1
|
Queiroz LHS, Barros RS, de Sousa FF, Lage MR, Sarraguça MC, Ribeiro PRS. Preparation and Characterization of a Rifampicin Coamorphous Material with Tromethamine Coformer: An Experimental-Theoretical Study. Mol Pharm 2024; 21:1272-1284. [PMID: 38361428 DOI: 10.1021/acs.molpharmaceut.3c00947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Rifampicin (RIF) is an antibiotic used to treat tuberculosis and leprosy. Even though RIF is a market-available drug, it has a low aqueous solubility, hindering its bioavailability. Among the strategies for bioavailability improvement of poorly soluble drugs, coamorphous systems have been revealed as an alternative in the increase of the aqueous solubility of drug systems and at the same time also increasing the amorphous state stability and dissolution rate when compared with the neat drug. In this work, a new coamorphous form from RIF and tromethamine (TRIS) was synthesized by slow evaporation. Structural, electronic, and thermodynamic properties and solvation effects, as well as drug-coformer intermolecular interactions, were studied through density functional theory (DFT) calculations. Powder X-ray diffraction (PXRD) data allowed us to verify the formation of a new coamorphous. In addition, the DFT study indicates a possible intermolecular interaction by hydrogen bonds between the available amino and carbonyl groups of RIF and the hydroxyl and amino groups of TRIS. The theoretical spectra obtained are in good agreement with the experimental data, suggesting the main interactions occurring in the formation of the coamorphous system. PXRD was used to study the physical stability of the coamorphous system under accelerated ICH conditions (40 °C and 75% RH), indicating that the material remained in an amorphous state up to 180 days. The thermogravimetry result of this material showed a good thermal stability up to 153 °C, and differential scanning calorimetry showed that the glass temperature (Tg) was at 70.0 °C. Solubility studies demonstrated an increase in the solubility of RIF by 5.5-fold when compared with its crystalline counterpart. Therefore, this new material presents critical parameters that can be considered in the development of new coamorphous formulations.
Collapse
Affiliation(s)
- Luís H S Queiroz
- NUPFARQ, Programa de Pós-Graduação em Ciência dos Materiais (PPGCM), Centro de Ciências de Imperatriz (CCIM), Universidade Federal do Maranhão (UFMA), Imperatriz, Maranhão 65.900-410, Brazil
| | - Ranna S Barros
- NUPFARQ, Programa de Pós-Graduação em Ciência dos Materiais (PPGCM), Centro de Ciências de Imperatriz (CCIM), Universidade Federal do Maranhão (UFMA), Imperatriz, Maranhão 65.900-410, Brazil
| | - Francisco F de Sousa
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará (UFPA), Belém, Pará 65.075-110, Brazil
| | - Mateus R Lage
- NUPFARQ, Programa de Pós-Graduação em Ciência dos Materiais (PPGCM), Centro de Ciências de Imperatriz (CCIM), Universidade Federal do Maranhão (UFMA), Imperatriz, Maranhão 65.900-410, Brazil
- Coordenação do Curso de Ciência e Tecnologia, Centro de Ciências de Balsas, Universidade Federal do Maranhão (UFMA), Balsas, Maranhão 65.800-000, Brazil
| | - Mafalda C Sarraguça
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira, 228, Porto 4050-313, Portugal
| | - Paulo R S Ribeiro
- NUPFARQ, Programa de Pós-Graduação em Ciência dos Materiais (PPGCM), Centro de Ciências de Imperatriz (CCIM), Universidade Federal do Maranhão (UFMA), Imperatriz, Maranhão 65.900-410, Brazil
| |
Collapse
|
2
|
Usman A, Xiong F, Aftab W, Qin M, Zou R. Emerging Solid-to-Solid Phase-Change Materials for Thermal-Energy Harvesting, Storage, and Utilization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202457. [PMID: 35616900 DOI: 10.1002/adma.202202457] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Phase-change materials (PCMs) offer tremendous potential to store thermal energy during reversible phase transitions for state-of-the-art applications. The practicality of these materials is adversely restricted by volume expansion, phase segregation, and leakage problems associated with conventional solid-liquid PCMs. Solid-solid PCMs, as promising alternatives to solid-liquid PCMs, are gaining much attention toward practical thermal-energy storage (TES) owing to their inimitable advantages such as solid-state processing, negligible volume change during phase transition, no contamination, and long cyclic life. Herein, the aim is to provide a holistic analysis of solid-solid PCMs suitable for thermal-energy harvesting, storage, and utilization. The developing strategies of solid-solid PCMs are presented and then the structure-property relationship is discussed, followed by potential applications. Finally, an outlook discussion with momentous challenges and future directions is presented. Hopefully, this review will provide a guideline to the scientific community to develop high-performance solid-solid PCMs for advanced TES applications.
Collapse
Affiliation(s)
- Ali Usman
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Material, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Feng Xiong
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Material, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Waseem Aftab
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Material, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Mulin Qin
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Material, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Material, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- Institute of Clean Energy, Peking University, Beijing, 100871, China
| |
Collapse
|
3
|
R Sá M, Sarraguça JMG, de Sousa FF, Sarraguça MSC, Lopes JA, Lima ADDSG, Lage MR, Ribeiro PRS. Structural, thermal, vibrational, solubility and DFT studies of a tolbutamide co-amorphous drug delivery system for treatment of diabetes. Int J Pharm 2022; 615:121500. [PMID: 35077862 DOI: 10.1016/j.ijpharm.2022.121500] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022]
Abstract
Among the strategies for bioavailability improvement of poorly soluble drugs, co-amorphous systems have revealed to have a significant impact in the increase of the aqueous solubility of the drug, and at the same time increasing the amorphous state stability and dissolution rate when compared with the neat drug. Tolbutamide (TBM) is an oral hypoglycemic drug largely used in the treatment of type II Mellitus diabetes. TBM is a class II drug according to the Biopharmaceutical Classification System, meaning that it has low solubility and higher permeability. The aim of this study was to synthesize a co-amorphous material of tolbutamide (TBM) with tromethamine (TRIS). Density functional theory (DFT), allowed to study the structural, electronic, and thermodynamic properties, as well as solvation effects. In same theory level, several interactions tests were performed to obtain the most thermodynamically favorable drug-coformer intermolecular interactions. The vibrational spectra (mid infrared and Raman spectroscopy) are in accordance with the theoretical studies, showing that the main molecular interactions are due to the carbonyl, sulfonyl, and amide groups of TMB and the alcohol and amine groups of TRIS. X-ray powder diffraction was used to study the physical stability in dry condition at 25 °C of the co-amorphous system, indicating that the material remained in an amorphous state up to 90 days. Differential scanning calorimetry and thermogravimetric results showed a high increase of the Tg when compared with the amorphous neat drug, from 4.3 °C to 83.7 °C, which generally translated into good physical stability. Solubilities studies demonstrated an increase in the solubility of TBM by 2.5 fold when compared with its crystalline counterpart.
Collapse
Affiliation(s)
- Mônica R Sá
- Programa de Pós-Graduação em Ciências dos Materiais, Centro de Ciências Sociais, Saúde e Tecnologia, Universidade Federal do Maranhão, Imperatriz, MA 65900-410, Brazil
| | - Jorge M G Sarraguça
- Programa de Pós-Graduação em Ciências dos Materiais, Centro de Ciências Sociais, Saúde e Tecnologia, Universidade Federal do Maranhão, Imperatriz, MA 65900-410, Brazil
| | - Francisco F de Sousa
- Programa de Pós-Graduação em Ciências dos Materiais, Centro de Ciências Sociais, Saúde e Tecnologia, Universidade Federal do Maranhão, Imperatriz, MA 65900-410, Brazil; Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CEP 66075-110 Belém, PA, Brazil
| | - Mafalda S C Sarraguça
- LAQV/REQUIMTE, Laboratório de Química Aplicada, Faculdade de Farmácia, Universidade do Porto, Portugal
| | - João A Lopes
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Antonio Douglas da S G Lima
- Programa de Pós-Graduação em Ciências dos Materiais, Centro de Ciências Sociais, Saúde e Tecnologia, Universidade Federal do Maranhão, Imperatriz, MA 65900-410, Brazil
| | - Mateus R Lage
- Programa de Pós-Graduação em Ciências dos Materiais, Centro de Ciências Sociais, Saúde e Tecnologia, Universidade Federal do Maranhão, Imperatriz, MA 65900-410, Brazil; Coordenação do Curso de Ciência e Tecnologia, Universidade Federal do Maranhão, 65800-000 Balsas, MA, Brazil
| | - Paulo R S Ribeiro
- Programa de Pós-Graduação em Ciências dos Materiais, Centro de Ciências Sociais, Saúde e Tecnologia, Universidade Federal do Maranhão, Imperatriz, MA 65900-410, Brazil.
| |
Collapse
|
5
|
Barrio M, López DO, Tamarit JL, Negrier P, Haget Y. Degree of miscibility between non-isomorphous plastic phases: binary system NPG (neopentyl glycol)-TRIS[tris(hydroxymethyl)aminomethane]. ACTA ACUST UNITED AC 1995. [DOI: 10.1039/jm9950500431] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|