the interaural difference was lost. The MIX group did not show interaural differences either with or without AI. However, the AI group showed a lower left ear threshold than that of the right ear, in contrast to the non-AI group. In conclusion, the application of this AI manages to decrease the prioritization of high frequencies, in addition to balance hearing between ears, which could decrease activation in states of anxiety.
Collapse
|
5
|
Grierson KE, Hickman TT, Liberman MC. Dopaminergic and cholinergic innervation in the mouse cochlea after noise-induced or age-related synaptopathy. Hear Res 2022; 422:108533. [PMID: 35671600 PMCID: PMC11195664 DOI: 10.1016/j.heares.2022.108533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/11/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
Cochlear synaptopathy, the loss of or damage to connections between auditory-nerve fibers (ANFs) and inner hair cells (IHCs), is a prominent pathology in noise-induced and age-related hearing loss. Here, we investigated if degeneration of the olivocochlear (OC) efferent innervation is also a major aspect of the synaptopathic ear, by quantifying the volume and spatial organization of its cholinergic and dopaminergic components, using antibodies to vesicular acetylcholine transporter (VAT) and tyrosine hydroxylase (TH), respectively. CBA/CaJ male mice were examined 1 day to 8 months after a synaptopathic noise exposure, and compared to unexposed age-matched controls and unexposed aged mice at 24-28 months. In normal ears, cholinergic lateral (L)OC terminals were denser in the apical half of the cochlea and on the modiolar side of the inner hair cells (IHCs), where ANFs of low-spontaneous rate are typically found, while dopaminergic terminals were more common in the basal third of the cochlea and, re the IHC axes, were offset towards the habenula with respect to cholinergic terminals. The noise had only small and transient effects on the density of LOC innervation, its spatial organization around the IHC axes, or the extent to which TH and VAT signal were colocalized. The synaptopathic noise also had relatively small and transient effects on cholinergic innervation density in the outer hair cell (OHC) area, which normally peaks in the 16 kHz region and falls monotonically towards higher and lower frequencies. In contrast, in the aged ears, there was massive degeneration of OHC efferents, especially in the apical half of the cochlea, where there was also significant loss of OHCs. In the IHC area, there was significant loss of cholinergic terminals in both apical and basal regions and of dopaminergic innervation in the basal half. Furthermore, the cholinergic terminals in the aged ears spread from their normal clustering near the IHC basolateral pole, where the ANF synapses are found, to positions up and down the IHC somata and regions of the neuropil closer to the habenula. This apparent migration was most striking in the apex, where the hair cell pathology was greatest, and may be a harbinger of impending hair cell death.
Collapse
Affiliation(s)
- Kiera E Grierson
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114 USA; Dept of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA, 02115 USA; Hearing Research Lab, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, AUS
| | - Tyler T Hickman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114 USA; Dept of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA, 02115 USA.
| | - M Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114 USA; Dept of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA, 02115 USA
| |
Collapse
|
6
|
Romero GE, Trussell LO. Central circuitry and function of the cochlear efferent systems. Hear Res 2022; 425:108516. [DOI: 10.1016/j.heares.2022.108516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 11/04/2022]
|
7
|
Modulation of Auditory Perception Laterality under Anxiety and Depression Conditions. Symmetry (Basel) 2021. [DOI: 10.3390/sym14010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The objective of this work is to confirm the asymmetry in non-linguistic auditory perception, as well as the influence of anxiety-depressive disorders on it. Eighty-six people were recruited in the emotional well-being group, fifty-six in the anxiety group, fourteen in the depression group, and seventy-seven in the mixed group. In each group, audiograms were obtained from both ears and the differences were statistically analyzed. Differences in hearing sensitivity were found between both ears in the general population, such differences increased in people with anxiety-depressive disorders. When faced with anxiety-depressive disorders, the right ear suffered greater hearing loss than the left, showing peaks of hyper-hearing at the frequency of 4000 Hz in the anxiety subgroup, and hearing loss in the depression subgroup. In relation to anxiety, the appearance of the 4:8 pattern was observed in the right ear when the person had suffered acute stress in the 2 days prior to the audiometry, and in both ears if they had suffered stress in the 3–30 days before said stress. In conclusion, the advantage of the left ear in auditory perception was increased with these disorders, showing a hyperaudition peak in anxiety and a hearing loss in depression.
Collapse
|
8
|
Le Prell CG, Hughes LF, Dolan DF, Bledsoe SC. Effects of Calcitonin-Gene-Related-Peptide on Auditory Nerve Activity. Front Cell Dev Biol 2021; 9:752963. [PMID: 34869340 PMCID: PMC8633412 DOI: 10.3389/fcell.2021.752963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
Calcitonin-gene-related peptide (CGRP) is a lateral olivocochlear (LOC) efferent neurotransmitter. Depression of sound-driven auditory brainstem response amplitude in CGRP-null mice suggests the potential for endogenous CGRP release to upregulate spontaneous and/or sound-driven auditory nerve (AN) activity. We chronically infused CGRP into the guinea pig cochlea and evaluated changes in AN activity as well as outer hair cell (OHC) function. The amplitude of both round window noise (a measure of ensemble spontaneous activity) and the synchronous whole-nerve response to sound (compound action potential, CAP) were enhanced. Lack of change in both onset adaptation and steady state amplitude of sound-evoked distortion product otoacoustic emission (DPOAE) responses indicated CGRP had no effect on OHCs, suggesting the origin of the observed changes was neural. Combined with results from the CGRP-null mice, these results appear to confirm that endogenous CGRP enhances auditory nerve activity when released by the LOC neurons. However, infusion of the CGRP receptor antagonist CGRP (8–37) did not reliably influence spontaneous or sound-driven AN activity, or OHC function, results that contrast with the decreased ABR amplitude measured in CGRP-null mice.
Collapse
Affiliation(s)
- Colleen G Le Prell
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, United States.,Department of Speech, Language, and Hearing, University of Texas at Dallas, Richardson, TX, United States
| | - Larry F Hughes
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - David F Dolan
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, United States
| | - Sanford C Bledsoe
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
9
|
Parra-Munevar J, Morse CE, Plummer MR, Davis RL. Dynamic Heterogeneity Shapes Patterns of Spiral Ganglion Activity. J Neurosci 2021; 41:8859-8875. [PMID: 34551939 PMCID: PMC8549539 DOI: 10.1523/jneurosci.0924-20.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/17/2021] [Accepted: 09/08/2021] [Indexed: 11/21/2022] Open
Abstract
Neural response properties that typify primary sensory afferents are critical to fully appreciate because they establish and, ultimately represent, the fundamental coding design used for higher-level processing. Studies illuminating the center-surround receptive fields of retinal ganglion cells, for example, were ground-breaking because they determined the foundation of visual form detection. For the auditory system, a basic organizing principle of the spiral ganglion afferents is their extensive electrophysiological heterogeneity establishing diverse intrinsic firing properties in neurons throughout the spiral ganglion. Moreover, these neurons display an impressively large array of neurotransmitter receptor types that are responsive to efferent feedback. Thus, electrophysiological diversity and its neuromodulation are a fundamental encoding mechanism contributed by the primary afferents in the auditory system. To place these features into context, we evaluated the effects of hyperpolarization and cAMP on threshold level as indicators of overall afferent responsiveness in CBA/CaJ mice of either sex. Hyperpolarization modified threshold gradients such that distinct voltage protocols could shift the relationship between sensitivity and stimulus input to reshape resolution. This resulted in an "accordion effect" that appeared to stretch, compress, or maintain responsivity across the gradient of afferent thresholds. cAMP targeted threshold and kinetic shifts to rapidly adapting neurons, thus revealing multiple cochleotopic properties that could potentially be independently regulated. These examples of dynamic heterogeneity in primary auditory afferents not only have the capacity to shift the range, sensitivity, and resolution, but to do so in a coordinated manner that appears to orchestrate changes with a seemingly unlimited repertoire.SIGNIFICANCE STATEMENT How do we discriminate the more nuanced qualities of the sound around us? Beyond the basics of pitch and loudness, aspects, such as pattern, distance, velocity, and location, are all attributes that must be used to encode acoustic sensations effectively. While higher-level processing is required for perception, it would not be unexpected if the primary auditory afferents optimized receptor input to expedite neural encoding. The findings reported herein are consistent with this design. Neuromodulation compressed, expanded, shifted, or realigned intrinsic electrophysiological heterogeneity to alter neuronal responses selectively and dynamically. This suggests that diverse spiral ganglion phenotypes provide a rich substrate to support an almost limitless array of coding strategies within the first neural element of the auditory pathway.
Collapse
Affiliation(s)
- Jeffrey Parra-Munevar
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
| | - Charles E Morse
- Department of Neurosurgery, Jefferson Hospital for Neuroscience, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania 19107
| | - Mark R Plummer
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
| | - Robin L Davis
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
| |
Collapse
|
10
|
Rabbitt RD, Holman HA. ATP and ACh Evoked Calcium Transients in the Neonatal Mouse Cochlear and Vestibular Sensory Epithelia. Front Neurosci 2021; 15:710076. [PMID: 34566562 PMCID: PMC8455828 DOI: 10.3389/fnins.2021.710076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/18/2021] [Indexed: 12/02/2022] Open
Abstract
Hair cells in the mammalian inner ear sensory epithelia are surrounded by supporting cells which are essential for function of cochlear and vestibular systems. In mice, support cells exhibit spontaneous intracellular Ca2+ transients in both auditory and vestibular organs during the first postnatal week before the onset of hearing. We recorded long lasting (>200 ms) Ca2+ transients in cochlear and vestibular support cells in neonatal mice using the genetic calcium indicator GCaMP5. Both cochlear and vestibular support cells exhibited spontaneous intracellular Ca2+ transients (GCaMP5 ΔF/F), in some cases propagating as waves from the apical (endolymph facing) to the basolateral surface with a speed of ∼25 μm per second, consistent with inositol trisphosphate dependent calcium induced calcium release (CICR). Acetylcholine evoked Ca2+ transients were observed in both inner border cells in the cochlea and vestibular support cells, with a larger change in GCaMP5 fluorescence in the vestibular support cells. Adenosine triphosphate evoked robust Ca2+ transients predominantly in the cochlear support cells that included Hensen’s cells, Deiters’ cells, inner hair cells, inner phalangeal cells and inner border cells. A Ca2+ event initiated in one inner border cells propagated in some instances longitudinally to neighboring inner border cells with an intercellular speed of ∼2 μm per second, and decayed after propagating along ∼3 cells. Similar intercellular propagation was not observed in the radial direction from inner border cell to inner sulcus cells, and was not observed between adjacent vestibular support cells.
Collapse
Affiliation(s)
- Richard D Rabbitt
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States.,Graduate Program in Neuroscience, University of Utah, Salt Lake City, UT, United States.,Department of Otolaryngology-Head and Neck Surgery, University of Utah, Salt Lake City, UT, United States
| | - Holly A Holman
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
11
|
Kitcher SR, Pederson AM, Weisz CJC. Diverse identities and sites of action of cochlear neurotransmitters. Hear Res 2021; 419:108278. [PMID: 34108087 DOI: 10.1016/j.heares.2021.108278] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/30/2021] [Accepted: 05/18/2021] [Indexed: 11/18/2022]
Abstract
Accurate encoding of acoustic stimuli requires temporally precise responses to sound integrated with cellular mechanisms that encode the complexity of stimuli over varying timescales and orders of magnitude of intensity. Sound in mammals is initially encoded in the cochlea, the peripheral hearing organ, which contains functionally specialized cells (including hair cells, afferent and efferent neurons, and a multitude of supporting cells) to allow faithful acoustic perception. To accomplish the demanding physiological requirements of hearing, the cochlea has developed synaptic arrangements that operate over different timescales, with varied strengths, and with the ability to adjust function in dynamic hearing conditions. Multiple neurotransmitters interact to support the precision and complexity of hearing. Here, we review the location of release, action, and function of neurotransmitters in the mammalian cochlea with an emphasis on recent work describing the complexity of signaling.
Collapse
Affiliation(s)
- Siân R Kitcher
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, United States
| | - Alia M Pederson
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, United States
| | - Catherine J C Weisz
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, United States.
| |
Collapse
|
12
|
Cui L, Zheng J, Zhao Q, Chen JR, Liu H, Peng G, Wu Y, Chen C, He Q, Shi H, Yin S, Friedman RA, Chen Y, Guan MX. Mutations of MAP1B encoding a microtubule-associated phosphoprotein cause sensorineural hearing loss. JCI Insight 2020; 5:136046. [PMID: 33268592 PMCID: PMC7714412 DOI: 10.1172/jci.insight.136046] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 10/28/2020] [Indexed: 12/20/2022] Open
Abstract
The pathophysiology underlying spiral ganglion cell defect–induced deafness remains elusive. Using the whole exome sequencing approach, in combination with functional assays and a mouse disease model, we identified the potentially novel deafness-causative MAP1B gene encoding a highly conserved microtubule-associated protein. Three novel heterozygous MAP1B mutations (c.4198A>G, p.1400S>G; c.2768T>C, p.923I>T; c.5512T>C, p.1838F>L) were cosegregated with autosomal dominant inheritance of nonsyndromic sensorineural hearing loss in 3 unrelated Chinese families. Here, we show that MAP1B is highly expressed in the spiral ganglion neurons in the mouse cochlea. Using otic sensory neuron–like cells, generated by pluripotent stem cells from patients carrying the MAP1B mutation and control subject, we demonstrated that the p.1400S>G mutation caused the reduced levels and deficient phosphorylation of MAP1B, which are involved in the microtubule stability and dynamics. Strikingly, otic sensory neuron–like cells exhibited disturbed dynamics of microtubules, axonal elongation, and defects in electrophysiological properties. Dysfunctions of these derived otic sensory neuron–like cells were rescued by genetically correcting MAP1B mutation using CRISPR/Cas9 technology. Involvement of MAP1B in hearing was confirmed by audiometric evaluation of Map1b heterozygous KO mice. These mutant mice displayed late-onset progressive sensorineural hearing loss that was more pronounced in the high frequencies. The spiral ganglion neurons isolated from Map1b mutant mice exhibited the deficient phosphorylation and disturbed dynamics of microtubules. Map1b deficiency yielded defects in the morphology and electrophysiology of spiral ganglion neurons, but it did not affect the morphologies of cochlea in mice. Therefore, our data demonstrate that dysfunctions of spiral ganglion neurons induced by MAP1B deficiency caused hearing loss. Dysfunctions of spiral ganglion neurons caused by Map1b deficiency leads to sensorineural hearing loss.
Collapse
Affiliation(s)
- Limei Cui
- Division of Medical Genetics and Genomics, The Children's Hospital.,Institute of Genetics and.,Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Zheng
- Division of Medical Genetics and Genomics, The Children's Hospital
| | - Qiong Zhao
- Division of Medical Genetics and Genomics, The Children's Hospital.,Institute of Genetics and.,Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jia-Rong Chen
- Division of Medical Genetics and Genomics, The Children's Hospital.,Institute of Genetics and
| | | | - Guanghua Peng
- Deaprtment of Otorhinolaryngology, the Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yue Wu
- Division of Medical Genetics and Genomics, The Children's Hospital
| | - Chao Chen
- Division of Medical Genetics and Genomics, The Children's Hospital.,Institute of Genetics and
| | | | - Haosong Shi
- Department of Otorhinolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shankai Yin
- Department of Otorhinolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Rick A Friedman
- Division of Otolaryngology, University of California at San Diego School of Medicine, La Jolla California, USA
| | - Ye Chen
- Division of Medical Genetics and Genomics, The Children's Hospital.,Institute of Genetics and.,Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital.,Institute of Genetics and.,Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Otolaryngology, University of California at San Diego School of Medicine, La Jolla California, USA.,Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Hangzhou, Zhejiang, China.,Joint Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Hair cell α9α10 nicotinic acetylcholine receptor functional expression regulated by ligand binding and deafness gene products. Proc Natl Acad Sci U S A 2020; 117:24534-24544. [PMID: 32929005 DOI: 10.1073/pnas.2013762117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Auditory hair cells receive olivocochlear efferent innervation, which refines tonotopic mapping, improves sound discrimination, and mitigates acoustic trauma. The olivocochlear synapse involves α9α10 nicotinic acetylcholine receptors (nAChRs), which assemble in hair cells only coincident with cholinergic innervation and do not express in recombinant mammalian cell lines. Here, genome-wide screening determined that assembly and surface expression of α9α10 require ligand binding. Ion channel function additionally demands an auxiliary subunit, which can be transmembrane inner ear (TMIE) or TMEM132e. Both of these single-pass transmembrane proteins are enriched in hair cells and underlie nonsyndromic human deafness. Inner hair cells from TMIE mutant mice show altered postsynaptic α9α10 function and retain α9α10-mediated transmission beyond the second postnatal week associated with abnormally persistent cholinergic innervation. Collectively, this study provides a mechanism to link cholinergic input with α9α10 assembly, identifies unexpected functions for human deafness genes TMIE/TMEM132e, and enables drug discovery for this elusive nAChR implicated in prevalent auditory disorders.
Collapse
|
14
|
Wu JS, Yi E, Manca M, Javaid H, Lauer AM, Glowatzki E. Sound exposure dynamically induces dopamine synthesis in cholinergic LOC efferents for feedback to auditory nerve fibers. eLife 2020; 9:52419. [PMID: 31975688 PMCID: PMC7043886 DOI: 10.7554/elife.52419] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/23/2020] [Indexed: 11/13/2022] Open
Abstract
Lateral olivocochlear (LOC) efferent neurons modulate auditory nerve fiber (ANF) activity using a large repertoire of neurotransmitters, including dopamine (DA) and acetylcholine (ACh). Little is known about how individual neurotransmitter systems are differentially utilized in response to the ever-changing acoustic environment. Here we present quantitative evidence in rodents that the dopaminergic LOC input to ANFs is dynamically regulated according to the animal's recent acoustic experience. Sound exposure upregulates tyrosine hydroxylase, an enzyme responsible for dopamine synthesis, in cholinergic LOC intrinsic neurons, suggesting that individual LOC neurons might at times co-release ACh and DA. We further demonstrate that dopamine down-regulates ANF firing rates by reducing both the hair cell release rate and the size of synaptic events. Collectively, our results suggest that LOC intrinsic neurons can undergo on-demand neurotransmitter re-specification to re-calibrate ANF activity, adjust the gain at hair cell/ANF synapses, and possibly to protect these synapses from noise damage.
Collapse
Affiliation(s)
- Jingjing Sherry Wu
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, United States.,The Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, United States.,The Center for Hearing and Balance, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Eunyoung Yi
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Republic of Korea
| | - Marco Manca
- The Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, United States.,The Center for Hearing and Balance, The Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Hamad Javaid
- The Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, United States.,The Center for Hearing and Balance, The Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Amanda M Lauer
- The Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, United States.,The Center for Hearing and Balance, The Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Elisabeth Glowatzki
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, United States.,The Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, United States.,The Center for Hearing and Balance, The Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
15
|
Ramírez T, Soto E, Vega R. Opioid modulation of cochlear auditory responses in the rat inner ear. Synapse 2019; 74:e22128. [DOI: 10.1002/syn.22128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Teresa Ramírez
- Instituto de Fisiología Benemérita Universidad Autónoma de Puebla Puebla Mexico
| | - Enrique Soto
- Instituto de Fisiología Benemérita Universidad Autónoma de Puebla Puebla Mexico
| | - Rosario Vega
- Instituto de Fisiología Benemérita Universidad Autónoma de Puebla Puebla Mexico
| |
Collapse
|
16
|
Li Y, Liu H, Giffen KP, Chen L, Beisel KW, He DZZ. Transcriptomes of cochlear inner and outer hair cells from adult mice. Sci Data 2018; 5:180199. [PMID: 30277483 PMCID: PMC6167952 DOI: 10.1038/sdata.2018.199] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/02/2018] [Indexed: 01/09/2023] Open
Abstract
Inner hair cells (IHCs) and outer hair cells (OHCs) are the two anatomically and functionally distinct types of mechanosensitive receptor cells in the mammalian cochlea. The molecular mechanisms defining their morphological and functional specializations are largely unclear. As a first step to uncover the underlying mechanisms, we examined the transcriptomes of IHCs and OHCs isolated from adult CBA/J mouse cochleae. One thousand IHCs and OHCs were separately collected using the suction pipette technique. RNA sequencing of IHCs and OHCs was performed and their transcriptomes were analyzed. The results were validated by comparing some IHC and OHC preferentially expressed genes between present study and published microarray-based data as well as by real-time qPCR. Antibody-based immunocytochemistry was used to validate preferential expression of SLC7A14 and DNM3 in IHCs and OHCs. These data are expected to serve as a highly valuable resource for unraveling the molecular mechanisms underlying different biological properties of IHCs and OHCs as well as to provide a road map for future characterization of genes expressed in IHCs and OHCs.
Collapse
Affiliation(s)
- Yi Li
- Department of Otorhinolaryngology, Beijing Tongren Hospital, Beijing Capital Medical University, Beijing 100730, China
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68170, USA
| | - Huizhan Liu
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68170, USA
| | - Kimberlee P. Giffen
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68170, USA
| | - Lei Chen
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68170, USA
- Chongqing Academy of Animal Science, Chongqing 402460, China
| | - Kirk W. Beisel
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68170, USA
| | - David Z. Z. He
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68170, USA
| |
Collapse
|
17
|
Wu JS, Vyas P, Glowatzki E, Fuchs PA. Opposing expression gradients of calcitonin-related polypeptide alpha (Calca/Cgrpα) and tyrosine hydroxylase (Th) in type II afferent neurons of the mouse cochlea. J Comp Neurol 2017; 526:425-438. [PMID: 29055051 DOI: 10.1002/cne.24341] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/04/2017] [Accepted: 10/10/2017] [Indexed: 12/20/2022]
Abstract
Type II spiral ganglion neurons (SGNs) are small caliber, unmyelinated afferents that extend dendritic arbors hundreds of microns along the cochlear spiral, contacting many outer hair cells (OHCs). Despite these many contacts, type II afferents are insensitive to sound and only weakly depolarized by glutamate release from OHCs. Recent studies suggest that type II afferents may be cochlear nociceptors, and can be excited by ATP released during tissue damage, by analogy to somatic pain-sensing C-fibers. The present work compares the expression patterns among cochlear type II afferents of two genes found in C-fibers: calcitonin-related polypeptide alpha (Calca/Cgrpα), specific to pain-sensing C-fibers, and tyrosine hydroxylase (Th), specific to low-threshold mechanoreceptive C-fibers, which was shown previously to be a selective biomarker of type II versus type I cochlear afferents (Vyas et al., ). Whole-mount cochlear preparations from 3-week- to 2-month-old CGRPα-EGFP (GENSAT) mice showed expression of Cgrpα in a subset of SGNs with type II-like peripheral dendrites extending beneath OHCs. Double labeling with other molecular markers confirmed that the labeled SGNs were neither type I SGNs nor olivocochlear efferents. Cgrpα starts to express in type II SGNs before hearing onset, but the expression level declines in the adult. The expression patterns of Cgrpα and Th formed opposing gradients, with Th being preferentially expressed in apical and Cgrpα in basal type II afferent neurons, indicating heterogeneity among type II afferent neurons. The expression of Th and Cgrpα was not mutually exclusive and co-expression could be observed, most abundantly in the middle cochlear turn.
Collapse
Affiliation(s)
- Jingjing Sherry Wu
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Center for Hearing and Balance and the Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Pankhuri Vyas
- The Center for Hearing and Balance and the Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elisabeth Glowatzki
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Center for Hearing and Balance and the Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Paul Albert Fuchs
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Center for Hearing and Balance and the Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
18
|
Thomsen M, Sørensen G, Dencker D. Physiological roles of CNS muscarinic receptors gained from knockout mice. Neuropharmacology 2017; 136:411-420. [PMID: 28911965 DOI: 10.1016/j.neuropharm.2017.09.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 12/29/2022]
Abstract
Because the five muscarinic acetylcholine receptor subtypes have overlapping distributions in many CNS tissues, and because ligands with a high degree of selectivity for a given subtype long remained elusive, it has been difficult to determine the physiological functions of each receptor. Genetically engineered knockout mice, in which one or more muscarinic acetylcholine receptor subtype has been inactivated, have been instrumental in identifying muscarinic receptor functions in the CNS, at the neuronal, circuit, and behavioral level. These studies revealed important functions of muscarinic receptors modulating neuronal activity and neurotransmitter release in many brain regions, shaping neuronal plasticity, and affecting functions ranging from motor and sensory function to cognitive processes. As gene targeting technology evolves including the use of conditional, cell type specific strains, knockout mice are likely to continue to provide valuable insights into brain physiology and pathophysiology, and advance the development of new medications for a range of conditions such as Alzheimer's disease, Parkinson's disease, schizophrenia, and addictions, as well as non-opioid analgesics. This article is part of the Special Issue entitled 'Neuropharmacology on Muscarinic Receptors'.
Collapse
Affiliation(s)
- Morgane Thomsen
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen and University of Copenhagen, Denmark; Alcohol and Drug Abuse Research Center, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA.
| | - Gunnar Sørensen
- Alcohol and Drug Abuse Research Center, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA
| | - Ditte Dencker
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen and University of Copenhagen, Denmark
| |
Collapse
|
19
|
Reijntjes DO, Pyott SJ. The afferent signaling complex: Regulation of type I spiral ganglion neuron responses in the auditory periphery. Hear Res 2016; 336:1-16. [DOI: 10.1016/j.heares.2016.03.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/12/2016] [Accepted: 03/07/2016] [Indexed: 12/19/2022]
|
20
|
Askew C, Rochat C, Pan B, Asai Y, Ahmed H, Child E, Schneider BL, Aebischer P, Holt JR. Tmc gene therapy restores auditory function in deaf mice. Sci Transl Med 2016; 7:295ra108. [PMID: 26157030 DOI: 10.1126/scitranslmed.aab1996] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Genetic hearing loss accounts for up to 50% of prelingual deafness worldwide, yet there are no biologic treatments currently available. To investigate gene therapy as a potential biologic strategy for restoration of auditory function in patients with genetic hearing loss, we tested a gene augmentation approach in mouse models of genetic deafness. We focused on DFNB7/11 and DFNA36, which are autosomal recessive and dominant deafnesses, respectively, caused by mutations in transmembrane channel-like 1 (TMC1). Mice that carry targeted deletion of Tmc1 or a dominant Tmc1 point mutation, known as Beethoven, are good models for human DFNB7/11 and DFNA36. We screened several adeno-associated viral (AAV) serotypes and promoters and identified AAV2/1 and the chicken β-actin (Cba) promoter as an efficient combination for driving the expression of exogenous Tmc1 in inner hair cells in vivo. Exogenous Tmc1 or its closely related ortholog, Tmc2, were capable of restoring sensory transduction, auditory brainstem responses, and acoustic startle reflexes in otherwise deaf mice, suggesting that gene augmentation with Tmc1 or Tmc2 is well suited for further development as a strategy for restoration of auditory function in deaf patients who carry TMC1 mutations.
Collapse
Affiliation(s)
- Charles Askew
- Department of Otolaryngology, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA. Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA
| | - Cylia Rochat
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015 Lausanne, Switzerland
| | - Bifeng Pan
- Department of Otolaryngology, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yukako Asai
- Department of Otolaryngology, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hena Ahmed
- Department of Otolaryngology, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Erin Child
- Department of Otolaryngology, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Bernard L Schneider
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015 Lausanne, Switzerland
| | - Patrick Aebischer
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015 Lausanne, Switzerland
| | - Jeffrey R Holt
- Department of Otolaryngology, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Characterization of the transcriptome of nascent hair cells and identification of direct targets of the Atoh1 transcription factor. J Neurosci 2015; 35:5870-83. [PMID: 25855195 DOI: 10.1523/jneurosci.5083-14.2015] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hair cells are sensory receptors for the auditory and vestibular system in vertebrates. The transcription factor Atoh1 is both necessary and sufficient for the differentiation of hair cells, and is strongly upregulated during hair-cell regeneration in nonmammalian vertebrates. To identify genes involved in hair cell development and function, we performed RNA-seq profiling of purified Atoh1-expressing hair cells from the neonatal mouse cochlea. We identified >600 enriched transcripts in cochlear hair cells, of which 90% have not been previously shown to be expressed in hair cells. We identified 233 of these hair cell genes as candidates to be directly regulated by Atoh1 based on the presence of Atoh1 binding sites in their regulatory regions and by analyzing Atoh1 ChIP-seq datasets from the cerebellum and small intestine. We confirmed 10 of these genes as being direct Atoh1 targets in the cochlea by ChIP-PCR. The identification of candidate Atoh1 target genes is a first step in identifying gene regulatory networks for hair-cell development and may inform future studies on the potential role of Atoh1 in mammalian hair cell regeneration.
Collapse
|
22
|
Le Prell CG, Dolan DF, Hughes LF, Altschuler RA, Shore SE, Bledsoe SC. Disruption of lateral olivocochlear neurons with a dopaminergic neurotoxin depresses spontaneous auditory nerve activity. Neurosci Lett 2014; 582:54-8. [PMID: 25175420 DOI: 10.1016/j.neulet.2014.08.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/09/2014] [Accepted: 08/22/2014] [Indexed: 11/28/2022]
Abstract
Neurons of the lateral olivocochlear (LOC) system project from the auditory brainstem to the cochlea, where they synapse on radial dendrites of auditory nerve fibers. Selective LOC disruption depresses sound-evoked auditory nerve activity in the guinea pig, but enhances it in the mouse. Here, LOC disruption depressed spontaneous auditory nerve activity in the guinea pig. Recordings from single auditory nerve fibers revealed a significantly reduced proportion of fibers with the highest spontaneous firing rates (SRs) and an increased proportion of neurons with lower SRs. Ensemble activity, estimated using round window noise, also decreased after LOC disruption. Decreased spontaneous activity after LOC disruption may be a consequence of reduced tonic release of excitatory transmitters from the LOC terminals in guinea pigs.
Collapse
Affiliation(s)
- Colleen G Le Prell
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL 32610 USA.
| | - David F Dolan
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Larry F Hughes
- Department of Surgery, Southern Illinois University Medical School, Springfield, IL 62794 USA
| | - Richard A Altschuler
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Susan E Shore
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Sanford C Bledsoe
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
23
|
Zhou T, Wang Y, Guo CK, Zhang WJ, Yu H, Zhang K, Kong WJ. Two distinct channels mediated by m2mAChR and α9nAChR co-exist in type II vestibular hair cells of guinea pig. Int J Mol Sci 2013; 14:8818-31. [PMID: 23615472 PMCID: PMC3676758 DOI: 10.3390/ijms14058818] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 03/29/2013] [Accepted: 04/17/2013] [Indexed: 11/16/2022] Open
Abstract
Acetylcholine (ACh) is the principal vestibular efferent neurotransmitter among mammalians. Pharmacologic studies prove that ACh activates a small conductance Ca2+-activated K+ channels (KCa) current (SK2), mediated by α9-containing nicotinic ACh receptor (α9nAChR) in mammalian type II vestibular hair cells (VHCs II). However, our studies demonstrate that the m2 muscarinic ACh receptor (m2mAChR) mediates a big conductance KCa current (BK) in VHCs II. To better elucidate the correlation between these two distinct channels in VHCs II of guinea pig, this study was designed to verify whether these two channels and their corresponding AChR subtypes co-exist in the same VHCs II by whole-cell patch clamp recordings. We found that m2mAChR sensitive BK currents were activated in VHCs II isolated by collagenase IA, while α9nAChR sensitive SK2 currents were activated in VHCs II isolated by trypsin. Interestingly, after exposing the patched cells isolated by trypsin to collagenase IA for 3 min, the α9nAChR sensitive SK2 current was abolished, while m2mAChR-sensitive BK current was activated. Therefore, our findings provide evidence that the two distinct channels and their corresponding AChR subtypes may co-exist in the same VHCs II, and the alternative presence of these two ACh receptors-sensitive currents depended on isolating preparation with different enzymes.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China; E-Mails: (T.Z.); (Y.W.); (C.-K.G.); (W.-J.Z.); (H.Y.); (K.Z.)
| | - Yi Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China; E-Mails: (T.Z.); (Y.W.); (C.-K.G.); (W.-J.Z.); (H.Y.); (K.Z.)
| | - Chang-Kai Guo
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China; E-Mails: (T.Z.); (Y.W.); (C.-K.G.); (W.-J.Z.); (H.Y.); (K.Z.)
| | - Wen-Juan Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China; E-Mails: (T.Z.); (Y.W.); (C.-K.G.); (W.-J.Z.); (H.Y.); (K.Z.)
| | - Hong Yu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China; E-Mails: (T.Z.); (Y.W.); (C.-K.G.); (W.-J.Z.); (H.Y.); (K.Z.)
| | - Kun Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China; E-Mails: (T.Z.); (Y.W.); (C.-K.G.); (W.-J.Z.); (H.Y.); (K.Z.)
| | - Wei-Jia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China; E-Mails: (T.Z.); (Y.W.); (C.-K.G.); (W.-J.Z.); (H.Y.); (K.Z.)
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Key Laboratory of Neurological Disorders of Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-27-8572-6900; Fax: +86-27-8577-6343
| |
Collapse
|
24
|
Rogers SW, Myers EJ, Gahring LC. The expression of nicotinic receptor alpha7 during cochlear development. Brain Behav 2012; 2:628-39. [PMID: 23139908 PMCID: PMC3489815 DOI: 10.1002/brb3.84] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 07/09/2012] [Indexed: 01/24/2023] Open
Abstract
Nicotinic acetylcholine receptor alpha7 expression was examined in the developing and adult auditory system using mice that were modified through homologous recombination to coexpress either GFP (alpha7GFP) or Cre (alpha7Cre), respectively. The expression of alpha7GFP is first detected at embryonic (E) day E13.5 in cells of the spiral prominence. By E14.5, sensory regions including the putative outer hair cells and Deiters' cells express alpha7GFP as do solitary efferent fibers. This pattern diminishes after E16.5 in a basal to apex progression, as Hensen's cells and cells of the spiral ligament acquire alpha7GFP expression. At birth and thereafter alpha7GFP also identifies a subset of spiral ganglion cells whose processes terminate on inner hair cells. Efferent fibers identified by peripherin or calcitonin gene-related protein do not coexpress alpha7GFP. In addition to cochlear structures, there is strong expression of alpha7GFP by cells of the central auditory pathways including the ventral posterior cochlear nucleus, lateral lemniscus, central inferior colliculus, and the medial geniculate nucleus. Our findings suggest that alpha7 expression by both neuronal and non-neuronal cells has the potential to impact multiple auditory functions through mechanisms that are not traditionally attributed to this receptor.
Collapse
Affiliation(s)
- Scott W Rogers
- Salt Lake City VA Geriatric Research, Education and Clinical Center, University of Utah Salt Lake City, Utah, 84132 ; Department of Neurobiology and Anatomy, University of Utah School of Medicine Salt Lake City, Utah, 84132
| | | | | |
Collapse
|
25
|
Maison SF, Usubuchi H, Vetter DE, Elgoyhen AB, Thomas SA, Liberman MC. Contralateral-noise effects on cochlear responses in anesthetized mice are dominated by feedback from an unknown pathway. J Neurophysiol 2012; 108:491-500. [PMID: 22514298 DOI: 10.1152/jn.01050.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Suppression of ipsilateral distortion product otoacoustic emissions (DPOAEs) by contralateral noise is used in humans and animals to assay the strength of sound-evoked negative feedback from the medial olivocochlear (MOC) efferent pathway. However, depending on species and anesthesia, contributions of other feedback systems to the middle or inner ear can cloud the interpretation. Here, contributions of MOC and middle-ear muscle reflexes, as well as autonomic feedback, to contra-noise suppression in anesthetized mice are dissected by selectively eliminating each pathway by surgical transection, pharmacological blockade, or targeted gene deletion. When ipsilateral DPOAEs were evoked by low-level primaries, contra-noise suppression was typically ~1 dB with contra-noise levels around 95 dB SPL, and it always disappeared upon contralateral cochlear destruction. Lack of middle-ear muscle contribution was suggested by persistence of contra-noise suppression after paralysis with curare, tensor tympani cauterization, or section of the facial nerve. Contribution of cochlear sympathetics was ruled out by studying mutant mice lacking adrenergic signaling (dopamine β-hydroxylase knockouts). Surprisingly, contra-noise effects on low-level DPOAEs were also not diminished by eliminating the MOC system pharmacologically (strychnine), surgically, or by deletion of relevant cholinergic receptors (α9/α10). In contrast, when ipsilateral DPOAEs were evoked by high-level primaries, the contra-noise suppression, although comparable in magnitude, was largely eliminated by MOC blockade or section. Possible alternate pathways are discussed for the source of contra-noise-evoked effects at low ipsilateral levels.
Collapse
Affiliation(s)
- Stéphane F Maison
- Department of Otology and Laryngology, Harvard Medical School and Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114-3096, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Dopaminergic signaling in the cochlea: receptor expression patterns and deletion phenotypes. J Neurosci 2012; 32:344-55. [PMID: 22219295 DOI: 10.1523/jneurosci.4720-11.2012] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Pharmacological studies suggest that dopamine release from lateral olivocochlear efferent neurons suppresses spontaneous and sound-evoked activity in cochlear nerve fibers and helps control noise-induced excitotoxicity; however, the literature on cochlear expression and localization of dopamine receptors is contradictory. To better characterize cochlear dopaminergic signaling, we studied receptor localization using immunohistochemistry or reverse transcriptase PCR and assessed histopathology, cochlear responses and olivocochlear function in mice with targeted deletion of each of the five receptor subtypes. In normal ears, D1, D2, and D5 receptors were detected in microdissected immature (postnatal days 10-13) spiral ganglion cells and outer hair cells but not inner hair cells. D4 was detected in spiral ganglion cells only. In whole cochlea samples from adults, transcripts for D1, D2, D4, and D5 were present, whereas D3 mRNA was never detected. D1 and D2 immunolabeling was localized to cochlear nerve fibers, near the first nodes of Ranvier (D2) and in the inner spiral bundle region (D1 and D2) where presynaptic olivocochlear terminals are found. No other receptor labeling was consistent. Cochlear function was normal in D3, D4, and D5 knock-outs. D1 and D2 knock-outs showed slight, but significant enhancement and suppression, respectively, of cochlear responses, both in the neural output [auditory brainstem response (ABR) wave 1] and in outer hair cell function [distortion product otoacoustic emissions (DPOAEs)]. Vulnerability to acoustic injury was significantly increased in D2, D4 and D5 lines: D1 could not be tested, and no differences were seen in D3 mutants, consistent with a lack of receptor expression. The increased vulnerability in D2 knock-outs was seen in DPOAEs, suggesting a role for dopamine in the outer hair cell area. In D4 and D5 knock-outs, the increased noise vulnerability was seen only in ABRs, consistent with a role for dopaminergic signaling in minimizing neural damage.
Collapse
|
27
|
Physiological activation of cholinergic inputs controls associative synaptic plasticity via modulation of endocannabinoid signaling. J Neurosci 2011; 31:3158-68. [PMID: 21368027 DOI: 10.1523/jneurosci.5303-10.2011] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cholinergic neuromodulation controls long-term synaptic plasticity underlying memory, learning, and adaptive sensory processing. However, the mechanistic interaction of cholinergic, neuromodulatory inputs with signaling pathways underlying long-term potentiation (LTP) and long-term depression (LTD) remains poorly understood. Here, we show that physiological activation of muscarinic acetylcholine receptors (mAChRs) controls the size and sign of associative long-term synaptic plasticity via interaction with endocannabinoid signaling. Our findings indicate that synaptic or pharmacological activation of postsynaptic M1/M3 converts postsynaptic Hebbian LTP to presynaptic anti-Hebbian LTD in principal neurons of the dorsal cochlear nucleus (DCN). This conversion is also dependent on NMDA receptor (NMDAR) activation and rises in postsynaptic Ca(2+). While NMDAR activation and Ca(2+) elevation lead to LTP, when these events are coordinated with simultaneous activation of M1/M3 mAChRs, anti-Hebbian LTD is induced. Anti-Hebbian LTD is mediated by a postsynaptic G-protein-coupled receptor intracellular signaling cascade that activates phospholipase C and that leads to enhanced endocannabinoid signaling. Moreover, the interaction between postsynaptic M1/M3 mAChRs and endocannabinoid signaling is input specific, as it occurs only in the parallel fiber inputs, but not in the auditory nerve inputs innervating the same DCN principal neurons. Based on the extensive distribution of cholinergic and endocannabinoid signaling, we suggest that their interaction may provide a general mechanism for dynamic, context-dependent modulation of associative synaptic plasticity.
Collapse
|
28
|
Wersinger E, Fuchs PA. Modulation of hair cell efferents. Hear Res 2010; 279:1-12. [PMID: 21187136 DOI: 10.1016/j.heares.2010.12.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 12/10/2010] [Accepted: 12/20/2010] [Indexed: 02/01/2023]
Abstract
Outer hair cells (OHCs) amplify the sound-evoked motion of the basilar membrane to enhance acoustic sensitivity and frequency selectivity. Medial olivocochlear (MOC) efferents inhibit OHCs to reduce the sound-evoked response of cochlear afferent neurons. OHC inhibition occurs through the activation of postsynaptic α9α10 nicotinic receptors tightly coupled to calcium-dependent SK2 channels that hyperpolarize the hair cell. MOC neurons are cholinergic but a number of other neurotransmitters and neuromodulators have been proposed to participate in efferent transmission, with emerging evidence for both pre- and postsynaptic effects. Cochlear inhibition in vivo is maximized by repetitive activation of the efferents, reflecting facilitation and summation of transmitter release onto outer hair cells. This review summarizes recent studies on cellular and molecular mechanisms of cholinergic inhibition and the regulation of those molecular components, in particular the involvement of intracellular calcium. Facilitation at the efferent synapse is compared in a variety of animals, as well as other possible mechanisms of modulation of ACh release. These results suggest that short-term plasticity contributes to effective cholinergic inhibition of hair cells.
Collapse
Affiliation(s)
- Eric Wersinger
- The Center for Hearing and Balance, Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
29
|
Jones SM, Robertson NG, Given S, Giersch ABS, Liberman MC, Morton CC. Hearing and vestibular deficits in the Coch(-/-) null mouse model: comparison to the Coch(G88E/G88E) mouse and to DFNA9 hearing and balance disorder. Hear Res 2010; 272:42-8. [PMID: 21073934 DOI: 10.1016/j.heares.2010.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 10/28/2010] [Accepted: 11/02/2010] [Indexed: 10/18/2022]
Abstract
Two mouse models, the Coch(G88E/G88E) or "knock-in" and the Coch(-/-) or "knock-out" (Coch null), have been developed to study the human late-onset, progressive, sensorineural hearing loss and vestibular dysfunction known as DFNA9. This disorder results from missense and in-frame deletion mutations in COCH (coagulation factor C homology), encoding cochlin, the most abundantly detected protein in the inner ear. We have performed hearing and vestibular analyses by auditory brainstem response (ABR) and vestibular evoked potential (VsEP) testing of the Coch(-/-) and Coch(G88E/G88E) mouse models. Both Coch(-/-) and Coch(G88E/G88E) mice show substantially elevated ABRs at 21 months of age, but only at the highest frequency tested for the former and all frequencies for the latter. At 21 months, 9 of 11 Coch(-/-) mice and 4 of 8 Coch(G88E/G88E) mice have absent ABRs. Interestingly Coch(-/+) mice do not show hearing deficits, in contrast to Coch(G88E/+), which demonstrate elevated ABR thresholds similar to homozyotes. These results corroborate the DFNA9 autosomal dominant mode of inheritance, in addition to the observation that haploinsufficiency of Coch does not result in impaired hearing. Vestibular evoked potential (VsEP) thresholds were analyzed using a two factor ANOVA (Age X Genotype). Elevated VsEP thresholds are detected in Coch(-/-) mice at 13 and 21 months, the two ages tested, and as early as seven months in the Coch(G88E/G88E) mice. These results indicate that in both mouse models, vestibular function is compromised before cochlear function. Analysis and comparison of hearing and vestibular function in these two DFNA9 mouse models, where deficits occur at such an advanced age, provide insight into the pathology of DFNA9 and age-related hearing loss and vestibular dysfunction as well as an opportunity to investigate potential interventional therapies.
Collapse
Affiliation(s)
- Sherri M Jones
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, NC, USA
| | | | | | | | | | | |
Collapse
|