1
|
Huhn C, Ho SY, Schulte C, Khayenko V, Hemmen K, Peulen TO, Wiessler AL, Bothe S, Bej A, Talucci I, Schönemann L, Werner C, Schindelin H, Strømgaard K, Villmann C, Heinze KG, Hruska M, Hell JW, Maric HM. eSylites: Synthetic Probes for Visualization and Topographic Mapping of Single Excitatory Synapses. J Am Chem Soc 2025. [PMID: 40111234 DOI: 10.1021/jacs.5c00772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The spatiotemporal organization of the postsynaptic density (PSD) is a fundamental determinant of synaptic transmission, information processing, and storage in the brain. The major bottleneck that prevents the direct and precise representation of the nanometer-scaled organization of excitatory glutamatergic synapses is the size of antibodies, nanobodies, and the genetically encoded fluorescent tags. Here, we introduce small, high affinity synthetic probes for simplified, high contrast visualization of excitatory synapses without the limitations of larger biomolecules. In vitro binding quantification together with microscopy-based evaluation identified eSylites, a series of fluorescent bivalent peptides comprising a dye, linker, and sequence composition that show remarkable cellular target selectivity. Applied on primary neurons or brain slices at nanomolar concentrations, eSylites specifically report PSD-95, the key orchestrator of glutamate receptor nanodomains juxtaposed to the presynaptic glutamate release sites that mediate fast synaptic transmission. The eSylite design minimizes a spatial dye offset and thereby enables visualization of PSD-95 with improved localization precision and further time-resolved discrimination. In particular, we find that individual dendritic spines can contain separate nanodomains enriched for either PSD-95 or its closest homologues, PSD-93 or SAP102. Collectively, these data establish eSylites as a broadly applicable tool for simplified excitatory synapse visualization, as well as a high-end microscopy compatible probe for resolving the PSD organization with unprecedented resolution.
Collapse
Affiliation(s)
- Christiane Huhn
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität (JMU) Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
- Biocenter, Department of Biotechnology and Biophysics, Julius-Maximilians-Universität (JMU) Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Sheng-Yang Ho
- Department of Pharmacology, University of California Davis, Davis, California 95616, United States
| | - Clemens Schulte
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität (JMU) Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
- Biocenter, Department of Biotechnology and Biophysics, Julius-Maximilians-Universität (JMU) Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Vladimir Khayenko
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität (JMU) Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
- Biocenter, Department of Biotechnology and Biophysics, Julius-Maximilians-Universität (JMU) Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Katherina Hemmen
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität (JMU) Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Thomas-Otavio Peulen
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität (JMU) Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Anna-Lena Wiessler
- Institute for Clinical Neurobiology, Julius-Maximilians-Universität (JMU) Würzburg, 97078 Würzburg, Germany
| | - Sebastian Bothe
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität (JMU) Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-Universität (JMU) Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Aritra Bej
- Department of Pharmacology, University of California Davis, Davis, California 95616, United States
| | - Ivan Talucci
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität (JMU) Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Lars Schönemann
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität (JMU) Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Christian Werner
- Biocenter, Department of Biotechnology and Biophysics, Julius-Maximilians-Universität (JMU) Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Hermann Schindelin
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität (JMU) Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Carmen Villmann
- Institute for Clinical Neurobiology, Julius-Maximilians-Universität (JMU) Würzburg, 97078 Würzburg, Germany
| | - Katrin G Heinze
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität (JMU) Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Martin Hruska
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Johannes W Hell
- Department of Pharmacology, University of California Davis, Davis, California 95616, United States
| | - Hans M Maric
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität (JMU) Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
- Biocenter, Department of Biotechnology and Biophysics, Julius-Maximilians-Universität (JMU) Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
2
|
Duan D, Koleske AJ. Phase separation of microtubule-binding proteins - implications for neuronal function and disease. J Cell Sci 2024; 137:jcs263470. [PMID: 39679446 PMCID: PMC11795294 DOI: 10.1242/jcs.263470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Protein liquid-liquid phase separation (LLPS) is driven by intrinsically disordered regions and multivalent binding domains, both of which are common features of diverse microtubule (MT) regulators. Many in vitro studies have dissected the mechanisms by which MT-binding proteins (MBPs) regulate MT nucleation, stabilization and dynamics, and investigated whether LLPS plays a role in these processes. However, more recent in vivo studies have focused on how MBP LLPS affects biological functions throughout neuronal development. Dysregulation of MBP LLPS can lead to formation of aggregates - an underlying feature in many neurodegenerative diseases - such as the tau neurofibrillary tangles present in Alzheimer's disease. In this Review, we highlight progress towards understanding the regulation of MT dynamics through the lens of phase separation of MBPs and associated cytoskeletal regulators, from both in vitro and in vivo studies. We also discuss how LLPS of MBPs regulates neuronal development and maintains homeostasis in mature neurons.
Collapse
Affiliation(s)
- Daisy Duan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Anthony J. Koleske
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
3
|
Jaudon F, Cingolani LA. Unlocking mechanosensitivity: integrins in neural adaptation. Trends Cell Biol 2024; 34:1029-1043. [PMID: 38514304 DOI: 10.1016/j.tcb.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024]
Abstract
Mechanosensitivity extends beyond sensory cells to encompass most neurons in the brain. Here, we explore recent research on the role of integrins, a diverse family of adhesion molecules, as crucial biomechanical sensors translating mechanical forces into biochemical and electrical signals in the brain. The varied biomechanical properties of neuronal integrins, including their force-dependent conformational states and ligand interactions, dictate their specific functions. We discuss new findings on how integrins regulate filopodia and dendritic spines, shedding light on their contributions to synaptic plasticity, and explore recent discoveries on how they engage with metabotropic receptors and ion channels, highlighting their direct participation in electromechanical transduction. Finally, to facilitate a deeper understanding of these developments, we present molecular and biophysical models of mechanotransduction.
Collapse
Affiliation(s)
- Fanny Jaudon
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Lorenzo A Cingolani
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; Center for Synaptic Neuroscience and Technology (NSYN), Fondazione Istituto Italiano di Tecnologia (IIT), 16132 Genoa, Italy.
| |
Collapse
|
4
|
Reshetniak S, Bogaciu CA, Bonn S, Brose N, Cooper BH, D'Este E, Fauth M, Fernández-Busnadiego R, Fiosins M, Fischer A, Georgiev SV, Jakobs S, Klumpp S, Köster S, Lange F, Lipstein N, Macarrón-Palacios V, Milovanovic D, Moser T, Müller M, Opazo F, Outeiro TF, Pape C, Priesemann V, Rehling P, Salditt T, Schlüter O, Simeth N, Steinem C, Tchumatchenko T, Tetzlaff C, Tirard M, Urlaub H, Wichmann C, Wolf F, Rizzoli SO. The synaptic vesicle cluster as a controller of pre- and postsynaptic structure and function. J Physiol 2024. [PMID: 39367860 DOI: 10.1113/jp286400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/11/2024] [Indexed: 10/07/2024] Open
Abstract
The synaptic vesicle cluster (SVC) is an essential component of chemical synapses, which provides neurotransmitter-loaded vesicles during synaptic activity, at the same time as also controlling the local concentrations of numerous exo- and endocytosis cofactors. In addition, the SVC hosts molecules that participate in other aspects of synaptic function, from cytoskeletal components to adhesion proteins, and affects the location and function of organelles such as mitochondria and the endoplasmic reticulum. We argue here that these features extend the functional involvement of the SVC in synapse formation, signalling and plasticity, as well as synapse stabilization and metabolism. We also propose that changes in the size of the SVC coalesce with changes in the postsynaptic compartment, supporting the interplay between pre- and postsynaptic dynamics. Thereby, the SVC could be seen as an 'all-in-one' regulator of synaptic structure and function, which should be investigated in more detail, to reveal molecular mechanisms that control synaptic function and heterogeneity.
Collapse
Affiliation(s)
- Sofiia Reshetniak
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Cristian A Bogaciu
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, Center for Molecular Neurobiology Hamburg, Hamburg, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Benjamin H Cooper
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Elisa D'Este
- Optical Microscopy Facility, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Michael Fauth
- Georg-August-University Göttingen, Faculty of Physics, Institute for the Dynamics of Complex Systems, Friedrich-Hund-Platz 1, Göttingen, Germany
| | - Rubén Fernández-Busnadiego
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Maksims Fiosins
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - André Fischer
- German Center for Neurodegenerative Diseases, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Svilen V Georgiev
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Jakobs
- Research Group Structure and Dynamics of Mitochondria, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Stefan Klumpp
- Theoretical Biophysics Group, Institute for the Dynamics of Complex Systems, Georg-August University Göttingen, Göttingen, Germany
| | - Sarah Köster
- Institute for X-Ray Physics, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Felix Lange
- Research Group Structure and Dynamics of Mitochondria, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Noa Lipstein
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | | | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases, Berlin, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August University Göttingen, Göttingen, Germany
| | - Felipe Opazo
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Constantin Pape
- Institute of Computer Science, Georg-August University Göttingen, Göttingen, Germany
| | - Viola Priesemann
- Georg-August-University Göttingen, Faculty of Physics, Institute for the Dynamics of Complex Systems, Friedrich-Hund-Platz 1, Göttingen, Germany
- Max-Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Tim Salditt
- Institute for X-Ray Physics, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Oliver Schlüter
- Clinic for Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Nadja Simeth
- Institute of Organic and Biomolecular Chemistry, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Tatjana Tchumatchenko
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
| | - Christian Tetzlaff
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Marilyn Tirard
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Carolin Wichmann
- Institute for Auditory Neuroscience University Medical Center Göttingen, Göttingen, Germany
- Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Fred Wolf
- Max-Planck-Institute for Dynamics and Self-Organization, 37077 Göttingen and Institute for Dynamics of Biological Networks, Georg-August University Göttingen, Göttingen, Germany
| | - Silvio O Rizzoli
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Cloâtre T, Mondin M, Sibarita JB, Levet F, Thoumine O. Protocol for matching protein localization to synapse morphology in primary rat neurons by correlative super-resolution microscopy. STAR Protoc 2024; 5:103160. [PMID: 38943646 PMCID: PMC11261141 DOI: 10.1016/j.xpro.2024.103160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/17/2024] [Accepted: 06/07/2024] [Indexed: 07/01/2024] Open
Abstract
Super-resolution imaging provides unprecedented visualization of sub-cellular structures, but the two main techniques used, single-molecule localization microscopy (SMLM) and stimulated emission depletion (STED), are not easily reconciled. We present a protocol to super-impose nanoscale protein distribution reconstructed with SMLM to sub-cellular morphology obtained in STED. We describe steps for tracking cells on etched coverslips and registering images from two different microscopes with 30-nm accuracy. In this protocol, synaptic proteins are mapped in the dendritic spines of primary neurons. For complete details on the use and execution of this protocol, please refer to Inavalli et al.1.
Collapse
Affiliation(s)
- Tiffany Cloâtre
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France
| | - Magali Mondin
- University Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UAR 3420, US 4, 33000 Bordeaux, France
| | - Jean-Baptiste Sibarita
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France
| | - Florian Levet
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France; University Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UAR 3420, US 4, 33000 Bordeaux, France.
| | - Olivier Thoumine
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France.
| |
Collapse
|
6
|
Shohayeb B, Sempert K, Wallis TP, Meunier FA, Durisic N, O'Brien EA, Flores C, Cooper HM. BDNF-dependent nano-organization of Neogenin and the WAVE regulatory complex promotes actin remodeling in dendritic spines. iScience 2024; 27:110621. [PMID: 39228790 PMCID: PMC11369513 DOI: 10.1016/j.isci.2024.110621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/01/2024] [Accepted: 07/26/2024] [Indexed: 09/05/2024] Open
Abstract
Synaptic structural plasticity, the expansion of dendritic spines in response to synaptic stimulation, is essential for experience-dependent plasticity and is driven by branched actin polymerization. The WAVE regulatory complex (WRC) is confined to nanodomains at the postsynaptic membrane where it catalyzes actin polymerization. As the netrin/RGM receptor Neogenin is a critical regulator of the WRC, its nanoscale organization may be an important determinant of WRC nanoarchitecture and function. Using super-resolution microscopy, we reveal that Neogenin is highly organized on the spine membrane at the nanoscale level. We show that Neogenin binding to the WRC promotes co-clustering into nanodomains in response to brain-derived neurotrophic factor (BDNF), indicating that nanoclustering occurs in response to synaptic stimulation. Disruption of Neogenin/WRC binding not only prevents BDNF-mediated actin remodeling but also inhibits BDNF-induced calcium signaling. We conclude that the assembly of Neogenin/WRC nanodomains is a prerequisite for BDNF-mediated structural and synaptic plasticity.
Collapse
Affiliation(s)
- Belal Shohayeb
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kai Sempert
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tristan P. Wallis
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Frédéric A. Meunier
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nela Durisic
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Elizabeth A. O'Brien
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Cecilia Flores
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
- Douglas Mental Health University Institute, Montréal, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montréal, Canada
| | - Helen M. Cooper
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
7
|
Szíber Z, Drouet A, Mondin M, Levet F, Thoumine O. Neuroligin-1 dependent phosphotyrosine signaling in excitatory synapse differentiation. Front Mol Neurosci 2024; 17:1359067. [PMID: 38813439 PMCID: PMC11133670 DOI: 10.3389/fnmol.2024.1359067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/22/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction The synaptic adhesion molecule neuroligin-1 (NLGN1) is involved in the differentiation of excitatory synapses, but the precise underlying molecular mechanisms are still debated. Here, we explored the role of NLGN1 tyrosine phosphorylation in this process, focusing on a subset of receptor tyrosine kinases (RTKs), namely FGFR1 and Trks, that were previously described to phosphorylate NLGN1 at a unique intracellular residue (Y782). Methods We used pharmacological inhibitors and genetic manipulation of those RTKs in dissociated hippocampal neurons, followed by biochemical measurement of NLGN1 phosphorylation and immunocytochemical staining of excitatory synaptic scaffolds. Results This study shows that: (i) the accumulation of PSD-95 at de novo NLGN1 clusters induced by neurexin crosslinking is reduced by FGFR and Trk inhibitors; (ii) the increase in PSD-95 puncta caused by NLGN1 over-expression is impaired by FGFR and Trk inhibitors; (iii) TrkB activation by BDNF increases NLGN1 phosphorylation; and (iv) TrkB knock-down impairs the increase of PSD-95 puncta caused by NLGN1 over-expression, an effect which is not seen with the NLGN1 Y782A mutant. Discussion Together, our data identify TrkB as one of the major RTKs responsible for NLGN1 tyrosine phosphorylation, and reveal that TrkB activity is necessary for the synaptogenic effects of NLGN1.
Collapse
Affiliation(s)
- Zsófia Szíber
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Adèle Drouet
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Magali Mondin
- University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UAR 3420, US 4, Bordeaux, France
| | - Florian Levet
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
- University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UAR 3420, US 4, Bordeaux, France
| | - Olivier Thoumine
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| |
Collapse
|
8
|
Yamazaki Y, Miyata Y, Morigaki K, Miyazaki M. Controlling Physical and Biochemical Parameters of Actin Nucleation Using a Patterned Model Lipid Membrane. NANO LETTERS 2024; 24:1825-1834. [PMID: 38294155 DOI: 10.1021/acs.nanolett.3c02742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Self-assembly of nanoscale actin cytoskeletal proteins into filamentous networks requires organizing actin nucleation areas on the plasma membrane through recruiting actin nucleators and nucleation-promoting factors (NPFs) to the areas. To investigate impacts of the nucleation geometry on actin network assembly, we localized NPF or nucleator on defined micropatterns of laterally mobile lipid bilayers confined in a framework of a polymerized lipid bilayer. We demonstrated that actin network assembly in purified protein mixtures was confined on NPF- or nucleator-localized fluid bilayers. By controlling the shape and size of nucleation areas as well as the density and types of localized NPFs and nucleators, we showed that these parameters regulate actin network architectures. Actin network assembly in Xenopus egg extracts was also spatially controlled by patterning bilayers containing phosphatidylinositol 4,5-bisphoshate (PI(4,5)P2), an essential lipid signaling mediator. Therefore, the system provides a promising platform to investigate the physical and biochemical principles for actin network assembly.
Collapse
Affiliation(s)
- Yosuke Yamazaki
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- RIKEN Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
| | - Yuuri Miyata
- Graduate School of Agricultural Science, Kobe University, Hyogo 657-8501, Japan
| | - Kenichi Morigaki
- Graduate School of Agricultural Science, Kobe University, Hyogo 657-8501, Japan
- Biosignal Research Center, Kobe University, Hyogo 657-8501, Japan
| | - Makito Miyazaki
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8501, Japan
- PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan
- RIKEN Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris F-75005, France
| |
Collapse
|
9
|
Rimbault C, Breillat C, Compans B, Toulmé E, Vicente FN, Fernandez-Monreal M, Mascalchi P, Genuer C, Puente-Muñoz V, Gauthereau I, Hosy E, Claverol S, Giannone G, Chamma I, Mackereth CD, Poujol C, Choquet D, Sainlos M. Engineering paralog-specific PSD-95 recombinant binders as minimally interfering multimodal probes for advanced imaging techniques. eLife 2024; 13:e69620. [PMID: 38167295 PMCID: PMC10803022 DOI: 10.7554/elife.69620] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Despite the constant advances in fluorescence imaging techniques, monitoring endogenous proteins still constitutes a major challenge in particular when considering dynamics studies or super-resolution imaging. We have recently evolved specific protein-based binders for PSD-95, the main postsynaptic scaffold proteins at excitatory synapses. Since the synthetic recombinant binders recognize epitopes not directly involved in the target protein activity, we consider them here as tools to develop endogenous PSD-95 imaging probes. After confirming their lack of impact on PSD-95 function, we validated their use as intrabody fluorescent probes. We further engineered the probes and demonstrated their usefulness in different super-resolution imaging modalities (STED, PALM, and DNA-PAINT) in both live and fixed neurons. Finally, we exploited the binders to enrich at the synapse genetically encoded calcium reporters. Overall, we demonstrate that these evolved binders constitute a robust and efficient platform to selectively target and monitor endogenous PSD-95 using various fluorescence imaging techniques.
Collapse
Affiliation(s)
- Charlotte Rimbault
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Christelle Breillat
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Benjamin Compans
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Estelle Toulmé
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Filipe Nunes Vicente
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Monica Fernandez-Monreal
- University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4BordeauxFrance
| | - Patrice Mascalchi
- University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4BordeauxFrance
| | - Camille Genuer
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Virginia Puente-Muñoz
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Isabel Gauthereau
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Eric Hosy
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | | | - Gregory Giannone
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Ingrid Chamma
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | | | - Christel Poujol
- University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4BordeauxFrance
| | - Daniel Choquet
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Matthieu Sainlos
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| |
Collapse
|
10
|
Srapyan S, Tran DP, Loo JA, Grintsevich EE. Mapping Molecular Interaction Interface Between Diaphanous Formin-2 and Neuron-Specific Drebrin A. J Mol Biol 2023; 435:168334. [PMID: 37898384 DOI: 10.1016/j.jmb.2023.168334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023]
Abstract
Actin cytoskeleton is critical for neuronal shape and function. Drebrin and formins are key regulators of neuronal actin networks. Neuron-specific drebrin A is highly enriched in dendritic spines (postsynaptic terminals) of mature excitatory neurons. Decreased levels of drebrin in dendritic spines is a hallmark of Alzheimer's disease, epilepsy, and other complex disorders, which calls for better understanding of its regulatory functions. Drebrin A was previously shown to inhibit actin nucleation and bundling by the diaphanous formin-2 (mDia2) - an actin nucleator that is involved in the initiation of dendritic spines. Characterization of the molecular binding interface between mDia2 and drebrin is necessary to better understand the functional consequences of this interaction and its biological relevance. Prior work suggested a multi-pronged interface between mDia2 and drebrin, which involves both N-terminal and C-terminal regions of the drebrin molecule. Here we used mass spectrometry analysis, deletion mutagenesis, and an array of synthetic peptides of neuronal drebrin A to map its formin-binding interface. The mDia2-interacting interface on drebrin was narrowed down to three highly conserved 9-16 residue sequences that were used to identify some of the key residues involved in this interaction. Deletion of the C-terminal region of drebrin greatly reduces its binding to mDia2 and the extent of its inhibition of formin-driven actin assembly. Moreover, our experiments with formins from different subfamilies showed that drebrin is a specific rather than general inhibitor of these proteins. This work contributes to a molecular level understanding of the formin-drebrin interaction and will help to unravel its biological significance.
Collapse
Affiliation(s)
- Sargis Srapyan
- Department of Chemistry and Biochemistry, California State University, Long Beach (CSULB), Long Beach, CA 90840, USA
| | - Denise P Tran
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Sydney Mass Spectrometry, The University of Sydney (USyd), Sydney, New South Wales 2006, Australia
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Elena E Grintsevich
- Department of Chemistry and Biochemistry, California State University, Long Beach (CSULB), Long Beach, CA 90840, USA.
| |
Collapse
|
11
|
Sempert K, Shohayeb B, Lanoue V, O'Brien EA, Flores C, Cooper HM. RGMa and Neogenin control dendritic spine morphogenesis via WAVE Regulatory Complex-mediated actin remodeling. Front Mol Neurosci 2023; 16:1253801. [PMID: 37928069 PMCID: PMC10620725 DOI: 10.3389/fnmol.2023.1253801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Structural plasticity, the ability of dendritic spines to change their volume in response to synaptic stimulation, is an essential determinant of synaptic strength and long-term potentiation (LTP), the proposed cellular substrate for learning and memory. Branched actin polymerization is a major force driving spine enlargement and sustains structural plasticity. The WAVE Regulatory Complex (WRC), a pivotal branched actin regulator, controls spine morphology and therefore structural plasticity. However, the molecular mechanisms that govern WRC activation during spine enlargement are largely unknown. Here we identify a critical role for Neogenin and its ligand RGMa (Repulsive Guidance Molecule a) in promoting spine enlargement through the activation of WRC-mediated branched actin remodeling. We demonstrate that Neogenin regulates WRC activity by binding to the highly conserved Cyfip/Abi binding pocket within the WRC. We find that after Neogenin or RGMa depletion, the proportions of filopodia and immature thin spines are dramatically increased, and the number of mature mushroom spines concomitantly decreased. Wildtype Neogenin, but not Neogenin bearing mutations in the Cyfip/Abi binding motif, is able to rescue the spine enlargement defect. Furthermore, Neogenin depletion inhibits actin polymerization in the spine head, an effect that is not restored by the mutant. We conclude that RGMa and Neogenin are critical modulators of WRC-mediated branched actin polymerization promoting spine enlargement. This study also provides mechanistic insight into Neogenin's emerging role in LTP induction.
Collapse
Affiliation(s)
- Kai Sempert
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Belal Shohayeb
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Vanessa Lanoue
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Elizabeth A O'Brien
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Cecilia Flores
- Department of Psychiatry, McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Helen M Cooper
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
12
|
Cao R, Zhu R, Sha Z, Qi S, Zhong Z, Zheng F, Lei Y, Tan Y, Zhu Y, Wang Y, Wang Y, Yu FX. WWC1/2 regulate spinogenesis and cognition in mice by stabilizing AMOT. Cell Death Dis 2023; 14:491. [PMID: 37528078 PMCID: PMC10394084 DOI: 10.1038/s41419-023-06020-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 07/16/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023]
Abstract
WWC1 regulates episodic learning and memory, and genetic nucleotide polymorphism of WWC1 is associated with neurodegenerative diseases such as Alzheimer's disease. However, the molecular mechanism through which WWC1 regulates neuronal function has not been fully elucidated. Here, we show that WWC1 and its paralogs (WWC2/3) bind directly to angiomotin (AMOT) family proteins (Motins), and recruit USP9X to deubiquitinate and stabilize Motins. Deletion of WWC genes in different cell types leads to reduced protein levels of Motins. In mice, neuron-specific deletion of Wwc1 and Wwc2 results in reduced expression of Motins and lower density of dendritic spines in the cortex and hippocampus, in association with impaired cognitive functions such as memory and learning. Interestingly, ectopic expression of AMOT partially rescues the neuronal phenotypes associated with Wwc1/2 deletion. Thus, WWC proteins modulate spinogenesis and cognition, at least in part, by regulating the protein stability of Motins.
Collapse
Affiliation(s)
- Runyi Cao
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Rui Zhu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhao Sha
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Sixian Qi
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhenxing Zhong
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Fengyun Zheng
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yubin Lei
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yanfeng Tan
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yuwen Zhu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yu Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Yi Wang
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, No. 399 Wanyuan Road, Shanghai, 201102, China.
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
13
|
Minegishi T, Kastian RF, Inagaki N. Mechanical regulation of synapse formation and plasticity. Semin Cell Dev Biol 2023; 140:82-89. [PMID: 35659473 DOI: 10.1016/j.semcdb.2022.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 01/28/2023]
Abstract
Dendritic spines are small protrusions arising from dendrites and constitute the major compartment of excitatory post-synapses. They change in number, shape, and size throughout life; these changes are thought to be associated with formation and reorganization of neuronal networks underlying learning and memory. As spines in the brain are surrounded by the microenvironment including neighboring cells and the extracellular matrix, their protrusion requires generation of force to push against these structures. In turn, neighboring cells receive force from protruding spines. Recent studies have identified BAR-domain proteins as being involved in membrane deformation to initiate spine formation. In addition, forces for dendritic filopodium extension and activity-induced spine expansion are generated through cooperation between actin polymerization and clutch coupling. On the other hand, force from expanding spines affects neurotransmitter release from presynaptic terminals. Here, we review recent advances in our understanding of the physical aspects of synapse formation and plasticity, mainly focusing on spine dynamics.
Collapse
Affiliation(s)
- Takunori Minegishi
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Ria Fajarwati Kastian
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan; Research Center for Genetic Engineering, National Research and Innovation Agency Republic of Indonesia, Cibinong, Bogor, Indonesia
| | - Naoyuki Inagaki
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
14
|
Pham AQ, Dore K. Novel approaches to increase synaptic resilience as potential treatments for Alzheimer's disease. Semin Cell Dev Biol 2023; 139:84-92. [PMID: 35370089 DOI: 10.1016/j.semcdb.2022.03.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/31/2022]
Abstract
A significant proportion of brains with Alzheimer's disease pathology are obtained from patients that were cognitively normal, suggesting that differences within the brains of these individuals made them resilient to the disease. Here, we describe recent approaches that specifically increase synaptic resilience, as loss of synapses is considered to be the first change in the brains of Alzheimer's patients. We start by discussing studies showing benefit from increased expression of neurotrophic factors and protective genes. Methods that effectively make dendritic spines stronger, specifically by acting through actin network proteins, scaffolding proteins and inhibition of phosphatases are described next. Importantly, the therapeutic strategies presented in this review tackle Alzheimer's disease not by targeting plaques and tangles, but instead by making synapses resilient to the pathology associated with Alzheimer's disease, which has tremendous potential.
Collapse
Affiliation(s)
- Andrew Q Pham
- Department of Neurosciences, Center for Neural Circuits and Behavior, UCSD, La Jolla 92093, United States
| | - Kim Dore
- Department of Neurosciences, Center for Neural Circuits and Behavior, UCSD, La Jolla 92093, United States.
| |
Collapse
|
15
|
Kasai H, Ucar H, Morimoto Y, Eto F, Okazaki H. Mechanical transmission at spine synapses: Short-term potentiation and working memory. Curr Opin Neurobiol 2023; 80:102706. [PMID: 36931116 DOI: 10.1016/j.conb.2023.102706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/17/2022] [Accepted: 02/15/2023] [Indexed: 03/17/2023]
Abstract
Do dendritic spines, which comprise the postsynaptic component of most excitatory synapses, exist only for their structural dynamics, receptor trafficking, and chemical and electrical compartmentation? The answer is no. Simultaneous investigation of both spine and presynaptic terminals has recently revealed a novel feature of spine synapses. Spine enlargement pushes the presynaptic terminals with muscle-like force and augments the evoked glutamate release for up to 20 min. We now summarize the evidence that such mechanical transmission shares critical features in common with short-term potentiation (STP) and may represent the cellular basis of short-term and working memory. Thus, spine synapses produce the force of learning to leave structural traces for both short and long-term memories.
Collapse
Affiliation(s)
- Haruo Kasai
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | - Hasan Ucar
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yuichi Morimoto
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Fumihiro Eto
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hitoshi Okazaki
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
16
|
Nunes Vicente F, Chen T, Rossier O, Giannone G. Novel imaging methods and force probes for molecular mechanobiology of cytoskeleton and adhesion. Trends Cell Biol 2023; 33:204-220. [PMID: 36055943 DOI: 10.1016/j.tcb.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/01/2022]
Abstract
Detection and conversion of mechanical forces into biochemical signals is known as mechanotransduction. From cells to tissues, mechanotransduction regulates migration, proliferation, and differentiation in processes such as immune responses, development, and cancer progression. Mechanosensitive structures such as integrin adhesions, the actin cortex, ion channels, caveolae, and the nucleus sense and transmit forces. In vitro approaches showed that mechanosensing is based on force-dependent protein deformations and reorganizations. However, the mechanisms in cells remained unclear since cell imaging techniques lacked molecular resolution. Thanks to recent developments in super-resolution microscopy (SRM) and molecular force sensors, it is possible to obtain molecular insight of mechanosensing in live cells. We discuss how understanding of molecular mechanotransduction was revolutionized by these innovative approaches, focusing on integrin adhesions, actin structures, and the plasma membrane.
Collapse
Affiliation(s)
- Filipe Nunes Vicente
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Tianchi Chen
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Olivier Rossier
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Grégory Giannone
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France.
| |
Collapse
|
17
|
Droogers WJ, MacGillavry HD. Plasticity of postsynaptic nanostructure. Mol Cell Neurosci 2023; 124:103819. [PMID: 36720293 DOI: 10.1016/j.mcn.2023.103819] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
The postsynaptic density (PSD) of excitatory synapses is built from a wide variety of scaffolding proteins, receptors, and signaling molecules that collectively orchestrate synaptic transmission. Seminal work over the past decades has led to the identification and functional characterization of many PSD components. In contrast, we know far less about how these constituents are assembled within synapses, and how this organization contributes to synapse function. Notably, recent evidence from high-resolution microscopy studies and in silico models, highlights the importance of the precise subsynaptic structure of the PSD for controlling the strength of synaptic transmission. Even further, activity-driven changes in the distribution of glutamate receptors are acknowledged to contribute to long-term changes in synaptic efficacy. Thus, defining the mechanisms that drive structural changes within the PSD are important for a molecular understanding of synaptic transmission and plasticity. Here, we review the current literature on how the PSD is organized to mediate basal synaptic transmission and how synaptic activity alters the nanoscale organization of synapses to sustain changes in synaptic strength.
Collapse
Affiliation(s)
- W J Droogers
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, The Netherlands
| | - H D MacGillavry
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, The Netherlands.
| |
Collapse
|
18
|
Zaccard CR, Gippo I, Song A, Geula C, Penzes P. Dendritic spinule-mediated structural synaptic plasticity: Implications for development, aging, and psychiatric disease. Front Mol Neurosci 2023; 16:1059730. [PMID: 36741924 PMCID: PMC9895827 DOI: 10.3389/fnmol.2023.1059730] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/04/2023] [Indexed: 01/22/2023] Open
Abstract
Dendritic spines are highly dynamic and changes in their density, size, and shape underlie structural synaptic plasticity in cognition and memory. Fine membranous protrusions of spines, termed dendritic spinules, can contact neighboring neurons or glial cells and are positively regulated by neuronal activity. Spinules are thinner than filopodia, variable in length, and often emerge from large mushroom spines. Due to their nanoscale, spinules have frequently been overlooked in diffraction-limited microscopy datasets. Until recently, our knowledge of spinules has been interpreted largely from single snapshots in time captured by electron microscopy. We summarize herein the current knowledge about the molecular mechanisms of spinule formation. Additionally, we discuss possible spinule functions in structural synaptic plasticity in the context of development, adulthood, aging, and psychiatric disorders. The literature collectively implicates spinules as a mode of structural synaptic plasticity and suggests the existence of morphologically and functionally distinct spinule subsets. A recent time-lapse, enhanced resolution imaging study demonstrated that the majority of spinules are small, short-lived, and dynamic, potentially exploring their environment or mediating retrograde signaling and membrane remodeling via trans-endocytosis. A subset of activity-enhanced, elongated, long-lived spinules is associated with complex PSDs, and preferentially contacts adjacent axonal boutons not presynaptic to the spine head. Hence, long-lived spinules can form secondary synapses with the potential to alter synaptic connectivity. Published studies further suggest that decreased spinules are associated with impaired synaptic plasticity and intellectual disability, while increased spinules are linked to hyperexcitability and neurodegenerative diseases. In summary, the literature indicates that spinules mediate structural synaptic plasticity and perturbations in spinules can contribute to synaptic dysfunction and psychiatric disease. Additional studies would be beneficial to further delineate the molecular mechanisms of spinule formation and determine the exact role of spinules in development, adulthood, aging, and psychiatric disorders.
Collapse
Affiliation(s)
- Colleen R. Zaccard
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Isabel Gippo
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Amy Song
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Peter Penzes
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, United States,Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States,*Correspondence: Peter Penzes,
| |
Collapse
|
19
|
KASAI H. Unraveling the mysteries of dendritic spine dynamics: Five key principles shaping memory and cognition. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2023; 99:254-305. [PMID: 37821392 PMCID: PMC10749395 DOI: 10.2183/pjab.99.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/11/2023] [Indexed: 10/13/2023]
Abstract
Recent research extends our understanding of brain processes beyond just action potentials and chemical transmissions within neural circuits, emphasizing the mechanical forces generated by excitatory synapses on dendritic spines to modulate presynaptic function. From in vivo and in vitro studies, we outline five central principles of synaptic mechanics in brain function: P1: Stability - Underpinning the integral relationship between the structure and function of the spine synapses. P2: Extrinsic dynamics - Highlighting synapse-selective structural plasticity which plays a crucial role in Hebbian associative learning, distinct from pathway-selective long-term potentiation (LTP) and depression (LTD). P3: Neuromodulation - Analyzing the role of G-protein-coupled receptors, particularly dopamine receptors, in time-sensitive modulation of associative learning frameworks such as Pavlovian classical conditioning and Thorndike's reinforcement learning (RL). P4: Instability - Addressing the intrinsic dynamics crucial to memory management during continual learning, spotlighting their role in "spine dysgenesis" associated with mental disorders. P5: Mechanics - Exploring how synaptic mechanics influence both sides of synapses to establish structural traces of short- and long-term memory, thereby aiding the integration of mental functions. We also delve into the historical background and foresee impending challenges.
Collapse
Affiliation(s)
- Haruo KASAI
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
20
|
Cui Z, Guo Z, Wei L, Zou X, Zhu Z, Liu Y, Wang J, Chen L, Wang D, Ke Z. Altered pain sensitivity in 5×familial Alzheimer disease mice is associated with dendritic spine loss in anterior cingulate cortex pyramidal neurons. Pain 2022; 163:2138-2153. [PMID: 35384934 PMCID: PMC9578529 DOI: 10.1097/j.pain.0000000000002648] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT Chronic pain is highly prevalent. Individuals with cognitive disorders such as Alzheimer disease are a susceptible population in which pain is frequently difficult to diagnosis. It is still unclear whether the pathological changes in patients with Alzheimer disease will affect pain processing. Here, we leverage animal behavior, neural activity recording, optogenetics, chemogenetics, and Alzheimer disease modeling to examine the contribution of the anterior cingulate cortex (ACC) neurons to pain response. The 5× familial Alzheimer disease mice show alleviated mechanical allodynia which can be regained by the genetic activation of ACC excitatory neurons. Furthermore, the lower peak neuronal excitation, delayed response initiation, as well as the dendritic spine reduction of ACC pyramidal neurons in 5×familial Alzheimer disease mice can be mimicked by Rac1 or actin polymerization inhibitor in wild-type (WT) mice. These findings indicate that abnormal of pain sensitivity in Alzheimer disease modeling mice is closely related to the variation of neuronal activity and dendritic spine loss in ACC pyramidal neurons, suggesting the crucial role of dendritic spine density in pain processing.
Collapse
Affiliation(s)
- Zhengyu Cui
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Internal Medicine of Traditional Chinese Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Zhongzhao Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Luyao Wei
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang Zou
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zilu Zhu
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuchen Liu
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Deheng Wang
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zunji Ke
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
21
|
Speranza L, Filiz KD, Goebel S, Perrone-Capano C, Pulcrano S, Volpicelli F, Francesconi A. Combined DiI and Antibody Labeling Reveals Complex Dysgenesis of Hippocampal Dendritic Spines in a Mouse Model of Fragile X Syndrome. Biomedicines 2022; 10:2692. [PMID: 36359212 PMCID: PMC9687937 DOI: 10.3390/biomedicines10112692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022] Open
Abstract
Structural, functional, and molecular alterations in excitatory spines are a common hallmark of many neurodevelopmental disorders including intellectual disability and autism. Here, we describe an optimized methodology, based on combined use of DiI and immunofluorescence, for rapid and sensitive characterization of the structure and composition of spines in native brain tissue. We successfully demonstrate the applicability of this approach by examining the properties of hippocampal spines in juvenile Fmr1 KO mice, a mouse model of Fragile X Syndrome. We find that mutant mice display pervasive dysgenesis of spines evidenced by an overabundance of both abnormally elongated thin spines and cup-shaped spines, in combination with reduced density of mushroom spines. We further find that mushroom spines expressing the actin-binding protein Synaptopodin-a marker for spine apparatus-are more prevalent in mutant mice. Previous work identified spines with Synaptopodin/spine apparatus as the locus of mGluR-LTD, which is abnormally elevated in Fmr1 KO mice. Altogether, our data suggest this enhancement may be linked to the preponderance of this subset of spines in the mutant. Overall, these findings demonstrate the sensitivity and versatility of the optimized methodology by uncovering a novel facet of spine dysgenesis in Fmr1 KO mice.
Collapse
Affiliation(s)
- Luisa Speranza
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Kardelen Dalım Filiz
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Sarah Goebel
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Carla Perrone-Capano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Salvatore Pulcrano
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, C.N.R., 80131 Naples, Italy
| | - Floriana Volpicelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Anna Francesconi
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
22
|
Guevara-Garcia A, Fourel L, Bourrin-Reynard I, Sales A, Oddou C, Pezet M, Rossier O, Machillot P, Chaar L, Bouin AP, Giannone G, Destaing O, Picart C, Albiges-Rizo C. Integrin-based adhesion compartmentalizes ALK3 of the BMPRII to control cell adhesion and migration. J Biophys Biochem Cytol 2022; 221:213529. [PMID: 36205720 PMCID: PMC9552562 DOI: 10.1083/jcb.202107110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 07/25/2022] [Accepted: 09/19/2022] [Indexed: 02/02/2023] Open
Abstract
The spatial organization of cell-surface receptors is fundamental for the coordination of biological responses to physical and biochemical cues of the extracellular matrix. How serine/threonine kinase receptors, ALK3-BMPRII, cooperate with integrins upon BMP2 to drive cell migration is unknown. Whether the dynamics between integrins and BMP receptors intertwine in space and time to guide adhesive processes is yet to be elucidated. We found that BMP2 stimulation controls the spatial organization of BMPRs by segregating ALK3 from BMPRII into β3 integrin-containing focal adhesions. The selective recruitment of ALK3 to focal adhesions requires β3 integrin engagement and ALK3 activation. BMP2 controls the partitioning of immobilized ALK3 within and outside focal adhesions according to single-protein tracking and super-resolution imaging. The spatial control of ALK3 in focal adhesions by optogenetics indicates that ALK3 acts as an adhesive receptor by eliciting cell spreading required for cell migration. ALK3 segregation from BMPRII in integrin-based adhesions is a key aspect of the spatio-temporal control of BMPR signaling.
Collapse
Affiliation(s)
- Amaris Guevara-Garcia
- Institute for Advanced Biosciences, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de La Recherche Scientifique 5309, Université Grenoble Alpes, Grenoble, France,Commissariat à l’Energie Atomique, Institut National de la Santé et de la Recherche Médicale U1292, Centre National de La Recherche Scientifique Equipe Mixte de Recherche Biomimetism and Regenerative Medicine 5000, Université Grenoble Alpes, Grenoble, France,Centre National de La Recherche Scientifique, Grenoble Institute of Technology, Laboratoire des Matériaux et du Génie Physique, Unité Mixte de Recherche 5628, Grenoble, France
| | - Laure Fourel
- Institute for Advanced Biosciences, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de La Recherche Scientifique 5309, Université Grenoble Alpes, Grenoble, France
| | - Ingrid Bourrin-Reynard
- Institute for Advanced Biosciences, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de La Recherche Scientifique 5309, Université Grenoble Alpes, Grenoble, France
| | - Adria Sales
- Commissariat à l’Energie Atomique, Institut National de la Santé et de la Recherche Médicale U1292, Centre National de La Recherche Scientifique Equipe Mixte de Recherche Biomimetism and Regenerative Medicine 5000, Université Grenoble Alpes, Grenoble, France,Centre National de La Recherche Scientifique, Grenoble Institute of Technology, Laboratoire des Matériaux et du Génie Physique, Unité Mixte de Recherche 5628, Grenoble, France
| | - Christiane Oddou
- Institute for Advanced Biosciences, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de La Recherche Scientifique 5309, Université Grenoble Alpes, Grenoble, France
| | - Mylène Pezet
- Institute for Advanced Biosciences, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de La Recherche Scientifique 5309, Université Grenoble Alpes, Grenoble, France
| | - Olivier Rossier
- Centre National de La Recherche Scientifique, Interdisciplinary Institute for Neuroscience, Interdisciplinary Institute for Neurosciences, Unité Mixte de Recherche 5297, Université Bordeaux, Bordeaux, France
| | - Paul Machillot
- Commissariat à l’Energie Atomique, Institut National de la Santé et de la Recherche Médicale U1292, Centre National de La Recherche Scientifique Equipe Mixte de Recherche Biomimetism and Regenerative Medicine 5000, Université Grenoble Alpes, Grenoble, France,Centre National de La Recherche Scientifique, Grenoble Institute of Technology, Laboratoire des Matériaux et du Génie Physique, Unité Mixte de Recherche 5628, Grenoble, France
| | - Line Chaar
- Institute for Advanced Biosciences, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de La Recherche Scientifique 5309, Université Grenoble Alpes, Grenoble, France
| | - Anne-Pascale Bouin
- Institute for Advanced Biosciences, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de La Recherche Scientifique 5309, Université Grenoble Alpes, Grenoble, France
| | - Gregory Giannone
- Centre National de La Recherche Scientifique, Interdisciplinary Institute for Neuroscience, Interdisciplinary Institute for Neurosciences, Unité Mixte de Recherche 5297, Université Bordeaux, Bordeaux, France
| | - Olivier Destaing
- Institute for Advanced Biosciences, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de La Recherche Scientifique 5309, Université Grenoble Alpes, Grenoble, France
| | - Catherine Picart
- Commissariat à l’Energie Atomique, Institut National de la Santé et de la Recherche Médicale U1292, Centre National de La Recherche Scientifique Equipe Mixte de Recherche Biomimetism and Regenerative Medicine 5000, Université Grenoble Alpes, Grenoble, France,Centre National de La Recherche Scientifique, Grenoble Institute of Technology, Laboratoire des Matériaux et du Génie Physique, Unité Mixte de Recherche 5628, Grenoble, France
| | - Corinne Albiges-Rizo
- Institute for Advanced Biosciences, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de La Recherche Scientifique 5309, Université Grenoble Alpes, Grenoble, France,Correspondence to Corinne Albiges-Rizo:
| |
Collapse
|
23
|
Romero MD, Carabeo RA. Distinct roles of the Chlamydia trachomatis effectors TarP and TmeA in the regulation of formin and Arp2/3 during entry. J Cell Sci 2022; 135:jcs260185. [PMID: 36093837 PMCID: PMC9659389 DOI: 10.1242/jcs.260185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/05/2022] [Indexed: 12/13/2022] Open
Abstract
The obligate intracellular pathogen Chlamydia trachomatis manipulates the host actin cytoskeleton to assemble actin-rich structures that drive pathogen entry. The recent discovery of TmeA, which, like TarP, is an invasion-associated type III effector implicated in actin remodeling, raised questions regarding the nature of their functional interaction. Quantitative live-cell imaging of actin remodeling at invasion sites revealed differences in recruitment and turnover kinetics associated with the TarP and TmeA pathways, with the former accounting for most of the robust actin dynamics at invasion sites. TarP-mediated recruitment of actin nucleators, i.e. formins and the Arp2/3 complex, was crucial for rapid actin kinetics, generating a collaborative positive feedback loop that enhanced their respective actin-nucleating activities within invasion sites. In contrast, the formin Fmn1 was not recruited to invasion sites and did not collaborate with Arp2/3 within the context of TmeA-associated actin recruitment. Although the TarP-Fmn1-Arp2/3 signaling axis is responsible for the majority of actin dynamics, its inhibition had similar effects as the deletion of TmeA on invasion efficiency, consistent with the proposed model that TarP and TmeA act on different stages of the same invasion pathway.
Collapse
Affiliation(s)
- Matthew D. Romero
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
| | - Rey A. Carabeo
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
| |
Collapse
|
24
|
Yang Y, Liu JJ. Structural LTP: Signal transduction, actin cytoskeleton reorganization, and membrane remodeling of dendritic spines. Curr Opin Neurobiol 2022; 74:102534. [DOI: 10.1016/j.conb.2022.102534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/14/2022] [Accepted: 03/03/2022] [Indexed: 01/05/2023]
|
25
|
Brar HK, Dey S, Bhardwaj S, Pande D, Singh P, Dey S, Ghosh-Roy A. Dendrite regeneration in C. elegans is controlled by the RAC GTPase CED-10 and the RhoGEF TIAM-1. PLoS Genet 2022; 18:e1010127. [PMID: 35344539 PMCID: PMC8989329 DOI: 10.1371/journal.pgen.1010127] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 04/07/2022] [Accepted: 02/28/2022] [Indexed: 01/30/2023] Open
Abstract
Neurons are vulnerable to physical insults, which compromise the integrity of both dendrites and axons. Although several molecular pathways of axon regeneration are identified, our knowledge of dendrite regeneration is limited. To understand the mechanisms of dendrite regeneration, we used the PVD neurons in C. elegans with stereotyped branched dendrites. Using femtosecond laser, we severed the primary dendrites and axon of this neuron. After severing the primary dendrites near the cell body, we observed sprouting of new branches from the proximal site within 6 hours, which regrew further with time in an unstereotyped manner. This was accompanied by reconnection between the proximal and distal dendrites, and fusion among the higher-order branches as reported before. We quantified the regeneration pattern into three aspects–territory length, number of branches, and fusion phenomena. Axonal injury causes a retraction of the severed end followed by a Dual leucine zipper kinase-1 (DLK-1) dependent regrowth from the severed end. We tested the roles of the major axon regeneration signalling hubs such as DLK-1-RPM-1, cAMP elevation, let-7 miRNA, AKT-1, Phosphatidylserine (PS) exposure/PS in dendrite regeneration. We found that neither dendrite regrowth nor fusion was affected by the axon injury pathway molecules. Surprisingly, we found that the RAC GTPase, CED-10 and its upstream GEF, TIAM-1 play a cell-autonomous role in dendrite regeneration. Additionally, the function of CED-10 in epidermal cell is critical for post-dendrotomy fusion phenomena. This work describes a novel regulatory mechanism of dendrite regeneration and provides a framework for understanding the cellular mechanism of dendrite regeneration using PVD neuron as a model system. The knowledge of the repair of injured neural circuits comes from the study of the regeneration of injured axons. The information receiving neurites, namely dendrites, are also vulnerable to physical insult during stroke and trauma. However, little knowledge is available on the mechanism of dendrite regeneration since the study of Cajal. In order to get insight into this process, we severed both axon and dendrites of PVD neuron in C. elegans using laser. By comparing the roles of axon regeneration pathways in both dendrite and axon regeneration in this neuron, we found that dendrite regeneration is independent of molecular mechanisms involving axon regrowth. We discovered that dendrite regeneration is dependent on the RAC GTPase CED-10 and GEF TIAM-1. Moreover, we found that CED-10 plays roles within both neuron and in the surrounding epithelia for mounting regeneration response to dendrite injury. This work provides mechanistic insight into the process of dendrite repair after physical injury.
Collapse
Affiliation(s)
- Harjot Kaur Brar
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| | - Swagata Dey
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| | - Smriti Bhardwaj
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| | - Devashish Pande
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| | - Pallavi Singh
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| | - Shirshendu Dey
- Fluorescence Microscopy Division, Bruker India Scientific Pvt. Ltd., International Trade Tower, Nehru Place, New Delhi, India
| | - Anindya Ghosh-Roy
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
- * E-mail:
| |
Collapse
|
26
|
Control of Synapse Structure and Function by Actin and Its Regulators. Cells 2022; 11:cells11040603. [PMID: 35203254 PMCID: PMC8869895 DOI: 10.3390/cells11040603] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/30/2022] [Accepted: 02/06/2022] [Indexed: 02/07/2023] Open
Abstract
Neurons transmit and receive information at specialized junctions called synapses. Excitatory synapses form at the junction between a presynaptic axon terminal and a postsynaptic dendritic spine. Supporting the shape and function of these junctions is a complex network of actin filaments and its regulators. Advances in microscopic techniques have enabled studies of the organization of actin at synapses and its dynamic regulation. In addition to highlighting recent advances in the field, we will provide a brief historical perspective of the understanding of synaptic actin at the synapse. We will also highlight key neuronal functions regulated by actin, including organization of proteins in the pre- and post- synaptic compartments and endocytosis of ion channels. We review the evidence that synapses contain distinct actin pools that differ in their localization and dynamic behaviors and discuss key functions for these actin pools. Finally, whole exome sequencing of humans with neurodevelopmental and psychiatric disorders has identified synaptic actin regulators as key disease risk genes. We briefly summarize how genetic variants in these genes impact neurotransmission via their impact on synaptic actin.
Collapse
|
27
|
Nunes Vicente F, Rossier O, Giannone G. [Super-resolution microscopy: A window into mechanobiology at the molecular level]. Med Sci (Paris) 2022; 38:15-17. [PMID: 35060877 DOI: 10.1051/medsci/2021233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Filipe Nunes Vicente
- Université de Bordeaux, CNRS UMR 5297, Institut interdisciplinaire de neuroscience (IINS), Bordeaux, France
| | - Olivier Rossier
- Université de Bordeaux, CNRS UMR 5297, Institut interdisciplinaire de neuroscience (IINS), Bordeaux, France
| | - Grégory Giannone
- Université de Bordeaux, CNRS UMR 5297, Institut interdisciplinaire de neuroscience (IINS), Bordeaux, France
| |
Collapse
|
28
|
Kastian RF, Minegishi T, Inagaki N. Simultaneous analyses of clutch coupling and actin polymerization in dendritic spines of rodent hippocampal neurons during chemical LTP. STAR Protoc 2021; 2:100904. [PMID: 34723214 PMCID: PMC8536781 DOI: 10.1016/j.xpro.2021.100904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Dendritic spine enlargement by synaptic activation is thought to increase synaptic efficacy underlying learning and memory. This process requires forces generated by actin polymerization and actin-adhesion coupling (clutch coupling). Here, we describe a protocol to monitor actin filament retrograde flow and actin polymerization within spines using a standard epi-fluorescence microscope. In combination with chemical long-term potentiation, this protocol allows us to quantify clutch coupling efficiency and actin polymerization rate, which are essential variables for generating forces for activity-dependent spine enlargement. For complete details on the use and execution of this protocol, please refer to Kastian et al. (2021). Analysis of F-actin retrograde flow using a standard epi-fluorescence microscope F-actin flow velocity reflects the efficiency of clutch coupling Analysis of actin polymerization rate using a standard epi-fluorescence microscope Analysis of these variables in dendritic spines during chemical LTP induction
Collapse
Affiliation(s)
- Ria Fajarwati Kastian
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Takunori Minegishi
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Naoyuki Inagaki
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
29
|
Mehidi A, Kage F, Karatas Z, Cercy M, Schaks M, Polesskaya A, Sainlos M, Gautreau AM, Rossier O, Rottner K, Giannone G. Forces generated by lamellipodial actin filament elongation regulate the WAVE complex during cell migration. Nat Cell Biol 2021; 23:1148-1162. [PMID: 34737443 DOI: 10.1038/s41556-021-00786-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 09/27/2021] [Indexed: 12/17/2022]
Abstract
Actin filaments generate mechanical forces that drive membrane movements during trafficking, endocytosis and cell migration. Reciprocally, adaptations of actin networks to forces regulate their assembly and architecture. Yet, a demonstration of forces acting on actin regulators at actin assembly sites in cells is missing. Here we show that local forces arising from actin filament elongation mechanically control WAVE regulatory complex (WRC) dynamics and function, that is, Arp2/3 complex activation in the lamellipodium. Single-protein tracking revealed WRC lateral movements along the lamellipodium tip, driven by elongation of actin filaments and correlating with WRC turnover. The use of optical tweezers to mechanically manipulate functional WRC showed that piconewton forces, as generated by single-filament elongation, dissociated WRC from the lamellipodium tip. WRC activation correlated with its trapping, dwell time and the binding strength at the lamellipodium tip. WRC crosslinking, hindering its mechanical dissociation, increased WRC dwell time and Arp2/3-dependent membrane protrusion. Thus, forces generated by individual actin filaments on their regulators can mechanically tune their turnover and hence activity during cell migration.
Collapse
Affiliation(s)
- Amine Mehidi
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Frieda Kage
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Zeynep Karatas
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Maureen Cercy
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Matthias Schaks
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Anna Polesskaya
- CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Matthieu Sainlos
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Alexis M Gautreau
- CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Olivier Rossier
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Grégory Giannone
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France.
| |
Collapse
|
30
|
Super-resolution microscopy: a closer look at synaptic dysfunction in Alzheimer disease. Nat Rev Neurosci 2021; 22:723-740. [PMID: 34725519 DOI: 10.1038/s41583-021-00531-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 11/08/2022]
Abstract
The synapse has emerged as a critical neuronal structure in the degenerative process of Alzheimer disease (AD), in which the pathogenic signals of two key players - amyloid-β (Aβ) and tau - converge, thereby causing synaptic dysfunction and cognitive deficits. The synapse presents a dynamic, confined microenvironment in which to explore how key molecules travel, localize, interact and assume different levels of organizational complexity, thereby affecting neuronal function. However, owing to their small size and the diffraction-limited resolution of conventional light microscopic approaches, investigating synaptic structure and dynamics has been challenging. Super-resolution microscopy (SRM) techniques have overcome the resolution barrier and are revolutionizing our quantitative understanding of biological systems in unprecedented spatio-temporal detail. Here we review critical new insights provided by SRM into the molecular architecture and dynamic organization of the synapse and, in particular, the interactions between Aβ and tau in this compartment. We further highlight how SRM can transform our understanding of the molecular pathological mechanisms that underlie AD. The application of SRM for understanding the roles of synapses in AD pathology will provide a stepping stone towards a broader understanding of dysfunction in other subcellular compartments and at cellular and circuit levels in this disease.
Collapse
|
31
|
Abstract
Fluorescence imaging techniques play a pivotal role in our understanding of the nervous system. The emergence of various super-resolution microscopy methods and specialized fluorescent probes enables direct insight into neuronal structure and protein arrangements in cellular subcompartments with so far unmatched resolution. Super-resolving visualization techniques in neurons unveil a novel understanding of cytoskeletal composition, distribution, motility, and signaling of membrane proteins, subsynaptic structure and function, and neuron-glia interaction. Well-defined molecular targets in autoimmune and neurodegenerative disease models provide excellent starting points for in-depth investigation of disease pathophysiology using novel and innovative imaging methodology. Application of super-resolution microscopy in human brain samples and for testing clinical biomarkers is still in its infancy but opens new opportunities for translational research in neurology and neuroscience. In this review, we describe how super-resolving microscopy has improved our understanding of neuronal and brain function and dysfunction in the last two decades.
Collapse
Affiliation(s)
- Christian Werner
- Department of Biotechnology & Biophysics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology & Biophysics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Christian Geis
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
32
|
LIM-Kinases in Synaptic Plasticity, Memory, and Brain Diseases. Cells 2021; 10:cells10082079. [PMID: 34440848 PMCID: PMC8391678 DOI: 10.3390/cells10082079] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
Learning and memory require structural and functional modifications of synaptic connections, and synaptic deficits are believed to underlie many brain disorders. The LIM-domain-containing protein kinases (LIMK1 and LIMK2) are key regulators of the actin cytoskeleton by affecting the actin-binding protein, cofilin. In addition, LIMK1 is implicated in the regulation of gene expression by interacting with the cAMP-response element-binding protein. Accumulating evidence indicates that LIMKs are critically involved in brain function and dysfunction. In this paper, we will review studies on the roles and underlying mechanisms of LIMKs in the regulation of long-term potentiation (LTP) and depression (LTD), the most extensively studied forms of long-lasting synaptic plasticity widely regarded as cellular mechanisms underlying learning and memory. We will also discuss the involvement of LIMKs in the regulation of the dendritic spine, the structural basis of synaptic plasticity, and memory formation. Finally, we will discuss recent progress on investigations of LIMKs in neurological and mental disorders, including Alzheimer’s, Parkinson’s, Williams–Beuren syndrome, schizophrenia, and autism spectrum disorders.
Collapse
|
33
|
Orré T, Joly A, Karatas Z, Kastberger B, Cabriel C, Böttcher RT, Lévêque-Fort S, Sibarita JB, Fässler R, Wehrle-Haller B, Rossier O, Giannone G. Molecular motion and tridimensional nanoscale localization of kindlin control integrin activation in focal adhesions. Nat Commun 2021; 12:3104. [PMID: 34035280 PMCID: PMC8149821 DOI: 10.1038/s41467-021-23372-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/21/2021] [Indexed: 12/20/2022] Open
Abstract
Focal adhesions (FAs) initiate chemical and mechanical signals involved in cell polarity, migration, proliferation and differentiation. Super-resolution microscopy revealed that FAs are organized at the nanoscale into functional layers from the lower plasma membrane to the upper actin cytoskeleton. Yet, how FAs proteins are guided into specific nano-layers to promote interaction with given targets is unknown. Using single protein tracking, super-resolution microscopy and functional assays, we link the molecular behavior and 3D nanoscale localization of kindlin with its function in integrin activation inside FAs. We show that immobilization of integrins in FAs depends on interaction with kindlin. Unlike talin, kindlin displays free diffusion along the plasma membrane outside and inside FAs. We demonstrate that the kindlin Pleckstrin Homology domain promotes membrane diffusion and localization to the membrane-proximal integrin nano-layer, necessary for kindlin enrichment and function in FAs. Using kindlin-deficient cells, we show that kindlin membrane localization and diffusion are crucial for integrin activation, cell spreading and FAs formation. Thus, kindlin uses a different route than talin to reach and activate integrins, providing a possible molecular basis for their complementarity during integrin activation.
Collapse
Affiliation(s)
- Thomas Orré
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR, Bordeaux, France
| | - Adrien Joly
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR, Bordeaux, France
| | - Zeynep Karatas
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR, Bordeaux, France
| | - Birgit Kastberger
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, Geneva 4, Switzerland
| | - Clément Cabriel
- Institut des Sciences Moléculaires d'Orsay, CNRS UMR8214, Univ. Paris-Sud, Université Paris Saclay, Orsay, Cedex, France
| | | | - Sandrine Lévêque-Fort
- Institut des Sciences Moléculaires d'Orsay, CNRS UMR8214, Univ. Paris-Sud, Université Paris Saclay, Orsay, Cedex, France
| | - Jean-Baptiste Sibarita
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR, Bordeaux, France
| | | | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, Geneva 4, Switzerland
| | - Olivier Rossier
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR, Bordeaux, France.
| | - Grégory Giannone
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR, Bordeaux, France.
| |
Collapse
|
34
|
Yang Y, Chen J, Chen X, Li D, He J, Wang S, Zhao S, Yang X, Deng S, Tong C, Wang D, Guo Z, Li D, Ma C, Liang X, Shi YS, Liu JJ. Endophilin A1 drives acute structural plasticity of dendritic spines in response to Ca2+/calmodulin. J Cell Biol 2021; 220:212102. [PMID: 33988695 PMCID: PMC8129810 DOI: 10.1083/jcb.202007172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/29/2021] [Accepted: 03/03/2021] [Indexed: 01/05/2023] Open
Abstract
Induction of long-term potentiation (LTP) in excitatory neurons triggers a large transient increase in the volume of dendritic spines followed by decays to sustained size expansion, a process termed structural LTP (sLTP) that contributes to the cellular basis of learning and memory. Although mechanisms regulating the early and sustained phases of sLTP have been studied intensively, how the acute spine enlargement immediately after LTP stimulation is achieved remains elusive. Here, we report that endophilin A1 orchestrates membrane dynamics with actin polymerization to initiate spine enlargement in NMDAR-mediated LTP. Upon LTP induction, Ca2+/calmodulin enhances binding of endophilin A1 to both membrane and p140Cap, a cytoskeletal regulator. Consequently, endophilin A1 rapidly localizes to the plasma membrane and recruits p140Cap to promote local actin polymerization, leading to spine head expansion. Moreover, its molecular functions in activity-induced rapid spine growth are required for LTP and long-term memory. Thus, endophilin A1 serves as a calmodulin effector to drive acute structural plasticity necessary for learning and memory.
Collapse
Affiliation(s)
- Yanrui Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiang Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Xue Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Di Li
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jianfeng He
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Shun Zhao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Shikun Deng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chunfang Tong
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Dou Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Zhenzhen Guo
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dong Li
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Liang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yun S Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Jia-Jia Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Kastian RF, Minegishi T, Baba K, Saneyoshi T, Katsuno-Kambe H, Saranpal S, Hayashi Y, Inagaki N. Shootin1a-mediated actin-adhesion coupling generates force to trigger structural plasticity of dendritic spines. Cell Rep 2021; 35:109130. [PMID: 34010643 DOI: 10.1016/j.celrep.2021.109130] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/09/2021] [Accepted: 04/22/2021] [Indexed: 12/19/2022] Open
Abstract
Dendritic spines constitute the major compartments of excitatory post-synapses. They undergo activity-dependent enlargement, which is thought to increase the synaptic efficacy underlying learning and memory. The activity-dependent spine enlargement requires activation of signaling pathways leading to promotion of actin polymerization within the spines. However, the molecular machinery that suffices for that structural plasticity remains unclear. Here, we demonstrate that shootin1a links polymerizing actin filaments in spines with the cell-adhesion molecules N-cadherin and L1-CAM, thereby mechanically coupling the filaments to the extracellular environment. Synaptic activation enhances shootin1a-mediated actin-adhesion coupling in spines. Promotion of actin polymerization is insufficient for the plasticity; the enhanced actin-adhesion coupling is required for polymerizing actin filaments to push against the membrane for spine enlargement. By integrating cell signaling, cell adhesion, and force generation into the current model of actin-based machinery, we propose molecular machinery that is sufficient to trigger the activity-dependent spine structural plasticity.
Collapse
Affiliation(s)
- Ria Fajarwati Kastian
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Takunori Minegishi
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Kentarou Baba
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Takeo Saneyoshi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Hiroko Katsuno-Kambe
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Singh Saranpal
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Yasunori Hayashi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Naoyuki Inagaki
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
36
|
Obashi K, Taraska JW, Okabe S. The role of molecular diffusion within dendritic spines in synaptic function. J Gen Physiol 2021; 153:e202012814. [PMID: 33720306 PMCID: PMC7967910 DOI: 10.1085/jgp.202012814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/16/2021] [Indexed: 12/21/2022] Open
Abstract
Spines are tiny nanoscale protrusions from dendrites of neurons. In the cortex and hippocampus, most of the excitatory postsynaptic sites reside in spines. The bulbous spine head is connected to the dendritic shaft by a thin membranous neck. Because the neck is narrow, spine heads are thought to function as biochemically independent signaling compartments. Thus, dynamic changes in the composition, distribution, mobility, conformations, and signaling properties of molecules contained within spines can account for much of the molecular basis of postsynaptic function and regulation. A major factor in controlling these changes is the diffusional properties of proteins within this small compartment. Advances in measurement techniques using fluorescence microscopy now make it possible to measure molecular diffusion within single dendritic spines directly. Here, we review the regulatory mechanisms of diffusion in spines by local intra-spine architecture and discuss their implications for neuronal signaling and synaptic plasticity.
Collapse
Affiliation(s)
- Kazuki Obashi
- Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Justin W. Taraska
- Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
37
|
Okabe S. Recent advances in computational methods for measurement of dendritic spines imaged by light microscopy. Microscopy (Oxf) 2021; 69:196-213. [PMID: 32244257 DOI: 10.1093/jmicro/dfaa016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 02/04/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022] Open
Abstract
Dendritic spines are small protrusions that receive most of the excitatory inputs to the pyramidal neurons in the neocortex and the hippocampus. Excitatory neural circuits in the neocortex and hippocampus are important for experience-dependent changes in brain functions, including postnatal sensory refinement and memory formation. Several lines of evidence indicate that synaptic efficacy is correlated with spine size and structure. Hence, precise and accurate measurement of spine morphology is important for evaluation of neural circuit function and plasticity. Recent advances in light microscopy and image analysis techniques have opened the way toward a full description of spine nanostructure. In addition, large datasets of spine nanostructure can be effectively analyzed using machine learning techniques and other mathematical approaches, and recent advances in super-resolution imaging allow researchers to analyze spine structure at an unprecedented level of precision. This review summarizes computational methods that can effectively identify, segment and quantitate dendritic spines in either 2D or 3D imaging. Nanoscale analysis of spine structure and dynamics, combined with new mathematical approaches, will facilitate our understanding of spine functions in physiological and pathological conditions.
Collapse
Affiliation(s)
- Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
38
|
Imaging of spine synapses using super-resolution microscopy. Anat Sci Int 2021; 96:343-358. [PMID: 33459976 DOI: 10.1007/s12565-021-00603-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
Neuronal circuits in the neocortex and hippocampus are essential for higher brain functions such as motor learning and spatial memory. In the mammalian forebrain, most excitatory synapses of pyramidal neurons are formed on spines, which are tiny protrusions extending from the dendritic shaft. The spine contains specialized molecular machinery that regulates synaptic transmission and plasticity. Spine size correlates with the efficacy of synaptic transmission, and spine morphology affects signal transduction at the post-synaptic compartment. Plasticity-related changes in the structural and molecular organization of spine synapses are thought to underlie the cellular basis of learning and memory. Recent advances in super-resolution microscopy have revealed the molecular mechanisms of the nanoscale synaptic structures regulating synaptic transmission and plasticity in living neurons, which are difficult to investigate using electron microscopy alone. In this review, we summarize recent advances in super-resolution imaging of spine synapses and discuss the implications of nanoscale structures in the regulation of synaptic function, learning, and memory.
Collapse
|
39
|
Leterrier C. A Pictorial History of the Neuronal Cytoskeleton. J Neurosci 2021; 41:11-27. [PMID: 33408133 PMCID: PMC7786211 DOI: 10.1523/jneurosci.2872-20.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 11/21/2022] Open
Affiliation(s)
- Christophe Leterrier
- Aix Marseille Université, Centre National de la Recherche Scientifique, INP Unité Mixte de Recherche 7051, NeuroCyto, Marseille 13005, France
| |
Collapse
|
40
|
Single-Protein Tracking to Study Protein Interactions During Integrin-Based Migration. Methods Mol Biol 2021; 2217:85-113. [PMID: 33215379 DOI: 10.1007/978-1-0716-0962-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Cell migration is a complex biophysical process which involves the coordination of molecular assemblies including integrin-dependent adhesions, signaling networks and force-generating cytoskeletal structures incorporating both actin polymerization and myosin activity. During the last decades, proteomic studies have generated impressive protein-protein interaction maps, although the subcellular location, duration, strength, sequence, and nature of these interactions are still concealed. In this chapter we describe how recent developments in superresolution microscopy (SRM) and single-protein tracking (SPT) start to unravel protein interactions and actions in subcellular molecular assemblies driving cell migration.
Collapse
|
41
|
Regulation of actin dynamics in dendritic spines: Nanostructure, molecular mobility, and signaling mechanisms. Mol Cell Neurosci 2020; 109:103564. [DOI: 10.1016/j.mcn.2020.103564] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/04/2020] [Indexed: 12/16/2022] Open
|
42
|
Sulistomo HW, Nemoto T, Kage Y, Fujii H, Uchida T, Takamiya K, Sumimoto H, Kataoka H, Bito H, Takeya R. Fhod3 Controls the Dendritic Spine Morphology of Specific Subpopulations of Pyramidal Neurons in the Mouse Cerebral Cortex. Cereb Cortex 2020; 31:2205-2219. [PMID: 33251537 DOI: 10.1093/cercor/bhaa355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 01/25/2023] Open
Abstract
Changes in the shape and size of the dendritic spines are critical for synaptic transmission. These morphological changes depend on dynamic assembly of the actin cytoskeleton and occur differently in various types of neurons. However, how the actin dynamics are regulated in a neuronal cell type-specific manner remains largely unknown. We show that Fhod3, a member of the formin family proteins that mediate F-actin assembly, controls the dendritic spine morphogenesis of specific subpopulations of cerebrocortical pyramidal neurons. Fhod3 is expressed specifically in excitatory pyramidal neurons within layers II/III and V of restricted areas of the mouse cerebral cortex. Immunohistochemical and biochemical analyses revealed the accumulation of Fhod3 in postsynaptic spines. Although targeted deletion of Fhod3 in the brain did not lead to any defects in the gross or histological appearance of the brain, the dendritic spines in pyramidal neurons within presumptive Fhod3-positive areas were morphologically abnormal. In primary cultures prepared from the Fhod3-depleted cortex, defects in spine morphology were only detected in Fhod3 promoter-active cells, a small population of pyramidal neurons, and not in Fhod3 promoter-negative pyramidal neurons. Thus, Fhod3 plays a crucial role in dendritic spine morphogenesis only in a specific population of pyramidal neurons in a cell type-specific manner.
Collapse
Affiliation(s)
- Hikmawan Wahyu Sulistomo
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Takayuki Nemoto
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Yohko Kage
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Hajime Fujii
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Taku Uchida
- Department of Integrative Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Kogo Takamiya
- Department of Integrative Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Hideki Sumimoto
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Hiroaki Kataoka
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ryu Takeya
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| |
Collapse
|
43
|
Suratkal SS, Yen YH, Nishiyama J. Imaging dendritic spines: molecular organization and signaling for plasticity. Curr Opin Neurobiol 2020; 67:66-74. [PMID: 32942126 DOI: 10.1016/j.conb.2020.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/26/2022]
Abstract
The structural plasticity of dendritic spines is considered to be essential for various forms of synaptic plasticity and, ultimately, learning and memory. The process is mediated by signaling pathways that promote the reorganization of the actin cytoskeleton and subsynaptic structures, which in turn cause structural and functional changes in dendritic spines. Recent advances in optical technologies have started to reveal the fine molecular structures and dynamic signaling occurring inside spines, providing significant insights into the molecular regulation of spines. Here, we highlight recent studies to resolve the molecular mechanisms underlying the spine actin cytoskeleton and plasticity with high spatiotemporal resolution. Moreover, we discuss new genome editing-based approaches in imaging the molecular structure and plasticity of dendritic spines.
Collapse
Affiliation(s)
- Swathi Shivaram Suratkal
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Yu-Hsin Yen
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jun Nishiyama
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.
| |
Collapse
|
44
|
Massou S, Nunes Vicente F, Wetzel F, Mehidi A, Strehle D, Leduc C, Voituriez R, Rossier O, Nassoy P, Giannone G. Cell stretching is amplified by active actin remodelling to deform and recruit proteins in mechanosensitive structures. Nat Cell Biol 2020; 22:1011-1023. [PMID: 32719553 DOI: 10.1038/s41556-020-0548-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
Detection and conversion of mechanical forces into biochemical signals controls cell functions during physiological and pathological processes. Mechanosensing is based on protein deformations and reorganizations, yet the molecular mechanisms are still unclear. Using a cell-stretching device compatible with super-resolution microscopy and single-protein tracking, we explored the nanoscale deformations and reorganizations of individual proteins inside mechanosensitive structures. We achieved super-resolution microscopy after live stretching on intermediate filaments, microtubules and integrin adhesions. Simultaneous single-protein tracking and stretching showed that while integrins followed the elastic deformation of the substrate, actin filaments and talin also displayed lagged and transient inelastic responses associated with active acto-myosin remodelling and talin deformations. Capturing acute reorganizations of single molecules during stretching showed that force-dependent vinculin recruitment is delayed and depends on the maturation of integrin adhesions. Thus, cells respond to external forces by amplifying transiently and locally cytoskeleton displacements, enabling protein deformation and recruitment in mechanosensitive structures.
Collapse
Affiliation(s)
- Sophie Massou
- Interdisciplinary Institute for Neuroscience, UMR 5297, Université de Bordeaux, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, UMR 5297, CNRS, Bordeaux, France
| | - Filipe Nunes Vicente
- Interdisciplinary Institute for Neuroscience, UMR 5297, Université de Bordeaux, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, UMR 5297, CNRS, Bordeaux, France
| | - Franziska Wetzel
- Laboratoire Photonique Numérique et Nanosciences, UMR 5298, Université de Bordeaux, Talence, France.,Laboratoire Photonique Numérique et Nanosciences, UMR 5298, Institut d'Optique and CNRS, Talence, France
| | - Amine Mehidi
- Interdisciplinary Institute for Neuroscience, UMR 5297, Université de Bordeaux, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, UMR 5297, CNRS, Bordeaux, France
| | - Dan Strehle
- Laboratoire Photonique Numérique et Nanosciences, UMR 5298, Université de Bordeaux, Talence, France.,Laboratoire Photonique Numérique et Nanosciences, UMR 5298, Institut d'Optique and CNRS, Talence, France
| | - Cecile Leduc
- Cell Polarity, Migration and Cancer Unit, UMR 3691, Institut Pasteur Paris and CNRS, Paris, France
| | - Raphaël Voituriez
- Laboratoire Jean Perrin and Laboratoire de Physique Théorique de la Matière Condensée, CNRS - Sorbonne Université, Paris, France
| | - Olivier Rossier
- Interdisciplinary Institute for Neuroscience, UMR 5297, Université de Bordeaux, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, UMR 5297, CNRS, Bordeaux, France
| | - Pierre Nassoy
- Laboratoire Photonique Numérique et Nanosciences, UMR 5298, Université de Bordeaux, Talence, France.,Laboratoire Photonique Numérique et Nanosciences, UMR 5298, Institut d'Optique and CNRS, Talence, France
| | - Grégory Giannone
- Interdisciplinary Institute for Neuroscience, UMR 5297, Université de Bordeaux, Bordeaux, France. .,Interdisciplinary Institute for Neuroscience, UMR 5297, CNRS, Bordeaux, France.
| |
Collapse
|
45
|
Albanesi JP, Barylko B, DeMartino GN, Jameson DM. Palmitoylated Proteins in Dendritic Spine Remodeling. Front Synaptic Neurosci 2020; 12:22. [PMID: 32655390 PMCID: PMC7325885 DOI: 10.3389/fnsyn.2020.00022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
Activity-responsive changes in the actin cytoskeleton are required for the biogenesis, motility, and remodeling of dendritic spines. These changes are governed by proteins that regulate the polymerization, depolymerization, bundling, and branching of actin filaments. Thus, processes that have been extensively characterized in the context of non-neuronal cell shape change and migration are also critical for learning and memory. In this review article, we highlight actin regulatory proteins that associate, at least transiently, with the dendritic plasma membrane. All of these proteins have been shown, either in directed studies or in high-throughput screens, to undergo palmitoylation, a potentially reversible, and stimulus-dependent cysteine modification. Palmitoylation increases the affinity of peripheral proteins for the membrane bilayer and contributes to their subcellular localization and recruitment to cholesterol-rich membrane microdomains.
Collapse
Affiliation(s)
- Joseph P. Albanesi
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Barbara Barylko
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - George N. DeMartino
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - David M. Jameson
- Department of Cell and Molecular Biology, University of Hawaii, Honolulu, HI, United States
| |
Collapse
|
46
|
Zaccard CR, Shapiro L, Martin-de-Saavedra MD, Pratt C, Myczek K, Song A, Forrest MP, Penzes P. Rapid 3D Enhanced Resolution Microscopy Reveals Diversity in Dendritic Spinule Dynamics, Regulation, and Function. Neuron 2020; 107:522-537.e6. [PMID: 32464088 DOI: 10.1016/j.neuron.2020.04.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/19/2019] [Accepted: 04/27/2020] [Indexed: 12/31/2022]
Abstract
Dendritic spinules are thin protrusions, formed by neuronal spines, not adequately resolved by diffraction-limited light microscopy, which has limited our understanding of their behavior. Here we performed rapid structured illumination microscopy and enhanced resolution confocal microscopy to study spatiotemporal spinule dynamics in cortical pyramidal neurons. Spinules recurred at the same locations on mushroom spine heads. Most were short-lived, dynamic, exploratory, and originated near simple PSDs, whereas a subset was long-lived, elongated, and associated with complex PSDs. These subtypes were differentially regulated by Ca2+ transients. Furthermore, the postsynaptic Rac1-GEF kalirin-7 regulated spinule formation, elongation, and recurrence. Long-lived spinules often contained PSD fragments, contacted distal presynaptic terminals, and formed secondary synapses. NMDAR activation increased spinule number, length, and contact with distal presynaptic elements. Spinule subsets, dynamics, and recurrence were validated in cortical neurons of acute brain slices. Thus, we identified unique properties, regulatory mechanisms, and functions of spinule subtypes, supporting roles in neuronal connectivity.
Collapse
Affiliation(s)
- Colleen R Zaccard
- Department of Physiology, Northwestern University, Chicago, IL 60611, USA
| | - Lauren Shapiro
- Department of Physiology, Northwestern University, Chicago, IL 60611, USA
| | | | - Christopher Pratt
- Department of Physiology, Northwestern University, Chicago, IL 60611, USA
| | - Kristoffer Myczek
- Department of Physiology, Northwestern University, Chicago, IL 60611, USA
| | - Amy Song
- Department of Physiology, Northwestern University, Chicago, IL 60611, USA
| | - Marc P Forrest
- Department of Physiology, Northwestern University, Chicago, IL 60611, USA
| | - Peter Penzes
- Department of Physiology, Northwestern University, Chicago, IL 60611, USA; Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
47
|
Costa JF, Dines M, Lamprecht R. The Role of Rac GTPase in Dendritic Spine Morphogenesis and Memory. Front Synaptic Neurosci 2020; 12:12. [PMID: 32362820 PMCID: PMC7182350 DOI: 10.3389/fnsyn.2020.00012] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/04/2020] [Indexed: 11/21/2022] Open
Abstract
The ability to form memories in the brain is needed for daily functions, and its impairment is associated with human mental disorders. Evidence indicates that long-term memory (LTM)-related processes such as its consolidation, extinction and forgetting involve changes of synaptic efficacy produced by alterations in neural transmission and morphology. Modulation of the morphology and number of dendritic spines has been proposed to contribute to changes in neuronal transmission mediating such LTM-related processes. Rac GTPase activity is regulated by synaptic activation and it can affect spine morphology by controlling actin-regulatory proteins. Recent evidence shows that changes in Rac GTPase activity affect memory consolidation, extinction, erasure and forgetting and can affect spine morphology in brain areas that mediate these behaviors. Altered Rac GTPase activity is associated with abnormal spine morphology and brain disorders. By affecting Rac GTPase activity we can further understand the roles of spine morphogenesis in memory. Moreover, manipulation of Rac GTPase activity may serve as a therapeutic tool for the treatment of memory-related brain diseases.
Collapse
Affiliation(s)
| | | | - Raphael Lamprecht
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
48
|
Shaw JE, Koleske AJ. Functional interactions of ion channels with the actin cytoskeleton: does coupling to dynamic actin regulate NMDA receptors? J Physiol 2020; 599:431-441. [PMID: 32034761 DOI: 10.1113/jp278702] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/14/2020] [Indexed: 01/12/2023] Open
Abstract
Synapses are enriched in the cytoskeletal protein actin, which determines the shape of the pre- and postsynaptic compartments, organizes the neurotransmitter release machinery, and provides a framework for trafficking of components. In the postsynaptic compartment, interactions with actin or its associated proteins are also critical for the localization and activity of synaptic neurotransmitter receptors and ion channels. Actin binding proteins, including spectrin and α-actinin, serve as molecular linkages between the actin cytoskeleton and a diverse collection of receptors, including the NMDA receptor (NMDAR) and voltage-gated Na+ channels. The actin cytoskeleton can regulate neurotransmitter receptors and ion channels by controlling their trafficking and localization at the synapse and by directly gating receptor channel opening. We highlight evidence that synaptic actin couples physically and functionally to the NMDAR and supports its activity. The molecular mechanisms by which actin regulates NMDARs are only just emerging, and recent advancements in light and electron microscopy-based imaging techniques should aide in elucidating these mechanisms.
Collapse
Affiliation(s)
- Juliana E Shaw
- Department of Molecular Biophysics and Biochemistry , Yale University, New Haven, CT, 06520, USA
| | - Anthony J Koleske
- Department of Molecular Biophysics and Biochemistry , Yale University, New Haven, CT, 06520, USA.,Department of Neuroscience, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
49
|
McCormick LE, Gupton SL. Mechanistic advances in axon pathfinding. Curr Opin Cell Biol 2020; 63:11-19. [PMID: 31927278 DOI: 10.1016/j.ceb.2019.12.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/02/2019] [Accepted: 12/02/2019] [Indexed: 02/08/2023]
Abstract
The development of a functional nervous system entails establishing connectivity between appropriate synaptic partners. During axonal pathfinding, the developing axon navigates through the extracellular environment, extending toward postsynaptic targets. In the early 1900s, Ramon y Cajal suggested that the growth cone, a specialized, dynamic, and cytoskeletal-rich structure at the tip of the extending axon, is guided by chemical cues in the extracellular environment. A century of work supports this hypothesis and introduced myriad guidance cues and receptors that promote a variety of growth cone behaviors including extension, pause, collapse, retraction, turning, and branching. Here, we highlight research from the last two years regarding pathways implicated in axon pathfinding.
Collapse
Affiliation(s)
- Laura E McCormick
- UNC Department of Cell Biology and Physiology, 111 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Stephanie L Gupton
- UNC Department of Cell Biology and Physiology, 111 Mason Farm Road, Chapel Hill, NC, 27599, USA; UNC Neuroscience Center, 115 Mason Farm Road, Chapel Hill, NC, 27599, USA; UNC Lineberger Comprehensive Cancer Center, 101 Manning Dr, Chapel Hill, NC, 27514, USA.
| |
Collapse
|
50
|
Glebov OO. Distinct molecular mechanisms control levels of synaptic F-actin. Cell Biol Int 2020; 44:336-342. [PMID: 31478294 DOI: 10.1002/cbin.11226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/22/2019] [Indexed: 01/24/2023]
Abstract
Polymerization of filamentous (F)-actin at the neuronal synapse plays an important role in neuronal function. However, the regulatory mechanisms controlling the levels of synaptic actin remain incompletely understood. Here, I used established pharmacological blockers to acutely disrupt the function of actin polymerization machinery, then quantified their effect on synaptic F-actin levels. Synaptic F-actin was modestly decreased by inhibition of Arp2/3-dependent actin branching. Blockade of formin-dependent actin elongation resulted in an Arp2/3-dependent increase in synaptic actin that could be mimicked by limited actin depolymerization. Limited actin depolymerization was also sufficient to reverse a decrease in synaptic F-actin caused by prolonged blockade of synaptic NMDA-type glutamate receptors. These results suggest that interplay between different actin polymerization pathways may regulate synaptic actin dynamics.
Collapse
Affiliation(s)
- Oleg O Glebov
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, 266071, Shandong, China.,Department of Old Age Psychiatry, The Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, Denmark Hill, London, SE5 8AF, UK
| |
Collapse
|