1
|
Maris E. Internal sensory models allow for balance control using muscle spindle acceleration feedback. Neural Netw 2025; 189:107571. [PMID: 40412019 DOI: 10.1016/j.neunet.2025.107571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 04/22/2025] [Accepted: 04/30/2025] [Indexed: 05/27/2025]
Abstract
Motor control requires sensory feedback, and the nature of this feedback has implications for the tasks of the central nervous system (CNS): for an approximately linear mechanical system (e.g., a freely standing person, a rider on a bicycle), if the sensory feedback does not contain the state variables (i.e., joint position and velocity), then optimal control actions are based on an internal dynamical system that estimates these states from the available incomplete sensory feedback. Such a computational system can be implemented as a recurrent neural network (RNN), and it uses a sensory model to update the state estimates. This is highly relevant for muscle spindle primary afferents whose firing rates scale with acceleration: if fusimotor and skeletomotor control are perfectly coordinated, these firing rates scale with the exafferent joint acceleration component, and in the absence of fusimotor control, they scale with the total joint acceleration (exafferent plus reafferent). For both scenarios, a sensory model exists that expresses the exafferent joint acceleration as a function of the state variables, and for the second scenario, a sensory model exists that corrects for the reafferent joint acceleration. Simulations of standing and bicycle balance control under realistic conditions show that joint acceleration feedback is sufficient for balance control, but only if the reafferent acceleration component is either absent from the feedback or is corrected for in the computational system.
Collapse
Affiliation(s)
- Eric Maris
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, P.O. Box 9104, HE, Nijmegen, Netherlands.
| |
Collapse
|
2
|
McManus M, Harris LR, Fiehler K. Haptic size perception is influenced by body and object orientation. Sci Rep 2025; 15:14062. [PMID: 40268984 PMCID: PMC12019378 DOI: 10.1038/s41598-025-95800-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Abstract
Changes in body orientation from standing have been shown to impact our perception of visual size. This has been attributed to the vestibular system's involvement in constructing a representation of the space around our body. In the current study we investigated how body posture influences haptic size perception. Blindfolded participants were tasked with estimating the felt length of a rod and then adjusting it back to its previously felt size (after it had been set to a random length). Participants could feel and adjust the rod in the same posture, standing or supine, or after a change in posture. If the body orientation relative to gravity impacts size perception, we might expect changes in haptic size perception following body tilt. In support of this hypothesis, after changing between standing and supine postures there was a change in the rod's haptically perceived length but only when the orientation of the rod itself also changed with respect to gravity but not when its orientation was constant. This suggests that body posture influences not only visual but also haptic size perception, potentially due to the vestibular system contributing to the encoding of space with respect to gravity.
Collapse
Affiliation(s)
- M McManus
- Justus Liebig University Giessen, Giessen, Germany.
| | - L R Harris
- Centre for Vision Research, York University, Toronto, ON, Canada
| | - K Fiehler
- Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
3
|
Buron F, Martin CZ, Brooks JX, Green AM. Reference Frames for Encoding of Translation and Tilt in the Caudal Cerebellar Vermis. J Neurosci 2025; 45:e0135242025. [PMID: 39933930 PMCID: PMC11905359 DOI: 10.1523/jneurosci.0135-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
Many daily behaviors rely on estimates of our body's motion and orientation in space. Vestibular signals are essential for such estimates, but to contribute appropriately, two key computations are required. First, ambiguous motion information from otolith organs must be combined with spatially transformed rotational signals (e.g., from the canals) to distinguish head translation from tilt. Second, tilt and translation estimates must be transformed from a head- to a body-centered reference frame to correctly interpret the body's motion. Studies have shown that cells in the caudal cerebellar vermis (nodulus and ventral uvula, NU) reflect the output of the first set of computations to estimate translation and tilt. However, it remains unknown whether these estimates are encoded exclusively in head-centered coordinates or whether they reflect further transformation toward body-centered coordinates. Here, we addressed this question by examining how the 3D spatial tuning of otolith and canal signals on translation- and tilt-selective NU Purkinje cells in male rhesus monkeys varies with changes in head-re-body and body-re-gravity orientation. We show that NU cell tuning properties are consistent with head-centered otolith signal coding during translation. Furthermore, while canal signals in the NU have been transformed into a specific world-referenced rotation signal indicating reorientation relative to gravity (tilt), as needed to resolve the tilt/translation ambiguity, the resulting tilt estimates are encoded in head-centered coordinates. Our results thus suggest that body-centered motion and orientation estimates required for postural control, navigation, and reaching are computed elsewhere, either by further transforming NU outputs or via computations in other parallel pathways.
Collapse
Affiliation(s)
- Félix Buron
- Département de Neurosciences, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Christophe Z Martin
- Département de Neurosciences, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Jessica X Brooks
- Département de Neurosciences, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Andrea M Green
- Département de Neurosciences, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
4
|
Harris LR, Jörges B, Bury N, McManus M, Bansal A, Allison RS, Jenkin M. Can visual acceleration evoke a sensation of tilt? Exp Brain Res 2025; 243:68. [PMID: 39960499 DOI: 10.1007/s00221-025-07023-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/06/2025] [Indexed: 03/08/2025]
Abstract
Under the microgravity of the International Space Station, many of the normal processes that determine the perceptual upright on Earth are disrupted. For example, somatosensory cues are absent and an applied physical linear acceleration can provide an artificial "gravity" reference. Here, we hypothesized that visual linear acceleration could also be interpreted as an orientation cue in microgravity. Using virtual reality, we subjected twelve astronauts experiencing long-duration exposure to microgravity to visually simulated accelerating linear self-motion along a virtual corridor at 0.8 m•s- 2 (0.083 G) for 16s. They then adjusted a virtual ground plane to indicate whether they had changed their perceived orientation. Control experiments used visually simulated linear self-motion at a constant velocity and control experiments on Earth mirrored the experiments conducted in microgravity in both upright and supine postures. Contrary to our hypothesis, no significant perceptual tilts were induced on Earth or in microgravity. However, we did replicate earlier results that both microgravity exposure (in comparison to on Earth) and a supine posture (in comparison to a sitting upright posture) were associated with higher variability in judgements of upright. Our experiments failed to demonstrate that exposure to visual acceleration can evoke a sense of tilt in a stationary observer in the dark, either in microgravity or on Earth.N = 209.
Collapse
Affiliation(s)
- Laurence R Harris
- Center for Vision Research, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.
| | - Björn Jörges
- Center for Vision Research, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Nils Bury
- Center for Vision Research, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
- Institute of Visual Computing, Hochschule Bonn-Rhein-Sieg, Grantham-Allee 20, 53757, St. Augustin, Germany
| | - Meaghan McManus
- Center for Vision Research, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
- Department of Experimental Psychology, Justus Liebig University Giessen, Otto-Behaghel-Strasse 10F, 35394, Giessen, Germany
| | - Ambika Bansal
- Center for Vision Research, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Robert S Allison
- Center for Vision Research, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Michael Jenkin
- Center for Vision Research, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| |
Collapse
|
5
|
Klėgėris T, Kaski D, Balnytė R, Manicom K, Uloza V, Kuzminienė A, Ulozienė I. Verticality perception in patients with active multiple sclerosis: The applicability of subjective visual vertical test and its modifications. Mult Scler Relat Disord 2025; 94:106234. [PMID: 39753049 DOI: 10.1016/j.msard.2024.106234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 12/13/2024] [Indexed: 02/17/2025]
Abstract
BACKGROUND Dizziness and balance disturbances are common in patients with MS. Subjective visual vertical (SVV) is a test of vestibular perception that allows clinicians to evaluate the integration of multiple sensory inputs for spatial orientation in the CNS. We hypothesize that central vestibular impairment caused by active MS lesions may be reflected in the modified SVV testing. OBJECTIVE To evaluate the applicability of dynamic and head-tilt SVV for detecting spatial orientation disturbances in MS patients and compare it with conventional SVV testing. METHODS The SVV test was conducted using the virtual reality application VIRVEST. SVV was measured in static and dynamic conditions during head upright, and 30° right and left lateral head tilts. RESULTS The study group comprised 36 patients with active MS and 40 controls. Greater SVV errors were found in MS patients during upright testing; however, dynamic conditions increased the test's sensitivity. Lateral head tilts affected the perception of verticality in both groups; however, the absolute values of SVV biases were paradoxically greater in controls. Potentially pathological A-effect was found in 75 % of MS patients and 17,5 % of controls (p < 0,001), as SVV was more likely to shift towards the side of the head tilt in the MS group. CONCLUSIONS Lateral head tilts and dynamic conditions are valuable additions to the SVV test for detecting disturbances in spatial orientation during active MS. The direction of SVV shifts during lateral head tilts may be more clinically significant than the magnitude of SVV errors for this patient group.
Collapse
Affiliation(s)
- Tautvydas Klėgėris
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Diego Kaski
- Department of Clinical and Motor Neuroscience, University College London, United Kingdom
| | - Renata Balnytė
- Department of Neurology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Katherine Manicom
- Department of Clinical and Motor Neuroscience, University College London, United Kingdom
| | - Virgilijus Uloza
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Alina Kuzminienė
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ingrida Ulozienė
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
6
|
Schoenmaekers C, Wuyts FL, Ferre ER. Integrating vestibular and visual cues for verticality perception. Exp Brain Res 2025; 243:49. [PMID: 39827302 DOI: 10.1007/s00221-024-06992-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/26/2024] [Indexed: 01/22/2025]
Abstract
Verticality is the perception of what's upright relative to gravity. The vestibular system provides information about the head's orientation relative to gravity, while visual cues influence the perception of external objects' alignment with the vertical. According to Bayesian integration, the perception of verticality depends on the relative reliability of visual and vestibular cues. Ambiguities in vestibular signals are resolved through visual information, with the brain integrating these cues alongside prior knowledge of the upright orientation. While it is established that both vestibular and visual cues contribute to verticality perception, the precise mechanisms underlying this integration remain unclear. Here we investigated how the human brain combines vestibular and visual cues to perceive verticality based on their reliability. We assessed verticality perception using a signal detection theory based visual verticality detection task. Participants were shown lines that were either vertical or tilted and asked to judge their orientation. To manipulate cue reliability, we used optokinetic stimulation for visual cues, galvanic vestibular stimulation for vestibular cues, and a combined visual-vestibular condition by simultaneously delivering optokinetic and galvanic vestibular stimulation. Sham stimulations were administered to control for non-specific effects. Our findings demonstrate that reductions in the reliability of visual and vestibular cues impair sensitivity to verticality, with visual cues exerting a more pronounced influence. Importantly, no changes in response bias were observed. The observed pattern aligns with a model in which the relative contributions of visual and vestibular inputs are determined by linear weightings and their combined summation.
Collapse
Affiliation(s)
- Catho Schoenmaekers
- Lab for Equilibrium Investigations and Aerospace (LEIA), University of Antwerp, Antwerp, Belgium
- School of Psychological Sciences, Birkbeck University of London, Malet St, London, WC1E 7HX, UK
| | - Floris L Wuyts
- Lab for Equilibrium Investigations and Aerospace (LEIA), University of Antwerp, Antwerp, Belgium
| | - Elisa R Ferre
- School of Psychological Sciences, Birkbeck University of London, Malet St, London, WC1E 7HX, UK.
| |
Collapse
|
7
|
Peviani VC, Joosten MGA, Miller LE, Medendorp WP. Bayesian inference in arm posture perception. J Neurophysiol 2024; 132:1639-1649. [PMID: 39412564 DOI: 10.1152/jn.00297.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024] Open
Abstract
To configure our limbs in space, the brain must compute their position based on sensory information provided by mechanoreceptors in the skin, muscles, and joints. Because this information is corrupted by noise, the brain is thought to process it probabilistically and integrate it with prior belief about arm posture, following Bayes' rule. Here, we combined computational modeling with behavioral experimentation to test this hypothesis. The model conceives the perception of arm posture as the combination of a probabilistic kinematic chain composed by the shoulder, elbow, and wrist angles, compromised with additive Gaussian noise, with a Gaussian prior about these joint angles. We tested whether the model explains errors in a virtual reality (VR)-based posture matching task better than a model that assumes a uniform prior. Human participants (N = 20) were required to align their unseen right arm to a target posture, presented as a visual configuration of the arm in the horizontal plane. Results show idiosyncratic biases in how participants matched their unseen arm to the target posture. We used maximum likelihood estimation to fit the Bayesian model to these observations and estimate key parameters including the prior means and its variance-covariance structure. The Bayesian model including a Gaussian prior explained the response biases and variance much better than a model with a uniform prior. The prior varied across participants, consistent with the idiosyncrasies in arm posture perception and in alignment with previous behavioral research. Our work clarifies the biases in arm posture perception within a new perspective on the nature of proprioceptive computations.NEW & NOTEWORTHY We modeled the perception of arm posture as a Bayesian computation. A VR posture-matching task was used to empirically test this Bayesian model. The Bayesian model including a nonuniform postural prior well explained individual participants' biases in arm posture matching.
Collapse
Affiliation(s)
- Valeria C Peviani
- Donders Center for CognitionRadboud University, Nijmegen, The Netherlands
| | - Manon G A Joosten
- Donders Center for CognitionRadboud University, Nijmegen, The Netherlands
| | - Luke E Miller
- Donders Center for CognitionRadboud University, Nijmegen, The Netherlands
| | - W Pieter Medendorp
- Donders Center for CognitionRadboud University, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Haijoub S, Hautefort C, Toupet M, Lacour M. Asymmetry and rehabilitation of the subjective visual vertical in unilateral vestibular hypofunction patients. Front Syst Neurosci 2024; 18:1454637. [PMID: 39318996 PMCID: PMC11419993 DOI: 10.3389/fnsys.2024.1454637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
Aims Patients with acute unilateral peripheral vestibular hypofunction (AUVP) show postural, ocular motor, and perceptive signs on the diseased side. The subjective visual vertical (SVV) test measures the perceived bias in earth-vertical orientation with a laser line in darkness. This study was aimed at (1) examining whether SVV bias could depend on preset line orientation and angles, and (2) investigating whether vestibular rehabilitation (VR) can improve SVV normalization. To our knowledge, SVV symmetry/asymmetry and impact of VR on SVV normalization have never been documented in the literature. Participants and methods We investigated the SVV bias in a retrospective study (Study 1: n = 42 AUVP patients) comparing the data recorded for line orientation to the ipsilateral and contralateral sides at preset angles of 15° and 30°. We investigated the effects of VR on SVV normalization in a prospective study (Study 2: n = 20 AUPV patients) in which patients were tilted in the roll plane using a support tilted to the hypofunction side with the same amplitude as the SVV bias. This VR protocol was performed twice a week for 4 weeks. Supplementary data on body weight distribution and medio-lateral position of the center of foot pressure (CoP) were obtained using posturography recordings. Results Study 1 showed asymmetrical values of the SVV bias. On average, the SVV errors were significantly higher for ipsilateral compared to contralateral line orientation (6.98° ± 3.7° vs. 4.95° ± 3.6°; p < 0.0001), and for 30° compared to 15° preset angle (6.76° ± 4.2° vs. 5.66° ± 3.3°; p < 0.0001). Study 2 showed a fast SVV normalization with VR. Non-pathological SVV bias (below ±2°) was found after only 3 to 5 VR sessions while pathological SVV values were still observed at the same time after symptoms onset in patients without VR (1.25° ± 1.46° vs. 4.32° ± 2.81°, respectively; p < 0.0001). A close temporal correlation was observed in the time course of body weight distribution, mediolateral CoP position, and SVV bias over time, suggesting beneficial effects of the VR protocol at both the perceptive and postural levels. Conclusion We recommend routine assessment of the ipsilateral and contralateral SVV bias separately for a better evaluation of otolith organs imbalance that can trigger chronic instability and dizziness. The SVV bias and the postural impairment caused by the imbalanced otolith inputs after unilateral vestibular loss can be rapidly normalized by tilting the patients in the roll plane, an additional means in the physiotherapist's toolbox. The protocol likely reweights the visual and somatosensory cues involved in the perception of verticality.
Collapse
Affiliation(s)
| | - Charlotte Hautefort
- Paris City University, Pasteur Institute, AP-HP Hôpital Lariboisière, Service ORL, INSERM, Fondation pour l’Audition, IHU reConnect, Paris, France
| | - Michel Toupet
- Centre d’Explorations Fonctionnelles Otoneurologiques, Paris, France
| | - Michel Lacour
- Department of Neurosciences, Aix-Marseille University/CNRS, Marseille, France
| |
Collapse
|
9
|
Peviani VC, Miller LE, Medendorp WP. Biases in hand perception are driven by somatosensory computations, not a distorted hand model. Curr Biol 2024; 34:2238-2246.e5. [PMID: 38718799 DOI: 10.1016/j.cub.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/09/2024] [Accepted: 04/04/2024] [Indexed: 05/23/2024]
Abstract
To sense and interact with objects in the environment, we effortlessly configure our fingertips at desired locations. It is therefore reasonable to assume that the underlying control mechanisms rely on accurate knowledge about the structure and spatial dimensions of our hand and fingers. This intuition, however, is challenged by years of research showing drastic biases in the perception of finger geometry.1,2,3,4,5 This perceptual bias has been taken as evidence that the brain's internal representation of the body's geometry is distorted,6 leading to an apparent paradox regarding the skillfulness of our actions.7 Here, we propose an alternative explanation of the biases in hand perception-they are the result of the Bayesian integration of noisy, but unbiased, somatosensory signals about finger geometry and posture. To address this hypothesis, we combined Bayesian reverse engineering with behavioral experimentation on joint and fingertip localization of the index finger. We modeled the Bayesian integration either in sensory or in space-based coordinates, showing that the latter model variant led to biases in finger perception despite accurate representation of finger length. Behavioral measures of joint and fingertip localization responses showed similar biases, which were well fitted by the space-based, but not the sensory-based, model variant. The space-based model variant also outperformed a distorted hand model with built-in geometric biases. In total, our results suggest that perceptual distortions of finger geometry do not reflect a distorted hand model but originate from near-optimal Bayesian inference on somatosensory signals.
Collapse
Affiliation(s)
- Valeria C Peviani
- Donders Institute for Cognition and Behavior, Radboud University, Nijmegen 6525 GD, the Netherlands.
| | - Luke E Miller
- Donders Institute for Cognition and Behavior, Radboud University, Nijmegen 6525 GD, the Netherlands
| | - W Pieter Medendorp
- Donders Institute for Cognition and Behavior, Radboud University, Nijmegen 6525 GD, the Netherlands
| |
Collapse
|
10
|
van der Waal C, Embrechts E, Truijen S, Saeys W. Do we need to consider head-on-body position, starting roll position and presence of visuospatial neglect when assessing perception of verticality after stroke? Top Stroke Rehabil 2024; 31:244-258. [PMID: 37671676 DOI: 10.1080/10749357.2023.2253622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/27/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND AND OBJECTIVE Considering various factors that influence the accuracy of the Subjective Visual Vertical (SVV) and Subjective Postural Vertical (SPV), standardization of assessment methods is needed. This retrospective study examined the contribution of Head-on-Body (HOB) position, starting roll position (SRP) and visuospatial neglect (VSN) to SVV and SPV constant errors (i.e. deviation from true vertical). Also, the contribution of HOB position and VSN presence to SVV and SPV variability (i.e. intra-individual consistency between trials) was assessed. METHODS First-ever unilateral hemispheric stroke survivors (<85 years; <100 days post-stroke) were assessed with three HOB positions (neutral, contralesional, and ipsilesional) and seven starting positions (20°Contralesional to 20° ipsilesional) of the laser bar and tilt chair. Linear mixed models were selected to evaluate the contribution of HOB, SRP, and VSN to SVV/SPV constant errors and variability. RESULTS Thirty-four subjects (24 VSN-/10 VSN+) were assessed. A tilted HOB position led to significantly higher constant errors for the SVV and SPV (the latter only in the VSN- group), and an increased SVV variability. SRP only significantly contributed to the SVV constant errors and only in the VSN- group. Furthermore, the presence of VSN resulted in a significantly higher SVV and SPV variability. CONCLUSIONS HOB position and the presence of SRP and VSN are important factors to consider during SVV and SPV measurements. Assessment with a neutral HOB position leads to more accurate results. HOB position and SRP influence the results of SVV and SPV differently in individuals with and without VSN, which highlights the relevance of VSN assessment.
Collapse
Affiliation(s)
- Charlotte van der Waal
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
- Research Group MOVANT, Department of Rehabilitation Sciences & Physiotherapy, University of Antwerp, Wilrijk, Belgium
| | - Elissa Embrechts
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
- Research Group MOVANT, Department of Rehabilitation Sciences & Physiotherapy, University of Antwerp, Wilrijk, Belgium
- Department of Experimental Neuropsychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands
| | - Steven Truijen
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
- Research Group MOVANT, Department of Rehabilitation Sciences & Physiotherapy, University of Antwerp, Wilrijk, Belgium
| | - Wim Saeys
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
- Research Group MOVANT, Department of Rehabilitation Sciences & Physiotherapy, University of Antwerp, Wilrijk, Belgium
- Department of Neurorehabilitation, RevArte Rehabilitation Hospital, Edegem, Belgium
| |
Collapse
|
11
|
Jörges B, Bury N, McManus M, Bansal A, Allison RS, Jenkin M, Harris LR. The effects of long-term exposure to microgravity and body orientation relative to gravity on perceived traveled distance. NPJ Microgravity 2024; 10:28. [PMID: 38480736 PMCID: PMC10937641 DOI: 10.1038/s41526-024-00376-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/04/2024] [Indexed: 03/17/2024] Open
Abstract
Self-motion perception is a multi-sensory process that involves visual, vestibular, and other cues. When perception of self-motion is induced using only visual motion, vestibular cues indicate that the body remains stationary, which may bias an observer's perception. When lowering the precision of the vestibular cue by for example, lying down or by adapting to microgravity, these biases may decrease, accompanied by a decrease in precision. To test this hypothesis, we used a move-to-target task in virtual reality. Astronauts and Earth-based controls were shown a target at a range of simulated distances. After the target disappeared, forward self-motion was induced by optic flow. Participants indicated when they thought they had arrived at the target's previously seen location. Astronauts completed the task on Earth (supine and sitting upright) prior to space travel, early and late in space, and early and late after landing. Controls completed the experiment on Earth using a similar regime with a supine posture used to simulate being in space. While variability was similar across all conditions, the supine posture led to significantly higher gains (target distance/perceived travel distance) than the sitting posture for the astronauts pre-flight and early post-flight but not late post-flight. No difference was detected between the astronauts' performance on Earth and onboard the ISS, indicating that judgments of traveled distance were largely unaffected by long-term exposure to microgravity. Overall, this constitutes mixed evidence as to whether non-visual cues to travel distance are integrated with relevant visual cues when self-motion is simulated using optic flow alone.
Collapse
Affiliation(s)
- Björn Jörges
- Center for Vision Research, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.
| | - Nils Bury
- Center for Vision Research, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
- Institute of Visual Computing, Hochschule Bonn-Rhein-Sieg, Grantham-Allee 20, St. Augustin, 53757, Germany
| | - Meaghan McManus
- Center for Vision Research, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
- Department of Experimental Psychology, Justus Liebig University Giessen, Otto-Behaghel-Strasse 10F, 35394, Giessen, Germany
| | - Ambika Bansal
- Center for Vision Research, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Robert S Allison
- Center for Vision Research, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Michael Jenkin
- Center for Vision Research, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Laurence R Harris
- Center for Vision Research, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
12
|
Arshad Q, Moreno-Ajona D, Goadsby PJ, Kheradmand A. What visuospatial perception has taught us about the pathophysiology of vestibular migraine. Curr Opin Neurol 2024; 37:32-39. [PMID: 38018799 PMCID: PMC11090135 DOI: 10.1097/wco.0000000000001232] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
PURPOSE OF REVIEW A decade has passed since vestibular migraine (VM) was formally established as a clinical entity. During this time, VM has emerged amongst the most common cause of episodic vertigo. Like all forms of migraine, VM symptoms are most prominent during individual attacks, however many patients may also develop persistent symptoms that are less prominent and can still interfere with daily activities. RECENT FINDINGS Vestibular inputs are strongly multimodal, and because of extensive convergence with other sensory information, they do not result in a distinct conscious sensation. Here we review experimental evidence that supports VM symptoms are linked to multisensory mechanisms that control body motion and position in space. SUMMARY Multisensory integration is a key concept for understanding migraine. In this context, VM pathophysiology may involve multisensory processes critical for motion perception, spatial orientation, visuospatial attention, and spatial awareness.
Collapse
Affiliation(s)
- Qadeer Arshad
- InAmind Laboratory, College of Life Sciences, University of Leicester, Leicester, UK
| | - David Moreno-Ajona
- Department of Neurology, Queen Elizabeth Hospital, London UK
- NIHR King’s Clinical Research Facility, King’s College London, UK
| | - Peter J. Goadsby
- NIHR King’s Clinical Research Facility, King’s College London, UK
- Department of Neurology, University of California, Los Angeles, CA USA
| | - Amir Kheradmand
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
13
|
Balaban CD, Williams E, Holland CL, Kiderman A, Kontos AP, Hoffer ME. Statistical Considerations for Subjective Visual Vertical and Subjective Visual Horizontal Assessment in Normal Subjects. OTOLOGY & NEUROTOLOGY OPEN 2023; 3:e044. [PMID: 38516545 PMCID: PMC10950168 DOI: 10.1097/ono.0000000000000044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/01/2023] [Indexed: 03/23/2024]
Abstract
Objectives Judgments of the subjective visual vertical (SVV) and subjective visual horizontal (SVH) while seated upright are commonly included in standard clinical test batteries for vestibular function. We examined SVV and SVH data from retrospective control to assess their statistical distributions and normative values for magnitudes of the preset effect, sex differences, and fixed-head versus head-free device platforms for assessment. Methods Retrospective clinical SVV and SVH data from 2 test platforms, Neuro-otologic Test Center (NOTC) and the Neurolign Dx 100 (I-Portal Portable Assessment System Nystagmograph) were analyzed statistically (SPSS and MATLAB software) for 408 healthy male and female civilians and military service members, aged 18-50 years. Results No prominent age-related effects were observed. The preset angle effects for both SVV and SVH, and their deviations from orthogonality, agree in magnitude with previous reports. Differences attributable to interactions with device type and sex are of small magnitude. Analyses confirmed that common clinical measure for SVV and SVH, the average of equal numbers of clockwise and counterclockwise preset trials, was not significantly affected by the test device or sex of the subject. Finally, distributional analyses failed to reject the hypothesis of underlying Gaussian distributions for the clinical metrics. Conclusions z scores based on these normative findings can be used for objective detection of outliers from normal functional limits in the clinic.
Collapse
Affiliation(s)
- Carey D. Balaban
- Departments of Otolaryngology, Neurobiology, Communication Sciences and Disorders, Bioengineering, and Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA
| | | | - Cynthia L. Holland
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA and Concussion Research Laboratory, UPMC Sports Medicine Concussion Program, University of Pittsburgh Medical Center, Pittsburgh, PA
| | | | - Anthony P. Kontos
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA and Concussion Research Laboratory, UPMC Sports Medicine Concussion Program, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Michael E. Hoffer
- Departments of Otolaryngology
- Neurological Surgery
- Sports Performance and Wellness Institute, University of Miami, Miami, FL
| |
Collapse
|
14
|
Khazali MF, Daddaoua N, Thier P. Nonhuman primates exploit the prior assumption that the visual world is vertical. J Neurophysiol 2023; 130:1252-1264. [PMID: 37823212 PMCID: PMC11918268 DOI: 10.1152/jn.00514.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 10/13/2023] Open
Abstract
When human subjects tilt their heads in dark surroundings, the noisiness of vestibular information impedes precise reports on objects' orientation with respect to Earth's vertical axis. This difficulty is mitigated if a vertical visual background is available. Tilted visual backgrounds induce feelings of head tilt in subjects who are in fact upright. This is often explained as a result of the brain resorting to the prior assumption that natural visual backgrounds are vertical. Here, we tested whether monkeys show comparable perceptual mechanisms. To this end we trained two monkeys to align a visual arrow to a vertical reference line that had variable luminance across trials, while including a large, clearly visible background square whose orientation changed from trial to trial. On ∼20% of all trials, the vertical reference line was left out to measure the subjective visual vertical (SVV). When the frame was upright, the monkeys' SVV was aligned with the gravitational vertical. In accordance with the perceptual reports of humans, however, when the frame was tilted it induced an illusion of head tilt as indicated by a bias in SVV toward the frame orientation. Thus all primates exploit the prior assumption that the visual world is vertical.NEW & NOTEWORTHY Here we show that the principles that characterize the human perception of the vertical are shared by another old world primate species, the rhesus monkey, suggesting phylogenetic continuity. In both species the integration of visual and vestibular information on the orientation of the head relative to the world is similarly constrained by the prior assumption that the visual world is vertical in the sense of having an orientation that is congruent with the gravity vector.
Collapse
Affiliation(s)
- Mohammad Farhan Khazali
- Epilepsy Center, Medical Center, University of Freiburg, Freiburg, Germany
- Center for Neural Science, New York University, New York, United States
| | - Nabil Daddaoua
- National Institute on Drug Abuse (NIDA) Intramural Research Program, Baltimore, Maryland, United States
| | - Peter Thier
- Hertie-Institute for Clinical Brain Research, Cognitive Neurology Laboratory, University of Tübingen, Tübingen, Germany
| |
Collapse
|
15
|
Miller LE, Fabio C, de Vignemont F, Roy A, Medendorp WP, Farnè A. A Somatosensory Computation That Unifies Limbs and Tools. eNeuro 2023; 10:ENEURO.0095-23.2023. [PMID: 37848289 PMCID: PMC10668222 DOI: 10.1523/eneuro.0095-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023] Open
Abstract
It is often claimed that tools are embodied by their user, but whether the brain actually repurposes its body-based computations to perform similar tasks with tools is not known. A fundamental computation for localizing touch on the body is trilateration. Here, the location of touch on a limb is computed by integrating estimates of the distance between sensory input and its boundaries (e.g., elbow and wrist of the forearm). As evidence of this computational mechanism, tactile localization on a limb is most precise near its boundaries and lowest in the middle. Here, we show that the brain repurposes trilateration to localize touch on a tool, despite large differences in initial sensory input compared with touch on the body. In a large sample of participants, we found that localizing touch on a tool produced the signature of trilateration, with highest precision close to the base and tip of the tool. A computational model of trilateration provided a good fit to the observed localization behavior. To further demonstrate the computational plausibility of repurposing trilateration, we implemented it in a three-layer neural network that was based on principles of probabilistic population coding. This network determined hit location in tool-centered coordinates by using a tool's unique pattern of vibrations when contacting an object. Simulations demonstrated the expected signature of trilateration, in line with the behavioral patterns. Our results have important implications for how trilateration may be implemented by somatosensory neural populations. We conclude that trilateration is likely a fundamental spatial computation that unifies limbs and tools.
Collapse
Affiliation(s)
- Luke E Miller
- Integrative Multisensory Perception Action and Cognition Team-ImpAct, Lyon Neuroscience Research Center, Institut National de la Santé et de la Recherche Médicale Unité 1028, Centre National de la Recherche Scientifique Unité 5292, 69500 Bron, France
- UCBL, University of Lyon 1, 69100 Villeurbanne, France
- Neuro-immersion, Hospices Civils de Lyon, 69500 Bron, France
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 GD, Nijmegen, The Netherlands
| | - Cécile Fabio
- Integrative Multisensory Perception Action and Cognition Team-ImpAct, Lyon Neuroscience Research Center, Institut National de la Santé et de la Recherche Médicale Unité 1028, Centre National de la Recherche Scientifique Unité 5292, 69500 Bron, France
- UCBL, University of Lyon 1, 69100 Villeurbanne, France
- Neuro-immersion, Hospices Civils de Lyon, 69500 Bron, France
| | - Frédérique de Vignemont
- Institut Jean Nicod, Department of Cognitive Studies, Ecole Normale Superieure, Paris Sciences et Lettres University, 75005 Paris, France
| | - Alice Roy
- Laboratoire Dynamique du Langage, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5596, 69007 Lyon, France
| | - W Pieter Medendorp
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 GD, Nijmegen, The Netherlands
| | - Alessandro Farnè
- Integrative Multisensory Perception Action and Cognition Team-ImpAct, Lyon Neuroscience Research Center, Institut National de la Santé et de la Recherche Médicale Unité 1028, Centre National de la Recherche Scientifique Unité 5292, 69500 Bron, France
- UCBL, University of Lyon 1, 69100 Villeurbanne, France
- Neuro-immersion, Hospices Civils de Lyon, 69500 Bron, France
- Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy
| |
Collapse
|
16
|
Zhang L, Ouyang S, Chen L, Huang H, Ou Y, Tang X. Evaluation of subjective visual vertical and horizontal in patients with acoustic neuroma based on virtual reality. Front Neurosci 2023; 17:1264585. [PMID: 37954872 PMCID: PMC10639117 DOI: 10.3389/fnins.2023.1264585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Objective To investigate potential differences in absolute deviation values of subjective visual vertical and horizontal between unilateral acoustic neuroma patients and healthy young adults under varying degrees of static head tilt, as well as the impact of proprioception on these values, with the aim of determining the effect of acoustic neuroma on gravity sensory pathway function in patients. Methods We recruited 22 patients diagnosed with unilateral acoustic neuroma and 25 healthy young adults and employed virtual reality technology to assess the absolute deviation values of subjective visual vertical (SVV) and subjective visual horizontal (SVH) under eight different static tilted head positions (Head centered (0° tilt), PdP, Head tilt 15°, 30°, 45° to the left and right), then compare and analyze intergroup differences. Results In the Head-centered position, both SVV and SVH absolute deviated values were significantly higher in the AN group compared to healthy young adults. The AN group exhibited significantly higher absolute deviation values of SVV compared to the healthy group when tilting their head 30° left and right. Additionally, when tilting their heads to the right at 15° and 45° the AN group showed significant increases in SVH absolute deviated values compared to healthy adults. The SVV and SVH absolute deviation values of LAN and SAN groups did not reach statistical significance. The results of the SVV test for PDP position did not show any significant differences among all groups. However, the SVH test revealed that the absolute deviation values of the LAN group was significantly higher than that of healthy individuals. Conclusion Our study shows that the gravity sensing function of patients with unilateral acoustic neuroma is affected to different degrees, however, the degree of gravity sensing function damage of patients has little relationship with tumor size. When acoustic neuroma is larger than 2 cm, the effect of proprioception on patients' SVH outcome is noteworthy. So, we should pay attention to the postoperative follow-up of patients with acoustic neuroma and the evaluation of vestibular rehabilitation effect. Meanwhile, for patients opting for conservative treatment, it is imperative to monitor the dynamic changes in vestibular function and seize timely opportunities for intervention.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shunlin Ouyang
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ling Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
| | - Hemei Huang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yongkang Ou
- Department of Otorhinolaryngology, Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
| | - Xiaowu Tang
- Department of Otorhinolaryngology, Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
17
|
Tani K, Iio S, Kamiya M, Yoshizawa K, Shigematsu T, Fujishima I, Tanaka S. Neuroanatomy of reduced distortion of body-centred spatial coding during body tilt in stroke patients. Sci Rep 2023; 13:11853. [PMID: 37481585 PMCID: PMC10363170 DOI: 10.1038/s41598-023-38751-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023] Open
Abstract
Awareness of the direction of the body's (longitudinal) axis is fundamental for action and perception. The perceived body axis orientation is strongly biased during body tilt; however, the neural substrates underlying this phenomenon remain largely unknown. Here, we tackled this issue using a neuropsychological approach in patients with hemispheric stroke. Thirty-seven stroke patients and 20 age-matched healthy controls adjusted a visual line with the perceived body longitudinal axis when the body was upright or laterally tilted by 10 degrees. The bias of the perceived body axis caused by body tilt, termed tilt-dependent error (TDE), was compared between the groups. The TDE was significantly smaller (i.e., less affected performance by body tilt) in the stroke group (15.9 ± 15.9°) than in the control group (25.7 ± 17.1°). Lesion subtraction analysis and Bayesian lesion-symptom inference revealed that the abnormally reduced TDEs were associated with lesions in the right occipitotemporal cortex, such as the superior and middle temporal gyri. Our findings contribute to a better understanding of the neuroanatomy of body-centred spatial coding during whole-body tilt.
Collapse
Affiliation(s)
- Keisuke Tani
- Laboratory of Psychology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, 431-3192, Japan.
- Faculty of Psychology, Otemon Gakuin University, 2-1-15 Nishi-Ai, Ibaraki, Osaka, 567-8502, Japan.
| | - Shintaro Iio
- Department of Rehabilitation, Hamamatsu City Rehabilitation Hospital, Hamamatsu, Shizuoka, 433-8511, Japan
| | - Masato Kamiya
- Department of Rehabilitation, Hamamatsu City Rehabilitation Hospital, Hamamatsu, Shizuoka, 433-8511, Japan
| | - Kohei Yoshizawa
- Department of Rehabilitation, Hamamatsu City Rehabilitation Hospital, Hamamatsu, Shizuoka, 433-8511, Japan
| | - Takashi Shigematsu
- Department of Rehabilitation Medicine, Hamamatsu City Rehabilitation Hospital, Hamamatsu, Shizuoka, 433-8511, Japan
| | - Ichiro Fujishima
- Department of Rehabilitation Medicine, Hamamatsu City Rehabilitation Hospital, Hamamatsu, Shizuoka, 433-8511, Japan
| | - Satoshi Tanaka
- Laboratory of Psychology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, 431-3192, Japan
| |
Collapse
|
18
|
Sinnott CB, Hausamann PA, MacNeilage PR. Natural statistics of human head orientation constrain models of vestibular processing. Sci Rep 2023; 13:5882. [PMID: 37041176 PMCID: PMC10090077 DOI: 10.1038/s41598-023-32794-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/02/2023] [Indexed: 04/13/2023] Open
Abstract
Head orientation relative to gravity determines how gravity-dependent environmental structure is sampled by the visual system, as well as how gravity itself is sampled by the vestibular system. Therefore, both visual and vestibular sensory processing should be shaped by the statistics of head orientation relative to gravity. Here we report the statistics of human head orientation during unconstrained natural activities in humans for the first time, and we explore implications for models of vestibular processing. We find that the distribution of head pitch is more variable than head roll and that the head pitch distribution is asymmetrical with an over-representation of downward head pitch, consistent with ground-looking behavior. We further suggest that pitch and roll distributions can be used as empirical priors in a Bayesian framework to explain previously measured biases in perception of both roll and pitch. Gravitational and inertial acceleration stimulate the otoliths in an equivalent manner, so we also analyze the dynamics of human head orientation to better understand how knowledge of these dynamics can constrain solutions to the problem of gravitoinertial ambiguity. Gravitational acceleration dominates at low frequencies and inertial acceleration dominates at higher frequencies. The change in relative power of gravitational and inertial components as a function of frequency places empirical constraints on dynamic models of vestibular processing, including both frequency segregation and probabilistic internal model accounts. We conclude with a discussion of methodological considerations and scientific and applied domains that will benefit from continued measurement and analysis of natural head movements moving forward.
Collapse
Affiliation(s)
| | - Peter A Hausamann
- Department of Electrical and Computer Engineering, Technical University of Munich, 80333, Munich, Germany
| | | |
Collapse
|
19
|
Maris E. A bicycle can be balanced by stochastic optimal feedback control but only with accurate speed estimates. PLoS One 2023; 18:e0278961. [PMID: 36848331 PMCID: PMC9970107 DOI: 10.1371/journal.pone.0278961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/25/2022] [Indexed: 03/01/2023] Open
Abstract
Balancing a bicycle is typical for the balance control humans perform as a part of a whole range of behaviors (walking, running, skating, skiing, etc.). This paper presents a general model of balance control and applies it to the balancing of a bicycle. Balance control has both a physics (mechanics) and a neurobiological component. The physics component pertains to the laws that govern the movements of the rider and his bicycle, and the neurobiological component pertains to the mechanisms via which the central nervous system (CNS) uses these laws for balance control. This paper presents a computational model of this neurobiological component, based on the theory of stochastic optimal feedback control (OFC). The central concept in this model is a computational system, implemented in the CNS, that controls a mechanical system outside the CNS. This computational system uses an internal model to calculate optimal control actions as specified by the theory of stochastic OFC. For the computational model to be plausible, it must be robust to at least two inevitable inaccuracies: (1) model parameters that the CNS learns slowly from interactions with the CNS-attached body and bicycle (i.e., the internal noise covariance matrices), and (2) model parameters that depend on unreliable sensory input (i.e., movement speed). By means of simulations, I demonstrate that this model can balance a bicycle under realistic conditions and is robust to inaccuracies in the learned sensorimotor noise characteristics. However, the model is not robust to inaccuracies in the movement speed estimates. This has important implications for the plausibility of stochastic OFC as a model for motor control.
Collapse
Affiliation(s)
- Eric Maris
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
20
|
Lafitte R, Jeager M, Piscicelli C, Dai S, Lemaire C, Chrispin A, Davoine P, Dupierrix E, Pérennou D. Spatial neglect encompasses impaired verticality representation after right hemisphere stroke. Ann N Y Acad Sci 2023; 1520:140-152. [PMID: 36478572 DOI: 10.1111/nyas.14938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spatial neglect after right hemisphere stroke (RHS) was recently found to encompass lateropulsion, a deficit in body orientation with respect to gravity caused by altered brain processing of graviception. By analogy, we hypothesized that spatial neglect after RHS might encompass an altered representation of verticality. We also assumed a strong relation between body neglect and impaired postural vertical, both referring to the body. To tackle these issues, we performed contingency and correlation analyses between two domains of spatial neglect (body, extra-body) and two modalities of verticality perception (postural, visual) in 77 individuals (median age = 67) with a first-ever subacute RHS (1-3 months). All individuals with a transmodal (postural and visual) tilt in verticality perception (n = 26) had spatial neglect, but the reverse was not found. Correlation and multivariate analyses revealed that spatial neglect (and notably body neglect) was associated more with postural than visual vertical tilts. These findings indicate that after RHS, an impaired verticality representation results from a kind of graviceptive neglect, bearing first on somaesthetic graviception and second on vestibular graviception. They also suggest that the human brain uses not only a mosaic of 2D representations but also 3D maps involving a transmodal representation of verticality.
Collapse
Affiliation(s)
- Rémi Lafitte
- Department of Neurorehabilitation, Univ. Grenoble Alpes, UMR CNRS 5105 Neuropsychology and Neurocognition, CHU Grenoble Alpes, South Hospital, Grenoble, France
| | - Marie Jeager
- Department of Neurorehabilitation, Univ. Grenoble Alpes, UMR CNRS 5105 Neuropsychology and Neurocognition, CHU Grenoble Alpes, South Hospital, Grenoble, France
| | - Céline Piscicelli
- Department of Neurorehabilitation, Univ. Grenoble Alpes, UMR CNRS 5105 Neuropsychology and Neurocognition, CHU Grenoble Alpes, South Hospital, Grenoble, France
| | - Shenhao Dai
- Department of Neurorehabilitation, Univ. Grenoble Alpes, UMR CNRS 5105 Neuropsychology and Neurocognition, CHU Grenoble Alpes, South Hospital, Grenoble, France
| | - Camille Lemaire
- Department of Neurorehabilitation, Univ. Grenoble Alpes, UMR CNRS 5105 Neuropsychology and Neurocognition, CHU Grenoble Alpes, South Hospital, Grenoble, France
| | - Anne Chrispin
- Department of Neurorehabilitation, Univ. Grenoble Alpes, UMR CNRS 5105 Neuropsychology and Neurocognition, CHU Grenoble Alpes, South Hospital, Grenoble, France
| | - Patrice Davoine
- Department of Neurorehabilitation, Univ. Grenoble Alpes, UMR CNRS 5105 Neuropsychology and Neurocognition, CHU Grenoble Alpes, South Hospital, Grenoble, France
| | - Eve Dupierrix
- Department of Neurorehabilitation, Univ. Grenoble Alpes, UMR CNRS 5105 Neuropsychology and Neurocognition, CHU Grenoble Alpes, South Hospital, Grenoble, France
| | - Dominic Pérennou
- Department of Neurorehabilitation, Univ. Grenoble Alpes, UMR CNRS 5105 Neuropsychology and Neurocognition, CHU Grenoble Alpes, South Hospital, Grenoble, France
| |
Collapse
|
21
|
Sinnott C, Hausamann PA, MacNeilage PR. Natural statistics of human head orientation constrain models of vestibular processing. RESEARCH SQUARE 2023:rs.3.rs-2412413. [PMID: 36711500 PMCID: PMC9882651 DOI: 10.21203/rs.3.rs-2412413/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Head orientation relative to gravity determines how gravity-dependent environmental structure is sampled by the visual system, as well as how gravity itself is sampled by the vestibular system. Therefore, both visual and vestibular sensory processing should be shaped by the statistics of head orientation relative to gravity. Here we report the statistics of human head orientation during unconstrained natural activities in humans for the first time, and we explore implications for models of vestibular processing. We find that the distribution of head pitch is more variable than head roll and that the head pitch distribution is asymmetrical with an over-representation of downward head pitch, consistent with ground-looking behavior. We further show that pitch and roll distributions can be used as empirical priors in a Bayesian framework to explain previously measured biases in perception of both roll and pitch. We also analyze the dynamics of human head orientation to better understand how gravitational and inertial acceleration are processed by the vestibular system. Gravitational acceleration dominates at low frequencies and inertial acceleration dominates at higher frequencies. The change in relative power of gravitational and inertial components as a function of frequency places empirical constraints on dynamic models of vestibular processing. We conclude with a discussion of methodological considerations and scientific and applied domains that will benefit from continued measurement and analysis of natural head movements moving forward.
Collapse
Affiliation(s)
- Christian Sinnott
- University of Nevada, Department of Psychology, Reno, 89557, United States of America,
| | - Peter A. Hausamann
- Technical University of Munich, Department of Electrical and Computer Engineering, Munich, 80333, Germany
| | - Paul R. MacNeilage
- University of Nevada, Department of Psychology, Reno, 89557, United States of America
| |
Collapse
|
22
|
Tseng CH, Chow HM, Spillmann L, Oxner M, Sakurai K. Body Pitch Together With Translational Body Motion Biases the Subjective Haptic Vertical. Multisens Res 2022; 36:1-29. [PMID: 36731530 DOI: 10.1163/22134808-bja10086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 11/15/2022] [Indexed: 12/27/2022]
Abstract
Accurate perception of verticality is critical for postural maintenance and successful physical interaction with the world. Although previous research has examined the independent influences of body orientation and self-motion under well-controlled laboratory conditions, these factors are constantly changing and interacting in the real world. In this study, we examine the subjective haptic vertical in a real-world scenario. Here, we report a bias of verticality perception in a field experiment on the Hong Kong Peak Tram as participants traveled on a slope ranging from 6° to 26°. Mean subjective haptic vertical (SHV) increased with slope by as much as 15°, regardless of whether the eyes were open (Experiment 1) or closed (Experiment 2). Shifting the body pitch by a fixed degree in an effort to compensate for the mountain slope failed to reduce the verticality bias (Experiment 3). These manipulations separately rule out visual and vestibular inputs about absolute body pitch as contributors to our observed bias. Observations collected on a tram traveling on level ground (Experiment 4A) or in a static dental chair with a range of inclinations similar to those encountered on the mountain tram (Experiment 4B) showed no significant deviation of the subjective vertical from gravity. We conclude that the SHV error is due to a combination of large, dynamic body pitch and translational motion. These observations made in a real-world scenario represent an incentive to neuroscientists and aviation experts alike for studying perceived verticality under field conditions and raising awareness of dangerous misperceptions of verticality when body pitch and translational self-motion come together.
Collapse
Affiliation(s)
- Chia-Huei Tseng
- Research Institute of Electrical Communication, Tohoku University, Sendai, 980-8577, Japan
| | - Hiu Mei Chow
- Department of Psychology, St. Thomas University, Fredericton, E3B 5G3, Canada
| | - Lothar Spillmann
- Neurology Clinic, University of Freiburg, 79106 Freiburg, Germany
| | - Matt Oxner
- Wilhelm Wundt Institute for Psychology, University of Leipzig, 04109 Leipzig, Germany
| | - Kenzo Sakurai
- Department of Human Science, Tohoku Gakuin University, Sendai, 981-3193, Japan
| |
Collapse
|
23
|
Lim K, Teaford M, Merfeld DM. Comparing the impact of the method of adjustment and forced-choice methodologies on subjective visual vertical bias and variability. J Vestib Res 2022; 32:501-510. [PMID: 36120751 DOI: 10.3233/ves-220046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Previous research suggested that the method of adjustment and forced choice variants of the subjective visual vertical (SVV) produce comparable estimates of both bias and variability. However, variants of the SVV that utilize a method of adjustment procedure are known to be heavily influenced by task parameters, including the stimulus rotation speed, which was not accounted for in previous SVV research comparing the method of adjustment to forced-choice. OBJECTIVE The aim of the present study was to determine if (1) the SVV with a forced-choice procedure produces both bias and variability estimates that are comparable to those obtained using a method of adjustment procedure, (2) to see if rotation speed impacts the comparability of estimates and (3) quantify correlations between the estimates produced by different procedures. METHODS Participants completed a variant of the SVV which utilized a forced-choice procedure as well as two variants of the SVV using a method of adjustment procedure with two different rotation speeds (6°/s and 12°/s). RESULTS We found that the bias estimates were similar across all three conditions tested and that the variability estimates were greater in the SVV variants that utilized a method of adjustment procedure. This difference was more pronounced when the rotation speed was slower (6°/s). CONCLUSIONS The results of this study suggest that forced-choice and method of adjustment methodologies yield similar bias estimates and different variability estimates. Given these results, we recommend utilizing forced-choice procedures unless (a) forced-choice is not feasible or (b) response variability is unimportant. We also recommend that clinicians consider the SVV methods when interpreting a patient's test results, especially for variability metrics.
Collapse
Affiliation(s)
- Koeun Lim
- Department of Psychology, University of Arizona, Arizona, USA
| | - Max Teaford
- Department of Otolaryngology, The Ohio State University, Ohio, USA
| | - Daniel M Merfeld
- Department of Otolaryngology, The Ohio State University, Ohio, USA
| |
Collapse
|
24
|
Willemsen SCMJ, Oostwoud Wijdenes L, van Beers RJ, Koppen M, Medendorp WP. Natural statistics of head roll: implications for Bayesian inference in spatial orientation. J Neurophysiol 2022; 128:1409-1420. [PMID: 36321734 DOI: 10.1152/jn.00375.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously proposed a Bayesian model of multisensory integration in spatial orientation (Clemens IAH, de Vrijer M, Selen LPJ, van Gisbergen JAM, Medendorp WP. J Neurosci 31: 5365-5377, 2011). Using a Gaussian prior, centered on an upright head orientation, this model could explain various perceptual observations in roll-tilted participants, such as the subjective visual vertical, the subjective body tilt (Clemens IAH, de Vrijer M, Selen LPJ, van Gisbergen JAM, Medendorp WP. J Neurosci 31: 5365-5377, 2011), the rod-and-frame effect (Alberts BBGT, de Brouwer AJ, Selen LPJ, Medendorp WP. eNeuro 3: ENEURO.0093-16.2016, 2016), as well as their clinical (Alberts BBGT, Selen LPJ, Verhagen WIM, Medendorp WP. Physiol Rep 3: e12385, 2015) and age-related deficits (Alberts BBGT, Selen LPJ, Medendorp WP. J Neurophysiol 121: 1279-1288, 2019). Because it is generally assumed that the prior reflects an accumulated history of previous head orientations, and recent work on natural head motion suggests non-Gaussian statistics, we examined how the model would perform with a non-Gaussian prior. In the present study, we first experimentally generalized the previous observations in showing that also the natural statistics of head orientation are characterized by long tails, best quantified as a t-location-scale distribution. Next, we compared the performance of the Bayesian model and various model variants using such a t-distributed prior to the original model with the Gaussian prior on their accounts of previously published data of the subjective visual vertical and subjective body tilt tasks. All of these variants performed substantially worse than the original model, suggesting a special value of the Gaussian prior. We provide computational and neurophysiological reasons for the implementation of such a prior, in terms of its associated precision-accuracy trade-off in vertical perception across the tilt range.NEW & NOTEWORTHY It has been argued that the brain uses Bayesian computations to process multiple sensory cues in vertical perception, including a prior centered on upright head orientation which is usually taken to be Gaussian. Here, we show that non-Gaussian prior distributions, although more akin to the statistics of head orientation during natural activities, provide a much worse explanation of such perceptual observations than a Gaussian prior.
Collapse
Affiliation(s)
- Sophie C M J Willemsen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Leonie Oostwoud Wijdenes
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Robert J van Beers
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.,Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mathieu Koppen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - W Pieter Medendorp
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
25
|
van Helvert MJL, Selen LPJ, van Beers RJ, Medendorp WP. Predictive steering: integration of artificial motor signals in self-motion estimation. J Neurophysiol 2022; 128:1395-1408. [PMID: 36350058 DOI: 10.1152/jn.00248.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The brain's computations for active and passive self-motion estimation can be unified with a single model that optimally combines vestibular and visual signals with sensory predictions based on efference copies. It is unknown whether this theoretical framework also applies to the integration of artificial motor signals, such as those that occur when driving a car, or whether self-motion estimation in this situation relies on sole feedback control. Here, we examined if training humans to control a self-motion platform leads to the construction of an accurate internal model of the mapping between the steering movement and the vestibular reafference. Participants (n = 15) sat on a linear motion platform and actively controlled the platform's velocity using a steering wheel to translate their body to a memorized visual target (motion condition). We compared their steering behavior to that of participants (n = 15) who remained stationary and instead aligned a nonvisible line with the target (stationary condition). To probe learning, the gain between the steering wheel angle and the platform or line velocity changed abruptly twice during the experiment. These gain changes were virtually undetectable in the displacement error in the motion condition, whereas clear deviations were observed in the stationary condition, showing that participants in the motion condition made within-trial changes to their steering behavior. We conclude that vestibular feedback allows not only the online control of steering but also a rapid adaptation to the gain changes to update the brain's internal model of the mapping between the steering movement and the vestibular reafference.NEW & NOTEWORTHY Perception of self-motion is known to depend on the integration of sensory signals and, when the motion is self-generated, the predicted sensory reafference based on motor efference copies. Here we show, using a closed-loop steering experiment with a direct coupling between the steering movement and the vestibular self-motion feedback, that humans are also able to integrate artificial motor signals, like the motor signals that occur when driving a car.
Collapse
Affiliation(s)
- Milou J L van Helvert
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Luc P J Selen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Robert J van Beers
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.,Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - W Pieter Medendorp
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
26
|
Muir B, Boot B, Hamilton M. Can a structural leg length discrepancy contribute to persistent concussion symptoms? A case report. THE JOURNAL OF THE CANADIAN CHIROPRACTIC ASSOCIATION 2022; 66:300-309. [PMID: 36818361 PMCID: PMC9914830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
In the past several years, concussions and post-concussion syndrome (PCS) have become more commonly recognized conditions. However, with limited physiological explanation for post-concussion syndrome, there is also limited evidence supporting effective treatment. The vestibular system plays a role in postural reflexes and coordinated eye and cervical spine movements and is often disrupted in patients with prolonged concussion symptoms. This disruption has contributed to some of the most debilitating symptoms in PCS patients including dizziness, nausea, and balance deficits. Ongoing, post-concussion, vestibulo-ocular/cervical-ocular disruption due to an underlying structural leg length discrepancy as a contributing factor has not been previously described in the literature. A case of PCS with initial conservative treatment of their structural leg length discrepancy and subsequent vestibulo-ocular/cervical-ocular rehabilitation is presented.
Collapse
Affiliation(s)
- Brad Muir
- Canadian Memorial Chiropractic College
| | | | | |
Collapse
|
27
|
Castro Abarca P, Hussain S, Mohamed OG, Kaski D, Arshad Q, Bronstein AM, Kheradmand A. Visuospatial orientation: Differential effects of head and body positions. Neurosci Lett 2022; 775:136548. [PMID: 35227775 PMCID: PMC8930610 DOI: 10.1016/j.neulet.2022.136548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 10/19/2022]
Abstract
To orientate in space, the brain must integrate sensory information that encodes the position of the body with the visual cues from the surrounding environment. In this process, the extent of reliance on visual information is known as the visual dependence. Here, we asked whether the relative positions of the head and body can modulate such visual dependence (VD). We used the effect of optokinetic stimulation (30°/s) on subjective visual vertical (SVV) to quantify VD as the average optokinetic-induced SVV bias in clockwise and counter-clockwise directions. The VD bias was measured in eight subjects with a head-on-body tilt (HBT) where only the head was tilted on the body, and also with a whole-body tilt (WBT) where the head and body were tilted together. The VD bias with HBT of 20° was in the same direction of the head tilt position (left tilt VD -1.35 ± 0.1.2°; right VD 1.60 ± 0.9°), whereas the VD bias with WBT of 20° was in a direction away from the body tilt position (left tilt VD 2.5 ± 1.1°; right tilt VD -2.1 ± 0.9°). These findings show differential effects of relative head and body positions on visual cue integration, a process which could facilitate optimal interaction with the surrounding environment for spatial orientation.
Collapse
|
28
|
Jung Kim M, Otero-Millan J, Tian J, Kheradmand A. Psychophysical Haptic Measurement of Vertical Perception: Elucidating a Hand Sensory Bias. Neuroscience 2022; 481:21-29. [PMID: 34848259 PMCID: PMC8817686 DOI: 10.1016/j.neuroscience.2021.11.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/17/2023]
Abstract
The primary sensory modality for probing spatial perception can vary among psychophysical paradigms. In the subjective visual vertical (SVV) task, the brain must account for the position of the eye within the orbit to generate an estimate of a visual line orientation, whereas in the subjective haptic vertical (SHV) task, the position of the hand is used to sense the orientation of a haptic bar. Here we investigated whether a hand sensory bias can affect SHV measurement. We measured SHV in 12 subjects (6 left-handed and 6 right-handed) with a forced-choice paradigm using their left and right hands separately. The SHV measurement was less accurate than the SVV measurements (-0.6 ± 0.7) and it was biased in the direction of the hand used in the task but was not affected by handedness; SHV left hand -6.8 ± 2.1° (left-handed -7.9 ± 3.6°, right-handed -5.8 ± 2.5°) and right hand 9.8 ± 1.5° (left-handed 7.4 ± 2.2°, right-handed 12.3 ± 1.8°). SHV measurement with the same hand was also affected by the haptic bar placement on the left or right side versus midline, showing a side effect (left vs midline -2.0 ± 1.3°, right vs midline 3.8 ± 1.7°). Midline SHV measures using the left and right hands were different, confirming a laterality effect (left hand -4.5 ± 1.7°, right hand 6.4 ± 2.0°). These results demonstrate a sensory bias in SHV measurement related to the effects of both hand-in-body (i.e., right vs left hand) and hand-in-space positions. Such modality-specific bias may result in disparity between SHV and SVV measurements, and therefore cannot be generalized to vertical or spatial perception.
Collapse
Affiliation(s)
- Min Jung Kim
- Department of Neurology, The Johns Hopkins University, Baltimore, MD, USA,Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Jorge Otero-Millan
- Department of Neurology, The Johns Hopkins University, Baltimore, MD, USA,School of Optometry, University of California, Berkeley, Berkeley, CA
| | - Jing Tian
- Department of Neurology, The Johns Hopkins University, Baltimore, MD, USA
| | - Amir Kheradmand
- Department of Neurology, The Johns Hopkins University, Baltimore, MD, USA,Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University, Baltimore, MD, USA,Department of Neuroscience, The Johns Hopkins University, Baltimore, MD, USA,Laboratory for Computational Sensing and Robotics (LCSR), The Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
29
|
Abstract
Perhaps the most recognizable “sensory map” in neuroscience is the somatosensory homunculus. Although the homunculus suggests a direct link between cortical territory and body part, the relationship is actually ambiguous without a decoder that knows this mapping. How the somatosensory system derives a spatial code from an activation in the homunculus is a longstanding mystery we aimed to solve. We propose that touch location is disambiguated using multilateration, a computation used by surveying and global positioning systems to localize objects. We develop a Bayesian formulation of multilateration, which we implement in a neural network to identify its computational signature. We then detect this signature in psychophysical experiments. Our results suggest that multilateration provides the homunculus-to-body mapping necessary for localizing touch. Perhaps the most recognizable sensory map in all of neuroscience is the somatosensory homunculus. Although it seems straightforward, this simple representation belies the complex link between an activation in a somatotopic map and the associated touch location on the body. Any isolated activation is spatially ambiguous without a neural decoder that can read its position within the entire map, but how this is computed by neural networks is unknown. We propose that the somatosensory system implements multilateration, a common computation used by surveying and global positioning systems to localize objects. Specifically, to decode touch location on the body, multilateration estimates the relative distance between the afferent input and the boundaries of a body part (e.g., the joints of a limb). We show that a simple feedforward neural network, which captures several fundamental receptive field properties of cortical somatosensory neurons, can implement a Bayes-optimal multilateral computation. Simulations demonstrated that this decoder produced a pattern of localization variability between two boundaries that was unique to multilateration. Finally, we identify this computational signature of multilateration in actual psychophysical experiments, suggesting that it is a candidate computational mechanism underlying tactile localization.
Collapse
|
30
|
Tekgün E, Erdeniz B. Contributions of Body-Orientation to Mental Ball Dropping Task During Out-of-Body Experiences. Front Integr Neurosci 2022; 15:781935. [PMID: 35058754 PMCID: PMC8764241 DOI: 10.3389/fnint.2021.781935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/18/2021] [Indexed: 11/25/2022] Open
Abstract
Out-of-body experiences (OBEs) provide fascinating insights into our understanding of bodily self-consciousness and the workings of the brain. Studies that examined individuals with brain lesions reported that OBEs are generally characterized by participants experiencing themselves outside their physical body (i.e., disembodied feeling) (Blanke and Arzy, 2005). Based on such a characterization, it has been shown that it is possible to create virtual OBEs in immersive virtual environments (Ehrsson, 2007; Ionta et al., 2011b; Bourdin et al., 2017). However, the extent to which body-orientation influences virtual OBEs is not well-understood. Thus, in the present study, 30 participants (within group design) experienced a full-body ownership illusion (synchronous visuo-tactile stimulation only) induced with a gender-matched full-body virtual avatar seen from the first-person perspective (1PP). At the beginning of the experiment, participants performed a mental ball dropping (MBD) task, seen from the location of their virtual avatar, to provide a baseline measurement. After this, a full-body ownership illusion (embodiment phase) was induced in all participants. This was followed by the virtual OBE illusion phase of the experiment (disembodiment phase) in which the first-person viewpoint was switched to a third-person perspective (3PP), and participants' disembodied viewpoint was gradually raised to 14 m above the virtual avatar, from which altitude they repeated the MBD task. During the experiment, this procedure was conducted twice, and the participants were allocated first to the supine or the standing body position at random. Results of the MBD task showed that the participants experienced increased MBD durations during the supine condition compared to the standing condition. Furthermore, although the findings from the subjective reports confirmed the previous findings of virtual OBEs, no significant difference between the two postures was found for body ownership. Taken together, the findings of the current study make further contributions to our understanding of both the vestibular system and time perception during OBEs.
Collapse
|
31
|
Stapel JC, Medendorp WP. Panoramic Uncertainty in Vertical Perception. Front Integr Neurosci 2021; 15:738768. [PMID: 34867226 PMCID: PMC8635489 DOI: 10.3389/fnint.2021.738768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022] Open
Abstract
Judgments of the orientation of a visual line with respect to earth vertical are affected by panoramic visual cues. This is illustrated by the rod-and-frame effect (RFE), the finding that the perceived orientation of a luminous rod is biased by the orientation of a surrounding squared frame. In this study, we tested how the uncertainty of frame orientation affects the RFE by asking upright or tilted participants to psychometrically judge the orientation of a briefly flashed rod contained within either a circular frame, a squared frame, or either of two intermediate frame forms, called squircles, presented in various orientations. Results showed a cyclical modulation of frame-induced bias across the range of the square and squircular frame orientations. The magnitude of this bias increased with increasing squaredness of the frame, as if the more unequivocal the orientation cues of the frame, the larger the reliance on them for rod orientation judgments. These findings are explained with a Bayesian optimal integration model in which participants flexibly weigh visual panoramic cues, depending on their orientation reliability, and non-visual cues in the perception of vertical.
Collapse
Affiliation(s)
- Janny C Stapel
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, Netherlands.,Uppsala Child and Babylab, Department of Psychology, Uppsala University, Uppsala, Sweden
| | - W Pieter Medendorp
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
32
|
Harris LR, Jenkin M, Herpers R. Long-duration head down bed rest as an analog of microgravity: Effects on the static perception of upright. J Vestib Res 2021; 32:325-340. [PMID: 34719448 PMCID: PMC9398091 DOI: 10.3233/ves-210016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
BACKGROUND: Humans demonstrate many physiological changes in microgravity for which long-duration head down bed rest (HDBR) is a reliable analog. However, information on how HDBR affects sensory processing is lacking. OBJECTIVE: We previously showed [25] that microgravity alters the weighting applied to visual cues in determining the perceptual upright (PU), an effect that lasts long after return. Does long-duration HDBR have comparable effects? METHODS: We assessed static spatial orientation using the luminous line test (subjective visual vertical, SVV) and the oriented character recognition test (PU) before, during and after 21 days of 6° HDBR in 10 participants. Methods were essentially identical as previously used in orbit [25]. RESULTS: Overall, HDBR had no effect on the reliance on visual relative to body cues in determining the PU. However, when considering the three critical time points (pre-bed rest, end of bed rest, and 14 days post-bed rest) there was a significant decrease in reliance on visual relative to body cues, as found in microgravity. The ratio had an average time constant of 7.28 days and returned to pre-bed-rest levels within 14 days. The SVV was unaffected. CONCLUSIONS: We conclude that bed rest can be a useful analog for the study of the perception of static self-orientation during long-term exposure to microgravity. More detailed work on the precise time course of our effects is needed in both bed rest and microgravity conditions.
Collapse
Affiliation(s)
- Laurence R Harris
- Centre for Vision Research, York University, Toronto, Canada.,Department of Psychology, YorkUniversity, Toronto, Canada
| | - Michael Jenkin
- Centre for Vision Research, York University, Toronto, Canada.,Department ofElectrical Engineering and Computer Science, York University, Toronto, Canada
| | - Rainer Herpers
- Department ofElectrical Engineering and Computer Science, York University, Toronto, Canada.,Institute of Visual Computing, Bonn-Rhein-Sieg University of Applied Sciences, St. Augustin, Germany
| |
Collapse
|
33
|
Subjective visual vertical imprecision during lateral head tilt in patients with chronic dizziness. Exp Brain Res 2021; 240:199-206. [PMID: 34687330 DOI: 10.1007/s00221-021-06247-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/14/2021] [Indexed: 10/20/2022]
Abstract
Most prior studies of the subjective visual vertical (SVV) focus on inaccuracy of subjects' SVV responses with the head in an upright position. Here we investigated SVV imprecision during lateral head tilt in patients with chronic dizziness compared to healthy controls. Forty-five dizzy patients and 45 healthy controls underwent SVV testing wearing virtual reality (VR) goggles, sitting upright (0°) and during head tilt in the roll plane (± 30°). Ten trials were completed in each of three static head positions. The SVV inaccuracy and SVV imprecision were analyzed and compared between groups, along with systematic errors during head tilt, i.e., A-effect and E-effect (E-effect is a typical SVV response during head tilts of ± 30°). The SVV imprecision was found to be affected by head position (upright/right head tilt/left head tilt, p < 0.001) and underlying dizziness (dizzy patients/healthy controls, p = 0.005). The SVV imprecision during left head tilt was greater in dizzy patients compared to healthy controls (p = 0.04). With right head tilt, there was a trend towards greater SVV imprecision in dizzy patients (p = 0.08). Dizzy patients were more likely to have bilateral (6.7%) or unilateral (22.2%) A-effect during lateral head tilt than healthy controls (bilateral (0%) or unilateral (6.7%) A-effect, p < 0.01). Greater SVV imprecision in chronically dizzy patients during head tilts may be attributable to increased noise of vestibular sensory afferents or disturbances of multisensory integration. Our findings suggest that SVV imprecision may be a useful clinical parameter of underlying dizziness measurable with bedside SVV testing in VR.
Collapse
|
34
|
Diaz-Artiles A, Karmali F. Vestibular Precision at the Level of Perception, Eye Movements, Posture, and Neurons. Neuroscience 2021; 468:282-320. [PMID: 34087393 PMCID: PMC9188304 DOI: 10.1016/j.neuroscience.2021.05.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 11/18/2022]
Abstract
Precision and accuracy are two fundamental properties of any system, including the nervous system. Reduced precision (i.e., imprecision) results from the presence of neural noise at each level of sensory, motor, and perceptual processing. This review has three objectives: (1) to show the importance of studying vestibular precision, and specifically that studying accuracy without studying precision ignores fundamental aspects of the vestibular system; (2) to synthesize key hypotheses about precision in vestibular perception, the vestibulo-ocular reflex, posture, and neurons; and (3) to show that groups of studies that are thoughts to be distinct (e.g., perceptual thresholds, subjective visual vertical variability, neuronal variability) are actually "two sides of the same coin" - because the methods used allow results to be related to the standard deviation of a Gaussian distribution describing the underlying neural noise. Vestibular precision varies with age, stimulus amplitude, stimulus frequency, body orientation, motion direction, pathology, medication, and electrical/mechanical vestibular stimulation, but does not vary with sex. The brain optimizes precision during integration of vestibular cues with visual, auditory, and/or somatosensory cues. Since a common concern with precision metrics is time required for testing, we describe approaches to optimize data collection and provide evidence that fatigue and session effects are minimal. Finally, we summarize how precision is an individual trait that is correlated with clinical outcomes in patients as well as with performance in functional tasks like balance. These findings highlight the importance of studying vestibular precision and accuracy, and that knowledge gaps remain.
Collapse
Affiliation(s)
- Ana Diaz-Artiles
- Bioastronautics and Human Performance Laboratory, Department of Aerospace Engineering, Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843-3141, USA. https://bhp.engr.tamu.edu
| | - Faisal Karmali
- Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA; Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston MA, USA.
| |
Collapse
|
35
|
Tani K, Tanaka S. Neuroanatomical correlates of the perception of body axis orientation during body tilt: a voxel-based morphometry study. Sci Rep 2021; 11:14659. [PMID: 34282178 PMCID: PMC8289860 DOI: 10.1038/s41598-021-93961-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/05/2021] [Indexed: 11/23/2022] Open
Abstract
Accurate perception of the orientations of the body axis and gravity is essential for actions. The ability to perceive these orientations during head and body tilt varies across individuals, and its underlying neural basis is unknown. To address this, we investigated the association between inter-individual differences in local gray matter (GM) volume and inter-individual differences in the ability to estimate the directions of body longitudinal axis or gravity during whole-body tilt using voxel-based morphometry (VBM) analysis in 50 healthy adults (20–46 years, 25 men and 25 women). Although no anatomical regions were identified relating to performance requiring estimates of gravitational direction, we found a significant correlation between the GM volume in the right middle occipital gyrus and the ability to estimate the body axis orientation. This finding provides the first evidence on neuroanatomical substrates of the perception of body axis orientation during body tilt.
Collapse
Affiliation(s)
- Keisuke Tani
- Laboratory of Psychology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan. .,Faculty of Psychology, Otemon Gakuin University, 2-1-15 Nishi-Ai , Ibaraki, Osaka, 567-8502, Japan.
| | - Satoshi Tanaka
- Laboratory of Psychology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| |
Collapse
|
36
|
Pomante A, Selen LPJ, Romano F, Bockisch CJ, Tarnutzer AA, Bertolini G, Medendorp WP. Influence of panoramic cues during prolonged roll-tilt adaptation on the percept of vertical. J Vestib Res 2021; 32:113-121. [PMID: 34308919 PMCID: PMC9484095 DOI: 10.3233/ves-210051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The percept of vertical, which mainly relies on vestibular and visual cues, is known to be affected after sustained whole-body roll tilt, mostly at roll positions adjacent to the position of adaptation. Here we ask whether the viewing of panoramic visual cues during the adaptation further influences the percept of the visual vertical. Participants were rotated in the frontal plane to a 90° clockwise tilt position, which was maintained for 4-minutes. During this period, the subject was either kept in darkness, or viewed panoramic pictures that were either veridical (aligned with gravity) or oriented along the body longitudinal axis. Errors of the subsequent subjective visual vertical (SVV), measured at various tilt angles, showed that the adaptation effect of panoramic cues is local, i.e. for a narrow range of tilts in the direction of the adaptation angle. This distortion was found irrespective of the orientation of the panoramic cues. We conclude that sustained exposure to panoramic and vestibular cues does not adapt the subsequent percept of vertical to the direction of the panoramic cue. Rather, our results suggest that sustained panoramic cues affect the SVV by an indirect effect on head orientation, with a 90° periodicity, that interacts with a vestibular cue to determine the percept of vertical.
Collapse
Affiliation(s)
- A Pomante
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - L P J Selen
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - F Romano
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland.,Center of Clinical Neurosciences, University Hospital Zurich, Switzerland.,Swiss Concussion Center, Schulthess Klinik, Zürich, Switzerland
| | - C J Bockisch
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland.,Center of Clinical Neurosciences, University Hospital Zurich, Switzerland.,Department of Otorhinolaryngology, University Hospital Zurich, Zurich, Switzerland.,Department of Ophthalmology, University Hospital Zurich, Zurich, Switzerland.,University of Zurich, Faculty of Medicine, Zurich, Switzerland
| | - A A Tarnutzer
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland.,Center of Clinical Neurosciences, University Hospital Zurich, Switzerland.,University of Zurich, Faculty of Medicine, Zurich, Switzerland
| | - G Bertolini
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland.,Center of Clinical Neurosciences, University Hospital Zurich, Switzerland.,Swiss Concussion Center, Schulthess Klinik, Zürich, Switzerland.,Institute of Optometry, University of Applied Sciences and Arts Northwestern Switzerland, Olten, Switzerland
| | - W P Medendorp
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
37
|
Nedelkou A, Hatzitaki V, Chatzinikolaou K, Grouios G. Does somatosensory feedback from the plantar foot sole contribute to verticality perception? Somatosens Mot Res 2021; 38:214-222. [PMID: 34256655 DOI: 10.1080/08990220.2021.1949977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AIM OF THE STUDY In upright standing, the human foot sole is the only point of contact with the ground conveying information about the pressure distribution under the feet. We examined how the altered somatosensory input from the plantar foot receptors, when standing on a soft surface, affects the subjective estimation of the earth vertical in different sensory contexts. MATERIALS AND METHODS Twelve (12) healthy young females (mean age: 21.8 ± 2.4 years) adjusted the orientation of a visual line (35 × 1.5 cm) representing the roll orientation of a hand-held (attached on a 24.9 × 4 cm cylinder) or head-attached electromagnetic tracking sensor (Nest of Birds, Ascension Technologies Inc., VT. USA, 60 Hz) under two visual conditions (eyes open, eyes closed) while standing on a soft or firm surface. The mean absolute (accuracy) and variable (precision) error in the verticality estimate was depicted in the sensor's roll deviation from the gravitational vertical. RESULTS The accuracy and the precision of the estimate decreased in the absence of vision, while standing on the soft surface and when the estimate was provided by an active hand rather than head rotation. The surface effect was significant only in the absence of vision and when the estimate was provided by the hand. CONCLUSIONS The contribution of the plantar foot mechanoreceptors to gravity perception is sensory context dependent. Perception of the earth vertical is more accurate when estimated by active head rotation due to the integration of the vestibular and neck proprioceptive afferents.
Collapse
Affiliation(s)
- A Nedelkou
- Laboratory of Motor Behavior and Adapted Physical Activity, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - V Hatzitaki
- Laboratory of Motor Behavior and Adapted Physical Activity, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - K Chatzinikolaou
- Laboratory of Motor Behavior and Adapted Physical Activity, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - G Grouios
- Laboratory of Motor Behavior and Adapted Physical Activity, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
38
|
McCarthy J, Castro P, Cottier R, Buttell J, Arshad Q, Kheradmand A, Kaski D. Multisensory contribution in visuospatial orientation: an interaction between neck and trunk proprioception. Exp Brain Res 2021; 239:2501-2508. [PMID: 34120203 PMCID: PMC8354892 DOI: 10.1007/s00221-021-06146-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/29/2021] [Indexed: 10/28/2022]
Abstract
A coherent perception of spatial orientation is key in maintaining postural control. To achieve this the brain must access sensory inputs encoding both the body and the head position and integrate them with incoming visual information. Here we isolated the contribution of proprioception to verticality perception and further investigated whether changing the body position without moving the head can modulate visual dependence-the extent to which an individual relies on visual cues for spatial orientation. Spatial orientation was measured in ten healthy individuals [6 female; 25-47 years (SD 7.8 years)] using a virtual reality based subjective visual vertical (SVV) task. Individuals aligned an arrow to their perceived gravitational vertical, initially against a static black background (10 trials), and then in other conditions with clockwise and counterclockwise background rotations (each 10 trials). In all conditions, subjects were seated first in the upright position, then with trunk tilted 20° to the right, followed by 20° to the left while the head was always aligned vertically. The SVV error was modulated by the trunk position, and it was greater when the trunk was tilted to the left compared to right or upright trunk positions (p < 0.001). Likewise, background rotation had an effect on SVV errors as these were greater with counterclockwise visual rotation compared to static background and clockwise roll motion (p < 0.001). Our results show that the interaction between neck and trunk proprioception can modulate how visual inputs affect spatial orientation.
Collapse
Affiliation(s)
- Jason McCarthy
- Regional Neurological Rehabilitation Unit, Homerton University Hospital, London, UK
| | - Patricia Castro
- Neuro-otology Unit, Department of Brain Sciences, Imperial College London, London, UK.,Department of Clinical and Movement Neurosciences, Centre for Vestibular and Behavioural Neuroscience, University College London, London, UK.,Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Rachael Cottier
- Regional Neurological Rehabilitation Unit, Homerton University Hospital, London, UK
| | - Joseph Buttell
- Regional Neurological Rehabilitation Unit, Homerton University Hospital, London, UK
| | - Qadeer Arshad
- Neuro-otology Unit, Department of Brain Sciences, Imperial College London, London, UK.,inAmind Laboratory, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Amir Kheradmand
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Diego Kaski
- Department of Clinical and Movement Neurosciences, Centre for Vestibular and Behavioural Neuroscience, University College London, London, UK.
| |
Collapse
|
39
|
Abstract
Even for a stereotyped task, sensorimotor behavior is generally variable due to noise, redundancy, adaptability, learning or plasticity. The sources and significance of different kinds of behavioral variability have attracted considerable attention in recent years. However, the idea that part of this variability depends on unique individual strategies has been explored to a lesser extent. In particular, the notion of style recurs infrequently in the literature on sensorimotor behavior. In general use, style refers to a distinctive manner or custom of behaving oneself or of doing something, especially one that is typical of a person, group of people, place, context, or period. The application of the term to the domain of perceptual and motor phenomenology opens new perspectives on the nature of behavioral variability, perspectives that are complementary to those typically considered in the studies of sensorimotor variability. In particular, the concept of style may help toward the development of personalised physiology and medicine by providing markers of individual behaviour and response to different stimuli or treatments. Here, we cover some potential applications of the concept of perceptual-motor style to different areas of neuroscience, both in the healthy and the diseased. We prefer to be as general as possible in the types of applications we consider, even at the expense of running the risk of encompassing loosely related studies, given the relative novelty of the introduction of the term perceptual-motor style in neurosciences.
Collapse
Affiliation(s)
- Pierre-Paul Vidal
- CNRS, SSA, ENS Paris Saclay, Université de Paris, Centre Borelli, 75005 Paris, France
- Institute of Information and Control, Hangzhou Dianzi University, Hangzhou, China
| | - Francesco Lacquaniti
- Department of Systems Medicine, Center of Space Biomedicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Laboratory of Neuromotor Physiology, Santa Lucia Foundation IRCCS, 00179 Rome, Italy
| |
Collapse
|
40
|
Dynamic arm movements attenuate the perceptual distortion of visual vertical induced during prolonged whole-body tilt. PLoS One 2021; 16:e0250851. [PMID: 33930085 PMCID: PMC8087117 DOI: 10.1371/journal.pone.0250851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/14/2021] [Indexed: 11/19/2022] Open
Abstract
Concurrent body movements have been shown to enhance the accuracy of spatial
judgment, but it remains unclear whether they also contribute to perceptual
estimates of gravitational space not involving body movements. To address this,
we evaluated the effects of static or dynamic arm movements during prolonged
whole-body tilt on the subsequent perceptual estimates of visual or postural
vertical. In Experiment 1, participants were asked to continuously perform
static or dynamic arm movements during prolonged tilt, and we assessed their
effects on the prolonged tilt-induced shifts of subjective visual vertical (SVV)
at a tilted position (during-tilt session) or near upright
(post-tilt session). In Experiment 2, we evaluated how
static or dynamic arm movements during prolonged tilt subsequently affected the
subjective postural vertical (SPV). In Experiment 1, we observed that the SVV
was significantly shifted toward the direction of prolonged tilt in both
sessions. The SVV shifts decreased when performing dynamic arm movements in the
during-tilt session, but not in the
post-tilt session. In Experiment 2, as well as SVV, the SPV
was shifted toward the direction of prolonged tilt, but it was not significantly
attenuated by the performance of static or dynamic arm movements. The results of
the during-tilt session suggest that the central nervous system
utilizes additional information generated by dynamic body movements for
perceptual estimates of visual vertical.
Collapse
|
41
|
Meskers AJH, Houben MMJ, Pennings HJM, Clément G, Groen EL. Underestimation of self-tilt increases in reduced gravity conditions. J Vestib Res 2021; 31:345-352. [PMID: 33867364 DOI: 10.3233/ves-201512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND During large angles of self-tilt in the roll plane on Earth, measurements of the subjective visual vertical (SVV) in the dark show a bias towards the longitudinal body axis, reflecting a systematic underestimation of self-tilt. OBJECTIVE This study tested the hypothesis that self-tilt is underestimated in partial gravity conditions, and more so at lower gravity levels. METHODS The SVV was measured in parabolic flight at three partial gravity levels: 0.25, 0.50, and 0.75 g. Self-tilt was varied amongst 0, 15, 30, and 45 deg, using a tiltable seat. The participants indicated their SVV by setting a linear array of dots projected inside a head mounted display to the perceived vertical. The angles of participants' body and head roll tilt relative to the gravito-inertial vertical were measured by two separate inertial measurement units. RESULTS Data on six participants were collected. Per G-level, a regression analysis was performed with SVV setting as dependent variable and head tilt as independent variable. The latter was used instead of chair tilt, because not all the participants' heads were aligned with their bodies. The estimated regression slopes significantly decreased with smaller G-levels, reflecting an increased bias of the SVV towards the longitudinal body axis. On average, the regression slopes were 0.95 (±0.38) at 0.75 g; 0.84 (±0.22) at 0.5 g; and 0.63 (±0.33) at 0.25 g. CONCLUSIONS The results of this study show that reduced gravity conditions lead to increased underestimation of roll self-tilt.
Collapse
|
42
|
Nooij SAE, Bockisch CJ, Bülthoff HH, Straumann D. Beyond sensory conflict: The role of beliefs and perception in motion sickness. PLoS One 2021; 16:e0245295. [PMID: 33465124 PMCID: PMC7815099 DOI: 10.1371/journal.pone.0245295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/25/2020] [Indexed: 11/28/2022] Open
Abstract
Illusory self-motion often provokes motion sickness, which is commonly explained in terms of an inter-sensory conflict that is not in accordance with previous experience. Here we address the influence of cognition in motion sickness and show that such a conflict is not provocative when the observer believes that the motion illusion is indeed actually occurring. Illusory self-motion and motion sickness were elicited in healthy human participants who were seated on a stationary rotary chair inside a rotating optokinetic drum. Participants knew that both chair and drum could rotate but were unaware of the actual motion stimulus. Results showed that motion sickness was correlated with the discrepancy between participants’ perceived self-motion and participants’ beliefs about the actual motion. Together with the general motion sickness susceptibility, this discrepancy accounted for 51% of the variance in motion sickness intensity. This finding sheds a new light on the causes of visually induced motion sickness and suggests that it is not governed by an inter-sensory conflict per se, but by beliefs concerning the actual self-motion. This cognitive influence provides a promising tool for the development of new countermeasures.
Collapse
Affiliation(s)
- Suzanne A. E. Nooij
- Department of Human Perception Action and Cognition, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- TNO Soesterberg, Soesterberg, The Netherlands
- * E-mail:
| | - Christopher J. Bockisch
- Department of Neurology, University Hospital Zurich & University of Zurich, Zurich, Switzerland
- Department of Ophthalmology, University Hospital Zurich & University of Zurich, Zurich, Switzerland
- Department of Otorhinolaryngology, University Hospital & University of Zurich, Zurich, Switzerland
- Interdisciplinary Center for Vertigo & Neurological Visual Disorders, University Hospital Zurich & University of Zurich, Zurich, Switzerland
- Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
| | - Heinrich H. Bülthoff
- Department of Human Perception Action and Cognition, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Dominik Straumann
- Department of Neurology, University Hospital Zurich & University of Zurich, Zurich, Switzerland
- Interdisciplinary Center for Vertigo & Neurological Visual Disorders, University Hospital Zurich & University of Zurich, Zurich, Switzerland
- Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
- Swiss Concussion Center, Zurich, Switzerland
| |
Collapse
|
43
|
Wang CH, Winnick AA, Ko YH, Wang Z, Chang TP. Test-retest reliability of subjective visual vertical measurements with lateral head tilt in virtual reality goggles. Tzu Chi Med J 2021; 33:294-300. [PMID: 34386369 PMCID: PMC8323649 DOI: 10.4103/tcmj.tcmj_207_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/25/2020] [Accepted: 10/07/2020] [Indexed: 11/29/2022] Open
Abstract
Objective: The objective is to investigate the test-retest reliability of subjective visual vertical (SVV) in the upright position and with lateral head tilts through a computerized SVV measuring system using virtual reality (VR) goggles. Materials and Methods: Thirty healthy controls underwent SVV test in upright position, with the head tilted to the right 30°, and with the head tilted to the left 30°. Subjects wore SVV VR goggles, which contained a gyroscope for monitoring the angle of head tilt. Each subject completed 10 adjustments in each head position. The mean value of SVV deviations and SVV imprecision (the intra-individual variability of SVV deviations from the 10 adjustments) were recorded and compared across different head positions. The participants then repeated the same SVV protocol at least 1 week later. The test-retest reliability of SVV deviation and SVV imprecision were analyzed. Results: The SVV deviation (mean ± standard deviation) was 0.22° ± 1.56° in upright position, −9.64° ± 5.91° in right head tilt, and 7.20° ± 6.36° in left head tilt. The test-retest reliability of SVV deviation was excellent in upright position (intra-class correlation coefficient [ICC] = 0.77, P < 0.001), right head tilt (ICC = 0.83, P < 0.001) and left head tilt (ICC = 0.84, P < 0.001). The SVV values from the 10 adjustments made during right and left head tilts were less precise than when measured at upright (P < 0.001). The test-retest reliability of SVV imprecision was poor at upright (ICC = 0.21, P = 0.26) but fair-to-good in right head tilt (ICC = 0.72, P < 0.001) and left head tilt (ICC = 0.44, P = 0.04). Conclusion: The test-retest reliability of SVV deviation during lateral head tilts via VR goggles is excellent, which supports further research into the diagnostic value of head-tilt SVV in various vestibular disorders. In addition, the degree of SVV imprecision during head tilt has fair-to-good test-retest reliability, which suggests SVV imprecision may have clinical applicability.
Collapse
Affiliation(s)
- Chia-Han Wang
- Department of Chinese Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Ariel A Winnick
- Soroka University Hospital and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,School of Optometry, University of California, Berkeley, Berkeley, CA, USA
| | - Yu-Hung Ko
- Department of Research, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Zheyu Wang
- Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tzu-Pu Chang
- Department of Neurology, Neuro-Medical Scientific Center, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan.,Department of Neurology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
44
|
De Winkel KN, Edel E, Happee R, Bülthoff HH. Multisensory Interactions in Head and Body Centered Perception of Verticality. Front Neurosci 2021; 14:599226. [PMID: 33510611 PMCID: PMC7835726 DOI: 10.3389/fnins.2020.599226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/08/2020] [Indexed: 11/25/2022] Open
Abstract
Percepts of verticality are thought to be constructed as a weighted average of multisensory inputs, but the observed weights differ considerably between studies. In the present study, we evaluate whether this can be explained by differences in how visual, somatosensory and proprioceptive cues contribute to representations of the Head In Space (HIS) and Body In Space (BIS). Participants (10) were standing on a force plate on top of a motion platform while wearing a visualization device that allowed us to artificially tilt their visual surroundings. They were presented with (in)congruent combinations of visual, platform, and head tilt, and performed Rod & Frame Test (RFT) and Subjective Postural Vertical (SPV) tasks. We also recorded postural responses to evaluate the relation between perception and balance. The perception data shows that body tilt, head tilt, and visual tilt affect the HIS and BIS in both experimental tasks. For the RFT task, visual tilt induced considerable biases (≈ 10° for 36° visual tilt) in the direction of the vertical expressed in the visual scene; for the SPV task, participants also adjusted platform tilt to correct for illusory body tilt induced by the visual stimuli, but effects were much smaller (≈ 0.25°). Likewise, postural data from the SPV task indicate participants slightly shifted their weight to counteract visual tilt (0.3° for 36° visual tilt). The data reveal a striking dissociation of visual effects between the two tasks. We find that the data can be explained well using a model where percepts of the HIS and BIS are constructed from direct signals from head and body sensors, respectively, and indirect signals based on body and head signals but corrected for perceived neck tilt. These findings show that perception of the HIS and BIS derive from the same sensory signals, but see profoundly different weighting factors. We conclude that observations of different weightings between studies likely result from querying of distinct latent constructs referenced to the body or head in space.
Collapse
Affiliation(s)
- Ksander N. De Winkel
- Intelligent Vehicles Research Group, Faculty 3mE, Cognitive Robotics Department, Delft University of Technology, Delft, Netherlands
- Department of Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Ellen Edel
- Department of Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Riender Happee
- Intelligent Vehicles Research Group, Faculty 3mE, Cognitive Robotics Department, Delft University of Technology, Delft, Netherlands
| | - Heinrich H. Bülthoff
- Department of Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
45
|
The Effects of Visual Parabolic Motion on the Subjective Vertical and on Interception. Neuroscience 2020; 453:124-137. [PMID: 33010347 DOI: 10.1016/j.neuroscience.2020.09.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 11/22/2022]
Abstract
Observers typically present a strong bias in estimating the orientation of a visual bar when their body is tilted >60° in the roll plane and in the absence of visual background information. Known as the A-effect, this phenomenon likely results from the under-compensation of body tilt. Static visual cues can reduce such bias in the perceived vertical. Yet, it is unknown whether dynamic visual cues would be also effective. Here we presented projectile motions of a visual target along parabolic trajectories with different orientations relative to physical gravity. The aim of the experiment was twofold: First, we assessed whether the projectile motions could bias the estimation of the perceived orientation of a visual bar, measured with a classical subjective visual vertical (SVV) task. Second, we evaluated whether the ability to estimate time-to-contact of the visual target in an interception task was influenced by the orientation of these parabolic trajectories. Two groups of participants performed the experiment, either with their head and body tilted 90° along the roll plane or in an upright position. We found that the perceived orientation of the visual bar in the SVV task was affected by the orientation of the parabolic trajectories. This result was present in the tilted but not in the upright participants. In the interception task, the timing error increased linearly as a function of the orientation of the parabola. These results support the hypothesis that a gravity vector estimated from dynamic visual stimuli contributes to the subjective visual vertical.
Collapse
|
46
|
Which way is down? Visual and tactile verticality perception in expert dancers and non-experts. Neuropsychologia 2020; 146:107546. [PMID: 32610097 PMCID: PMC7534035 DOI: 10.1016/j.neuropsychologia.2020.107546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/07/2020] [Accepted: 06/22/2020] [Indexed: 11/21/2022]
Abstract
Gravity provides an absolute verticality reference for all spatial perception, allowing us to move within and interact effectively with our world. Bayesian inference models explain verticality perception as a combination of online sensory cues with a prior prediction that the head is usually upright. Until now, these Bayesian models have been formulated for judgements of the perceived orientation of visual stimuli. Here, we investigated whether judgements of the verticality of tactile stimuli follow a similar pattern of Bayesian perceptual inference. We also explored whether verticality perception is affected by the postural and balance expertise of dancers. We tested both the subjective visual vertical (SVV) and the subjective tactile vertical (STV) in ballet dancers and non-dancers. A robotic arm traced downward-moving visual or tactile stimuli in separate blocks while participants held their head either upright or tilted 30° to their right. Participants reported whether these stimuli deviated to the left (clockwise) or right (anti-clockwise) of the gravitational vertical. Tilting the head biased the SVV away from the longitudinal head axis (the classical E-effect), consistent with a failure to compensate for the vestibulo-ocular counter-roll reflex. On the contrary, tilting the head biased the STV toward the longitudinal head axis (the classical A-effect), consistent with a strong upright head prior. Critically, tilting the head reduced the precision of verticality perception, particularly for ballet dancers' STV judgements. Head tilt is thought to increase vestibular noise, so ballet dancers seem to be surprisingly susceptible to degradation of vestibular inputs, giving them an inappropriately high weighting in verticality judgements.
Collapse
|
47
|
Time Course of Sensory Substitution for Gravity Sensing in Visual Vertical Orientation Perception following Complete Vestibular Loss. eNeuro 2020; 7:ENEURO.0021-20.2020. [PMID: 32561572 PMCID: PMC7358335 DOI: 10.1523/eneuro.0021-20.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 01/06/2023] Open
Abstract
Loss of vestibular function causes severe acute symptoms of dizziness and disorientation, yet the brain can adapt and regain near to normal locomotor and orientation function through sensory substitution. Animal studies quantifying functional recovery have yet been limited to reflexive eye movements. Here, we studied the interplay between vestibular and proprioceptive graviception in macaque monkeys trained in an earth-vertical visual orientation (subjective visual vertical; SVV) task and measured the time course of sensory substitution for gravity perception following complete bilateral vestibular loss (BVL). Graviceptive gain, defined as the ratio of perceived versus actual tilt angle, decreased to 20% immediately following labyrinthectomy, and recovered to nearly prelesion levels with a time constant of approximately three weeks of postsurgery testing. We conclude that proprioception accounts for up to 20% of gravity sensing in normal animals, and is re-weighted to substitute completely perceptual graviception after vestibular loss. We show that these results can be accounted for by an optimal sensory fusion model.
Collapse
|
48
|
Velocity influences the relative contributions of visual and vestibular cues to self-acceleration. Exp Brain Res 2020; 238:1423-1432. [DOI: 10.1007/s00221-020-05824-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 04/27/2020] [Indexed: 11/29/2022]
|
49
|
White O, Gaveau J, Bringoux L, Crevecoeur F. The gravitational imprint on sensorimotor planning and control. J Neurophysiol 2020; 124:4-19. [PMID: 32348686 DOI: 10.1152/jn.00381.2019] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Humans excel at learning complex tasks, and elite performers such as musicians or athletes develop motor skills that defy biomechanical constraints. All actions require the movement of massive bodies. Of particular interest in the process of sensorimotor learning and control is the impact of gravitational forces on the body. Indeed, efficient control and accurate internal representations of the body configuration in space depend on our ability to feel and anticipate the action of gravity. Here we review studies on perception and sensorimotor control in both normal and altered gravity. Behavioral and modeling studies together suggested that the nervous system develops efficient strategies to take advantage of gravitational forces across a wide variety of tasks. However, when the body was exposed to altered gravity, the rate and amount of adaptation exhibited substantial variation from one experiment to another and sometimes led to partial adjustment only. Overall, these results support the hypothesis that the brain uses a multimodal and flexible representation of the effect of gravity on our body and movements. Future work is necessary to better characterize the nature of this internal representation and the extent to which it can adapt to novel contexts.
Collapse
Affiliation(s)
- O White
- INSERM UMR1093-CAPS, UFR des Sciences du Sport, Université Bourgogne Franche-Comté, Dijon, France
| | - J Gaveau
- INSERM UMR1093-CAPS, UFR des Sciences du Sport, Université Bourgogne Franche-Comté, Dijon, France
| | - L Bringoux
- Institut des Sciences du Mouvement, CNRS, Aix Marseille Université, Marseille, France
| | - F Crevecoeur
- Institute of Communication and Information Technologies, Electronics and Applied Mathematics (ICTEAM), UCLouvain, Belgium.,Institute of Neuroscience (IoNS), UCLouvain, Belgium
| |
Collapse
|
50
|
Angelaki DE, Ng J, Abrego AM, Cham HX, Asprodini EK, Dickman JD, Laurens J. A gravity-based three-dimensional compass in the mouse brain. Nat Commun 2020; 11:1855. [PMID: 32296057 PMCID: PMC7160108 DOI: 10.1038/s41467-020-15566-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 03/12/2020] [Indexed: 02/07/2023] Open
Abstract
Gravity sensing provides a robust verticality signal for three-dimensional navigation. Head direction cells in the mammalian limbic system implement an allocentric neuronal compass. Here we show that head-direction cells in the rodent thalamus, retrosplenial cortex and cingulum fiber bundle are tuned to conjunctive combinations of azimuth and tilt, i.e. pitch or roll. Pitch and roll orientation tuning is anchored to gravity and independent of visual landmarks. When the head tilts, azimuth tuning is affixed to the head-horizontal plane, but also uses gravity to remain anchored to the allocentric bearings in the earth-horizontal plane. Collectively, these results demonstrate that a three-dimensional, gravity-based, neural compass is likely a ubiquitous property of mammalian species, including ground-dwelling animals. Head direction neurons constitute the brain’s compass, and are classically known to indicate head orientation in the horizontal plane. Here, the authors show that head direction neurons form a three-dimensional compass that can also indicate head tilt, and anchors to gravity.
Collapse
Affiliation(s)
- Dora E Angelaki
- Center for Neural Science and Tandon School of Engineering, New York University, New York, NY, USA. .,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| | - Julia Ng
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Amada M Abrego
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Henry X Cham
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Eftihia K Asprodini
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - J David Dickman
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.,Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Jean Laurens
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|