1
|
Dayani L, Aliomrani M, Hashempour H, Varshosaz J, Sadeghi Dinani M, Taheri A. Cyclotide Nanotubes as a Novel Potential Drug-Delivery System: Characterization and Biocompatibility. Int J Pharm 2023:123104. [PMID: 37277089 DOI: 10.1016/j.ijpharm.2023.123104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/07/2023]
Abstract
Cyclotides are a class of cyclic peptides that can be self-assembled. This study aimed to discover the properties of cyclotide nanotubes. We performed differential scanning calorimetric (DSC) to characterize their properties. Then, we incorporated the coumarin as a probe and identified the morphology of nanostructures. The stability of cyclotide nanotubes after 3 months of keeping at -20 °C was determined by field emission scanning electron microscopy (FESEM). The cytocompatibility of cyclotide nanotubes was evaluated on peripheral blood mononuclear cells. In vivo, studies were also conducted on female C57BL/6 mice by intraperitoneally administration of nanotubes at 5, 50, and 100 mg/kg doses. Blood sampling was done before and 24 h after nanotube administration and complete blood count tests were conducted. DSC thermogram showed that the cyclotide nanotubes were stable after heating until 200 °C. Fluorescence microscopy images proved that the self-assembled structures of cyclotide can encapsulate the coumarin. FESEM proved that these nanotubes were stable even after 3 months. The results of the cytotoxicity assay and in-vivo study confirmed that these novel prepared nanotubes were biocompatible. These results suggested that the cyclotide nanotubes could be considered as a new carrier in biological fields while they are biocompatible.
Collapse
Affiliation(s)
- Ladan Dayani
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mehdi Aliomrani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Hossein Hashempour
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
| | - Jaleh Varshosaz
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Masoud Sadeghi Dinani
- Department of Pharmacognosy, School of pharmacy and pharmaceutical sciences, Isfahan University of medical sciences, Isfahan, Iran.
| | - Azade Taheri
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
2
|
Ehrhard A, Gunkel L, Jäger S, Sell AC, Nagata Y, Hunger J. Elucidating Conformation and Hydrogen-Bonding Motifs of Reactive Thiourea Intermediates. ACS Catal 2022; 12:12689-12700. [PMID: 36313523 PMCID: PMC9594049 DOI: 10.1021/acscatal.2c03382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/19/2022] [Indexed: 11/29/2022]
Abstract
Substituted diphenylthioureas (DPTUs) are efficient hydrogen-bonding organo-catalysts, and substitution of DPTUs has been shown to greatly affect catalytic activity. Yet, both the conformation of DPTUs in solution and the conformation and hydrogen-bonded motifs within catalytically active intermediates, pertinent to their mode of activation, have remained elusive. By combining linear and ultrafast vibrational spectroscopy with spectroscopic simulations and calculations, we show that different conformational states of thioureas give rise to distinctively different N-H stretching bands in the infrared spectra. In the absence of hydrogen-bond-accepting substrates, we show that vibrational structure and dynamics are highly sensitive to the substitution of DPTUs with CF3 groups and to the interaction with the solvent environment, allowing for disentangling the different conformational states. In contrast to bare diphenylthiourea (0CF-DPTU), we find the catalytically superior CF3-substituted DPTU (4CF-DPTU) to favor the trans-trans conformation in solution, allowing for donating two hydrogen bonds to the reactive substrate. In the presence of a prototypical substrate, DPTUs in trans-trans conformation hydrogen bond to the substrate's C=O group, as evidenced by a red-shift of the N-H vibration. Yet, our time-resolved infrared experiments indicate that only one N-H group forms a strong hydrogen bond to the carbonyl moiety, while thiourea's second N-H group only weakly interacts with the substrate. Our data indicate that hydrogen-bond exchange between these N-H groups occurs on the timescale of a few picoseconds for 0CF-DPTU and is significantly accelerated upon CF3 substitution. Our results highlight the subtle interplay between conformational equilibria, bonding states, and bonding lifetimes in reactive intermediates in thiourea catalysis, which help rationalize their catalytic activity.
Collapse
Affiliation(s)
- Amelie
A. Ehrhard
- Max-Planck Institute for
Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Lucas Gunkel
- Max-Planck Institute for
Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Sebastian Jäger
- Max-Planck Institute for
Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Arne C. Sell
- Max-Planck Institute for
Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yuki Nagata
- Max-Planck Institute for
Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Johannes Hunger
- Max-Planck Institute for
Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
3
|
Maiti KS. Two-dimensional Infrared Spectroscopy Reveals Better Insights of Structure and Dynamics of Protein. Molecules 2021; 26:molecules26226893. [PMID: 34833985 PMCID: PMC8618531 DOI: 10.3390/molecules26226893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022] Open
Abstract
Proteins play an important role in biological and biochemical processes taking place in the living system. To uncover these fundamental processes of the living system, it is an absolutely necessary task to understand the structure and dynamics of the protein. Vibrational spectroscopy is an established tool to explore protein structure and dynamics. In particular, two-dimensional infrared (2DIR) spectroscopy has already proven its versatility to explore the protein structure and its ultrafast dynamics, and it has essentially unprecedented time resolutions to observe the vibrational dynamics of the protein. Providing several examples from our theoretical and experimental efforts, it is established here that two-dimensional vibrational spectroscopy provides exceptionally more information than one-dimensional vibrational spectroscopy. The structural information of the protein is encoded in the position, shape, and strength of the peak in 2DIR spectra. The time evolution of the 2DIR spectra allows for the visualisation of molecular motions.
Collapse
Affiliation(s)
- Kiran Sankar Maiti
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany; ; Tel.: +49-89-289-54056
- Lehrstuhl für Experimental Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching, Germany
| |
Collapse
|
4
|
Fica-Contreras SM, Daniels R, Yassin O, Hoffman DJ, Pan J, Sotzing G, Fayer MD. Long Vibrational Lifetime R-Selenocyanate Probes for Ultrafast Infrared Spectroscopy: Properties and Synthesis. J Phys Chem B 2021; 125:8907-8918. [PMID: 34339200 DOI: 10.1021/acs.jpcb.1c04939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ultrafast infrared vibrational spectroscopy is widely used for the investigation of dynamics in systems from water to model membranes. Because the experimental observation window is limited to a few times the probe's vibrational lifetime, a frequent obstacle for the measurement of a broad time range is short molecular vibrational lifetimes (typically a few to tens of picoseconds). Five new long-lifetime aromatic selenocyanate vibrational probes have been synthesized and their vibrational properties characterized. These probes are compared to commercial phenyl selenocyanate. The vibrational lifetimes range between ∼400 and 500 ps in complex solvents, which are some of the longest room-temperature vibrational lifetimes reported to date. In contrast to vibrations that are long-lived in simple solvents such as CCl4, but become much shorter in complex solvents, the probes discussed here have ∼400 ps lifetimes in complex solvents and even longer in simple solvents. One of them has a remarkable lifetime of 1235 ps in CCl4. These probes have a range of molecular sizes and geometries that can make them useful for placement into different complex materials due to steric reasons, and some of them have functionalities that enable their synthetic incorporation into larger molecules, such as industrial polymers. We investigated the effect of a range of electron-donating and electron-withdrawing para-substituents on the vibrational properties of the CN stretch. The probes have a solvent-independent linear relationship to the Hammett substituent parameter when evaluated with respect to the CN vibrational frequency and the ipso 13C NMR chemical shift.
Collapse
Affiliation(s)
| | - Robert Daniels
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Omer Yassin
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - David J Hoffman
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Junkun Pan
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Gregory Sotzing
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Michael D Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
5
|
Gordon BP, Lindquist GA, Crawford ML, Wren SN, Moore FG, Scatena LF, Richmond GL. Diol it up: The influence of NaCl on methylglyoxal surface adsorption and hydration state at the air–water interface. J Chem Phys 2020; 153:164705. [DOI: 10.1063/5.0017803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Brittany P. Gordon
- Department of Chemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403, USA
- Department of Chemistry, University of California, Irvine, 1214 Natural Sciences II, Irvine, California 92697, USA
| | - Grace A. Lindquist
- Department of Chemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403, USA
| | - Michael L. Crawford
- Department of Chemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403, USA
| | - Sumi N. Wren
- Department of Chemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403, USA
- Environment and Climate Change Canada (ECCC), Air Quality Research Division, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Frederick G. Moore
- Department of Physics, Whitman College, Walla Walla, Washington 99362, USA
| | - Lawrence F. Scatena
- Department of Chemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403, USA
| | - Geraldine L. Richmond
- Department of Chemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|
6
|
Ma CC, Butler D, Milligan V, Hammann BA, Luo H, Brazdil JF, Liu D, Chaudhari RV, Subramaniam B. Continuous Process for the Production of Taurine from Monoethanolamine. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chi-Cheng Ma
- James R. Randall Research Center, ADM Research, 1001 North Brush College Road, Decatur, Illinois 62521, United States
| | - Derek Butler
- James R. Randall Research Center, ADM Research, 1001 North Brush College Road, Decatur, Illinois 62521, United States
| | - Veronica Milligan
- James R. Randall Research Center, ADM Research, 1001 North Brush College Road, Decatur, Illinois 62521, United States
| | - Blake A. Hammann
- James R. Randall Research Center, ADM Research, 1001 North Brush College Road, Decatur, Illinois 62521, United States
| | - Hao Luo
- James R. Randall Research Center, ADM Research, 1001 North Brush College Road, Decatur, Illinois 62521, United States
| | - James F. Brazdil
- James R. Randall Research Center, ADM Research, 1001 North Brush College Road, Decatur, Illinois 62521, United States
| | | | | | | |
Collapse
|
7
|
Connection between dielectric constant and total number of hydrogen-bond groups per cation–anion pair in ionic liquids. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Gordon BP, Moore FG, Scatena LF, Richmond GL. On the Rise: Experimental and Computational Vibrational Sum Frequency Spectroscopy Studies of Pyruvic Acid and Its Surface-Active Oligomer Species at the Air–Water Interface. J Phys Chem A 2019; 123:10609-10619. [DOI: 10.1021/acs.jpca.9b08854] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Brittany P. Gordon
- Department of Chemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403, United States
| | - Frederick G. Moore
- Department of Physics, Whitman College, Walla Walla, Washington 99362, United States
| | - Lawrence F. Scatena
- Department of Chemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403, United States
| | - Geraldine L. Richmond
- Department of Chemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
9
|
Gordon BP, Moore FG, Scatena LF, Valley NA, Wren SN, Richmond GL. Model Behavior: Characterization of Hydroxyacetone at the Air-Water Interface Using Experimental and Computational Vibrational Sum Frequency Spectroscopy. J Phys Chem A 2018; 122:3837-3849. [PMID: 29608301 DOI: 10.1021/acs.jpca.8b01193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Small atmospheric aldehydes and ketones are known to play a significant role in the formation of secondary organic aerosols (SOA). However, many of them are difficult to experimentally isolate, as they tend to form hydration and oligomer species. Hydroxyacetone (HA) is unusual in this class as it contributes to SOA while existing predominantly in its unhydrated monomeric form. This allows HA to serve as a valuable model system for similar secondary organic carbonyls. In this paper the surface behavior of HA at the air-water interface has been investigated using vibrational sum frequency (VSF) spectroscopy and Wilhelmy plate surface tensiometry in combination with computational molecular dynamics simulations and density functional theory calculations. The experimental results demonstrate that HA has a high degree of surface activity and is ordered at the interface. Furthermore, oriented water is observed at the interface, even at high HA concentrations. Spectral features also reveal the presence of both cis and trans HA conformers at the interface, in differing orientations. Molecular dynamics results indicate conformer dependent shifts in HA orientation between the subsurface (∼5 Å deep) and surface. Together, these results provide a picture of a highly dynamic, but statistically ordered, interface composed of multiple HA conformers with solvated water. These results have implications for HA's behavior in aqueous particles, which may affect its role in the atmosphere and SOA formation.
Collapse
Affiliation(s)
- Brittany P Gordon
- Department of Chemistry , University of Oregon , 1253 University of Oregon , Eugene , Oregon 97403 , United States
| | - Frederick G Moore
- Department of Physics , Whitman College , Walla Walla , Washington 99362 , United States
| | - Lawrence F Scatena
- Department of Chemistry , University of Oregon , 1253 University of Oregon , Eugene , Oregon 97403 , United States
| | - Nicholas A Valley
- Department of Chemistry , University of Oregon , 1253 University of Oregon , Eugene , Oregon 97403 , United States.,Department of Science and Mathematics , California Northstate University College of Health Sciences , Rancho Cordova , California 95670 , United States
| | - Sumi N Wren
- Department of Chemistry , University of Oregon , 1253 University of Oregon , Eugene , Oregon 97403 , United States.,Department of Air Quality Process Research , Environment and Climate Change Canada (ECCC) , Toronto , Ontario M3H 5T4 , Canada
| | - Geraldine L Richmond
- Department of Chemistry , University of Oregon , 1253 University of Oregon , Eugene , Oregon 97403 , United States
| |
Collapse
|
10
|
McWilliams LE, Valley NA, Vincent NM, Richmond GL. Interfacial Insights into a Carbon Capture System: CO2 Uptake to an Aqueous Monoethanolamine Surface. J Phys Chem A 2017; 121:7956-7967. [DOI: 10.1021/acs.jpca.7b07742] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Laura E. McWilliams
- Department
of Chemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Nicholas A. Valley
- California Northstate University College of Health Sciences, Rancho Cordova, California 95670, United States
| | - Nina M. Vincent
- Department
of Chemistry, University of Oregon, Eugene, Oregon 97403, United States
| | | |
Collapse
|
11
|
McWilliams LE, Valley NA, Wren SN, Richmond GL. A means to an interface: investigating monoethanolamine behavior at an aqueous surface. Phys Chem Chem Phys 2015. [PMID: 26220791 DOI: 10.1039/c5cp02931g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of amine scrubbers to trap carbon dioxide from flue gas streams is one of the most promising avenues for atmospheric carbon dioxide reduction. However, modifications are necessary to efficiently scale these scrubbers for use in fossil fuel plants. Current advances in tailoring amines for CO2 capture involve improvements of bulk kinetic and thermodynamic parameters, with little consideration to surface chemistry and behavior. Aqueous alkanolamine solutions, such as monoethanolamine (MEA), are currently highly favored sorbents in CO2 post-combustion capture. Although numerous studies have explored MEA-CO2 chemistry at the macroscopic scale, few have investigated the role of the interface in the gas adsorption process. Additionally, as these amines become more industrially ubiquitous, their presence on and the need to understand their behavior at atmospheric and environmental surfaces will increase. This study investigates the surface behavior of monoethanolamine at the vapor/water interface, with particular focus on MEA's surface orientation and footprint. Using vibrational sum frequency spectroscopy, surface tensiometry, and computational techniques, MEA is found to adopt a constrained gauche interfacial conformation with its methylene backbone oriented toward the vapor phase and its functional groups solvated in the bulk solution. Computational and experimental analysis agree well, giving a complete picture with vibrational mode assignments and surface orientation of MEA. These findings can assist in the tailoring of amine structures or to facilitate improvements in engineering design to exploit favorable surface chemistry, as well as to serve as a starting point toward understanding aqueous amine surface behavior relevant to environmental systems.
Collapse
|