1
|
Pereira CA, Reis-de-Oliveira G, Pierone BC, Martins-de-Souza D, Kaster MP. Depicting the molecular features of suicidal behavior: a review from an "omics" perspective. Psychiatry Res 2024; 332:115682. [PMID: 38198856 DOI: 10.1016/j.psychres.2023.115682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Background Suicide is one of the leading global causes of death. Behavior patterns from suicide ideation to completion are complex, involving multiple risk factors. Advances in technologies and large-scale bioinformatic tools are changing how we approach biomedical problems. The "omics" field may provide new knowledge about suicidal behavior to improve identification of relevant biological pathways associated with suicidal behavior. Methods We reviewed transcriptomic, proteomic, and metabolomic studies conducted in blood and post-mortem brains from individuals who experienced suicide or suicidal behavior. Omics data were combined using systems biology in silico, aiming at identifying major biological mechanisms and key molecules associated with suicide. Results Post-mortem samples of suicide completers indicate major dysregulations in pathways associated with glial cells (astrocytes and microglia), neurotransmission (GABAergic and glutamatergic systems), neuroplasticity and cell survivor, immune responses and energy homeostasis. In the periphery, studies found alterations in molecules involved in immune responses, polyamines, lipid transport, energy homeostasis, and amino and nucleic acid metabolism. Limitations We included only exploratory, non-hypothesis-driven studies; most studies only included one brain region and whole tissue analysis, and focused on suicide completers who were white males with almost none confounding factors. Conclusions We can highlight the importance of synaptic function, especially the balance between the inhibitory and excitatory synapses, and mechanisms associated with neuroplasticity, common pathways associated with psychiatric disorders. However, some of the pathways highlighted in this review, such as transcriptional factors associated with RNA splicing, formation of cortical connections, and gliogenesis, point to mechanisms that still need to be explored.
Collapse
Affiliation(s)
- Caibe Alves Pereira
- Laboratory of Translational Neurosciences, Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianopolis, Santa Catarina, Brazil
| | - Guilherme Reis-de-Oliveira
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Bruna Caroline Pierone
- Laboratory of Translational Neurosciences, Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianopolis, Santa Catarina, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil; Instituto Nacional de Biomarcadores Em Neuropsiquiatria (INBION) Conselho Nacional de Desenvolvimento Científico E Tecnológico, São Paulo, Brazil; Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil; D'Or Institute for Research and Education (IDOR), São Paulo, Brazil; INCT in Modelling Human Complex Diseases with 3D Platforms (Model3D), São Paulo, Brazil.
| | - Manuella Pinto Kaster
- Laboratory of Translational Neurosciences, Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianopolis, Santa Catarina, Brazil.
| |
Collapse
|
2
|
Marques DM, Almeida AS, Oliveira CBA, Machado ACL, Lara MVS, Porciúncula LO. Delayed Outgrowth in Response to the BDNF and Altered Synaptic Proteins in Neurons From SHR Rats. Neurochem Res 2023:10.1007/s11064-023-03917-9. [PMID: 36995561 DOI: 10.1007/s11064-023-03917-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/23/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by inattention, hyperactivity, and impulsivity symptoms. Neuroimaging studies have revealed a delayed cortical and subcortical development pattern in children diagnosed with ADHD. This study followed up on the development in vitro of frontal cortical neurons from Spontaneously hypertensive rats (SHR), an ADHD rat model, and Wistar-Kyoto rats (WKY), control strain, over their time in culture, and in response to BDNF treatment at two different days in vitro (DIV). These neurons were also evaluated for synaptic proteins, brain-derived neurotrophic factor (BDNF), and related protein levels. Frontal cortical neurons from the ADHD rat model exhibited shorter dendrites and less dendritic branching over their time in culture. While pro- and mature BDNF levels were not altered, the cAMP-response element-binding (CREB) decreased at 1 DIV and SNAP-25 decreased at 5 DIV. Different from control cultures, exogenous BDNF promoted less dendritic branching in neurons from the ADHD model. Our data revealed that neurons from the ADHD model showed decreased levels of an important transcription factor at the beginning of their development, and their delayed outgrowth and maturation had consequences in the levels of SNAP-25 and may be associated with less response to BDNF. These findings provide an alternative tool for studies on synaptic dysfunctions in ADHD. They may also offer a valuable tool for investigating drug effects and new treatment opportunities.
Collapse
Affiliation(s)
- Daniela M Marques
- Departamento de Bioquímica, Programa de Pós-Graduação Em Ciências Biológicas-Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, Porto Alegre, RS, 90035-003, Brasil
| | - Amanda S Almeida
- Departamento de Bioquímica, Programa de Pós-Graduação Em Ciências Biológicas-Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, Porto Alegre, RS, 90035-003, Brasil
| | - Catiane B A Oliveira
- Departamento de Bioquímica, Programa de Pós-Graduação Em Ciências Biológicas-Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, Porto Alegre, RS, 90035-003, Brasil
| | - Ana Carolina L Machado
- Departamento de Bioquímica, Programa de Pós-Graduação Em Ciências Biológicas-Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, Porto Alegre, RS, 90035-003, Brasil
| | - Marcus Vinícius S Lara
- Departamento de Bioquímica, Programa de Pós-Graduação Em Ciências Biológicas-Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, Porto Alegre, RS, 90035-003, Brasil
| | - Lisiane O Porciúncula
- Departamento de Bioquímica, Programa de Pós-Graduação Em Ciências Biológicas-Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, Porto Alegre, RS, 90035-003, Brasil.
| |
Collapse
|
3
|
Suárez-Rivero JM, López-Pérez J, Muela-Zarzuela I, Pastor-Maldonado C, Cilleros-Holgado P, Gómez-Fernández D, Álvarez-Córdoba M, Munuera-Cabeza M, Talaverón-Rey M, Povea-Cabello S, Suárez-Carrillo A, Piñero-Pérez R, Reche-López D, Romero-Domínguez JM, Sánchez-Alcázar JA. Neurodegeneration, Mitochondria, and Antibiotics. Metabolites 2023; 13:metabo13030416. [PMID: 36984858 PMCID: PMC10056573 DOI: 10.3390/metabo13030416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Neurodegenerative diseases are characterized by the progressive loss of neurons, synapses, dendrites, and myelin in the central and/or peripheral nervous system. Actual therapeutic options for patients are scarce and merely palliative. Although they affect millions of patients worldwide, the molecular mechanisms underlying these conditions remain unclear. Mitochondrial dysfunction is generally found in neurodegenerative diseases and is believed to be involved in the pathomechanisms of these disorders. Therefore, therapies aiming to improve mitochondrial function are promising approaches for neurodegeneration. Although mitochondrial-targeted treatments are limited, new research findings have unraveled the therapeutic potential of several groups of antibiotics. These drugs possess pleiotropic effects beyond their anti-microbial activity, such as anti-inflammatory or mitochondrial enhancer function. In this review, we will discuss the controversial use of antibiotics as potential therapies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Juan M. Suárez-Rivero
- Institute for Biomedical Researching and Innovation of Cádiz (INiBICA) University Hospital Puerta del Mar, 11009 Cádiz, Spain
| | - Juan López-Pérez
- Institute for Biomedical Researching and Innovation of Cádiz (INiBICA) University Hospital Puerta del Mar, 11009 Cádiz, Spain
| | - Inés Muela-Zarzuela
- Institute for Biomedical Researching and Innovation of Cádiz (INiBICA) University Hospital Puerta del Mar, 11009 Cádiz, Spain
| | - Carmen Pastor-Maldonado
- Department of Molecular Biology Interfaculty Institute for Cell Biology, University of Tuebingen, D-72076 Tuebingen, Germany
| | - Paula Cilleros-Holgado
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - David Gómez-Fernández
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Mónica Álvarez-Córdoba
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Manuel Munuera-Cabeza
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Marta Talaverón-Rey
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Suleva Povea-Cabello
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Alejandra Suárez-Carrillo
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Rocío Piñero-Pérez
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Diana Reche-López
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - José M. Romero-Domínguez
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - José Antonio Sánchez-Alcázar
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
- Correspondence: ; Tel.: +34-954978071
| |
Collapse
|
4
|
miR-34a regulates silent synapse and synaptic plasticity in mature hippocampus. Prog Neurobiol 2023; 222:102404. [PMID: 36642095 DOI: 10.1016/j.pneurobio.2023.102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/26/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
AMPAR-lacking silent synapses are prevailed and essential for synaptic refinement and synaptic plasticity in developing brains. In mature brain, they are sparse but could be induced under several pathological conditions. How they are regulated molecularly is far from clear. miR-34a is a highly conserved and brain-enriched microRNA with age-dependent upregulated expression profile. Its neuronal function in mature brain remains to be revealed. Here by analyzing synaptic properties of the heterozygous miR-34a knock out mice (34a_ht), we have discovered that mature but not juvenile 34a_ht mice have more silent synapses in the hippocampus accompanied with enhanced synaptic NMDAR but not AMPAR function and increased spine density. As a result, 34a_ht mice display enhanced long-term potentiation (LTP) in the Schaffer collateral synapses and better spatial learning and memory. We further found that Creb1 is a direct target of miR-34a, whose upregulation and activation may mediate the silent synapse increment in 34a_ht mice. Hence, we reveal a novel physiological role of miR-34a in mature brains and provide a molecular mechanism underlying silent synapse regulation.
Collapse
|
5
|
Antoniou A, Auderset L, Kaurani L, Sebastian E, Zeng Y, Allahham M, Cases-Cunillera S, Schoch S, Gründemann J, Fischer A, Schneider A. Neuronal extracellular vesicles and associated microRNAs induce circuit connectivity downstream BDNF. Cell Rep 2023; 42:112063. [PMID: 36753414 DOI: 10.1016/j.celrep.2023.112063] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/13/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023] Open
Abstract
Extracellular vesicles (EVs) have emerged as mediators of cellular communication, in part via the delivery of associated microRNAs (miRNAs), small non-coding RNAs that regulate gene expression. We show that brain-derived neurotrophic factor (BDNF) mediates the sorting of miR-132-5p, miR-218-5p, and miR-690 in neuron-derived EVs. BDNF-induced EVs in turn increase excitatory synapse formation in recipient hippocampal neurons, which is dependent on the inter-neuronal delivery of these miRNAs. Transcriptomic analysis further indicates the differential expression of developmental and synaptogenesis-related genes by BDNF-induced EVs, many of which are predicted targets of miR-132-5p, miR-218-5p, and miR-690. Furthermore, BDNF-induced EVs up-regulate synaptic vesicle (SV) clustering in a transmissible manner, thereby increasing synaptic transmission and synchronous neuronal activity. As BDNF and EV-miRNAs miR-218 and miR-132 were previously implicated in neuropsychiatric disorders such as anxiety and depression, our results contribute to a better understanding of disorders characterized by aberrant neural circuit connectivity.
Collapse
Affiliation(s)
- Anna Antoniou
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn Medical Center, 53127 Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany.
| | - Loic Auderset
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn Medical Center, 53127 Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Lalit Kaurani
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, 37075 Göttingen, Germany; Department for Systems Medicine and Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, 37075 Göttingen, Germany
| | - Eva Sebastian
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Yuzhou Zeng
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn Medical Center, 53127 Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Maria Allahham
- Institute of Bio- and Geosciences 1, Forschungszentrum Jülich, 52428 Jülich, Germany; Aachen Biology and Biotechnology, RWTH Aachen University, 52056 Aachen, Germany
| | - Silvia Cases-Cunillera
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Susanne Schoch
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Jan Gründemann
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Andre Fischer
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, 37075 Göttingen, Germany; Department for Systems Medicine and Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, 37075 Göttingen, Germany
| | - Anja Schneider
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn Medical Center, 53127 Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany.
| |
Collapse
|
6
|
SRF depletion in early life contributes to social interaction deficits in the adulthood. Cell Mol Life Sci 2022; 79:278. [PMID: 35505150 PMCID: PMC9064851 DOI: 10.1007/s00018-022-04291-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/11/2022] [Accepted: 04/05/2022] [Indexed: 12/05/2022]
Abstract
Alterations in social behavior are core symptoms of major developmental neuropsychiatric diseases such as autism spectrum disorders or schizophrenia. Hence, understanding their molecular and cellular underpinnings constitutes the major research task. Dysregulation of the global gene expression program in the developing brain leads to modifications in a number of neuronal connections, synaptic strength and shape, causing unbalanced neuronal plasticity, which may be important substrate in the pathogenesis of neurodevelopmental disorders, contributing to their clinical outcome. Serum response factor (SRF) is a major transcription factor in the brain. The behavioral influence of SRF deletion during neuronal differentiation and maturation has never been studied because previous attempts to knock-out the gene caused premature death. Herein, we generated mice that lacked SRF from early postnatal development to precisely investigate the role of SRF starting in the specific time window before maturation of excitatory synapses that are located on dendritic spine occurs. We show that the time-controlled loss of SRF in neurons alters specific aspects of social behaviors in SRF knock-out mice, and causes deficits in developmental spine maturation at both the structural and functional levels, including downregulated expression of the AMPARs subunits GluA1 and GluA2, and increases the percentage of filopodial/immature dendritic spines. In aggregate, our study uncovers the consequences of postnatal SRF elimination for spine maturation and social interactions revealing novel mechanisms underlying developmental neuropsychiatric diseases.
Collapse
|
7
|
Loverde JR, Tolentino RE, Soteropoulos P, Pfister BJ. Biomechanical Forces Regulate Gene Transcription During Stretch-Mediated Growth of Mammalian Neurons. Front Neurosci 2021; 14:600136. [PMID: 33408609 PMCID: PMC7780124 DOI: 10.3389/fnins.2020.600136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/11/2020] [Indexed: 11/25/2022] Open
Abstract
At birth, there are 100 billion neurons in the human brain, with functional neural circuits extending through the spine to the epidermis of the feet and toes. Following birth, limbs and vertebrae continue to grow by several orders of magnitude, forcing established axons to grow by up to 200 cm in length without motile growth cones. The leading regulatory paradigm suggests that biomechanical expansion of mitotic tissue exerts tensile force on integrated nervous tissue, which synchronizes ongoing growth of spanning axons. Here, we identify unique transcriptional changes in embryonic rat DRG and cortical neurons while the corresponding axons undergo physiological levels of controlled mechanical stretch in vitro. Using bioreactors containing cultured neurons, we recapitulated the peak biomechanical increase in embryonic rat crown-rump-length. Biologically paired sham and “stretch-grown” DRG neurons spanned 4.6- and 17.2-mm in length following static or stretch-induced growth conditions, respectively, which was associated with 456 significant changes in gene transcription identified by genome-wide cDNA microarrays. Eight significant genes found in DRG were cross-validated in stretch-grown cortical neurons by qRT-PCR, which included upregulation of Gpat3, Crem, Hmox1, Hpse, Mt1a, Nefm, Sprr1b, and downregulation of Nrep. The results herein establish a link between biomechanics and gene transcription in mammalian neurons, which elucidates the mechanism underlying long-term growth of axons, and provides a basis for new research in therapeutic axon regeneration.
Collapse
Affiliation(s)
- Joseph R Loverde
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials, and Medicine, New Jersey Institute of Technology, Newark, NJ, United States
| | - Rosa E Tolentino
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials, and Medicine, New Jersey Institute of Technology, Newark, NJ, United States
| | - Patricia Soteropoulos
- Department of Microbiology, Biochemistry and Molecular Genetics, Genomics Center, Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Bryan J Pfister
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials, and Medicine, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
8
|
Esvald EE, Tuvikene J, Sirp A, Patil S, Bramham CR, Timmusk T. CREB Family Transcription Factors Are Major Mediators of BDNF Transcriptional Autoregulation in Cortical Neurons. J Neurosci 2020; 40:1405-1426. [PMID: 31915257 PMCID: PMC7044735 DOI: 10.1523/jneurosci.0367-19.2019] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 12/10/2019] [Accepted: 12/28/2019] [Indexed: 01/19/2023] Open
Abstract
BDNF signaling via its transmembrane receptor TrkB has an important role in neuronal survival, differentiation, and synaptic plasticity. Remarkably, BDNF is capable of modulating its own expression levels in neurons, forming a transcriptional positive feedback loop. In the current study, we have investigated this phenomenon in primary cultures of rat cortical neurons using overexpression of dominant-negative forms of several transcription factors, including CREB, ATF2, C/EBP, USF, and NFAT. We show that CREB family transcription factors, together with the coactivator CBP/p300, but not the CRTC family, are the main regulators of rat BDNF gene expression after TrkB signaling. CREB family transcription factors are required for the early induction of all the major BDNF transcripts, whereas CREB itself directly binds only to BDNF promoter IV, is phosphorylated in response to BDNF-TrkB signaling, and activates transcription from BDNF promoter IV by recruiting CBP. Our complementary reporter assays with BDNF promoter constructs indicate that the regulation of BDNF by CREB family after BDNF-TrkB signaling is generally conserved between rat and human. However, we demonstrate that a nonconserved functional cAMP-responsive element in BDNF promoter IXa in humans renders the human promoter responsive to BDNF-TrkB-CREB signaling, whereas the rat ortholog is unresponsive. Finally, we show that extensive BDNF transcriptional autoregulation, encompassing all major BDNF transcripts, occurs also in vivo in the adult rat hippocampus during BDNF-induced LTP. Collectively, these results improve the understanding of the intricate mechanism of BDNF transcriptional autoregulation.SIGNIFICANCE STATEMENT Deeper understanding of stimulus-specific regulation of BDNF gene expression is essential to precisely adjust BDNF levels that are dysregulated in various neurological disorders. Here, we have elucidated the molecular mechanisms behind TrkB signaling-dependent BDNF mRNA induction and show that CREB family transcription factors are the main regulators of BDNF gene expression after TrkB signaling. Our results suggest that BDNF-TrkB signaling may induce BDNF gene expression in a distinct manner compared with neuronal activity. Moreover, our data suggest the existence of a stimulus-specific distal enhancer modulating BDNF gene expression.
Collapse
MESH Headings
- Animals
- Basic-Leucine Zipper Transcription Factors/physiology
- Brain-Derived Neurotrophic Factor/biosynthesis
- Brain-Derived Neurotrophic Factor/genetics
- Brain-Derived Neurotrophic Factor/pharmacology
- Cells, Cultured
- Cerebral Cortex/cytology
- Cerebral Cortex/metabolism
- Cyclic AMP Response Element-Binding Protein/physiology
- Cytoskeletal Proteins/biosynthesis
- Cytoskeletal Proteins/genetics
- Feedback, Physiological
- Female
- Gene Expression Regulation/genetics
- Genes, Dominant
- Genes, Reporter
- Genes, Synthetic
- Hippocampus/cytology
- Hippocampus/metabolism
- MAP Kinase Signaling System/physiology
- Male
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Neurons/metabolism
- Promoter Regions, Genetic
- Protein Kinase Inhibitors/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, trkB/physiology
- Recombinant Proteins/pharmacology
- Response Elements
- Signal Transduction/physiology
- Species Specificity
- Transcription, Genetic/genetics
- Transduction, Genetic
Collapse
Affiliation(s)
- Eli-Eelika Esvald
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn 12618, Estonia,
- Protobios LLC, Tallinn 12618, Estonia
| | - Jürgen Tuvikene
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn 12618, Estonia
- Protobios LLC, Tallinn 12618, Estonia
| | - Alex Sirp
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn 12618, Estonia
| | - Sudarshan Patil
- Department of Biomedicine and KG Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, 5009 Bergen, Norway, and
| | - Clive R Bramham
- Department of Biomedicine and KG Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, 5009 Bergen, Norway, and
| | - Tõnis Timmusk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn 12618, Estonia,
- Protobios LLC, Tallinn 12618, Estonia
| |
Collapse
|
9
|
Maeder CI, Kim JI, Liang X, Kaganovsky K, Shen A, Li Q, Li Z, Wang S, Xu XZS, Li JB, Xiang YK, Ding JB, Shen K. The THO Complex Coordinates Transcripts for Synapse Development and Dopamine Neuron Survival. Cell 2018; 174:1436-1449.e20. [PMID: 30146163 DOI: 10.1016/j.cell.2018.07.046] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 05/11/2018] [Accepted: 07/26/2018] [Indexed: 01/07/2023]
Abstract
Synaptic vesicle and active zone proteins are required for synaptogenesis. The molecular mechanisms for coordinated synthesis of these proteins are not understood. Using forward genetic screens, we identified the conserved THO nuclear export complex (THOC) as an important regulator of presynapse development in C. elegans dopaminergic neurons. In THOC mutants, synaptic messenger RNAs are retained in the nucleus, resulting in dramatic decrease of synaptic protein expression, near complete loss of synapses, and compromised dopamine function. CRE binding protein (CREB) interacts with THOC to mark synaptic transcripts for efficient nuclear export. Deletion of Thoc5, a THOC subunit, in mouse dopaminergic neurons causes severe defects in synapse maintenance and subsequent neuronal death in the substantia nigra compacta. These cellular defects lead to abrogated dopamine release, ataxia, and animal death. Together, our results argue that nuclear export mechanisms can select specific mRNAs and be a rate-limiting step for neuronal differentiation and survival.
Collapse
Affiliation(s)
- Celine I Maeder
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Jae-Ick Kim
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xing Liang
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Konstantin Kaganovsky
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ao Shen
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Qin Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Zhaoyu Li
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sui Wang
- Department of Opthalmology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - X Z Shawn Xu
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Yang Kevin Xiang
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Jun B Ding
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Kang Shen
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
10
|
Post-natal Deletion of Neuronal cAMP Responsive-Element Binding (CREB)-1 Promotes Pro-inflammatory Changes in the Mouse Hippocampus. Neurochem Res 2017; 42:2230-2245. [DOI: 10.1007/s11064-017-2233-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/08/2017] [Accepted: 03/11/2017] [Indexed: 12/19/2022]
|
11
|
Fiorino A, Manenti G, Gamba B, Bucci G, De Cecco L, Sardella M, Buscemi G, Ciceri S, Radice MT, Radice P, Perotti D. Retina-derived POU domain factor 1 coordinates expression of genes relevant to renal and neuronal development. Int J Biochem Cell Biol 2016; 78:162-172. [PMID: 27425396 DOI: 10.1016/j.biocel.2016.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 03/18/2016] [Accepted: 07/14/2016] [Indexed: 12/19/2022]
Abstract
Retina-derived POU domain Factor 1 (RPF-1), a member of POU transcription factor family, is encoded by POU6F2 gene, addressed by interstitial deletions at chromosome 7p14 in Wilms tumor (WT). Its expression has been detected in developing kidney and nervous system, suggesting an early role for this gene in regulating development of these organs. To investigate into its functions and determine its role in transcriptional regulation, we generated an inducible stable transfectant from HEK293 cells. RPF-1 showed nuclear localization, elevated stability, and transactivation of promoters featuring POU consensus sites, and led to reduced cell proliferation and in vivo tumor growth. By addressing the whole transcriptome regulated by its induction, we could detect a gross alteration of gene expression that is consistent with promoter occupancy predicted by genome-wide Chip-chip analysis. Comparison of bound regulatory regions with differentially expressed genes allowed identification of 217 candidate targets. Enrichment of divergent octamers in predicted regulatory regions revealed promiscuous binding to bipartite POUS and POUH consensus half-sites with intervening spacers. Gel-shift competition assay confirmed the specificity of RPF-1 binding to consensus motifs, and demonstrated that the Ser-rich region upstream of the POU domain is indispensable to achieve DNA-binding. Promoter-reporter activity addressing a few target genes indicated a dependence by RPF-1 on transcriptional response. In agreement with its expression in developing kidney and nervous system, the induced transcriptome appears to indicate a function for this protein in early renal differentiation and neuronal cell fate, providing a resource for understanding its role in the processes thereby regulated.
Collapse
Affiliation(s)
- Antonio Fiorino
- Department of Predictive & Preventive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Italy.
| | - Giacomo Manenti
- Department of Predictive & Preventive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Italy
| | - Beatrice Gamba
- Department of Predictive & Preventive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Italy
| | - Gabriele Bucci
- Cogentech, Consortium for Genomic Technologies, IFOM-IEO Campus, Italy
| | - Loris De Cecco
- Functional Genomic Core Facility, Fondazione IRCCS Istituto Nazionale dei Tumori, Italy
| | - Michele Sardella
- Department of Predictive & Preventive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Italy
| | | | - Sara Ciceri
- Department of Predictive & Preventive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Italy
| | - Maria T Radice
- Experimental Oncology & Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Italy
| | - Paolo Radice
- Department of Predictive & Preventive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Italy
| | - Daniela Perotti
- Department of Predictive & Preventive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Italy
| |
Collapse
|
12
|
CREB Regulates Experience-Dependent Spine Formation and Enlargement in Mouse Barrel Cortex. Neural Plast 2015; 2015:651469. [PMID: 26075101 PMCID: PMC4436461 DOI: 10.1155/2015/651469] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 11/25/2022] Open
Abstract
Experience modifies synaptic connectivity through processes that involve dendritic spine rearrangements in neuronal circuits. Although cAMP response element binding protein (CREB) has a key function in spines changes, its role in activity-dependent rearrangements in brain regions of rodents interacting with the surrounding environment has received little attention so far.
Here we studied the effects of vibrissae trimming, a widely used model of sensory deprivation-induced cortical plasticity, on processes associated with dendritic spine rearrangements in the barrel cortex of a transgenic mouse model of CREB downregulation (mCREB mice). We found that sensory deprivation through prolonged whisker trimming leads to an increased number of thin spines in the layer V of related barrel cortex (Contra) in wild type but not mCREB mice. In the barrel field controlling spared whiskers (Ipsi), the same trimming protocol results in a CREB-dependent enlargement of dendritic spines. Last, we demonstrated that CREB regulates structural rearrangements of synapses that associate with dynamic changes of dendritic spines. Our findings suggest that CREB plays a key role in dendritic spine dynamics and synaptic circuits rearrangements that account for new brain connectivity in response to changes in the environment.
Collapse
|
13
|
Kyzar EJ, Pandey SC. Molecular mechanisms of synaptic remodeling in alcoholism. Neurosci Lett 2015; 601:11-9. [PMID: 25623036 DOI: 10.1016/j.neulet.2015.01.051] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 01/21/2023]
Abstract
Alcohol use and alcohol addiction represent dysfunctional brain circuits resulting from neuroadaptive changes during protracted alcohol exposure and its withdrawal. Alcohol exerts a potent effect on synaptic plasticity and dendritic spine formation in specific brain regions, providing a neuroanatomical substrate for the pathophysiology of alcoholism. Epigenetics has recently emerged as a critical regulator of gene expression and synaptic plasticity-related events in the brain. Alcohol exposure and withdrawal induce changes in crucial epigenetic processes in the emotional brain circuitry (amygdala) that may be relevant to the negative affective state defined as the "dark side" of addiction. Here, we review the literature concerning synaptic plasticity and epigenetics, with a particular focus on molecular events related to dendritic remodeling during alcohol abuse and alcoholism. Targeting epigenetic processes that modulate synaptic plasticity may yield novel treatments for alcoholism.
Collapse
Affiliation(s)
- Evan J Kyzar
- Department of Psychiatry, University of Illinois at Chicago, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - Subhash C Pandey
- Department of Psychiatry, University of Illinois at Chicago, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA; Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
14
|
Vogt MA, Inta D, Luoni A, Elkin H, Pfeiffer N, Riva MA, Gass P. Inducible forebrain-specific ablation of the transcription factor Creb during adulthood induces anxiety but no spatial/contextual learning deficits. Front Behav Neurosci 2014; 8:407. [PMID: 25505876 PMCID: PMC4245921 DOI: 10.3389/fnbeh.2014.00407] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/10/2014] [Indexed: 12/13/2022] Open
Abstract
The cyclic AMP (cAMP)-response element binding protein (CREB) is an activity-dependent transcription factor playing a role in synaptic plasticity, learning and memory, and emotional behavior. However, the impact of Creb ablation on rodent behavior is vague as e.g., memory performance of different Creb mutant mice depends on the specific type of mutation per se but additionally on the background and learning protocol differences. Here we present the first targeted ablation of CREB induced during adulthood selectively in principal forebrain neurons in a pure background strain of C57BL/6 mice. All hippocampal principal neurons exhibited lack of CREB expression. Mutant mice showed a severe anxiety phenotype in the openfield and novel object exploration test as well as in the Dark-Light Box Test, but unaltered hippocampus-dependent long-term memory in the Morris water maze and in context dependent fear conditioning. On the molecular level, CREB ablation led to CREM up regulation in the hippocampus and frontal cortex which may at least in part compensate for the loss of CREB. BDNF, a postulated CREB target gene, was down regulated in the frontal lobe but not in the hippocampus; neurogenesis remained unaltered. Our data indicate that in the adult mouse forebrain the late onset of CREB ablation can, in case of memory functionality, be compensated for and is not essential for memory consolidation and retrieval during adulthood. In contrast, the presence of CREB protein during adulthood seems to be pivotal for the regulation of emotional behavior.
Collapse
Affiliation(s)
- Miriam A Vogt
- Department of Psychiatry and Psychotherapy, RG Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University Mannheim, Germany
| | - Dragos Inta
- Department of Psychiatry and Psychotherapy, RG Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University Mannheim, Germany
| | - Alessia Luoni
- Department of Pharmacological and Biomolecular Sciences University of Milan, Milan, Italy
| | - Hasan Elkin
- Department of Psychiatry and Psychotherapy, RG Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University Mannheim, Germany
| | - Natascha Pfeiffer
- Department of Psychiatry and Psychotherapy, RG Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University Mannheim, Germany
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences University of Milan, Milan, Italy
| | - Peter Gass
- Department of Psychiatry and Psychotherapy, RG Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University Mannheim, Germany
| |
Collapse
|
15
|
Parlato R, Mandl C, Hölzl-Wenig G, Liss B, Tucker KL, Ciccolini F. Regulation of proliferation and histone acetylation in embryonic neural precursors by CREB/CREM signaling. NEUROGENESIS 2014; 1:e970883. [PMID: 27504469 PMCID: PMC4973597 DOI: 10.4161/23262125.2014.970883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 08/05/2014] [Accepted: 09/26/2014] [Indexed: 12/26/2022]
Abstract
The transcription factor CREB (cAMP-response element binding protein) regulates differentiation, migration, survival and activity-dependent gene expression in the developing and mature nervous system. However, its specific role in the proliferation of embryonic neural progenitors is still not completely understood. Here we investigated how CREB regulates proliferation of mouse embryonic neural progenitors by a conditional mutant lacking Creb gene in neural progenitors. In parallel, we explored possible compensatory effects by the genetic ablation of another member of the same gene family, the cAMP-responsive element modulator (Crem). We show that CREB loss differentially impaired the proliferation, clonogenic potential and self-renewal of precursors derived from the ganglionic eminence (GE), in comparison to those derived from the cortex. This phenotype was associated with a specific reduction of histone acetylation in the GE of CREB mutant mice, and this reduction was rescued in vivo by inhibition of histone deacetylation. These observations indicate that the impaired proliferation could be caused by a reduced acetyltransferase activity in Creb conditional knock-out mice. These findings support a crucial role of CREB in controlling embryonic neurogenesis and propose a novel mechanism by which CREB regulates embryonic neural development.
Collapse
Affiliation(s)
- Rosanna Parlato
- Institute of Applied Physiology; University of Ulm; Ulm, Germany; Dept. of Molecular Biology of the Cell I; DKFZ-ZMBH Alliance; German Cancer Research Center; Heidelberg, Germany; Institute of Anatomy and Cell Biology; Interdisciplinary Center for Neurosciences (IZN); University of Heidelberg; Heidelberg, Germany
| | - Claudia Mandl
- Department of Neurobiology; Interdisciplinary Center for Neurosciences (IZN); University of Heidelberg ; Heidelberg, Germany
| | - Gabriele Hölzl-Wenig
- Department of Neurobiology; Interdisciplinary Center for Neurosciences (IZN); University of Heidelberg ; Heidelberg, Germany
| | - Birgit Liss
- Institute of Applied Physiology; University of Ulm ; Ulm, Germany
| | - Kerry L Tucker
- Institute of Anatomy and Cell Biology; Interdisciplinary Center for Neurosciences (IZN); University of Heidelberg; Heidelberg, Germany; Kerry L Tucker's current affiliation is the Center for Excellence in the Neurosciences, Dept. of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, USA
| | - Francesca Ciccolini
- Department of Neurobiology; Interdisciplinary Center for Neurosciences (IZN); University of Heidelberg ; Heidelberg, Germany
| |
Collapse
|
16
|
Dong Y, Nestler EJ. The neural rejuvenation hypothesis of cocaine addiction. Trends Pharmacol Sci 2014; 35:374-83. [PMID: 24958329 DOI: 10.1016/j.tips.2014.05.005] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/27/2014] [Accepted: 05/27/2014] [Indexed: 12/16/2022]
Abstract
A leading hypothesis guiding current molecular and cellular research into drug addiction conceptualizes key aspects of addiction as a form of memory in which common neuroplasticity mechanisms that mediate normal learning and memory processes are 'hijacked' by exposure to drugs of abuse to produce pathologic addiction-related memories. Such addiction-related memories are particularly robust and long-lasting and once formed are less amenable to updating. Here we propose a neural rejuvenation hypothesis of cocaine addiction. According to this hypothesis, repeated exposure to drugs of abuse induces some plasticity mechanisms normally associated with brain development within the reward circuitry that mediate the highly efficient and unusually stable memory abnormalities that characterize addiction.
Collapse
Affiliation(s)
- Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA15260, USA.
| | - Eric J Nestler
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
17
|
Chiesa A, Marsano A, Han C, Lee SJ, Patkar AA, Pae CU, Serretti A. Epistatic Interactions between CREB and CREM Variants in Affective Disorder. Psychiatry Investig 2014; 11:200-3. [PMID: 24843377 PMCID: PMC4023096 DOI: 10.4306/pi.2014.11.2.200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/20/2013] [Accepted: 05/20/2013] [Indexed: 12/16/2022] Open
Abstract
The aim of the present work is to investigate the existence of epistatic interactions possibly influencing psychotropic agents' response between rs6740584 within Cyclic adenosine monophosphate Response Element Binding (CREB) and rs12775799 within cAMP response element-modulator (CREM) variants in bipolar disorder (BD) and major depressive disorder (MDD). All BD and MDD patients were administered with the Young Mania Rating Scale (YMRS) and Hamilton Depression Rating Scale (HAMD) at baseline and at endpoint, respectively. A multiple regression model was employed to investigate the existence of possible epistatic interactions between the two variants and diverse clinical factors including drug response in affective disorders. No significant epistatic interaction was observed between rs6740584 within CREB and rs12775799 within CREM on both symptom improvement and other clinical factors in affective disorders. Our preliminary results suggest that no epistatic interaction between rs6740584 within CREB and rs12775799 within CREM should exist on clinical improvement and clinical factors in affective disorders.
Collapse
Affiliation(s)
- Alberto Chiesa
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Agnese Marsano
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Changsu Han
- Department of Psychiatry, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Soo-Jung Lee
- Department of Psychiatry, Bucheon St. Mary's Hospital, The Catholic University of Korea College of Medicine, Bucheon, Republic of Korea
| | - Ashwin A. Patkar
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Chi-Un Pae
- Department of Psychiatry, Bucheon St. Mary's Hospital, The Catholic University of Korea College of Medicine, Bucheon, Republic of Korea
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Alessandro Serretti
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
18
|
Sargin D, Mercaldo V, Yiu AP, Higgs G, Han JH, Frankland PW, Josselyn SA. CREB regulates spine density of lateral amygdala neurons: implications for memory allocation. Front Behav Neurosci 2013; 7:209. [PMID: 24391565 PMCID: PMC3868910 DOI: 10.3389/fnbeh.2013.00209] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 12/05/2013] [Indexed: 11/29/2022] Open
Abstract
Neurons may compete against one another for integration into a memory trace. Specifically, neurons in the lateral nucleus of the amygdala with relatively higher levels of cAMP Responsive Element Binding Protein (CREB) seem to be preferentially allocated to a fear memory trace, while neurons with relatively decreased CREB function seem to be excluded from a fear memory trace. CREB is a ubiquitous transcription factor that modulates many diverse cellular processes, raising the question as to which of these CREB-mediated processes underlie memory allocation. CREB is implicated in modulating dendritic spine number and morphology. As dendritic spines are intimately involved in memory formation, we investigated whether manipulations of CREB function alter spine number or morphology of neurons at the time of fear conditioning. We used viral vectors to manipulate CREB function in the lateral amygdala (LA) principal neurons in mice maintained in their homecages. At the time that fear conditioning normally occurs, we observed that neurons with high levels of CREB had more dendritic spines, while neurons with low CREB function had relatively fewer spines compared to control neurons. These results suggest that the modulation of spine density provides a potential mechanism for preferential allocation of a subset of neurons to the memory trace.
Collapse
Affiliation(s)
- Derya Sargin
- Program in Neurosciences and Mental Health, Hospital for Sick Children Toronto, ON, Canada ; Department of Psychology, University of Toronto Toronto, ON, Canada ; Department of Physiology, University of Toronto Toronto, ON, Canada ; Institute of Medical Science, University of Toronto Toronto, ON, Canada
| | - Valentina Mercaldo
- Program in Neurosciences and Mental Health, Hospital for Sick Children Toronto, ON, Canada ; Department of Psychology, University of Toronto Toronto, ON, Canada ; Department of Physiology, University of Toronto Toronto, ON, Canada ; Institute of Medical Science, University of Toronto Toronto, ON, Canada
| | - Adelaide P Yiu
- Program in Neurosciences and Mental Health, Hospital for Sick Children Toronto, ON, Canada ; Department of Psychology, University of Toronto Toronto, ON, Canada ; Department of Physiology, University of Toronto Toronto, ON, Canada ; Institute of Medical Science, University of Toronto Toronto, ON, Canada
| | - Gemma Higgs
- Program in Neurosciences and Mental Health, Hospital for Sick Children Toronto, ON, Canada ; Department of Psychology, University of Toronto Toronto, ON, Canada ; Department of Physiology, University of Toronto Toronto, ON, Canada ; Institute of Medical Science, University of Toronto Toronto, ON, Canada
| | - Jin-Hee Han
- Program in Neurosciences and Mental Health, Hospital for Sick Children Toronto, ON, Canada ; Department of Psychology, University of Toronto Toronto, ON, Canada ; Department of Physiology, University of Toronto Toronto, ON, Canada ; Institute of Medical Science, University of Toronto Toronto, ON, Canada ; Laboratory of Neural Circuit and Behavior, Department of Biological Sciences, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology Daejeon, Korea
| | - Paul W Frankland
- Program in Neurosciences and Mental Health, Hospital for Sick Children Toronto, ON, Canada ; Department of Psychology, University of Toronto Toronto, ON, Canada ; Department of Physiology, University of Toronto Toronto, ON, Canada ; Institute of Medical Science, University of Toronto Toronto, ON, Canada
| | - Sheena A Josselyn
- Program in Neurosciences and Mental Health, Hospital for Sick Children Toronto, ON, Canada ; Department of Psychology, University of Toronto Toronto, ON, Canada ; Department of Physiology, University of Toronto Toronto, ON, Canada ; Institute of Medical Science, University of Toronto Toronto, ON, Canada
| |
Collapse
|
19
|
Wide distribution of CREM immunoreactivity in adult and fetal human brain, with an increased expression in dentate gyrus neurons of Alzheimer's as compared to normal aging brains. Amino Acids 2013; 45:1373-83. [PMID: 24100545 DOI: 10.1007/s00726-013-1601-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/23/2013] [Indexed: 12/12/2022]
Abstract
Human cyclic AMP response modulator proteins (CREMs) are encoded by the CREM gene, which generates 30 or more different CREM protein isoforms. They are members of the leucine zipper protein superfamily of nuclear transcription factors. CREM proteins are known to be implicated in a plethora of important cellular processes within the CNS. Amazingly, little is known about their cellular and regional distribution in the brain, however. Therefore, we studied by means of immunohistochemistry and Western blotting the expression patterns of CREM in developing and adult human brain, as well as in brains of Alzheimer's disease patients. CREM immunoreactivity was found to be widely but unevenly distributed in the adult human brain. Its localization was confined to neurons. In immature human brains, CREM multiple neuroblasts and radial glia cells expressed CREM. In Alzheimer's brain, we found an increased cellular expression of CREM in dentate gyrus neurons as compared to controls. We discuss our results with regard to the putative roles of CREM in brain development and in cognition.
Collapse
|
20
|
Crisafulli C, Shim DS, Andrisano C, Pae CU, Chiesa A, Han C, Patkar AA, Lee SJ, Serretti A, De Ronchi D. Case-control association study of 14 variants of CREB1, CREBBP and CREM on diagnosis and treatment outcome in major depressive disorder and bipolar disorder. Psychiatry Res 2012; 198:39-46. [PMID: 22386572 DOI: 10.1016/j.psychres.2011.08.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 01/19/2023]
Abstract
Some evidence suggests an association between genetic variants within the cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB), CREB binding protein (CREBBP) and cAMP response element-modulator (CREM) and several psychiatric disorders. The present study investigated whether some single nucleotide polymorphisms (SNPs) within these genes could be associated with major depressive disorder (MDD) and bipolar disorder (BD) and whether they could predict clinical outcomes in Korean in-patients treated with antidepressants and mood stabilizers, respectively. The sample comprised 145 patients with MDD, 132 patients with BD and 170 psychiatrically healthy controls. Participants were genotyped for 14 SNPs within CREB1, CREBBP and CREM. Baseline and final clinical measures, including the Montgomery-Åsberg Depression Rating Scale and Young Mania Rating Scale for patients with MDD and BD, respectively, were recorded. All p-values were 2-tailed, and statistical significance was conservatively set at the 0.006 level in order to reduce the likelihood of false positive results. We failed to observe any association of the 14 SNPs genotypes or alleles with clinical improvement, response and remission rates as well as final outcomes in any of such disorders. Our findings suggest that the 14 SNP under investigation in our study do not influence diagnosis and treatment response in patients with MDD and BD. However, taking into account the several limitations of our study, further research is needed to draw more definitive conclusions.
Collapse
|
21
|
Rexach JE, Clark PM, Mason DE, Neve RL, Peters EC, Hsieh-Wilson LC. Dynamic O-GlcNAc modification regulates CREB-mediated gene expression and memory formation. Nat Chem Biol 2012; 8:253-61. [PMID: 22267118 PMCID: PMC3288555 DOI: 10.1038/nchembio.770] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 10/17/2011] [Indexed: 01/13/2023]
Abstract
The transcription factor CREB is a key regulator of many neuronal processes, including brain development, circadian rhythm, and long-term memory. Studies of CREB have focused on its phosphorylation, although the diversity of CREB functions in the brain suggests additional forms of regulation. Here we expand on a chemoenzymatic strategy for quantifying glycosylation stoichiometries to characterize the functional roles of CREB glycosylation in neurons. We show that CREB is dynamically O-GlcNAc-modified in response to neuronal activity and glycosylation represses CREB-dependent transcription by impairing its association with the co-activator CRTC/TORC. Blocking glycosylation of CREB altered cellular function and behavioral plasticity, enhancing both axonal and dendritic growth and long-term memory consolidation. Our findings demonstrate a new role for O-glycosylation in memory formation and provide a mechanistic understanding of how glycosylation contributes to critical neuronal functions. Moreover, we identify a previously unknown mechanism for the regulation of activity-dependent gene expression, neural development, and memory.
Collapse
Affiliation(s)
- Jessica E Rexach
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | | | | | | | | | | |
Collapse
|
22
|
Neonatal methylphenidate does not impair adult spatial learning in the Morris water maze in rats. Neurosci Lett 2011; 502:152-6. [PMID: 21798318 DOI: 10.1016/j.neulet.2011.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/15/2011] [Accepted: 07/11/2011] [Indexed: 11/22/2022]
Abstract
Methylphenidate (MPD) is the most prescribed drug for attention deficit hyperactivity disorder. Licit and illicit use also occurs during pregnancy, however the effects from this use on offspring development are unknown. To model late gestational exposure, Sprague-Dawley litters were treated with 0, 5, 10, 20, or 30mg/kg×4/day every 2h with MPD on postnatal days 11-20 (within-litter design; days chosen to be comparable to human third trimester brain development). During treatment, body weights were decreased in MPD-treated groups; weight recovery occurred in all but the MPD-30 group by start of testing. MPD-treated rats showed no changes in anxiety (elevated zero maze), swimming ability (straight channel swimming), or spatial learning/reference memory (Morris water maze). MPD does not appear to pose a risk to these CNS functions after exposure during a stage of rat development analogous to third trimester human brain development.
Collapse
|
23
|
Moreira EG, Yu X, Robinson JF, Griffith W, Hong SW, Beyer RP, Bammler TK, Faustman EM. Toxicogenomic profiling in maternal and fetal rodent brains following gestational exposure to chlorpyrifos. Toxicol Appl Pharmacol 2010; 245:310-25. [PMID: 20350560 DOI: 10.1016/j.taap.2010.03.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 02/16/2010] [Accepted: 03/20/2010] [Indexed: 11/17/2022]
Abstract
Considering the wide variety of effects that have been reported to occur in the developmental neurotoxicity of chlorpyrifos (CP) and the lack of consensus on their dependence of brain acetylcholinesterase (AChE) activity inhibition, we applied microarray technology to explore dose-dependent alterations in transcriptional response in the fetal and maternal C57BL/6 mouse brain after daily gestational exposure (days 6 to 17) to CP (2, 4, 10, 12 or 15 mg/kg, sc). We identified significantly altered genes across doses and assessed for overrepresentation of Gene Ontology (GO) biological processes and KEGG pathways. We further clustered genes based on their expression profiles across doses and repeated the GO/pathways analysis for each cluster. The dose-effect relationship of CP on gene expression, both at the gene and pathway levels was non-monotonic and not necessarily related to brain AChE inhibition. The largest impact was observed in the 10mg/kg dose group which was also the LOAEL for brain AChE inhibition. In the maternal brain, lower doses (4 mg/kg) influenced GO categories and pathways such as cell adhesion, behavior, lipid metabolism, long-term potentiation, nervous system development, neurogenesis, synaptic transmission. In the fetal brain, lower doses (2 and/or 4 mg/kg) significantly altered cell division, translation, transmission of nerve impulse, chromatin modification, long-term potentiation. In addition, some genes involved in nervous system development and signaling were shown to be specifically influenced by these lower CP doses. Our approach was sensitive and reflected the diversity of responses known to be disrupted by CP and highlighted possible additional consequences of CP neurotoxicity, such as disturbance of the ubiquitin proteasome system.
Collapse
Affiliation(s)
- Estefania G Moreira
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Chen M, Wang R, Gan X, Lei A, Li C, Yu X, Huang J, Huang T, Liang W. Sequence and expression analysis of the gene encoding inducible cAMP early repressor in tilapia. Mol Biol Rep 2009; 37:2541-7. [PMID: 19728153 DOI: 10.1007/s11033-009-9770-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 08/14/2009] [Indexed: 11/24/2022]
Abstract
Suppression subtractive hybridization library was generated by comparison of cDNA populations isolated from peripheral leukocytes of pre- and post-immunized tilapia. One cDNA sequence encoding complete inducible cAMP early repressor was obtained from the library. The sequence was characterized by the presence of the basic structure of ICER IIgamma. Expression of ICER was in the tissues of four types of tilapia was decreased after infection with Streptococcus. After immunization, expression of ICER was initially decreased and then increased after 7 days. In addition, the order for the overall expression of ICER gene after infection and the increases of ICER expression later after immunization in these four types of tilapia was positively correlated to the disease resistance and productivity of these four species of tilapia. Our results provided molecular mechanisms for the different disease resistance capability in different species of tilapia. In addition, our results also provided reference molecular marker for breeding disease resistant tilapia, cAMP responsive element modulator.
Collapse
Affiliation(s)
- Ming Chen
- Guangxi Institute of Fisheries, 530021 Nanning, Guangxi, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
GABA-cAMP response element-binding protein signaling regulates maturation and survival of newly generated neurons in the adult hippocampus. J Neurosci 2009; 29:7966-77. [PMID: 19553437 DOI: 10.1523/jneurosci.1054-09.2009] [Citation(s) in RCA: 255] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Survival and integration of new neurons in the hippocampal circuit are rate-limiting steps in adult hippocampal neurogenesis. Neuronal network activity is a major regulator of these processes, yet little is known about the respective downstream signaling pathways. Here, we investigate the role of cAMP response element-binding protein (CREB) signaling in adult hippocampal neurogenesis. CREB is activated in new granule neurons during a distinct developmental period. Loss of CREB function in a cell-autonomous manner impairs dendritic development, decreases the expression of the neurogenic transcription factor NeuroD and of the neuronal microtubule-associated protein, doublecortin (DCX), and compromises the survival of newborn neurons. In addition, GABA-mediated excitation regulates CREB activation at early developmental stages. Importantly, developmental defects after loss of GABA-mediated excitation can be compensated by enhanced CREB signaling. These results indicate that CREB signaling is a central pathway in adult hippocampal neurogenesis, regulating the development and survival of new hippocampal neurons downstream of GABA-mediated excitation.
Collapse
|
26
|
A Janus-like role of CREB protein: enhancement of synaptic property in mature neurons and suppression of synaptogenesis and reduced network synchrony in early development. J Neurosci 2009; 29:6389-91. [PMID: 19458209 DOI: 10.1523/jneurosci.1309-09.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|