1
|
Yakushev A, Khuyagbaatar J, Düllmann CE, Block M, Cantemir RA, Cox DM, Dietzel D, Giacoppo F, Hrabar Y, Iliaš M, Jäger E, Krier J, Krupp D, Kurz N, Lens L, Löchner S, Mokry C, Mošať P, Pershina V, Raeder S, Rudolph D, Runke J, Sarmiento LG, Schausten B, Scherer U, Thörle-Pospiech P, Trautmann N, Wegrzecki M, Wieczorek P. Manifestation of relativistic effects in the chemical properties of nihonium and moscovium revealed by gas chromatography studies. Front Chem 2024; 12:1474820. [PMID: 39391836 PMCID: PMC11464923 DOI: 10.3389/fchem.2024.1474820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
Chemical reactivity of the superheavy elements nihonium (Nh, element 113) and moscovium (Mc, element 115) has been studied by the gas-solid chromatography method using a new combined chromatography and detection setup. The Mc isotope, 288Mc, was produced in the nuclear fusion reaction of 48Ca ions with 243Am targets at the GSI Helmholtzzentrum Darmstadt, Germany. After isolating 288Mc ions in the gas-filled separator TASCA, adsorption of 288Mc and its decay product 284Nh on silicon oxide and gold surfaces was investigated. As a result of this work, the values of the adsorption enthalpy of Nh and Mc on the silicon oxide surface were determined for the first time, - ∆ H ads SiO 2 Mc = 54 - 5 + 11 kJ/mol and - ∆ H ads SiO 2 Nh = 58 - 3 + 8 kJ/mol (68% c.i.). The obtained -ΔH ads values are in good agreement with results of advanced relativistic calculations. Both elements, Nh and Mc, were shown to interact more weakly with the silicon oxide surface than their lighter homologues Tl and Bi, respectively. However, Nh and Mc turned out to be more reactive than the neighbouring closed-shell and quasi-closed-shell elements copernicium (Cn, element 112) and flerovium (Fl, element 114), respectively. The established trend is explained by the influence of strong relativistic effects on the valence atomic orbitals of these elements.
Collapse
Affiliation(s)
- A. Yakushev
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
| | - J. Khuyagbaatar
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
| | - Ch. E. Düllmann
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - M. Block
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - R. A. Cantemir
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - D. M. Cox
- Department of Physics, Lund University, Lund, Sweden
| | - D. Dietzel
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - F. Giacoppo
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
| | - Y. Hrabar
- Department of Physics, Lund University, Lund, Sweden
| | - M. Iliaš
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
| | - E. Jäger
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - J. Krier
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - D. Krupp
- Hochschule Mannheim, Mannheim, Germany
| | - N. Kurz
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - L. Lens
- Hochschule Mannheim, Mannheim, Germany
| | - S. Löchner
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Ch. Mokry
- Helmholtz-Institut Mainz, Mainz, Germany
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - P. Mošať
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - V. Pershina
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - S. Raeder
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - D. Rudolph
- Department of Physics, Lund University, Lund, Sweden
| | - J. Runke
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | | | - B. Schausten
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | - P. Thörle-Pospiech
- Helmholtz-Institut Mainz, Mainz, Germany
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - N. Trautmann
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - M. Wegrzecki
- Łukasiewicz - Instytut Mikroelektroniki i Fotoniki, Warsaw, Poland
| | - P. Wieczorek
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| |
Collapse
|
2
|
Demidov YA, Shalaevsky AA, Oleynichenko AV, Rusakov AA. Uncovering chemical homology of superheavy elements: a close look at astatine. Phys Chem Chem Phys 2024; 26:23823-23834. [PMID: 39230259 DOI: 10.1039/d4cp01868k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The fascination with superheavy elements (SHE) spans the nuclear physics, astrophysics, and theoretical chemistry communities. Extreme relativistic effects govern these elements' chemistry and challenge the traditional notion of the periodic law. The experimental quest for SHE critically depends on theoretical predictions of these elements' properties, especially chemical homology, which allows for successful prototypical experiments with more readily available lighter homologues of SHE. This work is a comprehensive quantum-chemical investigation into astatine (At) as a non-intuitive homologue of element 113, nihonium (Nh). Combining relativistic coupled-cluster and density functional theory approaches, we model the behaviour of At and AtOH in thermochromatographic experiments on a pristine gold surface. Insights into the electronic structure of AtOH and NhOH and accurate estimates of At-gold and AtOH-gold adsorption energies rationalise recent experimental findings and justify the use of At as a chemical homologue of Nh for the successful design of future experiments on Nh detection and chemical characterisation.
Collapse
Affiliation(s)
- Yuriy A Demidov
- B. P. Konstantinov Petersburg Nuclear Physics Institute of National Research Center "Kurchatov Institute" (NRC "Kurchatov Institute" - PNPI), Orlova Roscha, 1, 188300 Gatchina, Russia
- St. Petersburg Electrotechnical University "LETI", 197376 St. Petersburg, Russia
| | | | - Alexander V Oleynichenko
- B. P. Konstantinov Petersburg Nuclear Physics Institute of National Research Center "Kurchatov Institute" (NRC "Kurchatov Institute" - PNPI), Orlova Roscha, 1, 188300 Gatchina, Russia
| | - Alexander A Rusakov
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan 48309, USA.
| |
Collapse
|
3
|
Ryzhkov A, Pershina V, Iliaš M, Shabaev V. Reactivity of Ts and At oxides and oxyhydrides with a gold surface from periodic DFT calculations. Phys Chem Chem Phys 2024; 26:9975-9983. [PMID: 38477329 DOI: 10.1039/d3cp05645g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Adsorption energies, Eads, of oxides and oxyhydrides of the superheavy element (SHEs) Ts and of its lighter homologue At on the gold surface are predicted on the basis of relativistic periodic density functional theory calculations via AMS BAND software. The following compounds were considered: MO, MO2, MOO, and MO(OH) (where M = At and Ts). The aim of this study is to support "one-atom-at-a-time" gas-phase chromatography experiments on reactivity/volatility of SHEs. The results obtained indicate that all the molecules investigated should interact fairly strongly with the gold surface, with those of Ts being more reactive than At ones. The similarity in the Eads values of all the considered At compounds would make it challenging to differentiate between them while measuring their adsorption enthalpies, given experimental uncertainty. However, the difference in Eads among Ts compounds is more pronounced, so that one should be able to differentiate between the species.
Collapse
Affiliation(s)
- Anton Ryzhkov
- Department of Physics, St. Petersburg State University, Universitetskaya 7/9, 199034 St. Petersburg, Russia
- Joint Institute for Nuclear Research, ul. Joliot-Curie 6, 141980 Dubna, Moscow oblast, Russia
| | - Valeria Pershina
- Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, D-64291 Darmstadt, Germany
| | - Miroslav Iliaš
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 97401 Banská Bystrica, Slovakia.
| | - Vladimir Shabaev
- Department of Physics, St. Petersburg State University, Universitetskaya 7/9, 199034 St. Petersburg, Russia
- Joint Institute for Nuclear Research, ul. Joliot-Curie 6, 141980 Dubna, Moscow oblast, Russia
| |
Collapse
|
4
|
Kotov AA, Kozhedub YS, Glazov DA, Iliaš M, Pershina V, Shabaev VM. Relativistic Coupled-Cluster Calculations of Spectroscopic Properties of Copernicium and Flerovium Monoxides. Chemphyschem 2023; 24:e202200680. [PMID: 36383485 DOI: 10.1002/cphc.202200680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022]
Abstract
Calculations of spectroscopic properties of the CnO and FlO molecules are performed using ab initio all-electron 4c- and 2c-relativistic coupled-cluster approaches with single, double, and perturbative triple excitations. The corresponding calculation for HgO is also accomplished for comparison with the published data. The dependence of the results on the parameters of the basis set and approximations used is investigated in detail. The overall relative uncertainties of the recommended values on the level of 1-2 % are reached. The calculated spectroscopic constants are indicative of the following trend in the reactivity of the oxides HgO>FlO>CnO. This is confirmed by the trend in the adsorption energies, Eads , of these molecules on the surfaces of gold, quartz, and Teflon. The predicted rather low Eads values for the latter case should guarantee their delivery from the recoil chamber to the chemistry set up in gas-phase experiments.
Collapse
Affiliation(s)
- Artem A Kotov
- Department of Physics, St. Petersburg State University, 199034, St. Petersburg, Russia
| | - Yury S Kozhedub
- Department of Physics, St. Petersburg State University, 199034, St. Petersburg, Russia
| | - Dmitry A Glazov
- Department of Physics, St. Petersburg State University, 199034, St. Petersburg, Russia
| | - Miroslav Iliaš
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 97401, Banská Bystrica, Slovakia.,Helmholtz-Institut Mainz, Johannes Gutenberg-Universität, 55099, Mainz, Germany.,GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291, Darmstadt, Germany
| | - Valeria Pershina
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291, Darmstadt, Germany
| | - Vladimir M Shabaev
- Department of Physics, St. Petersburg State University, 199034, St. Petersburg, Russia
| |
Collapse
|
5
|
Düllmann CE, Artes E, Dragoun A, Haas R, Jäger E, Kindler B, Lommel B, Mangold KM, Meyer CC, Mokry C, Munnik F, Rapps M, Renisch D, Runke J, Seibert A, Stöckl M, Thörle-Pospiech P, Trautmann C, Trautmann N, Yakushev A. Advancements in the fabrication and characterization of actinide targets for superheavy element production. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08631-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractThe heaviest elements can exclusively be produced in actinide-target based nuclear fusion reactions with intense heavy-ion beams. Ever more powerful accelerators deliver beams of continuously increasing intensity, which brings targets of current technology to their limits and beyond. We motivate efforts to produce targets with improved properties, which calls for a better understanding of targets produced by molecular plating, the current standard method. Complementary analytical methods will help shedding more light on their chemical and physical changes in the beam. Special emphasis is devoted to the aspect of the optimum target thickness and the choice of the backing material.
Collapse
|
6
|
Iliaš M, Pershina V. Reactivity of Group 13 Elements Tl and Element 113, Nh, and of Their Hydroxides with Respect to Various Quartz Surfaces from Periodic Relativistic DFT Calculations. Inorg Chem 2022; 61:15910-15920. [PMID: 36149319 DOI: 10.1021/acs.inorgchem.2c02103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adsorption properties of group 13 element Tl and the superheavy element Nh, as well of their hydroxides on various modified quartz surfaces, are predicted on the basis of relativistic periodic DFT calculations using the BAND software. The obtained adsorption energies, Eads, of the MOH (M = Tl and Nh) molecules are indicative of the relatively strong interaction of the hydroxides with all the considered quartz surfaces. In contrast, adsorption of the Tl and Nh atoms was found to be significantly weaker. The adsorption strength of both M and MOH (M = Tl and Nh) was shown to increase with the dehydroxylation of the quartz surface. Very good agreement is reached between the calculated Eads(TlOH) of 133 kJ/mol on the fully hydroxylated quartz surface and of 157 kJ/mol on the partially dehydroxylated quartz surface on the one hand and experimental adsorption enthalpies, -ΔHads, of 134/137 ± 5 kJ/mol (at ∼300 °C) and 158 ± 3 kJ/mol (at ∼500 °C), respectively, on the other hand. Thus, we suggest that all the experimental ΔHads values for Tl should be assigned to the adsorption/desorption of the TlOH molecule. For NhOH, its adsorption properties on various quartz surfaces should be very similar to those of TlOH, with slightly smaller Eads values. Adsorption of the Nh atom should, however, be much weaker than that of the Tl atom due to stronger spin-orbit effects in Nh.
Collapse
Affiliation(s)
- Miroslav Iliaš
- Helmholtz-Institut Mainz, Johannes Gutenberg-Universität, 55099 Mainz, Germany.,Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 97401 Banská Bystrica, Slovakia.,GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, D-64291 Darmstadt, Germany
| | - Valeria Pershina
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, D-64291 Darmstadt, Germany
| |
Collapse
|
7
|
A Progress Report on Laser Resonance Chromatography. ATOMS 2022. [DOI: 10.3390/atoms10030087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Research on superheavy elements enables probing the limits of nuclear existence and provides a fertile ground to advance our understanding of the atom’s structure. However, experimental access to these atomic species is very challenging and often requires the development of new technologies and experimental techniques optimized for the study of a single atomic species. The Laser Resonance Chromatography (LRC) technique was recently conceived to enable atomic structure investigations in the region of the superheavy elements. Here, we give an update on the experimental progress and simulation results.
Collapse
|
8
|
Yakushev A, Lens L, Düllmann CE, Khuyagbaatar J, Jäger E, Krier J, Runke J, Albers HM, Asai M, Block M, Despotopulos J, Di Nitto A, Eberhardt K, Forsberg U, Golubev P, Götz M, Götz S, Haba H, Harkness-Brennan L, Herzberg RD, Heßberger FP, Hinde D, Hübner A, Judson D, Kindler B, Komori Y, Konki J, Kratz J, Kurz N, Laatiaoui M, Lahiri S, Lommel B, Maiti M, Mistry AK, Mokry C, Moody KJ, Nagame Y, Omtvedt JP, Papadakis P, Pershina V, Rudolph D, Samiento L, Sato T, Schädel M, Scharrer P, Schausten B, Shaughnessy DA, Steiner J, Thörle-Pospiech P, Toyoshima A, Trautmann N, Tsukada K, Uusitalo J, Voss KO, Ward A, Wegrzecki M, Wiehl N, Williams E, Yakusheva V. On the adsorption and reactivity of element 114, flerovium. Front Chem 2022; 10:976635. [PMID: 36092655 PMCID: PMC9453156 DOI: 10.3389/fchem.2022.976635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/19/2022] [Indexed: 12/01/2022] Open
Abstract
Flerovium (Fl, element 114) is the heaviest element chemically studied so far. To date, its interaction with gold was investigated in two gas-solid chromatography experiments, which reported two different types of interaction, however, each based on the level of a few registered atoms only. Whereas noble-gas-like properties were suggested from the first experiment, the second one pointed at a volatile-metal-like character. Here, we present further experimental data on adsorption studies of Fl on silicon oxide and gold surfaces, accounting for the inhomogeneous nature of the surface, as it was used in the experiment and analyzed as part of the reported studies. We confirm that Fl is highly volatile and the least reactive member of group 14. Our experimental observations suggest that Fl exhibits lower reactivity towards Au than the volatile metal Hg, but higher reactivity than the noble gas Rn.
Collapse
Affiliation(s)
- A. Yakushev
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
- *Correspondence: A. Yakushev,
| | - L. Lens
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Ch. E. Düllmann
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - J. Khuyagbaatar
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
| | - E. Jäger
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - J. Krier
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - J. Runke
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - H. M. Albers
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - M. Asai
- Japan Atomic Energy Agency, Tokai, Japan
| | - M. Block
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - J. Despotopulos
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - A. Di Nitto
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - K. Eberhardt
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | | | | | - M. Götz
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - S. Götz
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | | | | | | | - F. P. Heßberger
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
| | - D. Hinde
- Australian National University, Canberra, ACT, Australia
| | - A. Hübner
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - D. Judson
- University of Liverpool, Liverpool, United Kingdom
| | - B. Kindler
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | - J. Konki
- University of Jyväskylä, Jyväskylä, Finland
| | - J.V. Kratz
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - N. Kurz
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - M. Laatiaoui
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - S. Lahiri
- Saha Institute of Nuclear Physics, Kolkata, India
| | - B. Lommel
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - M. Maiti
- Indian Institute of Technology Roorkee, Roorkee, India
| | - A. K. Mistry
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
| | - Ch. Mokry
- Helmholtz-Institut Mainz, Mainz, Germany
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - K. J. Moody
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Y. Nagame
- Japan Atomic Energy Agency, Tokai, Japan
| | | | - P. Papadakis
- University of Liverpool, Liverpool, United Kingdom
| | - V. Pershina
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | | | - T.K. Sato
- Japan Atomic Energy Agency, Tokai, Japan
| | - M. Schädel
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - P. Scharrer
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - B. Schausten
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - D. A. Shaughnessy
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - J. Steiner
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - P. Thörle-Pospiech
- Helmholtz-Institut Mainz, Mainz, Germany
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | | | - N. Trautmann
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - K. Tsukada
- Japan Atomic Energy Agency, Tokai, Japan
| | | | - K.-O. Voss
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - A. Ward
- University of Liverpool, Liverpool, United Kingdom
| | - M. Wegrzecki
- Łukasiewicz Research Network—Institute of Electron Technology, Warsaw, Poland
| | - N. Wiehl
- Helmholtz-Institut Mainz, Mainz, Germany
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - E. Williams
- Australian National University, Canberra, ACT, Australia
| | - V. Yakusheva
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
| |
Collapse
|
9
|
Florez E, Smits O, Mewes JM, Jerabek P, Schwerdtfeger P. From the gas phase to the solid state: The chemical bonding in the superheavy element flerovium. J Chem Phys 2022; 157:064304. [DOI: 10.1063/5.0097642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
As early as 1975, Pitzer suggested that copernicium, flerovium and oganesson are volatile substances behaving noble-gas like because of their closed-shell configurations and accompanying relativistic effects. It is, however, precarious to predict the chemical bonding and physical behavior of a solid by knowledge of the atomic or molecular properties only. Copernicium and oganesson have been analyzed very recently by our group. Both are predicted to be semi-conductors and volatile substances with rather low melting and boiling points, which may justify a comparison with the noble gas elements. Here we study closed-shell flerovium in detail to predict solid-state properties including the melting point from a decomposition of the total energy into many-body forces derived from relativistic coupled-cluster and from density functional theory. The convergence of such a decomposition for flerovium is critically analyzed, and the problem of using density functional theory is highlighted. We predict that flerovium is in many ways not behaving like a typical noble gas element despite its closed-shell 7$p_{1/2}^2$ configuration and resulting weak interactions. Unlike for the noble gases, the many-body expansion in terms of the interaction energy is not converging smoothly. This makes the accurate prediction of phase transitions very difficult. Nevertheless, a first prediction by Monte-Carlo simulation estimates the melting point at $284\pm 50$ K. Furthermore, calculations for the electronic band gap suggests that flerovium is a semi-conductor similar to copernicium
Collapse
Affiliation(s)
- Edison Florez
- New Zealand Institute for Advanced Study, New Zealand
| | - Odile Smits
- New Zealand Institute for Advanced Study, New Zealand
| | - Jan-Michael Mewes
- University of Bonn Institute of Physical and Theoretical Chemistry, Germany
| | | | - Peter Schwerdtfeger
- Center for Theoretical Chemistry and Physics, New Zealand Institute for Advanced Study, New Zealand
| |
Collapse
|
10
|
Pershina V, Iliaš M. Reactivity of superheavy elements Cn and Fl and of their oxides in comparison with homologous species of Hg and Pb, respectively, towards gold and hydroxylated quartz surfaces. Dalton Trans 2022; 51:7321-7332. [PMID: 35482331 DOI: 10.1039/d2dt00240j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adsorption energies, Eads, and other properties of atoms and oxides of the superheavy elements (SHEs) Cn and Fl, as well as of the homologous species of Hg and Pb, on Au(111) and fully hydroxylated quartz surfaces are predicted on the basis of 2c-DFT calculations and a periodic slab model using BAND software. The ambition of the work is to interpret the outcome of "one-atom-at-a-time" gas-phase chromatography experiments on the reactivity/volatility of SHEs. The present results with an improved (dispersion corrected) exchange-correlation functional show that, in agreement with our earlier predictions and experimental results on Pb, Hg and Cn, the sequence of the Eads values of the atoms on the gold surface should be Pb ≫ Hg > Fl > Cn, with rather moderate Eads values smaller than 90 kJ mol-1 (except for that for Pb). Oxides of Hg, Cn and Fl should be much more reactive with the gold surface than the corresponding atoms, with Eads values of about 200 kJ mol-1. A striking difference in the geometry of the deposited oxides was found between group 12 and group 14. An analysis of the Eads values for M and MO (M = Hg/Cn and Pb/Fl) on the hydroxylated α-quartz surface enables one to conclude that atoms of Hg, Cn and Fl should not interact with such a surface at room temperature, while Pb should adsorb on it. Oxides of these elements, on the contrary, should strongly adsorb on quartz with Eads ≥ 100 kJ mol-1. The present theoretical data agree with the experimental results on the elemental species of Hg, Cn and Fl.
Collapse
Affiliation(s)
- Valeria Pershina
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, D-64291 Darmstadt, Germany.
| | - Miroslav Iliaš
- Helmholtz-Institut Mainz, Johannes Gutenberg-Universität, 55099 Mainz, Mainz, Germany.,Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 97401 Banská Bystrica, Slovakia
| |
Collapse
|
11
|
Pershina V, Iliaš M, Yakushev A. Reactivity of the Superheavy Element 115, Mc, and Its Lighter Homologue, Bi, with Respect to Gold and Hydroxylated Quartz Surfaces from Periodic Relativistic DFT Calculations: A Comparison with Element 113, Nh. Inorg Chem 2021; 60:9796-9804. [PMID: 34142795 DOI: 10.1021/acs.inorgchem.1c01076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Adsorption energies (Eads) of the superheavy element (SHE) Mc, its lighter homologue (Bi), as well as of another superheavy element Nh and some lighter homologues of SHEs on gold and hydroxylated quartz surfaces are predicted via periodic relativistic density functional theory calculations. The aim of this study is to support "one-atom-at-a-time" gas-phase chromatography experiments that are examining the reactivity and volatility of Mc. The obtained Eads values of the Bi and Mc atoms on the Au(111) surface are >200 kJ/mol. On the hydroxylated quartz surface, Mc should adsorb with a minimal energy of 58 kJ/mol. On both types of surfaces, Eads(Mc) should be ∼100 kJ/mol smaller than Eads(Bi) due to strong relativistic effects on its valence 7p electrons. A comparison with other SHEs under investigation shows that Mc should adsorb on gold more strongly than Cn, Nh, and Fl, while on quartz, Mc should adsorb like Nh, with both of them absorbing more strongly than volatile Cn and Fl. The highest reactivity of Mc in the row of the 7p elements is caused by the largest orbital and relativistic destabilization and expansion of the 7p3/2 atomic orbital. Using the calculated Eads, the distribution of the Nh and Mc events in the gas-phase chromatography column with quartz and gold-plated detectors is predicted via Monte Carlo simulations. As a result, Mc atoms should be almost 100% adsorbed in the first section of the chromatography column on quartz, while a few atoms of Nh can reach the second part of the column with gold-plated detectors.
Collapse
Affiliation(s)
- Valeria Pershina
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, 64291 Darmstadt, Germany
| | - Miroslav Iliaš
- Helmholtz Institute Mainz, Johannes Gutenberg-Universität, 55099 Mainz, Germany.,Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 97401 Banská Bystrica, Slovakia
| | - Alexander Yakushev
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, 64291 Darmstadt, Germany
| |
Collapse
|
12
|
Steinegger P. Open questions on chemistry in the synthesis and characterization of superheavy elements. Commun Chem 2021; 4:87. [PMID: 36697629 PMCID: PMC9814703 DOI: 10.1038/s42004-021-00529-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 05/25/2021] [Indexed: 01/28/2023] Open
Affiliation(s)
- Patrick Steinegger
- Laboratory of Radiochemistry, Paul Scherrer Institute, Villigen PSI, Switzerland.
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zürich, Switzerland.
| |
Collapse
|
13
|
Smits OR, Mewes J, Jerabek P, Schwerdtfeger P. Oganesson: A Noble Gas Element That Is Neither Noble Nor a Gas. Angew Chem Int Ed Engl 2020; 59:23636-23640. [PMID: 32959952 PMCID: PMC7814676 DOI: 10.1002/anie.202011976] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Indexed: 11/07/2022]
Abstract
Oganesson (Og) is the last entry into the Periodic Table completing the seventh period of elements and group 18 of the noble gases. Only five atoms of Og have been successfully produced in nuclear collision experiments, with an estimate half-life for294 118 Og of 0. 69 + 0 . 64 - 0 . 22 ms.[1] With such a short lifetime, chemical and physical properties inevitably have to come from accurate relativistic quantum theory. Here, we employ two complementary computational approaches, namely parallel tempering Monte-Carlo (PTMC) simulations and first-principles thermodynamic integration (TI), both calibrated against a highly accurate coupled-cluster reference to pin-down the melting and boiling points of this super-heavy element. In excellent agreement, these approaches show Og to be a solid at ambient conditions with a melting point of ≈325 K. In contrast, calculations in the nonrelativistic limit reveal a melting point for Og of 220 K, suggesting a gaseous state as expected for a typical noble gas element. Accordingly, relativistic effects shift the solid-to-liquid phase transition by about 100 K.
Collapse
Affiliation(s)
- Odile R. Smits
- The New Zealand Institute for Advanced Study and the Institute for Natural and Mathematical ScienceMassey University (Albany)0632AucklandNew Zealand
| | - Jan‐Michael Mewes
- Mulliken Center for Theoretical ChemistryUniversity of BonnBeringstr. 453115BonnGermany
| | - Paul Jerabek
- Nanotechnology DepartmentHelmholtz-Zentrum GeesthachtMax-Planck-Straße 121502GeesthachtGermany
| | - Peter Schwerdtfeger
- The New Zealand Institute for Advanced Study and the Institute for Natural and Mathematical ScienceMassey University (Albany)0632AucklandNew Zealand
| |
Collapse
|
14
|
Smits OR, Mewes J, Jerabek P, Schwerdtfeger P. Oganesson: Ein Edelgas, das weder edel noch ein Gas ist. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Odile R. Smits
- The New Zealand Institute for Advanced Study and the Institute for Natural and Mathematical Science Massey University (Albany) 0632 Auckland Neuseeland
| | - Jan‐Michael Mewes
- Mulliken Center for Theoretical Chemistry University of Bonn Beringstr. 4 53115 Bonn Deutschland
| | - Paul Jerabek
- Nanotechnology Department Helmholtz-Zentrum Geesthacht Max-Planck-Straße 1 21502 Geesthacht Deutschland
| | - Peter Schwerdtfeger
- The New Zealand Institute for Advanced Study and the Institute for Natural and Mathematical Science Massey University (Albany) 0632 Auckland Neuseeland
| |
Collapse
|
15
|
Ferrier MG, Kmak KN, Kerlin WM, Valdez CA, Despotopulos JD. Transactinide studies with sulfur macrocyclic extractant using mercury. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07320-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Abstract
Mendeleev's introduction of the periodic table of elements is one of the most important milestones in the history of chemistry, as it brought order into the known chemical and physical behaviour of the elements. The periodic table can be seen as parallel to the Standard Model in particle physics, in which the elementary particles known today can be ordered according to their intrinsic properties. The underlying fundamental theory to describe the interactions between particles comes from quantum theory or, more specifically, from quantum field theory and its inherent symmetries. In the periodic table, the elements are placed into a certain period and group based on electronic configurations that originate from the Pauli and Aufbau principles for the electrons surrounding a positively charged nucleus. This order enables us to approximately predict the chemical and physical properties of elements. Apparent anomalies can arise from relativistic effects, partial-screening phenomena (of type lanthanide contraction) and the compact size of the first shell of every l-value. Further, ambiguities in electron configurations and the breakdown of assigning a dominant configuration, owing to configuration mixing and dense spectra for the heaviest elements in the periodic table. For the short-lived transactinides, the nuclear stability becomes an important factor in chemical studies. Nuclear stability, decay rates, spectra and reaction cross sections are also important for predicting the astrophysical origin of the elements, including the production of the heavy elements beyond iron in supernova explosions or neutron-star mergers. In this Perspective, we critically analyse the periodic table of elements and the current status of theoretical predictions and origins for the heaviest elements, which combine both quantum chemistry and physics.
Collapse
|
17
|
Pershina V, Iliaš M. Properties and Reactivity of Hydroxides of Group 13 Elements In, Tl, and Nh from Molecular and Periodic DFT Calculations. Inorg Chem 2019; 58:9866-9873. [PMID: 31287670 DOI: 10.1021/acs.inorgchem.9b00949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adsorption energies, Eads, of gaseous hydroxides of In, Tl, and the superheavy element Nh on surfaces of Teflon and gold are predicted using molecular and periodic relativistic DFT calculations. The ambition of the work is to assist related "one atom at a time" gas-phase chromatography experiments on the volatility of NhOH. The obtained low values of Eads(MOH), where M = In, Tl, Nh, on Teflon should guarantee easy transportation of the molecules through the Teflon capillaries from the accelerator to the chemistry setup. Straightforward band-structure DFT calculations using the revPBE-D3(BJ) functional have given an Eads(MOH) value of 161.4 kJ/mol on the Au(111) surface, being indicative of significant molecule-surface interaction. The MOH-gold surface binding is shown to take place via the oxygen atom of the hydroxide, with the oxygen-gold charge density transfer increasing from InOH to NhOH. The trend in Eads(MOH) is shown to be InOH < TlOH < NhOH, caused by increasing molecular dipole moments and decreasing stability of the hydroxides in this row. A trend in Eads of the atoms of these elements on gold is, however, opposite, In > Tl > Nh, caused by the increasing relativistic contraction and stabilization of the np1/2 AO with Z. These opposite trends in Eads(MOH) and Eads(M) in group 13 lead to almost equal Eads(Nh) and Eads(NhOH) values, making identification of Nh, as a type of species, difficult by measuring its adsorption enthalpy on gold.
Collapse
Affiliation(s)
| | - Miroslav Iliaš
- Helmholtz-Institut Mainz , Johannes Gutenberg-Universität , 55099 Mainz , Germany.,GSI Helmholtzzentrum für Schwerionenforschung , Planckstraße 1 , D-64291 Darmstadt , Germany.,Department of Chemistry, Faculty of Natural Sciences , Matej Bel University , Tajovského 40 , 97401 Banská Bystrica , Slovakia
| |
Collapse
|
18
|
Trombach L, Ehlert S, Grimme S, Schwerdtfeger P, Mewes JM. Exploring the chemical nature of super-heavy main-group elements by means of efficient plane-wave density-functional theory. Phys Chem Chem Phys 2019; 21:18048-18058. [DOI: 10.1039/c9cp02455g] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Presenting an accurate yet efficient plane-wave DFT approach for the computational exploration of the bulk properties of the super-heavy main-group elements including copernicium (Cn–Og, Z = 112–118).
Collapse
Affiliation(s)
- Lukas Trombach
- Centre for Theoretical Chemistry and Physics
- The New Zealand Institute for Advanced Study
- Massey University Auckland
- 0632 Auckland
- New Zealand
| | - Sebastian Ehlert
- Mulliken Center for Theoretical Chemistry
- Institut für Physikalische und Theoretische Chemie
- Universität Bonn
- D-53115 Bonn
- Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry
- Institut für Physikalische und Theoretische Chemie
- Universität Bonn
- D-53115 Bonn
- Germany
| | - Peter Schwerdtfeger
- Centre for Theoretical Chemistry and Physics
- The New Zealand Institute for Advanced Study
- Massey University Auckland
- 0632 Auckland
- New Zealand
| | - Jan-Michael Mewes
- Centre for Theoretical Chemistry and Physics
- The New Zealand Institute for Advanced Study
- Massey University Auckland
- 0632 Auckland
- New Zealand
| |
Collapse
|
19
|
Pershina V. Reactivity of Superheavy Elements Cn, Nh, and Fl and Their Lighter Homologues Hg, Tl, and Pb, Respectively, with a Gold Surface from Periodic DFT Calculations. Inorg Chem 2018; 57:3948-3955. [DOI: 10.1021/acs.inorgchem.8b00101] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Valeria Pershina
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt, Germany
| |
Collapse
|
20
|
|
21
|
Demidov Y, Zaitsevskii A. Adsorption of the astatine species on a gold surface: A relativistic density functional theory study. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2017.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Jadambaa K. The cross sections of fusion-evaporation reactions: the most promising route to superheavy elements beyond Z=118. EPJ WEB OF CONFERENCES 2017. [DOI: 10.1051/epjconf/201716300030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
23
|
Düllmann CE. Studying Chemical Properties of the Heaviest Elements: One Atom at a Time. ACTA ACUST UNITED AC 2017. [DOI: 10.1080/10619127.2017.1280333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Christoph E. Düllmann
- Institute of Nuclear Chemistry & PRISMA Cluster of Excellence, Johannes Gutenberg University Mainz, Germany
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz Institute Mainz, Germany
| |
Collapse
|
24
|
Schwerdtfeger P. Toward an accurate description of solid-state properties of superheavy elements. EPJ WEB OF CONFERENCES 2016. [DOI: 10.1051/epjconf/201613107004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
25
|
|
26
|
Despotopulos JD, Kmak KN, Gharibyan N, Henderson RA, Moody KJ, Shaughnessy DA, Sudowe R. Characterization of the homologs of flerovium with crown ether based extraction chromatography resins: studies in hydrochloric acid. J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-016-4917-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Pershina V. Theoretical chemistry of superheavy elements: Support for experiment. EPJ WEB OF CONFERENCES 2016. [DOI: 10.1051/epjconf/201613107002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
Düllmann CE. On the search for elements beyondZ=118. An outlook based on lessons from the heaviest known elements. EPJ WEB OF CONFERENCES 2016. [DOI: 10.1051/epjconf/201613108004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Microscopic interaction of single atomic elemental Hg with a sulfur surface. J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-016-4965-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
|
31
|
Interaction of elemental mercury with selenium surfaces: model experiments for investigations of superheavy elements copernicium and flerovium. J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-016-5018-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
|
33
|
Pershina V. A relativistic periodic DFT study on interaction of superheavy elements 112 (Cn) and 114 (Fl) and their homologs Hg and Pb, respectively, with a quartz surface. Phys Chem Chem Phys 2016; 18:17750-6. [DOI: 10.1039/c6cp02253g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Relativistic periodic calculations of adsorption energies of group-12 elements Hg and Cn and group-14 elements Pb and Fl on a hydroxylated (001) α-quartz surface at different adsorbate coverage have been performed using the ADF-BAND program.
Collapse
Affiliation(s)
- V. Pershina
- GSI Helmholtzzentrum für Schwerionenforsching GmbH
- 64291 Darmstadt
- Germany
| |
Collapse
|
34
|
Demidov Y, Zaitsevskii A. A comparative study of molecular hydroxides of element 113 (I) and its possible analogs: Ab initio electronic structure calculations. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Rampino S, Storchi L, Belpassi L. Gold–superheavy-element interaction in diatomics and cluster adducts: A combined four-component Dirac-Kohn-Sham/charge-displacement study. J Chem Phys 2015; 143:024307. [DOI: 10.1063/1.4926533] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Sergio Rampino
- Istituto di Scienze e Tecnologie Molecolari, Consiglio Nazionale delle Ricerche c/o Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Loriano Storchi
- Dipartimento di Farmacia, Università degli Studi “G. D’Annunzio,” Via dei Vestini 31, 66100 Chieti, Italy
| | - Leonardo Belpassi
- Istituto di Scienze e Tecnologie Molecolari, Consiglio Nazionale delle Ricerche c/o Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
36
|
Demidov YA, Zaitsevskii AV. Simulation of chemical properties of superheavy elements from the island of stability. Russ Chem Bull 2015. [DOI: 10.1007/s11172-014-0650-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Schädel M. Chemistry of the superheavy elements. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2015; 373:rsta.2014.0191. [PMID: 25666065 DOI: 10.1098/rsta.2014.0191] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The quest for superheavy elements (SHEs) is driven by the desire to find and explore one of the extreme limits of existence of matter. These elements exist solely due to their nuclear shell stabilization. All 15 presently 'known' SHEs (11 are officially 'discovered' and named) up to element 118 are short-lived and are man-made atom-at-a-time in heavy ion induced nuclear reactions. They are identical to the transactinide elements located in the seventh period of the periodic table beginning with rutherfordium (element 104), dubnium (element 105) and seaborgium (element 106) in groups 4, 5 and 6, respectively. Their chemical properties are often surprising and unexpected from simple extrapolations. After hassium (element 108), chemistry has now reached copernicium (element 112) and flerovium (element 114). For the later ones, the focus is on questions of their metallic or possibly noble gas-like character originating from interplay of most pronounced relativistic effects and electron-shell effects. SHEs provide unique opportunities to get insights into the influence of strong relativistic effects on the atomic electrons and to probe 'relativistically' influenced chemical properties and the architecture of the periodic table at its farthest reach. In addition, they establish a test bench to challenge the validity and predictive power of modern fully relativistic quantum chemical models.
Collapse
Affiliation(s)
- Matthias Schädel
- Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Japan GSI Helmholtzzentrum für Schwerionenforschung mbH, Darmstadt, Germany
| |
Collapse
|
38
|
Abstract
The radioactive superheavy element seaborgium can form a carbonyl compound during its short lifetime
[Also see Report by
Even
et al.
]
Collapse
|
39
|
Dmitriev SN, Aksenov NV, Albin YV, Bozhikov GA, Chelnokov ML, Chepygin VI, Eichler R, Isaev AV, Katrasev DE, Lebedev VY, Malyshev ON, Petrushkin OV, Porobanuk LS, Ryabinin MA, Sabel’nikov AV, Sokol EA, Svirikhin AV, Starodub GY, Usoltsev I, Vostokin GK, Yeremin AV. Pioneering experiments on the chemical properties of element 113. MENDELEEV COMMUNICATIONS 2014. [DOI: 10.1016/j.mencom.2014.09.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Borschevsky A, Pershina V, Eliav E, Kaldor U. Relativistic coupled cluster study of diatomic compounds of Hg, Cn, and Fl. J Chem Phys 2014; 141:084301. [DOI: 10.1063/1.4893347] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
41
|
Khuyagbaatar J, Yakushev A, Düllmann CE, Ackermann D, Andersson LL, Asai M, Block M, Boll RA, Brand H, Cox DM, Dasgupta M, Derkx X, Di Nitto A, Eberhardt K, Even J, Evers M, Fahlander C, Forsberg U, Gates JM, Gharibyan N, Golubev P, Gregorich KE, Hamilton JH, Hartmann W, Herzberg RD, Heßberger FP, Hinde DJ, Hoffmann J, Hollinger R, Hübner A, Jäger E, Kindler B, Kratz JV, Krier J, Kurz N, Laatiaoui M, Lahiri S, Lang R, Lommel B, Maiti M, Miernik K, Minami S, Mistry A, Mokry C, Nitsche H, Omtvedt JP, Pang GK, Papadakis P, Renisch D, Roberto J, Rudolph D, Runke J, Rykaczewski KP, Sarmiento LG, Schädel M, Schausten B, Semchenkov A, Shaughnessy DA, Steinegger P, Steiner J, Tereshatov EE, Thörle-Pospiech P, Tinschert K, Torres De Heidenreich T, Trautmann N, Türler A, Uusitalo J, Ward DE, Wegrzecki M, Wiehl N, Van Cleve SM, Yakusheva V. 48Ca+249Bk fusion reaction leading to element Z = 117: long-lived α-decaying 270Db and discovery of 266Lr. PHYSICAL REVIEW LETTERS 2014; 112:172501. [PMID: 24836239 DOI: 10.1103/physrevlett.112.172501] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Indexed: 06/03/2023]
Abstract
The superheavy element with atomic number Z=117 was produced as an evaporation residue in the (48)Ca+(249)Bk fusion reaction at the gas-filled recoil separator TASCA at GSI Darmstadt, Germany. The radioactive decay of evaporation residues and their α-decay products was studied using a detection setup that allowed measuring decays of single atomic nuclei with half-lives between sub-μs and a few days. Two decay chains comprising seven α decays and a spontaneous fission each were identified and are assigned to the isotope (294)117 and its decay products. A hitherto unknown α-decay branch in (270)Db (Z = 105) was observed, which populated the new isotope (266)Lr (Z = 103). The identification of the long-lived (T(1/2) = 1.0(-0.4)(+1.9) h) α-emitter (270)Db marks an important step towards the observation of even more long-lived nuclei of superheavy elements located on an "island of stability."
Collapse
Affiliation(s)
- J Khuyagbaatar
- Helmholtz Institute Mainz, 55099 Mainz, Germany and GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
| | - A Yakushev
- GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
| | - Ch E Düllmann
- Helmholtz Institute Mainz, 55099 Mainz, Germany and GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany and Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - D Ackermann
- GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
| | | | - M Asai
- Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - M Block
- GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
| | - R A Boll
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - H Brand
- GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
| | - D M Cox
- University of Liverpool, Liverpool L69 7ZE, United Kingdom
| | - M Dasgupta
- The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - X Derkx
- Helmholtz Institute Mainz, 55099 Mainz, Germany and Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - A Di Nitto
- Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - K Eberhardt
- Helmholtz Institute Mainz, 55099 Mainz, Germany and Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - J Even
- Helmholtz Institute Mainz, 55099 Mainz, Germany
| | - M Evers
- The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | | | | | - J M Gates
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - N Gharibyan
- Lawrence Livermore National Laboratory, Livermore, California 94551, USA
| | | | - K E Gregorich
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - J H Hamilton
- Vanderbilt University, Nashville, Tennessee 37235, USA
| | - W Hartmann
- GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
| | - R-D Herzberg
- University of Liverpool, Liverpool L69 7ZE, United Kingdom
| | - F P Heßberger
- Helmholtz Institute Mainz, 55099 Mainz, Germany and GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
| | - D J Hinde
- The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - J Hoffmann
- GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
| | - R Hollinger
- GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
| | - A Hübner
- GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
| | - E Jäger
- GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
| | - B Kindler
- GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
| | - J V Kratz
- Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - J Krier
- GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
| | - N Kurz
- GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
| | - M Laatiaoui
- Helmholtz Institute Mainz, 55099 Mainz, Germany
| | - S Lahiri
- Saha Institute of Nuclear Physics, Kolkata 700064, India
| | - R Lang
- GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
| | - B Lommel
- GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
| | - M Maiti
- Saha Institute of Nuclear Physics, Kolkata 700064, India
| | - K Miernik
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - S Minami
- GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
| | - A Mistry
- University of Liverpool, Liverpool L69 7ZE, United Kingdom
| | - C Mokry
- Helmholtz Institute Mainz, 55099 Mainz, Germany and Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - H Nitsche
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | - G K Pang
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - P Papadakis
- University of Liverpool, Liverpool L69 7ZE, United Kingdom and University of Jyväskylä, 40351 Jyväskylä, Finland
| | - D Renisch
- Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - J Roberto
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | | | - J Runke
- GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
| | - K P Rykaczewski
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | | | - M Schädel
- GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany and Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - B Schausten
- GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
| | | | - D A Shaughnessy
- Lawrence Livermore National Laboratory, Livermore, California 94551, USA
| | - P Steinegger
- Paul Scherrer Institute, 5232 Villigen, Switzerland and University of Bern, 3012 Bern, Switzerland
| | - J Steiner
- GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
| | - E E Tereshatov
- Lawrence Livermore National Laboratory, Livermore, California 94551, USA
| | - P Thörle-Pospiech
- Helmholtz Institute Mainz, 55099 Mainz, Germany and Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - K Tinschert
- GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
| | | | - N Trautmann
- Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - A Türler
- Paul Scherrer Institute, 5232 Villigen, Switzerland and University of Bern, 3012 Bern, Switzerland
| | - J Uusitalo
- University of Jyväskylä, 40351 Jyväskylä, Finland
| | - D E Ward
- Lund University, 22100 Lund, Sweden
| | - M Wegrzecki
- Institute of Electron Technology, 02-668 Warsaw, Poland
| | - N Wiehl
- Helmholtz Institute Mainz, 55099 Mainz, Germany and Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - S M Van Cleve
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - V Yakusheva
- Helmholtz Institute Mainz, 55099 Mainz, Germany
| |
Collapse
|
42
|
Yakushev A, Gates JM, Türler A, Schädel M, Düllmann CE, Ackermann D, Andersson LL, Block M, Brüchle W, Dvorak J, Eberhardt K, Essel HG, Even J, Forsberg U, Gorshkov A, Graeger R, Gregorich KE, Hartmann W, Herzberg RD, Hessberger FP, Hild D, Hübner A, Jäger E, Khuyagbaatar J, Kindler B, Kratz JV, Krier J, Kurz N, Lommel B, Niewisch LJ, Nitsche H, Omtvedt JP, Parr E, Qin Z, Rudolph D, Runke J, Schausten B, Schimpf E, Semchenkov A, Steiner J, Thörle-Pospiech P, Uusitalo J, Wegrzecki M, Wiehl N. Superheavy element flerovium (element 114) is a volatile metal. Inorg Chem 2014; 53:1624-9. [PMID: 24456007 DOI: 10.1021/ic4026766] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The electron shell structure of superheavy elements, i.e., elements with atomic number Z ≥ 104, is influenced by strong relativistic effects caused by the high Z. Early atomic calculations on element 112 (copernicium, Cn) and element 114 (flerovium, Fl) having closed and quasi-closed electron shell configurations of 6d(10)7s(2) and 6d(10)7s(2)7p1/2(2), respectively, predicted them to be noble-gas-like due to very strong relativistic effects on the 7s and 7p1/2 valence orbitals. Recent fully relativistic calculations studying Cn and Fl in different environments suggest them to be less reactive compared to their lighter homologues in the groups, but still exhibiting a metallic character. Experimental gas-solid chromatography studies on Cn have, indeed, revealed a metal-metal bond formation with Au. In contrast to this, for Fl, the formation of a weak bond upon physisorption on a Au surface was inferred from first experiments. Here, we report on a gas-solid chromatography study of the adsorption of Fl on a Au surface. Fl was produced in the nuclear fusion reaction (244)Pu((48)Ca, 3-4n)(288,289)Fl and was isolated in-flight from the primary (48)Ca beam in a physical recoil separator. The adsorption behavior of Fl, its nuclear α-decay product Cn, their lighter homologues in groups 14 and 12, i.e., Pb and Hg, and the noble gas Rn were studied simultaneously by isothermal gas chromatography and thermochromatography. Two Fl atoms were detected. They adsorbed on a Au surface at room temperature in the first, isothermal part, but not as readily as Pb and Hg. The observed adsorption behavior of Fl points to a higher inertness compared to its nearest homologue in the group, Pb. However, the measured lower limit for the adsorption enthalpy of Fl on a Au surface points to the formation of a metal-metal bond of Fl with Au. Fl is the least reactive element in the group, but still a metal.
Collapse
|
43
|
Demidov Y, Zaitsevskii A, Eichler R. First principles based modeling of the adsorption of atoms of element 120 on a gold surface. Phys Chem Chem Phys 2014; 16:2268-70. [DOI: 10.1039/c3cp54485k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
Demidov YA, Zaitsevskii AV. A comparative study of the chemical properties of element 120 and its homologs. RADIOCHEMISTRY 2013. [DOI: 10.1134/s1066362213050019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Rudolph D, Forsberg U, Golubev P, Sarmiento LG, Yakushev A, Andersson LL, Di Nitto A, Düllmann CE, Gates JM, Gregorich KE, Gross CJ, Heßberger FP, Herzberg RD, Khuyagbaatar J, Kratz JV, Rykaczewski K, Schädel M, Åberg S, Ackermann D, Block M, Brand H, Carlsson BG, Cox D, Derkx X, Eberhardt K, Even J, Fahlander C, Gerl J, Jäger E, Kindler B, Krier J, Kojouharov I, Kurz N, Lommel B, Mistry A, Mokry C, Nitsche H, Omtvedt JP, Papadakis P, Ragnarsson I, Runke J, Schaffner H, Schausten B, Thörle-Pospiech P, Torres T, Traut T, Trautmann N, Türler A, Ward A, Ward DE, Wiehl N. Spectroscopy of element 115 decay chains. PHYSICAL REVIEW LETTERS 2013; 111:112502. [PMID: 24074079 DOI: 10.1103/physrevlett.111.112502] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Indexed: 06/02/2023]
Abstract
A high-resolution α, x-ray, and γ-ray coincidence spectroscopy experiment was conducted at the GSI Helmholtzzentrum für Schwerionenforschung. Thirty correlated α-decay chains were detected following the fusion-evaporation reaction 48Ca + 243Am. The observations are consistent with previous assignments of similar decay chains to originate from element Z=115. For the first time, precise spectroscopy allows the derivation of excitation schemes of isotopes along the decay chains starting with elements Z>112. Comprehensive Monte Carlo simulations accompany the data analysis. Nuclear structure models provide a first level interpretation.
Collapse
|
46
|
Serov A, Eichler R, Dressler R, Piguet D, Türler A, Vögele A, Wittwer D, Gäggeler HW. Adsorption interaction of carrier-free thallium species with gold and quartz surfaces. RADIOCHIM ACTA 2013. [DOI: 10.1524/ract.2013.2045] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
The adsorption interactions of thallium and its compounds with gold and quartz surfaces were investigated. Carrier-free amounts of thallium were produced in nuclear fusion reactions of alpha particles with thick gold targets. The method chosen for the studies was gas thermochromatography and varying the redox potential of the carrier gases. It was observed that thallium is extremely sensitive to trace amounts of oxygen and water, and can even be oxidized by the hydroxyl groups located on the quartz surface. The experiments on a quartz surface with O2, He, H2 gas in addition with water revealed the formation and deposition of only one thallium species – TlOH. The adsorption enthalpy was determined to be Δ H
SiO2
ads(TlOH) = −134 ± 5 kJ mol−1. A series of experiments using gold as stationary surface and different carrier gases resulted in the detection of two thallium species – metallic Tl (H2 as carrier gas) and TlOH (O2, O2+H2O and H2+H2O as pure carrier gas or carrier gas mixture) with Δ H
Au
ads(Tl) = −270 ± 10 kJ mol− and Δ H
Au
ads(TlOH) = −146 ± 3 kJ mol−1. These data demonstrate a weak interaction of TlOH with both quartz and gold surfaces. The data represent important information for the design of future experiments with the heavier homologue of Tl in group 13 of the periodic table – element 113 (E113).
Collapse
Affiliation(s)
- A. Serov
- Paul Scherrer Institute, Laboratory for Radiochemistry, Villigen, Schweiz
| | | | - Rugard Dressler
- Paul Scherrer Institut, Laboratory for Radio-and Environmental Chemistry, Villigen, Schweiz
| | - D. Piguet
- Paul Scherrer Institut, Laboratory for Radiochemistry, Villigen, Schweiz
| | - Andreas Türler
- Universität Bern, Department für Chemie und Biochemie, Bern, Schweiz
| | - A. Vögele
- Paul Scherrer Institute, Laboratory for Radiochemistry, Villigen, Schweiz
| | - David Wittwer
- Paul Scherrer Institute, Laboratory of Radio- and Environmental Chemistry, Villigen, Schweiz
| | - H. W. Gäggeler
- Paul Scherrer Institute, Laboratory of Radio- and Environmental Chemistry, Villigen, Schweiz
| |
Collapse
|
47
|
Borschevsky A, Pershina V, Eliav E, Kaldor U. Ab initio studies of atomic properties and experimental behavior of element 119 and its lighter homologs. J Chem Phys 2013; 138:124302. [DOI: 10.1063/1.4795433] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
48
|
Wittwer D, Dressler R, Eichler R, Gäggeler HW, Türler A. Prediction of the thermal release of transactinide elements (112 ≤ Z ≤ 116) from metals. RADIOCHIM ACTA 2013. [DOI: 10.1524/ract.2013.2027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
Metallic catcher foils have been investigated on their thermal release capabilities for future superheavy element studies. These catcher materials shall serve as connection between production and chemical investigation of superheavy elements (SHE) at vacuum conditions. The diffusion constants and activation energies of diffusion have been extrapolated for various catcher materials using an atomic volume based model. Release rates can now be estimated for predefined experimental conditions using the determined diffusion values. The potential release behavior of the volatile SHE Cn (E112), E113, Fl (E114), E115, and Lv (E116) from polycrystalline, metallic foils of Ni, Y, Zr, Nb, Mo, Hf, Ta, and W is predicted. Example calculations showed that Zr is the best suited material in terms of on-line release efficiency and long-term operation stability. If higher temperatures up to 2773 K are applicable, tungsten is suggested to be the material of choice for such experiments.
Collapse
|
49
|
Türler A, Pershina V. Advances in the Production and Chemistry of the Heaviest Elements. Chem Rev 2013; 113:1237-312. [DOI: 10.1021/cr3002438] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Andreas Türler
- Laboratory
of Radiochemistry
and Environmental Chemistry, Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
- Laboratory of Radiochemistry
and Environmental Chemistry, Department Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Valeria Pershina
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse
1, D-64291 Darmstadt, Germany
| |
Collapse
|
50
|
Pershina V, Borschevsky A, Anton J. Fully relativistic study of intermetallic dimers of group-1 elements K through element 119 and prediction of their adsorption on noble metal surfaces. Chem Phys 2012. [DOI: 10.1016/j.chemphys.2011.04.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|