Review of on-line and near real-time spectroscopic monitoring of processes relevant to nuclear material management.
Anal Chim Acta 2020;
1107:1-13. [PMID:
32200882 DOI:
10.1016/j.aca.2020.02.008]
[Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 11/21/2022]
Abstract
Spectroscopic chemometric based on-line monitoring of used nuclear fuel (UNF) reprocessing solutions and characterization of legacy nuclear waste (LNW) stored at Hanford is discussed in this manuscript. Utilizing on-line and near real-time monitoring, as opposed to traditional off-line monitoring, can significantly reduce the cost, risk and improve the efficiency of characterizing UNF and LNW processing streams. Specifically, this manuscript will highlight the benefits of spectroscopy-based monitoring approaches, which generally include the ability to collect data non-destructively. Furthermore, significant literature precedence supports the use of various real-time analysis methods, including chemometric analysis, that enable near-instantaneous conversion of spectroscopic data into information useable by process operators. This approach can accurately quantify and qualify nuclear material in near-real time enabling immediate condition characterization and potential diversion detection within UNF reprocessing streams and LNW. The ability to be applied in a real reprocessing plant and in an actual Hanford waste tank/transfer pipe has been demonstrated by applying this technique to accurately quantify analytes in real UNF streams and LNW samples. The future development of spectroscopy-based on-line monitoring is also discussed in this manuscript.
Collapse