1
|
Buntkowsky G, Theiss F, Lins J, Miloslavina YA, Wienands L, Kiryutin A, Yurkovskaya A. Recent advances in the application of parahydrogen in catalysis and biochemistry. RSC Adv 2022; 12:12477-12506. [PMID: 35480380 PMCID: PMC9039419 DOI: 10.1039/d2ra01346k] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/23/2022] [Indexed: 12/15/2022] Open
Abstract
Nuclear Magnetic Resonance (NMR) spectroscopy and Magnetic Resonance Imaging (MRI) are analytical and diagnostic tools that are essential for a very broad field of applications, ranging from chemical analytics, to non-destructive testing of materials and the investigation of molecular dynamics, to in vivo medical diagnostics and drug research. One of the major challenges in their application to many problems is the inherent low sensitivity of magnetic resonance, which results from the small energy-differences of the nuclear spin-states. At thermal equilibrium at room temperature the normalized population difference of the spin-states, called the Boltzmann polarization, is only on the order of 10-5. Parahydrogen induced polarization (PHIP) is an efficient and cost-effective hyperpolarization method, which has widespread applications in Chemistry, Physics, Biochemistry, Biophysics, and Medical Imaging. PHIP creates its signal-enhancements by means of a reversible (SABRE) or irreversible (classic PHIP) chemical reaction between the parahydrogen, a catalyst, and a substrate. Here, we first give a short overview about parahydrogen-based hyperpolarization techniques and then review the current literature on method developments and applications of various flavors of the PHIP experiment.
Collapse
Affiliation(s)
- Gerd Buntkowsky
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Alarich-Weiss-Str. 8 D-64287 Darmstadt Germany
| | - Franziska Theiss
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Alarich-Weiss-Str. 8 D-64287 Darmstadt Germany
| | - Jonas Lins
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Alarich-Weiss-Str. 8 D-64287 Darmstadt Germany
| | - Yuliya A Miloslavina
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Alarich-Weiss-Str. 8 D-64287 Darmstadt Germany
| | - Laura Wienands
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Alarich-Weiss-Str. 8 D-64287 Darmstadt Germany
| | - Alexey Kiryutin
- International Tomography Center, Siberian Branch of the Russian Academy of Science Novosibirsk 630090 Russia
| | - Alexandra Yurkovskaya
- International Tomography Center, Siberian Branch of the Russian Academy of Science Novosibirsk 630090 Russia
| |
Collapse
|
2
|
Vaneeckhaute E, De Ridder S, Tyburn JM, Kempf JG, Taulelle F, Martens JA, Breynaert E. Long-Term Generation of Longitudinal Spin Order Controlled by Ammonia Ligation Enables Rapid SABRE Hyperpolarized 2D NMR. Chemphyschem 2021; 22:1170-1177. [PMID: 33851495 DOI: 10.1002/cphc.202100079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/29/2021] [Indexed: 01/19/2023]
Abstract
Symmetry breaking of parahydrogen using iridium catalysts converts singlet spin order into observable hyperpolarization. In this contribution, iridium catalysts are designed to exhibit asymmetry in their hydrides, regulated by in situ generation of deuterated ammonia governed by ammonium buffers. The concentrations of ammonia (N) and pyridine (P) provide a handle to generate a variety of stereo-chemically asymmetric N-heterocyclic carbene iridium complexes, ligating either [3xP], [2xP;N], [P;2xN] or [3xN] in an octahedral SABRE type configuration. The non-equivalent hydride positions, in correspondence with the ammonium buffer solutions, enables to extend singlet-triplet or S ⟩ → T 0 ⟩ mixing at high magnetic field and experimentally induce prolonged generation of non-equilibrium longitudinal two-spin order. This long-lasting magnetization can be exploited in hyperpolarized 2D-OPSY-COSY experiments providing direct structural information on the catalyst using a single contact with parahydrogen. Separately, field cycling revealed hyperpolarization properties in low-field conditions. Controlling catalyst stereochemistry by introducing small and deuterated ligands, such as deuterated ammonia, simplifies the spin-system. This is shown to unify experimental and theoretically derived field-sweep experiments for four-spin systems.
Collapse
Affiliation(s)
- Ewoud Vaneeckhaute
- COK-kat, Centre for Surface Chemistry and Catalysis-Characterisation and Application Team, KU Leuven, Celestijnenlaan 200F, box 2461, B-3001, Leuven, Belgium.,NMRCoRe, NMR/X-Ray platform for Convergence Research, KU Leuven, Celestijnenlaan 200F, box 2461, 3001, Leuven, Belgium
| | - Sophie De Ridder
- COK-kat, Centre for Surface Chemistry and Catalysis-Characterisation and Application Team, KU Leuven, Celestijnenlaan 200F, box 2461, B-3001, Leuven, Belgium
| | - Jean-Max Tyburn
- Bruker Biospin, 34 rue de l'Industrie BP 10002, 67166, Wissembourg Cedex, France
| | - James G Kempf
- Bruker Biospin, 15 Fortune Dr., Billerica, 01821, Massachusetts, United States
| | - Francis Taulelle
- COK-kat, Centre for Surface Chemistry and Catalysis-Characterisation and Application Team, KU Leuven, Celestijnenlaan 200F, box 2461, B-3001, Leuven, Belgium.,NMRCoRe, NMR/X-Ray platform for Convergence Research, KU Leuven, Celestijnenlaan 200F, box 2461, 3001, Leuven, Belgium
| | - Johan A Martens
- COK-kat, Centre for Surface Chemistry and Catalysis-Characterisation and Application Team, KU Leuven, Celestijnenlaan 200F, box 2461, B-3001, Leuven, Belgium.,NMRCoRe, NMR/X-Ray platform for Convergence Research, KU Leuven, Celestijnenlaan 200F, box 2461, 3001, Leuven, Belgium
| | - Eric Breynaert
- COK-kat, Centre for Surface Chemistry and Catalysis-Characterisation and Application Team, KU Leuven, Celestijnenlaan 200F, box 2461, B-3001, Leuven, Belgium.,NMRCoRe, NMR/X-Ray platform for Convergence Research, KU Leuven, Celestijnenlaan 200F, box 2461, 3001, Leuven, Belgium
| |
Collapse
|
3
|
Kozinenko VP, Kiryutin AS, Knecht S, Buntkowsky G, Vieth HM, Yurkovskaya AV, Ivanov KL. Spin dynamics in experiments on orthodeuterium induced polarization (ODIP). J Chem Phys 2020; 153:114202. [DOI: 10.1063/5.0022042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Vitaly P. Kozinenko
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexey S. Kiryutin
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Stephan Knecht
- Eduard-Zintl Institute for Inorganic and Physical Chemistry, TU Darmstadt, Darmstadt 64287, Germany
| | - Gerd Buntkowsky
- Eduard-Zintl Institute for Inorganic and Physical Chemistry, TU Darmstadt, Darmstadt 64287, Germany
| | - Hans-Martin Vieth
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia
- Institut für Experimentalphysik, Freie Universität Berlin, Berlin 14195, Germany
| | - Alexandra V. Yurkovskaya
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Konstantin L. Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
4
|
Kim S, Min S, Chae H, Jeong HJ, Namgoong SK, Oh S, Jeong K. Hyperpolarization of Nitrile Compounds Using Signal Amplification by Reversible Exchange. Molecules 2020; 25:E3347. [PMID: 32717970 PMCID: PMC7435364 DOI: 10.3390/molecules25153347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/08/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
Abstract
Signal Amplification by Reversible Exchange (SABRE), a hyperpolarization technique, has been harnessed as a powerful tool to achieve useful hyperpolarized materials by polarization transfer from parahydrogen. In this study, we systemically applied SABRE to a series of nitrile compounds, which have been rarely investigated. By performing SABRE in various magnetic fields and concentrations on nitrile compounds, we unveiled its hyperpolarization properties to maximize the spin polarization and its transfer to the next spins. Through this sequential study, we obtained a ~130-fold enhancement for several nitrile compounds, which is the highest number ever reported for the nitrile compounds. Our study revealed that the spin polarization on hydrogens decreases with longer distances from the nitrile group, and its maximum polarization is found to be approximately 70 G with 5 μL of substrates in all structures. Interestingly, more branched structures in the ligand showed less effective polarization transfer mechanisms than the structural isomers of butyronitrile and isobutyronitrile. These first systematic SABRE studies on a series of nitrile compounds will provide new opportunities for further research on the hyperpolarization of various useful nitrile materials.
Collapse
Affiliation(s)
- Sarah Kim
- Department of Chemistry, Seoul Women’s University, Seoul 01797, Korea; (S.K.); (S.M.); (H.C.); (S.K.N.)
| | - Sein Min
- Department of Chemistry, Seoul Women’s University, Seoul 01797, Korea; (S.K.); (S.M.); (H.C.); (S.K.N.)
| | - Heelim Chae
- Department of Chemistry, Seoul Women’s University, Seoul 01797, Korea; (S.K.); (S.M.); (H.C.); (S.K.N.)
| | - Hye Jin Jeong
- Department of Chemistry, Korea Military Academy, Seoul 01805, Korea;
| | - Sung Keon Namgoong
- Department of Chemistry, Seoul Women’s University, Seoul 01797, Korea; (S.K.); (S.M.); (H.C.); (S.K.N.)
| | - Sangwon Oh
- Korea Research Institute of Standards and Science, Daejeon 34113, Korea
| | - Keunhong Jeong
- Department of Chemistry, Korea Military Academy, Seoul 01805, Korea;
| |
Collapse
|
5
|
Barskiy DA, Knecht S, Yurkovskaya AV, Ivanov KL. SABRE: Chemical kinetics and spin dynamics of the formation of hyperpolarization. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 114-115:33-70. [PMID: 31779885 DOI: 10.1016/j.pnmrs.2019.05.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/16/2019] [Indexed: 05/22/2023]
Abstract
In this review, we present the physical principles of the SABRE (Signal Amplification By Reversible Exchange) method. SABRE is a promising hyperpolarization technique that enhances NMR signals by transferring spin order from parahydrogen (an isomer of the H2 molecule that is in a singlet nuclear spin state) to a substrate that is to be polarized. Spin order transfer takes place in a transient organometallic complex which binds both parahydrogen and substrate molecules; after dissociation of the SABRE complex, free hyperpolarized substrate molecules are accumulated in solution. An advantage of this method is that the substrate is not modified chemically, and its polarization can be regenerated multiple times by bubbling fresh parahydrogen through the solution. Thus, SABRE requires two key ingredients: (i) polarization transfer and (ii) chemical exchange of both parahydrogen and substrate. While there are several excellent reviews on applications of SABRE, the background of the method is discussed less frequently. In this review we aim to explain in detail how SABRE hyperpolarization is formed, focusing on key aspects of both spin dynamics and chemical kinetics, as well as on the interplay between them. Hence, we first cover the known spin order transfer methods applicable to SABRE - cross-relaxation, coherent spin mixing at avoided level crossings, and coherence transfer - and discuss their practical implementation for obtaining SABRE polarization in the most efficient way. Second, we introduce and explain the principle of SABRE hyperpolarization techniques that operate at ultralow (<1 μT), at low (1μT to 0.1 T) and at high (>0.1 T) magnetic fields. Finally, chemical aspects of SABRE are discussed in detail, including chemical systems that are amenable to SABRE and the exchange processes that are required for polarization formation. A theoretical treatment of the spin dynamics and their interplay with chemical kinetics is also presented. This review outlines known aspects of SABRE and provides guidelines for the design of new SABRE experiments, with the goal of solving practical problems of enhancing weak NMR signals.
Collapse
Affiliation(s)
- Danila A Barskiy
- Department of Chemistry, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Stephan Knecht
- Eduard-Zintl Institute for Inorganic and Physical Chemistry, TU Darmstadt, Darmstadt 64287, Germany; Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexandra V Yurkovskaya
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Konstantin L Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia.
| |
Collapse
|
6
|
Lindale JR, Eriksson SL, Tanner CPN, Zhou Z, Colell JFP, Zhang G, Bae J, Chekmenev EY, Theis T, Warren WS. Unveiling coherently driven hyperpolarization dynamics in signal amplification by reversible exchange. Nat Commun 2019; 10:395. [PMID: 30674881 PMCID: PMC6344499 DOI: 10.1038/s41467-019-08298-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/21/2018] [Indexed: 01/19/2023] Open
Abstract
Signal amplification by reversible exchange (SABRE) is an efficient method to hyperpolarize spin-1/2 nuclei and affords signals that are orders of magnitude larger than those obtained by thermal spin polarization. Direct polarization transfer to heteronuclei such as 13C or 15N has been optimized at static microTesla fields or using coherence transfer at high field, and relies on steady state exchange with the polarization transfer catalyst dictated by chemical kinetics. Here we demonstrate that pulsing the excitation field induces complex coherent polarization transfer dynamics, but in fact pulsing with a roughly 1% duty cycle on resonance produces more magnetization than constantly being on resonance. We develop a Monte Carlo simulation approach to unravel the coherent polarization dynamics, show that existing SABRE approaches are quite inefficient in use of para-hydrogen order, and present improved sequences for efficient hyperpolarization. There is increasing effort to improve the signal sensitivity and explore the hyperpolarization dynamics. Here the authors demonstrate the parahydrogen spin transfer dynamics in compounds containing 15N using SABRE hyperpolarization technique with different strengths of the magnetic field.
Collapse
Affiliation(s)
- Jacob R Lindale
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | | | | | - Zijian Zhou
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | | | - Guannan Zhang
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Junu Bae
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Eduard Y Chekmenev
- Department of Chemistry, Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI, 48202, USA.,Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow, Russia, 119991
| | - Thomas Theis
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Warren S Warren
- Department of Physics, Chemistry, Biomedical Engineering, and Radiology, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
7
|
Zhukov IV, Kiryutin AS, Yurkovskaya AV, Grishin YA, Vieth HM, Ivanov KL. Field-cycling NMR experiments in an ultra-wide magnetic field range: relaxation and coherent polarization transfer. Phys Chem Chem Phys 2018; 20:12396-12405. [PMID: 29623979 DOI: 10.1039/c7cp08529j] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An experimental method is described allowing fast field-cycling Nuclear Magnetic Resonance (NMR) experiments over a wide range of magnetic fields from 5 nT to 10 T. The method makes use of a hybrid technique: the high field range is covered by positioning the sample in the inhomogeneous stray field of the NMR spectrometer magnet. For fields below 2 mT a magnetic shield is mounted on top of the spectrometer; inside the shield the magnetic field is controlled by a specially designed coil system. This combination allows us to measure T1-relaxation times and nuclear Overhauser effect parameters over the full range in a routine way. For coupled proton-carbon spin systems relaxation with a common T1 is found at low fields, where the spins are "strongly coupled". In some cases, experiments at ultralow fields provide access to heteronuclear long-lived spin states. Efficient coherent polarization transfer is seen for proton-carbon spin systems at ultralow fields as follows from the observation of quantum oscillations in the polarization evolution. Applications to analysis and the manipulation of heteronuclear spin systems are discussed.
Collapse
Affiliation(s)
- Ivan V Zhukov
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia.
| | | | | | | | | | | |
Collapse
|
8
|
Kiryutin AS, Yurkovskaya AV, Lukzen NN, Vieth HM, Ivanov KL. Exploiting adiabatically switched RF-field for manipulating spin hyperpolarization induced by parahydrogen. J Chem Phys 2015; 143:234203. [DOI: 10.1063/1.4937392] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Alexey S. Kiryutin
- International Tomography Center SB RAS, Institutskaya 3a, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Alexandra V. Yurkovskaya
- International Tomography Center SB RAS, Institutskaya 3a, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Nikita N. Lukzen
- International Tomography Center SB RAS, Institutskaya 3a, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Hans-Martin Vieth
- International Tomography Center SB RAS, Institutskaya 3a, Novosibirsk 630090, Russia
- Freie Universität Berlin, Arnimallee 14, Berlin 14195, Germany
| | - Konstantin L. Ivanov
- International Tomography Center SB RAS, Institutskaya 3a, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| |
Collapse
|
9
|
Pravdivtsev AN, Ivanov KL, Yurkovskaya AV, Petrov PA, Limbach HH, Kaptein R, Vieth HM. Spin polarization transfer mechanisms of SABRE: A magnetic field dependent study. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 261:73-82. [PMID: 26529205 DOI: 10.1016/j.jmr.2015.10.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/05/2015] [Accepted: 10/09/2015] [Indexed: 06/05/2023]
Abstract
We have investigated the magnetic field dependence of Signal Amplification By Reversible Exchange (SABRE) arising from binding of para-hydrogen (p-H2) and a substrate to a suitable transition metal complex. The magnetic field dependence of the amplification of the (1)H Nuclear Magnetic Resonance (NMR) signals of the released substrates and dihydrogen, and the transient transition metal dihydride species shows characteristic patterns, which is explained using the theory presented here. The generation of SABRE is most efficient at low magnetic fields due to coherent spin mixing at nuclear spin Level Anti-Crossings (LACs) in the SABRE complexes. We studied two Ir-complexes and have shown that the presence of a (31)P atom in the SABRE complex doubles the number of LACs and, consequently, the number of peaks in the SABRE field dependence. Interestingly, the polarization of SABRE substrates is always accompanied by the para-to-ortho conversion in dihydride species that results in enhancement of the NMR signal of free (H2) and catalyst-bound H2 (Ir-HH). The field dependences of hyperpolarized H2 and Ir-HH by means of SABRE are studied here, for the first time, in detail. The field dependences depend on the chemical shifts and coupling constants of Ir-HH, in which the polarization transfer takes place. A negative coupling constant of -7Hz between the two chemically equivalent but magnetically inequivalent hydride nuclei is determined, which indicates that Ir-HH is a dihydride with an HH distance larger than 2Å. Finally, the field dependence of SABRE at high fields as found earlier has been investigated and attributed to polarization transfer to the substrate by cross-relaxation. The present study provides further evidence for the key role of LACs in the formation of SABRE-derived polarization. Understanding the spin dynamics behind the SABRE method opens the way to optimizing its performance and overcoming the main limitation of NMR, its notoriously low sensitivity.
Collapse
Affiliation(s)
- Andrey N Pravdivtsev
- International Tomography Center SB RAS, Institutskaya 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Konstantin L Ivanov
- International Tomography Center SB RAS, Institutskaya 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia.
| | - Alexandra V Yurkovskaya
- International Tomography Center SB RAS, Institutskaya 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Pavel A Petrov
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia; Nikolaev Institute of Inorganic Chemistry SB RAS, Acad. Lavrentiev Ave., 3, Novosibirsk 630090, Russia
| | - Hans-Heinrich Limbach
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, Berlin 14195, Germany
| | - Robert Kaptein
- Utrecht University, Bijvoet Center, Padualaan 8, NL-3584 CH Utrecht, The Netherlands
| | - Hans-Martin Vieth
- International Tomography Center SB RAS, Institutskaya 3a, Novosibirsk 630090, Russia; Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, Berlin 14195, Germany
| |
Collapse
|
10
|
Pravdivtsev AN, Ivanov KL, Yurkovskaya AV, Vieth HM, Sagdeev RZ. Spontaneous transfer of para-hydrogen induced polarization to 13C spins in symmetric molecules1. DOKLADY PHYSICAL CHEMISTRY 2015. [DOI: 10.1134/s0012501615100073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Pravdivtsev AN, Yurkovskaya AV, Ivanov KL, Vieth HM. Importance of polarization transfer in reaction products for interpreting and analyzing CIDNP at low magnetic fields. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 254:35-47. [PMID: 25797825 DOI: 10.1016/j.jmr.2015.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/12/2015] [Accepted: 02/16/2015] [Indexed: 05/14/2023]
Abstract
The magnetic field dependence of Chemically Induced Dynamic Nuclear Polarization (CIDNP) was studied for the amino acids N-acetyl histidine, N-acetyl tryptophan and N-acetyl tyrosine. It is demonstrated that at low field CIDNP is strongly affected by polarization redistribution in the diamagnetic molecules. Such a polarization transfer is of coherent nature and is due to spin coherences formed together with non-equilibrium population of the spin states. These coherences clearly manifest themselves in an oscillatory time dependence of polarization. Polarization transfer effects are most pronounced at nuclear spin Level Anti-Crossings (LACs), which also result in sharp features in the CIDNP field dependence. Thus, polarization transfer is an important factor, which has to be taken into account in order to interpret low-field CIDNP data on both qualitative and quantitative level. Possible applications of polarization transfer phenomena are also discussed in the paper. In particular, the role of LACs in spin order transfer is highlighted: LACs provide a new tool for precise manipulation of spin hyperpolarization and NMR enhancement of selected target spins.
Collapse
Affiliation(s)
- Andrey N Pravdivtsev
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Alexandra V Yurkovskaya
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Konstantin L Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia.
| | - Hans-Martin Vieth
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
12
|
Ivanov KL, Pravdivtsev AN, Yurkovskaya AV, Vieth HM, Kaptein R. The role of level anti-crossings in nuclear spin hyperpolarization. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 81:1-36. [PMID: 25142733 DOI: 10.1016/j.pnmrs.2014.06.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/11/2014] [Accepted: 06/13/2014] [Indexed: 05/22/2023]
Abstract
Nuclear spin hyperpolarization is an important resource for increasing the sensitivity of NMR spectroscopy and MRI. Signal enhancements can be as large as 3-4 orders of magnitude. In hyperpolarization experiments, it is often desirable to transfer the initial polarization to other nuclei of choice, either protons or insensitive nuclei such as (13)C and (15)N. This situation arises primarily in Chemically Induced Dynamic Nuclear Polarization (CIDNP), Para-Hydrogen Induced Polarization (PHIP), and the related Signal Amplification By Reversible Exchange (SABRE). Here we review the recent literature on polarization transfer mechanisms, in particular focusing on the role of Level Anti-Crossings (LACs) therein. So-called "spontaneous" polarization transfer may occur both at low and high magnetic fields. In addition, transfer of spin polarization can be accomplished by using especially designed pulse sequences. It is now clear that at low field spontaneous polarization transfer is primarily due to coherent spin-state mixing under strong coupling conditions. However, thus far the important role of LACs in this process has not received much attention. At high magnetic field, polarization may be transferred by cross-relaxation effects. Another promising high-field technique is to generate the strong coupling condition by spin locking using strong radio-frequency fields. Here, an analysis of polarization transfer in terms of LACs in the rotating frame is very useful to predict which spin orders are transferred depending on the strength and frequency of the B1 field. Finally, we will examine the role of strong coupling and LACs in magnetic-field dependent nuclear spin relaxation and the related topic of long-lived spin-states.
Collapse
Affiliation(s)
- Konstantin L Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia.
| | - Andrey N Pravdivtsev
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Alexandra V Yurkovskaya
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Hans-Martin Vieth
- Freie Universität Berlin, Institut für Experimentalphysik, Arnimallee 14, Berlin 14195, Germany
| | - Robert Kaptein
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, NL-3584 CH Utrecht, The Netherlands.
| |
Collapse
|
13
|
Türschmann P, Colell J, Theis T, Blümich B, Appelt S. Analysis of parahydrogen polarized spin system in low magnetic fields. Phys Chem Chem Phys 2014; 16:15411-21. [PMID: 24947652 DOI: 10.1039/c4cp01807a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nuclear magnetic resonance (NMR) spectra of spin systems polarized either thermally or by parahydrogen exhibit strikingly different field dependencies. Thermally polarized spin systems show the well-known roof effect, observed when reducing magnetic field strengths which precludes the independent determination of chemical shift differences and J-coupling constants at low-fields. Quantum mechanical analysis of the NMR spectra with respect to polarization method, pulsed state preparation, and transition probabilities reveals that spectra of parahydrogen polarized systems feature an "inverse roof effect" in the regime where the chemical shift difference δν is smaller than J. This inverse roof effect allows for the extraction of both J-coupling and chemical shift information down to very low fields. Based on a two-spin system, the observed non-linear magnetic field dependence of the splitting of spectral lines is predicted. We develop a general solution for the steady state density matrix of a parahydrogen polarized three-spin system including a heteronucleus which allows explaining experimentally observed (1)H spectra. The analysis of three-spin density matrix illustrates two pathways for an efficient polarization transfer from parahydrogen to (13)C nuclei. Examination of the experimental data facilitates the extraction of all relevant NMR parameters using single-scan, high-resolution (1)H and (13)C NMR spectroscopy at low fields at a fraction of the cost associated with cryogenically cooled high-field NMR spectrometers.
Collapse
Affiliation(s)
- P Türschmann
- Institut für Technische und Markomolekulare Chemie, RWTH Aachen University, 52056 Aachen, Germany.
| | | | | | | | | |
Collapse
|
14
|
Kiryutin AS, Ivanov KL, Yurkovskaya AV, Kaptein R, Vieth HM. Transfer of Parahydrogen Induced Polarization in Scalar Coupled Systems at Variable Magnetic Field. ACTA ACUST UNITED AC 2012. [DOI: 10.1524/zpch.2012.0307] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
Para-Hydrogen Induced Polarization (PHIP) experiments were performed in coupled multispin systems at variable magnetic fields. We studied the magnetic field dependence of PHIP in styrene, which is the product of hydrogenation of phenylacetylene. At low magnetic fields where the spins are coupled strongly by scalar interaction efficient polarization transfer among the interacting protons takes place. The experimentally observed spectra are in good agreement with the simulation, which takes into account eight coupled spins. We also demonstrate effects of nuclear spin level anti-crossings on the PHIP pattern. It is shown that rapid passage through the level anti-crossing enables highly efficient polarization transfer between specific spin orders. In addition, we studied PHIP transfer to
13
C and
19
F hetero-nuclei. It is shown that hetero-nuclei can be efficiently polarized in a wide field range; in particular, for polarizing them it is not necessary to go to ultra-low fields, which provide their strong coupling to protons. The resulting polarization is of the multiplet type and gives strong enhancements of the individual NMR lines. In general, variation of the magnetic field gives the opportunity for manipulating PHIP patterns and transferring polarization to target spins of choice.
Collapse
Affiliation(s)
- Alexey S. Kiryutin
- Freie Universität Berlin, Institut für Experimentalphysik, Berlin, Deutschland
| | | | | | - Robert Kaptein
- Novosibirsk State University, Novosibirsk 630090, Russische Föderation
| | | |
Collapse
|