1
|
Perry GA, Welsh TH. The importance of developmental programming in the beef industry. Anim Reprod Sci 2024; 265:107488. [PMID: 38701640 DOI: 10.1016/j.anireprosci.2024.107488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/04/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
The beef industry relies on multiple focused segments (e.g., cow-calf, stocker/feeder, and meat packing) to supply the world with beef. Thus, the potential impact of developmental programming on the beef industry needs to be evaluated with regards to the different production traits that drive profitability within each segment. For example, when nutrient restriction of dams occurred early in gestation embryo survival was decreased and the ovarian reserve of heifer progeny was negatively affected. Restriction during mid- to late gestation negatively impacted first service conception rates and pregnancy success of daughters. Even non-nutrient stress has been reported to impact transgenerational embryo development through the male progeny. Primary and secondary muscle fibers form during months two to eight (Days 60-240) of gestation. Therefore, external stimuli (nutrition or environmental) during this window have the potential to decrease the postnatal number of muscle fibers; which has an irreversible impact on animal growth and performance. Nutrient restriction during the last third of gestation resulted in decreased weaning weights, and in some instances decreased dry mater intake, hot carcass weight, and marbling scores. Protein supplementation during late gestation; however, increased weaning weight and ADG to weaning, but progeny of dams restricted in protein in late gestation had greater ribeye area. The importance of developmental programming is recognized; however, its precise application depends on comprehension of its integrated effects across the multiple-focused segments of the beef industry.
Collapse
Affiliation(s)
- George A Perry
- Texas A&M AgriLife Research and Extension Center, Overton, TX 75684, United States.
| | - Thomas H Welsh
- Department of Animal Science, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
2
|
Baumgaertner F, Menezes ACB, Diniz WJS, Hurlbert JL, Bochantin-Winders KA, Underdahl SR, Kirsch JD, Dorsam ST, McCarthy KL, Ramirez-Zamudio GD, Sedivec KK, Caton JS, Dahlen CR. Effects of rate of body weight gain during the first trimester of gestation on beef heifer and offspring performance, concentrations of hormones and metabolites, and response to vaccination. J Anim Sci 2024; 102:skae193. [PMID: 39028632 PMCID: PMC11337006 DOI: 10.1093/jas/skae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024] Open
Abstract
Our study objectives were to evaluate the effects of divergent rates of body weight (BW) gain during early gestation in beef heifers on F0 performance, metabolic and endocrine status, colostrum immunoglobulins, and subsequent F1 calf characteristics, growth performance, concentrations of hormones and metabolites, and response to vaccination. Angus-based heifers (n = 100; BW = 369 ± 2.5 kg) were adapted to individual feeding for 14 d and bred using artificial insemination with female-sexed semen. Heifers were ranked by BW and assigned to either a basal diet targeting 0.28 kg/d gain (low [LG], n = 50) or the basal diet plus an energy/protein supplement targeting 0.79 kg/d gain (moderate gain [MG], n = 50) until day 84 of gestation. Dam BW and blood samples were collected at 6 time points during gestation; body composition was evaluated on days -10 and 84; and fetal measurements were taken on days 42, 63, and 84. At calving (LG, n = 23; MG, n = 23), dam and calf BW were recorded; and colostrum, calf body measurements, and blood samples were collected. Cow-calf pairs were managed on a common diet from calving to weaning, followed by a common postnatal development period for all F1 female offspring. Growth performance, hormone and metabolite profiles, feeding behavior, and reproductive performance were assessed from birth to prebreeding in F1 heifers. Offspring were vaccinated against respiratory disease and bovine viral diarrhea pathogens on days 62.3 ± 4.13 and 220.3 ± 4.13 postcalving. By design, MG dams were heavier (P < 0.0001) than LG on day 84, and the BW advantage persisted until subsequent weaning of F1 calves. Concentrations of serum IGF-1 and glucose were increased throughout gestation (P < 0.001) in MG dams, whereas concentrations of NEFA were decreased (P < 0.001) in LG dams. Calves from MG dams were 2.14 kg heavier (P = 0.03) and had larger chest circumference (P = 0.04) at birth compared with LG cohorts. Heifers from MG dams continued to have greater (P ≤ 0.03) BW gain and feed efficiency during the development period, but no differences were observed (P ≥ 0.13) in body composition, concentrations of hormones and metabolites, feeding behavior, puberty attainment, and response to vaccination in F1 offspring. Hence, early gestation rate of gain impacted BW and concentrations of glucose and IGF-1 throughout gestation in the F0 dam, resulting in altered F1 calf BW and measurements at birth and increased gain and efficiency during the development period.
Collapse
Affiliation(s)
- Friederike Baumgaertner
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
- Central Grasslands Research and Extension Center, North Dakota State University, Streeter, ND 58483, USA
| | - Ana Clara B Menezes
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Wellison J S Diniz
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Jennifer L Hurlbert
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Kerri A Bochantin-Winders
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Sarah R Underdahl
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - James D Kirsch
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Sheri T Dorsam
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Kacie L McCarthy
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - German D Ramirez-Zamudio
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
- Department of Animal Science, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, 13635-900, Brazil
| | - Kevin K Sedivec
- Central Grasslands Research and Extension Center, North Dakota State University, Streeter, ND 58483, USA
| | - Joel S Caton
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Carl R Dahlen
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
3
|
Palmer EA, Vedovatto M, Oliveira RA, Ranches J, Vendramini JMB, Poore MH, Martins T, Binelli M, Arthington JD, Moriel P. Effects of maternal winter vs. year-round supplementation of protein and energy on postnatal growth, immune function, and carcass characteristics of Bos indicus-influenced beef offspring. J Anim Sci 2022; 100:6539999. [PMID: 35230426 PMCID: PMC8886918 DOI: 10.1093/jas/skac003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022] Open
Abstract
This 2-yr study evaluated the effects of winter vs. year-round supplementation of Bos indicus-influenced beef cows on cow reproductive performance and impact on their offspring. On day 0 of each year (approximately day 122 ± 23 of gestation), 82 to 84 mature Brangus cows/yr were stratified by body weight (BW; 475 ± 67 kg) and body condition score (BCS; 4.85 ± 0.73) and randomly assigned to 1 of 6 bahiagrass (Paspalum notatum) pastures (13 to 14 cows/pasture). Treatments were randomly assigned to pastures consisting of winter supplementation with molasses + urea (WMOL), or year-round supplementation with molasses + urea (YMOL) or wheat middling-based range cubes (YCUB). Total yearly supplement DM amount was 272 kg/cow and supplements were formulated to be isocaloric and isonitrogenous (75% TDN and 20% CP). On day 421 (weaning; approximately 260 ± 24 d of age), 33 to 35 steers/yr were vaccinated against parainfluenza-3 (PI3) and bovine viral diarrhea virus type 1 (BVDV-1) and transported 1,193 km to a feedlot. Steers were penned according to maternal pasture and managed similarly until slaughter. Data were analyzed using the MIXED and GLIMMIX procedures of SAS. On day 217 (start of breeding season), BCS was greater (P = 0.01) for YMOL than WMOL cows, whereas BCS of YCUB did not differ (P ≥ 0.11) to both WMOL and YMOL cows. The percentage of cows that calved, calving date, birth BW, and preweaning BW of the first offspring did not differ (P ≥ 0.22) among maternal treatments. Plasma cortisol concentrations were greater (P ≤ 0.001) for YCUB steers at feedlot arrival (day 422) than WMOL and YMOL steers. Moreover, YCUB steers had greater (P = 0.02) and tended (P = 0.08) to have greater plasma concentrations of haptoglobin compared to WMOL and YMOL steers, respectively. Antibody titers against PI3 and BVDV-1 viruses did not differ (P ≥ 0.25) among maternal treatments. Steer BW at feedlot exit was greater (P ≤ 0.05) for YMOL and WMOL than YCUB steers. However, feedlot DMI did not differ (P ≥ 0.37) by maternal treatment. Hot carcass weight, yield grade, LMA, and marbling did not differ (P ≥ 0.14) among maternal treatments. Percentage of steers that graded low choice was enhanced (P ≤ 0.05) for WMOL and YCUB than YMOL steers. Maternal year-round supplementation of range cubes or molasses + urea either did not impact or decrease growth, immune function, and carcass characteristics of the offspring when compared with maternal supplementation of molasses + urea during winter only.
Collapse
Affiliation(s)
- Elizabeth A Palmer
- IFAS – Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | - Marcelo Vedovatto
- Unidade Universitária de Aquidauana, Universidade Estadual de Mato Grosso do Sul, Aquidauana, MS, Brazil
| | - Rhaiza A Oliveira
- IFAS – Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | - Juliana Ranches
- Eastern Oregon Agricultural Research Center, Oregon State University, Burns, OR 97720, USA
| | - Joao M B Vendramini
- IFAS – Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | - Matthew H Poore
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Thiago Martins
- Department of Animal Science, University of Florida, Gainesville, FL 32605, USA
| | - Mario Binelli
- Department of Animal Science, University of Florida, Gainesville, FL 32605, USA
| | - John D Arthington
- Department of Animal Science, University of Florida, Gainesville, FL 32605, USA
| | - Philipe Moriel
- IFAS – Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA,Corresponding author:
| |
Collapse
|
4
|
Palmer EA, Vedovatto M, Oliveira RA, Ranches J, Vendramini JMB, Poore MH, Martins T, Binelli M, Arthington JD, Moriel P. Timing of maternal supplementation of dried distillers grains during late gestation influences postnatal growth, immunocompetence, and carcass characteristics of Bos indicus-influenced beef calves. J Anim Sci 2022; 100:6517363. [PMID: 35092433 PMCID: PMC8903140 DOI: 10.1093/jas/skac022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/25/2022] [Indexed: 01/31/2023] Open
Abstract
This 2-yr study investigated the timing of dried distillers grains (DDG) supplementation during the third trimester of gestation of Bos indicus-influenced beef cows and its impact on their offspring performance. On day 0 of each year (84 d before calving), Brangus cows (n = 84/yr; cow age = 8 ± 3 yr) were stratified by initial body weight (BW; 482 ± 75 kg) and body condition score (BCS; 5.3 ± 0.8) and assigned randomly to one of six bahiagrass (Paspalum notatum) pastures (experimental units; 14 cows/pasture). Treatments were assigned randomly to pasture (2 pastures/treatment/yr) and consisted of no prepartum supplementation (CON), 2 kg/d of DDG from day 0 to 42 (LATE42), or 1 kg/d of DDG from day 0 to 84 (LATE84). Following calving (day 84), cow-calf pairs remained in their respective pastures, and cows were offered sugarcane molasses + urea (1.82 kg of dry matter/cow/d) from day 85 until the end of the breeding season (day 224). On day 347, steer calves (n = 38/yr; 11 to 15 steers/treatment/yr) were weaned and transported to the feedlot (1,193 km). Steers were penned according to cow prepartum pasture and managed similarly until the time of harvest. BCS at calving was greater (P < 0.01) for LATE42 and LATE84 vs. CON cows but did not differ (P = 0.16) between LATE42 and LATE84 cows. Calving date, calving percentage, and birth BW of the first offspring did not differ (P ≥ 0.22) among treatments. However, LATE42 cows calved their second offspring 8 d earlier (P = 0.04) compared with CON and LATE84 cows. At weaning (first offspring), LATE84 calves were the heaviest (P ≤ 0.05), CON calves were the lightest, and LATE42 calves had intermediate BW (P ≤ 0.05). Steer plasma concentrations of cortisol and haptoglobin and serum bovine viral diarrhea virus type-1 titers did not differ (P ≥ 0.21) between treatments. Steer serum parainfluenza-3 titers were greater (P = 0.03) for LATE42 vs. CON steers, tended to be greater (P = 0.10) for LATE84 compared with CON steers, and did not differ (P = 0.38) between LATE42 and LATE84 steers. Steer feedlot BW, average daily gain, dry matter intake, and hot carcass weight did not differ (P ≥ 0.36) between treatments. Marbling and the percentage of steers grading choice were greater (P ≤ 0.04) for LATE42 vs. CON steers, whereas LATE84 steers were intermediate. In summary, different timing of DDG supplementation during the third trimester of gestation could be explored to optimize cow BCS and offspring preweaning growth and carcass quality.
Collapse
Affiliation(s)
- Elizabeth A Palmer
- IFAS – Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | - Marcelo Vedovatto
- Unidade Universitária de Aquidauana, Universidade Estadual de Mato GrIGFosso do Sul, Aquidauana, MS, Brazil
| | - Rhaiza A Oliveira
- IFAS – Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | - Juliana Ranches
- Eastern Oregon Agricultural Research Center, Oregon State University, Burns, OR 97720, USA
| | - Joao M B Vendramini
- IFAS – Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | - Matthew H Poore
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Thiago Martins
- Department of Animal Science, University of Florida, Gainesville, FL 32605, USA
| | - Mario Binelli
- Department of Animal Science, University of Florida, Gainesville, FL 32605, USA
| | - John D Arthington
- Department of Animal Science, University of Florida, Gainesville, FL 32605, USA
| | - Philipe Moriel
- IFAS – Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA,Corresponding author:
| |
Collapse
|
5
|
Blair AD, Gubbels ER, Block JJ, Olson KC, Grubbs JK, Underwood KR. Maternal Nutrition and Meat Quality of Progeny. MEAT AND MUSCLE BIOLOGY 2021. [DOI: 10.22175/mmb.12990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The concept of fetal programming is based on the idea that nutritional status and environmental conditions encountered by the dam during pregnancy can have lifetime impacts on her offspring. These changes in the gestational environment have been shown to influence fetal development and subsequent growth performance, carcass composition, and meat quality characteristics. Beef fetuses can be particularly prone to experiencing variations in the maternal environment during development owing to a relatively long duration of pregnancy potentially exposing the dam to environmental temperature stress and/or seasonal conditions that can compromise feed quality or quantity. If feed is limited or forage conditions are poor, a maternal deficiency in protein and/or energy can occur as well as fluctuations in body condition of the dam. As a result, the fetus may receive inadequate levels of nutrients, potentially altering fetal development. There are critical windows of development during each stage of gestation in which various tissues, organs, and metabolic systems may be impacted. Skeletal muscle and adipose tissue are particularly vulnerable to alterations in the gestational environment because of their low priority for nutrients relative to vital organs and systems during development. The timing and severity of the environmental event or stressor as well as the ability of the dam to buffer negative effects to the fetus will dictate the developmental response. Much of the current research is focused on the influence of specific nutrients and timing of nutritional treatments on offspring carcass composition and meat quality, with the goal of informing strategies that will ultimately allow for the use of maternal nutritional management as a tool to optimize performance and meat quality of offspring.
Collapse
Affiliation(s)
| | | | - Janna J. Block
- North Dakota State University Hettinger Research Extension Cente
| | | | | | | |
Collapse
|
6
|
Gubbels ER, Block JJ, Salverson RR, Harty AA, Rusche WC, Wright CL, Cammack KM, Smith ZK, Grubbs JK, Underwood KR, Legako JF, Olson KC, Blair AD. Influence of Maternal Carbohydrate Source (Concentrate-Based vs. Forage-Based) on Growth Performance, Carcass Characteristics, and Meat Quality of Progeny. Foods 2021; 10:foods10092056. [PMID: 34574167 PMCID: PMC8467160 DOI: 10.3390/foods10092056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/21/2022] Open
Abstract
The objective of this research was to investigate the influence of maternal prepartum dietary carbohydrate source on growth performance, carcass characteristics, and meat quality of offspring. Angus-based cows were assigned to either a concentrate-based diet or forage-based diet during mid- and late-gestation. A subset of calves was selected for evaluation of progeny performance. Dry matter intake (DMI), body weight (BW), average daily gain (ADG), gain to feed (G:F), and ultrasound measurements (muscle depth, back fat thickness, and intramuscular fat) were assessed during the feeding period. Carcass measurements were recorded, and striploins were collected for Warner-Bratzler shear force (WBSF), trained sensory panel, crude fat determination and fatty acid profile. Maternal dietary treatment did not influence (p > 0.05) offspring BW, DMI, ultrasound measurements, percent moisture, crude fat, WBSF, or consumer sensory responses. The forage treatment tended to have decreased (p = 0.06) 12th rib backfat compared to the concentrate treatment and tended to have lower (p = 0.08) yield grades. The concentrate treatment had increased (p < 0.05) a* and b* values compared to the forage treatment. These data suggest variation in maternal diets applied in this study during mid- and late-gestation has limited influence on progeny performance.
Collapse
Affiliation(s)
- Erin R. Gubbels
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA; (R.R.S.); (A.A.H.); (W.C.R.); (C.L.W.); (K.M.C.); (Z.K.S.); (J.K.G.); (K.R.U.); (K.C.O.); (A.D.B.)
- Correspondence:
| | - Janna J. Block
- Hettinger Research Extension Center, North Dakota State University, Hettinger, ND 58639, USA;
| | - Robin R. Salverson
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA; (R.R.S.); (A.A.H.); (W.C.R.); (C.L.W.); (K.M.C.); (Z.K.S.); (J.K.G.); (K.R.U.); (K.C.O.); (A.D.B.)
| | - Adele A. Harty
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA; (R.R.S.); (A.A.H.); (W.C.R.); (C.L.W.); (K.M.C.); (Z.K.S.); (J.K.G.); (K.R.U.); (K.C.O.); (A.D.B.)
| | - Warren C. Rusche
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA; (R.R.S.); (A.A.H.); (W.C.R.); (C.L.W.); (K.M.C.); (Z.K.S.); (J.K.G.); (K.R.U.); (K.C.O.); (A.D.B.)
| | - Cody L. Wright
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA; (R.R.S.); (A.A.H.); (W.C.R.); (C.L.W.); (K.M.C.); (Z.K.S.); (J.K.G.); (K.R.U.); (K.C.O.); (A.D.B.)
| | - Kristi M. Cammack
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA; (R.R.S.); (A.A.H.); (W.C.R.); (C.L.W.); (K.M.C.); (Z.K.S.); (J.K.G.); (K.R.U.); (K.C.O.); (A.D.B.)
| | - Zachary K. Smith
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA; (R.R.S.); (A.A.H.); (W.C.R.); (C.L.W.); (K.M.C.); (Z.K.S.); (J.K.G.); (K.R.U.); (K.C.O.); (A.D.B.)
| | - J. Kyle Grubbs
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA; (R.R.S.); (A.A.H.); (W.C.R.); (C.L.W.); (K.M.C.); (Z.K.S.); (J.K.G.); (K.R.U.); (K.C.O.); (A.D.B.)
| | - Keith R. Underwood
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA; (R.R.S.); (A.A.H.); (W.C.R.); (C.L.W.); (K.M.C.); (Z.K.S.); (J.K.G.); (K.R.U.); (K.C.O.); (A.D.B.)
| | - Jerrad F. Legako
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA;
| | - Kenneth C. Olson
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA; (R.R.S.); (A.A.H.); (W.C.R.); (C.L.W.); (K.M.C.); (Z.K.S.); (J.K.G.); (K.R.U.); (K.C.O.); (A.D.B.)
| | - Amanda D. Blair
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA; (R.R.S.); (A.A.H.); (W.C.R.); (C.L.W.); (K.M.C.); (Z.K.S.); (J.K.G.); (K.R.U.); (K.C.O.); (A.D.B.)
| |
Collapse
|
7
|
Gardner JM, Ineck NE, Quarnberg SM, Legako JF, Carpenter CE, Rood KA, Thornton-Kurth KJ. The Influence of Maternal Dietary Intake During Mid-Gestation on Growth, Feedlot Performance, miRNA and mRNA Expression, and Carcass and Meat Quality of Resultant Offspring. MEAT AND MUSCLE BIOLOGY 2021. [DOI: 10.22175/mmb.11538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
This research analyzed how maternal plane of nutrition during mid-gestation impacts growth, blood metabolites, expression of microRNA and messenger RNA in skeletal muscle, feedlot performance, and carcass characteristics of progeny. Thirty-two cows were bred to the same Angus sire and fed to either maintain a body condition score (BCS) of 5.0 to 5.5 (maintenance [MAIN]; n = 15) or to lose 1 BCS (restriction [REST]; n = 17) over an 84-d period of mid-gestation. Following the second trimester, all cows were co-mingled and fed at maintenance for the remainder of gestation. Following the 84-d treatment period, REST cows had a lower (P < 0.01) BCS than MAIN cows. At the end of the third trimester, there was no difference (P = 0.78) in BCS between the treatment groups. There was no difference (P > 0.10) between offspring in birthweight, weaning weight, average daily gain, feed efficiency, dry matter intake, carcass yield, steak quality, or in circulating levels of glucose, cortisol, insulin, or insulin-like growth factor-1. REST offspring expressed more (P < 0.05) miR-133a, miR-133b, miR-181d, miR-214, miR-424 and miR-486 at weaning than MAIN offspring. At harvest, REST offspring expressed more (P < 0.05) miR-133a and less (P < 0.01) miR-486 than MAIN offspring. REST steaks were perceived as more tender (P = 0.05) by a trained sensory panel. These results indicate that maternal nutrient restriction during mid-gestation resulting in a loss of 1 BCS has an effect on microRNA expression in the skeletal muscle but does not alter postnatal growth potential, carcass quality, or end product quality of the offspring. This suggests that moderate restriction in maternal nutrition during the second trimester, which results in a drop in BCS that can be recovered during the third trimester, should not cause alarm for producers when considering future offspring performance.
Collapse
Affiliation(s)
| | | | | | | | | | - Kerry A. Rood
- Utah State University Animal, Dairy and Veterinary Science
| | | |
Collapse
|
8
|
Noya A, Casasús I, Ferrer J, Sanz A. Long-Term Effects of Maternal Subnutrition in Early Pregnancy on Cow-Calf Performance, Immunological and Physiological Profiles during the Next Lactation. Animals (Basel) 2019; 9:E936. [PMID: 31717350 PMCID: PMC6912618 DOI: 10.3390/ani9110936] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/25/2022] Open
Abstract
This study aimed to evaluate the effects of undernutrition during the first third of gestation on cow-calf performance, immunological and physiological profiles during the next lactation in two cattle breeds. Fifty-three Parda de Montaña (PA) and 32 Pirenaica (PI) cows were inseminated, assigned to one of two diets (CONTROL or SUBNUT; 100% or 65% of their requirements) until day 82 of gestation, and fed 100% of the requirements during gestation and next lactation. Cow and calf performance were assessed during lactation. Colostrum and cow-calf plasma samples were analyzed to assess the passive transfer of immunoglobulins and to characterize energy metabolism. At calving, SUBNUT cows had a lower body condition score, which impaired most of the cow-calf parameters. All cows had considerable weight losses during lactation except for SUBNUT-PI cows. Colostrum immunoglobulin G (IgG) concentration was lower in SUBNUT-PI cows, and milk fat content was higher in SUBNUT cows. SUBNUT calves had lower values of body measurements at weaning, and calves born from SUBNUT-PI dams had lower milk intake and the lowest average daily gain (ADG), which was reflected in their lower plasma insulin-like growth factor-1 (IGF-1) concentration. In conclusion, undernutrition in early gestation in suckler cows had long-term effects on offspring postnatal growth, this physiological evidence being more severe in Pirenaica cow-calf pairs.
Collapse
Affiliation(s)
| | | | | | - Albina Sanz
- Department of Animal Production, Centro de Investigación y Tecnología Agroalimentaria (CITA) de Aragón, Instituto Agroalimentario de Aragón, IA2 (CITA-Universidad de Zaragoza), 50059 Zaragoza, Spain; (A.N.); (I.C.); (J.F.)
| |
Collapse
|
9
|
Summers AF, Scholljegerdes EJ. Developmental Resiliency: In Utero Adaption to Environmental Stimuli. Vet Clin North Am Food Anim Pract 2019; 35:365-378. [PMID: 31103188 DOI: 10.1016/j.cvfa.2019.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Stimuli experienced in utero can have a lasting impact on livestock growth, reproduction, and performance. Variations in environment, production system, and management strategies lead to discrepancies in the literature regarding how specific treatments influence animal performance. Studies comparing the influence of maternal undernutrition to well-fed counterparts typically result in decreased productivity of offspring. Via adaptation to nutritional or environmental stressors, dams may develop mechanisms to ensure proper nutrient supply to the fetus. It appears nutrient deprivation must be severe for consistent results. Potential mechanisms for altered performance in grazing systems and overnutrition settings are discussed.
Collapse
Affiliation(s)
- Adam F Summers
- Department of Animal and Range Sciences, New Mexico State University, P. O. Box 30003, Las Cruces, NM 88003, USA.
| | - Eric J Scholljegerdes
- Department of Animal and Range Sciences, New Mexico State University, P. O. Box 30003, Las Cruces, NM 88003, USA
| |
Collapse
|