1
|
Martín-Fernández C, Ferrer M, Alkorta I, Montero-Campillo MM, Elguero J, Mandado M. Metastable Charged Dimers in Organometallic Species: A Look into Hydrogen Bonding between Metallocene Derivatives. Inorg Chem 2023; 62:16523-16537. [PMID: 37755334 DOI: 10.1021/acs.inorgchem.3c02355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Multiply charged complexes bound by noncovalent interactions have been previously described in the literature, although they were mostly focused on organic and main group inorganic systems. In this work, we show that similar complexes can also be found for organometallic systems containing transition metals and deepen in the reasons behind the existence of these species. We have studied the structures, binding energies, and dissociation profiles in the gas phase of a series of charged hydrogen-bonded dimers of metallocene (Ru, Co, Rh, and Mn) derivatives isoelectronic with the ferrocene dimer. Our results indicate that the carboxylic acid-containing dimers are more strongly bonded and present larger barriers to dissociation than the amide ones and that the cationic complexes tend to be more stable than the anionic ones. Additionally, we describe for the first time the symmetric proton transfer that can occur while in the metastable phase. Finally, we use a density-based energy decomposition analysis to shine light on the nature of the interaction between the dimers.
Collapse
Affiliation(s)
| | - Maxime Ferrer
- Instituto de Química Médica (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
- PhD Programme in Theoretical Chemistry and Computational Modelling, Doctoral School, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Ibon Alkorta
- Instituto de Química Médica (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
| | - M Merced Montero-Campillo
- Departamento de Química (Módulo 13, Facultad de Ciencias), Campus de Excelencia UAM-CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - José Elguero
- Instituto de Química Médica (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Marcos Mandado
- Departamento de Química Física, Universidade de Vigo, Lagoas-Marcosende s/n, 36310 Vigo, Spain
| |
Collapse
|
2
|
Geoffroy-Neveux A, Labet V, Alikhani ME. Influence of an Oriented External Electric Field on the Mechanism of Double Proton Transfer between Pyrazole and Guanidine: from an Asynchronous Plateau Transition State to a Synchronous or Stepwise Mechanism. J Phys Chem A 2022; 126:3057-3071. [PMID: 35544749 DOI: 10.1021/acs.jpca.1c10553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The double proton transfer (DPT) reaction between pyrazole and guanidine, a concerted reaction but strongly asynchronous and presenting a "plateau transition region", has been theoretically reinvestigated in the presence of an external uniform electric field. First, we computed the reaction path by DFT and proposed a very detailed description of the constitutive electronic events, based on the ELF topology and the bond evolution theory. Then, we studied the effect of an oriented external electric field (OEEF) on the reaction mechanism, for an OEEF oriented along the proton transfer axis. We observe that in one direction, the DPT reaction can be transformed into a stepwise reaction, going through a stabilized single proton transferred intermediate. Contrarily, the two proton transfers occur simultaneously when the electric field is applied in the opposite direction. In the latter case, the order in which the two protons are transferred in the same elementary step can even be reversed if the OEEF is intense enough. Finally, it has been shown that the evolution of the double proton transfer reaction in the presence of an electric field could be quantitatively anticipated by analyzing the ELF value at the bifurcation point between V(A, H) proton donor and V(B) proton acceptor of the double hydrogen bonded complex in the entrance channel.
Collapse
Affiliation(s)
| | - Vanessa Labet
- MONARIS UMR 8233 CNRS, Sorbonne Université, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - M Esmail Alikhani
- MONARIS UMR 8233 CNRS, Sorbonne Université, 4 place Jussieu, 75252 Paris Cedex 05, France
| |
Collapse
|
3
|
Abstract
The self-association of phosphonic acids with general formula RP(O)(OH)2 in solution state remains largely unexplored. The general understanding is that such molecules form multiple intermolecular hydrogen bonds, but the stoichiometry of self-associates and the bonding motifs are unclear. In this work, we report the results of the study of self-association of tert-butylphosphonic acid using low temperature liquid-state 1H and 31P NMR spectroscopy (100 K; CDF3/CDF2Cl) and density functional theory (DFT) calculations. For the first time, we demonstrate conclusively that polar aprotic medium tert-butylphosphonic acid forms highly symmetric cage-like tetramers held by eight OHO hydrogen bonds, which makes the complex quite stable. In these associates. each phosphonic acid molecule is bonded to three other molecules by forming two hydrogen bonds as proton donor and two hydrogen bonds as proton acceptor. Though the structure of such cage-like tetramers is close to tetrahedral, the formal symmetry of the self-associate is C2.
Collapse
|
4
|
Mulloyarova VV, Giba IS, Kostin MA, Denisov GS, Shenderovich IG, Tolstoy PM. Cyclic trimers of phosphinic acids in polar aprotic solvent: symmetry, chirality and H/D isotope effects on NMR chemical shifts. Phys Chem Chem Phys 2018; 20:4901-4910. [PMID: 29384171 DOI: 10.1039/c7cp08130h] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The hydrogen-bonded self-associates of dimethylphosphinic (1), diphenylphosphoric (2), phenylphosphinic (3), and bis(2,4,4-trimethylpentyl)phosphinic (4) acids have been studied by using liquid-state NMR down to 100 K in a low-freezing polar solvent, CDF3/CDClF2. The H/D isotope effects on 1H NMR chemical shifts caused by partial deuteration of hydroxyl groups unambiguously reveal the stoichiometry of the self-associates and the cooperativity of their hydrogen bonds. In all cases, cyclic trimers are the dominant form, while cyclic dimers are present as a minor form for 1 and 2. Due to the asymmetry of substituents, cyclic trimers of 3 exist in two isomeric forms, depending on the orientation of the phenyl groups with respect to the plane of the hydrogen bonds. The racemic mixture of 4 leads to the coexistence of up to 64 isomers of cyclic trimers, many of which are chemically equivalent or effectively isochronous. The mole fractions of such isomers deviate from the statistically expected values. This feature could provide information about the relative stabilization energies of hydrogen-bonded chiral self-associates. The complexation of 4 with SbCl5 (complex 5) suppresses the self-association and 5 exists exclusively in the monomeric form with chemically non-equivalent 31P nuclei in RS, SR and RR/SS forms.
Collapse
Affiliation(s)
- V V Mulloyarova
- Institute of Chemistry, St. Petersburg State University, Russia.
| | | | | | | | | | | |
Collapse
|
5
|
Aquilanti V, Coutinho ND, Carvalho-Silva VH. Kinetics of low-temperature transitions and a reaction rate theory from non-equilibrium distributions. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:rsta.2016.0201. [PMID: 28320904 PMCID: PMC5360900 DOI: 10.1098/rsta.2016.0201] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/14/2016] [Indexed: 05/14/2023]
Abstract
This article surveys the empirical information which originated both by laboratory experiments and by computational simulations, and expands previous understanding of the rates of chemical processes in the low-temperature range, where deviations from linearity of Arrhenius plots were revealed. The phenomenological two-parameter Arrhenius equation requires improvement for applications where interpolation or extrapolations are demanded in various areas of modern science. Based on Tolman's theorem, the dependence of the reciprocal of the apparent activation energy as a function of reciprocal absolute temperature permits the introduction of a deviation parameter d covering uniformly a variety of rate processes, from those where quantum mechanical tunnelling is significant and d < 0, to those where d > 0, corresponding to the Pareto-Tsallis statistical weights: these generalize the Boltzmann-Gibbs weight, which is recovered for d = 0. It is shown here how the weights arise, relaxing the thermodynamic equilibrium limit, either for a binomial distribution if d > 0 or for a negative binomial distribution if d < 0, formally corresponding to Fermion-like or Boson-like statistics, respectively. The current status of the phenomenology is illustrated emphasizing case studies; specifically (i) the super-Arrhenius kinetics, where transport phenomena accelerate processes as the temperature increases; (ii) the sub-Arrhenius kinetics, where quantum mechanical tunnelling propitiates low-temperature reactivity; (iii) the anti-Arrhenius kinetics, where processes with no energetic obstacles are rate-limited by molecular reorientation requirements. Particular attention is given for case (i) to the treatment of diffusion and viscosity, for case (ii) to formulation of a transition rate theory for chemical kinetics including quantum mechanical tunnelling, and for case (iii) to the stereodirectional specificity of the dynamics of reactions strongly hindered by the increase of temperature.This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'.
Collapse
Affiliation(s)
- Vincenzo Aquilanti
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
- Instituto de Física, Universidade Federal da Bahia, 40210 Salvador, Brazil
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, 00016 Rome, Italy
| | - Nayara Dantas Coutinho
- Instituto de Química, Universidade de Brasília, Caixa Postal 4478, 70904-970 Brasília, Brazil
| | - Valter Henrique Carvalho-Silva
- Grupo de Química Teórica e Estrutural de Anápolis, Campus de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, CP 459, 75001-970 Anápolis, GO, Brazil
| |
Collapse
|
6
|
Carvalho-Silva VH, Aquilanti V, de Oliveira HCB, Mundim KC. Deformed transition-state theory: Deviation from Arrhenius behavior and application to bimolecular hydrogen transfer reaction rates in the tunneling regime. J Comput Chem 2016; 38:178-188. [PMID: 27859380 DOI: 10.1002/jcc.24529] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/24/2016] [Accepted: 10/10/2016] [Indexed: 12/14/2022]
Abstract
A formulation is presented for the application of tools from quantum chemistry and transition-state theory to phenomenologically cover cases where reaction rates deviate from Arrhenius law at low temperatures. A parameter d is introduced to describe the deviation for the systems from reaching the thermodynamic limit and is identified as the linearizing coefficient in the dependence of the inverse activation energy with inverse temperature. Its physical meaning is given and when deviation can be ascribed to quantum mechanical tunneling its value is calculated explicitly. Here, a new derivation is given of the previously established relationship of the parameter d with features of the barrier in the potential energy surface. The proposed variant of transition state theory permits comparison with experiments and tests against alternative formulations. Prescriptions are provided and implemented to three hydrogen transfer reactions: CH4 + OH → CH3 + H2 O, CH3 Cl + OH → CH2 Cl + H2 O and H2 + CN → H + HCN, widely investigated both experimentally and theoretically. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Valter H Carvalho-Silva
- Grupo de Química Teórica e Estrutural de Anápolis, Unidade Universitária de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, P.O. Box 459, 75001-970, Anápolis, GO, Brazil
| | - Vincenzo Aquilanti
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy. Instituto de Física, Universidade Federal da Bahia, 40210, Salvador, Brazil.,Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, 00016, Rome, Italy
| | - Heibbe C B de Oliveira
- Instituto de Química, Universidade de Brasília, Caixa Postal 4478, 70904-970, Brasília, Brazil
| | - Kleber C Mundim
- Instituto de Química, Universidade de Brasília, Caixa Postal 4478, 70904-970, Brasília, Brazil
| |
Collapse
|
7
|
Ohyama K, Goto K, Shinmyozu T, Yamamoto N, Iizumi S, Miyagawa M, Nakata M, Sekiya H. Infrared spectroscopic studies on 4-amino-6-oxopyrimidine in a low-temperature Xe matrix and crystalline polymorphs composed of double hydrogen-bonded ribbons. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.01.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Abstract
Abstract
The structure of three simple pyrazole-4-carboxylic acids unsubstituted in position 1 (NH derivatives) 1H-pyrazole-4-carboxylic acid (1), 3(5)-methyl-1H-pyrazole-4-carboxylic acid (2) and 3,5-dimethyl-1H-pyrazole-4-carboxylic acid (3) are discussed based on crystallographic results (two new structures) and solid-state NMR (CPMAS). Compounds 1 and 3 present polymorphism and one of the polymorphs of each compound shows solid-state proton transfer (SSPT). Compound 2 presents tautomerism that has been studied by NMR, both in the solid-state and in solution at low temperature.
Collapse
|