1
|
Qi Y, Rezaeian AH, Wang J, Huang D, Chen H, Inuzuka H, Wei W. Molecular insights and clinical implications for the tumor suppressor role of SCF FBXW7 E3 ubiquitin ligase. Biochim Biophys Acta Rev Cancer 2024; 1879:189140. [PMID: 38909632 PMCID: PMC11390337 DOI: 10.1016/j.bbcan.2024.189140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
FBXW7 is one of the most well-characterized F-box proteins, serving as substrate receptor subunit of SKP1-CUL1-F-box (SCF) E3 ligase complexes. SCFFBXW7 is responsible for the degradation of various oncogenic proteins such as cyclin E, c-MYC, c-JUN, NOTCH, and MCL1. Therefore, FBXW7 functions largely as a major tumor suppressor. In keeping with this notion, FBXW7 gene mutations or downregulations have been found and reported in many types of malignant tumors, such as endometrial, colorectal, lung, and breast cancers, which facilitate the proliferation, invasion, migration, and drug resistance of cancer cells. Therefore, it is critical to review newly identified FBXW7 regulation and tumor suppressor function under physiological and pathological conditions to develop effective strategies for the treatment of FBXW7-altered cancers. Since a growing body of evidence has revealed the tumor-suppressive activity and role of FBXW7, here, we updated FBXW7 upstream and downstream signaling including FBXW7 ubiquitin substrates, the multi-level FBXW7 regulatory mechanisms, and dysregulation of FBXW7 in cancer, and discussed promising cancer therapies targeting FBXW7 regulators and downstream effectors, to provide a comprehensive picture of FBXW7 and facilitate the study in this field.
Collapse
Affiliation(s)
- Yihang Qi
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jingchao Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daoyuan Huang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hong Chen
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
2
|
Patel S, Bhatt AM, Bhansali P, Setty SRG. Pseudophosphatase STYXL1 depletion enhances glucocerebrosidase trafficking to lysosomes via ER stress. Traffic 2023; 24:254-269. [PMID: 37198709 DOI: 10.1111/tra.12886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/19/2023]
Abstract
Pseudophosphatases are catalytically inactive but share sequence and structural similarities with classical phosphatases. STYXL1 is a pseudophosphatase that belongs to the family of dual-specificity phosphatases and is known to regulate stress granule formation, neurite formation and apoptosis in different cell types. However, the role of STYXL1 in regulating cellular trafficking or the lysosome function has not been elucidated. Here, we show that the knockdown of STYXL1 enhances the trafficking of β-glucocerebrosidase (β-GC) and its lysosomal activity in HeLa cells. Importantly, the STYXL1-depleted cells display enhanced distribution of endoplasmic reticulum (ER), late endosome and lysosome compartments. Further, knockdown of STYXL1 causes the nuclear translocation of unfolded protein response (UPR) and lysosomal biogenesis transcription factors. However, the upregulated β-GC activity in the lysosomes is independent of TFEB/TFE3 nuclear localization in STYXL1 knockdown cells. The treatment of STYXL1 knockdown cells with 4-PBA (ER stress attenuator) significantly reduces the β-GC activity equivalent to control cells but not additive with thapsigargin, an ER stress activator. Additionally, STYXL1-depleted cells show the enhanced contact of lysosomes with ER, possibly via increased UPR. The depletion of STYXL1 in human primary fibroblasts derived from Gaucher patients showed moderately enhanced lysosomal enzyme activity. Overall, these studies illustrated the unique role of pseudophosphatase STYXL1 in modulating the lysosome function both in normal and lysosome-storage disorder cell types. Thus, designing small molecules against STYXL1 possibly can restore the lysosome activity by enhancing ER stress in Gaucher disease.
Collapse
Affiliation(s)
- Saloni Patel
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Anshul Milap Bhatt
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Priyanka Bhansali
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
3
|
Fan J, Bellon M, Ju M, Zhao L, Wei M, Fu L, Nicot C. Clinical significance of FBXW7 loss of function in human cancers. Mol Cancer 2022; 21:87. [PMID: 35346215 PMCID: PMC8962602 DOI: 10.1186/s12943-022-01548-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/22/2022] [Indexed: 12/13/2022] Open
Abstract
FBXW7 (F-Box and WD Repeat Domain Containing 7) (also referred to as FBW7 or hCDC4) is a component of the Skp1-Cdc53 / Cullin-F-box-protein complex (SCF/β-TrCP). As a member of the F-box protein family, FBXW7 serves a role in phosphorylation-dependent ubiquitination and proteasome degradation of oncoproteins that play critical role(s) in oncogenesis. FBXW7 affects many regulatory functions involved in cell survival, cell proliferation, tumor invasion, DNA damage repair, genomic instability and telomere biology. This thorough review of current literature details how FBXW7 expression and functions are regulated through multiple mechanisms and how that ultimately drives tumorigenesis in a wide array of cell types. The clinical significance of FBXW7 is highlighted by the fact that FBXW7 is frequently inactivated in human lung, colon, and hematopoietic cancers. The loss of FBXW7 can serve as an independent prognostic marker and is significantly correlated with the resistance of tumor cells to chemotherapeutic agents and poorer disease outcomes. Recent evidence shows that genetic mutation of FBXW7 differentially affects the degradation of specific cellular targets resulting in a distinct and specific pattern of activation/inactivation of cell signaling pathways. The clinical significance of FBXW7 mutations in the context of tumor development, progression, and resistance to therapies as well as opportunities for targeted therapies is discussed.
Collapse
Affiliation(s)
- Jingyi Fan
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China.,Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Marcia Bellon
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Mingyi Ju
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China.
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
| |
Collapse
|
4
|
Evolutionary genomic relationships and coupling in MK-STYX and STYX pseudophosphatases. Sci Rep 2022; 12:4139. [PMID: 35264672 PMCID: PMC8907265 DOI: 10.1038/s41598-022-07943-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/28/2022] [Indexed: 11/08/2022] Open
Abstract
The dual specificity phosphatase (DUSP) family has catalytically inactive members, called pseudophosphatases. They have mutations in their catalytic motifs that render them enzymatically inactive. This study analyzes the significance of two pseudophosphatases, MK-STYX [MAPK (mitogen-activated protein kinase phosphoserine/threonine/tyrosine-binding protein]) and STYX (serine/threonine/tyrosine-interacting protein), throughout their evolution and provides measurements and comparison of their evolutionary conservation. Phylogenetic trees were constructed to show any deviation from various species evolutionary paths. Data was collected on a large set of proteins that have either one of the two domains of MK-STYX, the DUSP domain or the cdc-25 homology (CH2) /rhodanese-like domain. The distance between species pairs for MK-STYX or STYX and Ka/Ks ratio were calculated. In addition, both pseudophosphatases were ranked among a large set of related proteins, including the active homologs of MK-STYX, MKP (MAPK phosphatase)-1 and MKP-3. MK-STYX had one of the highest species-species protein distances and was under weaker purifying selection pressure than most proteins with its domains. In contrast, the protein distances of STYX were lower than 82% of the DUSP-containing proteins and was under one of the strongest purifying selection pressures. However, there was similar selection pressure on the N-terminal sequences of MK-STYX, STYX, MKP-1, and MKP-3. We next perform statistical coupling analysis, a process that reveals interconnected regions within the proteins. We find that while MKP-1,-3, and STYX all have 2 functional units (sectors), MK-STYX only has one, and that MK-STYX is similar to MKP-3 in the evolutionary coupling of the active site and KIM domain. Within those two domains, the mean coupling is also most similar for MK-STYX and MKP-3. This study reveals striking distinctions between the evolutionary patterns of MK-STYX and STYX, suggesting a very specific role for each pseudophosphatase, further highlighting the relevance of these atypical members of DUSP as signaling regulators. Therefore, our study provides computational evidence and evolutionary reasons to further explore the properties of pseudophosphatases, in particular MK-STYX and STYX.
Collapse
|
5
|
Pseudophosphatase STYX is induced by Helicobacter pylori and promotes gastric cancer progression by inhibiting FBXO31 function. Cell Death Dis 2022; 13:268. [PMID: 35338113 PMCID: PMC8956710 DOI: 10.1038/s41419-022-04696-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 12/09/2022]
Abstract
Gastric cancer (GC) is one of the most common malignancies in the world and ranks third in terms of cancer-related deaths. The catalytically inactive pseudophosphatase STYX (serine/threonine/tyrosine interacting protein) is a member of the protein tyrosine phosphatase family. It has been recently reported that STYX functions as a potential oncogene in different types of cancers. However, the potential role and regulatory mechanism of STYX in GC remains unknown. In this study, we find that STYX is highly expressed in GC tissues compared with adjacent noncancerous tissues and closely correlates with the prognosis of GC patients. STYX overexpression facilitates the proliferation and migration in GC cells, whereas STYX knockdown has the opposite effects. Nude mice experiments indicate that STYX knockdown in GC cells dramatically suppresses the tumor growth and lung metastasis in vivo. Mechanically, our results suggest that STYX interacts with the F-box protein FBXO31 and disrupts the degradation function of FBXO31 to its target proteins CyclinD1 and Snail1, thereby increasing the level of CyclinD1 and Snail1 in GC. STYX-mediated biological changes can be reversed by the co-expression of STYX and FBXO31 in GC cells. In addition, transcription factor c-Jun can enhance the expression of STYX in GC. The expression of STYX can also be induced by Helicobacter pylori (H. pylori) infection in c-Jun-dependent manner. Together, our present study suggests that STYX plays an oncogenic role in GC by inhibiting FBXO31 function and represents a potential therapeutic target and prognostic biomarker in GC.
Collapse
|
6
|
Pseudophosphatases as Regulators of MAPK Signaling. Int J Mol Sci 2021; 22:ijms222212595. [PMID: 34830476 PMCID: PMC8622459 DOI: 10.3390/ijms222212595] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 01/03/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) signaling pathways are highly conserved regulators of eukaryotic cell function. These enzymes regulate many biological processes, including the cell cycle, apoptosis, differentiation, protein biosynthesis, and oncogenesis; therefore, tight control of the activity of MAPK is critical. Kinases and phosphatases are well established as MAPK activators and inhibitors, respectively. Kinases phosphorylate MAPKs, initiating and controlling the amplitude of the activation. In contrast, MAPK phosphatases (MKPs) dephosphorylate MAPKs, downregulating and controlling the duration of the signal. In addition, within the past decade, pseudoenzymes of these two families, pseudokinases and pseudophosphatases, have emerged as bona fide signaling regulators. This review discusses the role of pseudophosphatases in MAPK signaling, highlighting the function of phosphoserine/threonine/tyrosine-interacting protein (STYX) and TAK1-binding protein (TAB 1) in regulating MAPKs. Finally, a new paradigm is considered for this well-studied cellular pathway, and signal transduction pathways in general.
Collapse
|
7
|
Mattei AM, Smailys JD, Hepworth EMW, Hinton SD. The Roles of Pseudophosphatases in Disease. Int J Mol Sci 2021; 22:ijms22136924. [PMID: 34203203 PMCID: PMC8269279 DOI: 10.3390/ijms22136924] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/10/2021] [Accepted: 06/24/2021] [Indexed: 01/07/2023] Open
Abstract
The pseudophosphatases, atypical members of the protein tyrosine phosphatase family, have emerged as bona fide signaling regulators within the past two decades. Their roles as regulators have led to a renaissance of the pseudophosphatase and pseudoenyme fields, catapulting interest from a mere curiosity to intriguing and relevant proteins to investigate. Pseudophosphatases make up approximately fourteen percent of the phosphatase family, and are conserved throughout evolution. Pseudophosphatases, along with pseudokinases, are important players in physiology and pathophysiology. These atypical members of the protein tyrosine phosphatase and protein tyrosine kinase superfamily, respectively, are rendered catalytically inactive through mutations within their catalytic active signature motif and/or other important domains required for catalysis. This new interest in the pursuit of the relevant functions of these proteins has resulted in an elucidation of their roles in signaling cascades and diseases. There is a rapid accumulation of knowledge of diseases linked to their dysregulation, such as neuropathies and various cancers. This review analyzes the involvement of pseudophosphatases in diseases, highlighting the function of various role(s) of pseudophosphatases involvement in pathologies, and thus providing a platform to strongly consider them as key therapeutic drug targets.
Collapse
|
8
|
Sereesongsaeng N, McDowell SH, Burrows JF, Scott CJ, Burden RE. Cathepsin V suppresses GATA3 protein expression in luminal A breast cancer. Breast Cancer Res 2020; 22:139. [PMID: 33298139 PMCID: PMC7726886 DOI: 10.1186/s13058-020-01376-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022] Open
Abstract
Background Lysosomal cysteine protease cathepsin V has previously been shown to exhibit elevated expression in breast cancer tissue and be associated with distant metastasis. Research has also identified that cathepsin V expression is elevated in tumour tissues from numerous other malignancies, but despite this, there has been limited examination of the function of this protease in cancer. Here we investigate the role of cathepsin V in breast cancer in order to delineate the molecular mechanisms by which this protease contributes to tumourigenesis. Methods Lentiviral transductions were used to generate shRNA cell line models, with cell line validation undertaken using RQ-PCR and Western blotting. Phenotypic changes of tumour cell biology were examined using clonogenic and invasion assays. The relationship between GATA3 expression and cathepsin V was primarily analysed using Western blotting. Site-directed mutagenesis was used to generate catalytic mutant and shRNA-resistant constructs to confirm the role of cathepsin V in regulating GATA3 expression. Results We have identified that elevated cathepsin V expression is associated with reduced survival in ER-positive breast cancers. Cathepsin V regulates the expression of GATA3 in ER-positive breast cancers, through promoting its degradation via the proteasome. We have determined that depletion of cathepsin V results in elevated pAkt-1 and reduced GSK-3β expression, which rescues GATA3 from proteasomal degradation. Conclusions In this study, we have identified that cysteine protease cathepsin V can suppress GATA3 expression in ER-positive breast cancers by facilitating its turnover via the proteasome. Therefore, targeting cathepsin V may represent a potential therapeutic strategy in ER-positive breast cancers, by restoring GATA3 protein expression, which is associated with a more favourable clinical outcome. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-020-01376-6.
Collapse
Affiliation(s)
- Naphannop Sereesongsaeng
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Sara H McDowell
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.,Patrick G Johnston Centre for Cancer Research, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - James F Burrows
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Christopher J Scott
- Patrick G Johnston Centre for Cancer Research, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Roberta E Burden
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
9
|
Hinton SD. Pseudophosphatase MK-STYX: the atypical member of the MAP kinase phosphatases. FEBS J 2020; 287:4221-4231. [PMID: 32472731 DOI: 10.1111/febs.15426] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/25/2020] [Accepted: 05/26/2020] [Indexed: 01/03/2023]
Abstract
The regulation of the phosphorylation of mitogen-activated protein kinases (MAPKs) is essential for cellular processes such as proliferation, differentiation, survival, and death. Mutations within the MAPK signaling cascades are implicated in diseases such as cancer, neurodegenerative disorders, arthritis, obesity, and diabetes. MAPK phosphorylation is controlled by an intricate balance between MAPK kinases (enzymes that add phosphate groups) and MAPK phosphatases (MKPs) (enzymes that remove phosphate groups). MKPs are complex negative regulators of the MAPK pathway that control the amplitude and spatiotemporal regulation of MAPKs. MK-STYX (MAPK phosphoserine/threonine/tyrosine-binding protein) is a member of the MKP subfamily, which lacks the critical histidine and nucleophilic cysteine residues in the active site required for catalysis. MK-STYX does not influence the phosphorylation status of MAPK, but even so it adds to the complexity of signal transduction cascades as a signaling regulator. This review highlights the function of MK-STYX, providing insight into MK-STYX as a signal regulating molecule in the stress response, HDAC 6 dynamics, apoptosis, and neurite differentiation.
Collapse
Affiliation(s)
- Shantá D Hinton
- Department of Biology, Integrated Science Center, William & Mary, Williamsburg, VA, USA
| |
Collapse
|
10
|
Reiterer V, Pawłowski K, Desrochers G, Pause A, Sharpe HJ, Farhan H. The dead phosphatases society: a review of the emerging roles of pseudophosphatases. FEBS J 2020; 287:4198-4220. [PMID: 32484316 DOI: 10.1111/febs.15431] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/12/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
Abstract
Phosphatases are a diverse family of enzymes, comprising at least 10 distinct protein folds. Like most other enzyme families, many have sequence variations that predict an impairment or loss of catalytic activity classifying them as pseudophosphatases. Research on pseudoenzymes is an emerging area of interest, with new biological functions repurposed from catalytically active relatives. Here, we provide an overview of the pseudophosphatases identified to date in all major phosphatase families. We will highlight the degeneration of the various catalytic sequence motifs and discuss the challenges associated with the experimental determination of catalytic inactivity. We will also summarize the role of pseudophosphatases in various diseases and discuss the major challenges and future directions in this field.
Collapse
Affiliation(s)
| | | | - Guillaume Desrochers
- Department of Biochemistry, McGill University, Montréal, QC, Canada.,Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
| | - Arnim Pause
- Department of Biochemistry, McGill University, Montréal, QC, Canada.,Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
| | | | - Hesso Farhan
- Institute of Basic Medical Sciences, University of Oslo, Norway
| |
Collapse
|
11
|
Liu L, Jiang H, Wang X, Wang X, Zou L. STYX/FBXW7 axis participates in the development of endometrial cancer cell via Notch-mTOR signaling pathway. Biosci Rep 2020; 40:BSR20200057. [PMID: 32239181 PMCID: PMC7167255 DOI: 10.1042/bsr20200057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
Endometrial cancer (EC) is the most common gynecologic malignancy in world. It has been reported that the mutation rate of FBXW7 is frequent in EC, but the specific functions of FBXW7 remain unknown in EC. In the present study, we revealed the role and mechanism of FBXW7 in EC cells. Compared with adjacent nontumor tissues, the FBXW7 expression level was lower in EC tissues. However, the level of STYX was in contrast with the expression of FBXW7 in EC tissues. And STYX interacted with FBXW7 and then down-regulated its expression level in EC. Over-expression of FBXW7 inhibited cell proliferation and facilitated apoptosis in EC cells, whereas silencing FBXW7 acted an opposite effect on EC cells. And the process of FBXW7 participated the proliferation and apoptosis in EC was regulated by STYX. FBXW7 suppressed the expression of Notch pathway related protein, and further inhibited the phosphorylation of mTOR. In addition, we also found that mTOR activitor (MHY1485) and Notch activator (Jagged-1) reversed the effect of over-expressing FBXW7 on cell proliferation and cell apoptosis. And Notch inhibitor (DAPT) counteracted the impact of over-expressing STYX on cell proliferation and cell apoptosis. Collectively, the present study verified that STYX inhibited the expression level of FBXW7 in EC, and then promoted cell proliferation but suppressed apoptosis through Notch-mTOR signaling pathway, which promoted carcinogenesis and progression of EC.
Collapse
Affiliation(s)
- Liheng Liu
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Haili Jiang
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Xiaoxin Wang
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Xin Wang
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Liying Zou
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| |
Collapse
|
12
|
Chen S, Yang D, Lei C, Li Y, Sun X, Chen M, Wu X, Zheng Y. Identification of crucial genes in abdominal aortic aneurysm by WGCNA. PeerJ 2019; 7:e7873. [PMID: 31608184 PMCID: PMC6788446 DOI: 10.7717/peerj.7873] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
Background Abdominal aortic aneurysm (AAA) is the full thickness dilation of the abdominal aorta. However, few effective medical therapies are available. Thus, elucidating the molecular mechanism of AAA pathogenesis and exploring the potential molecular target of medical therapies for AAA is of vital importance. Methods Three expression datasets (GSE7084, GSE47472 and GSE57691) were downloaded from the Gene Expression Omnibus (GEO). These datasets were merged and then normalized using the “sva” R package. Differential expressed gene (DEG) analysis and weighted gene co-expression network analysis (WGCNA) were conducted. We compared the co-expression patterns between AAA and normal conditions, and hub genes of each functional module were identified. DEGs were mapped to co-expression network under AAA condition and a DEG co-expression network was generated. Crucial genes were identified using molecular complex detection (MCODE) (a plugin in Cytoscape). Results In our study, 6 and 10 gene modules were detected for the AAA and normal conditions, respectively, while 143 DEGs were screened. Compared to the normal condition, genes associated with immune response, inflammation and muscle contraction were clustered in three gene modules respectively under the AAA condition; the hub genes of the three modules were MAP4K1, NFIB and HPK1, respectively. A DEG co-expression network with 102 nodes and 303 edges was identified, and a hub gene cluster with 10 genes from the DEG co-expression network was detected. YIPF6, RABGAP1, ANKRD6, GPD1L, PGRMC2, HIGD1A, GMDS, MGP, SLC25A4 and FAM129A were in the cluster. The expression levels of these 10 genes showed potential diagnostic value. Conclusion Based on WGCNA, we detected 6 modules under the AAA condition and 10 modules in the normal condition. Hub genes of each module and hub gene clusters of the DEG co-expression network were identified. These genes may act as potential targets for medical therapy and diagnostic biomarkers. Further studies are needed to elucidate the detailed biological function of these genes in the pathogenesis of AAA.
Collapse
Affiliation(s)
- Siliang Chen
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Dan Yang
- Department of Computational Biology and Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Chuxiang Lei
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yuan Li
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Xiaoning Sun
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Mengyin Chen
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Xiao Wu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yuehong Zheng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| |
Collapse
|
13
|
Ribeiro AJM, Das S, Dawson N, Zaru R, Orchard S, Thornton JM, Orengo C, Zeqiraj E, Murphy JM, Eyers PA. Emerging concepts in pseudoenzyme classification, evolution, and signaling. Sci Signal 2019; 12:eaat9797. [PMID: 31409758 DOI: 10.1126/scisignal.aat9797] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The 21st century is witnessing an explosive surge in our understanding of pseudoenzyme-driven regulatory mechanisms in biology. Pseudoenzymes are proteins that have sequence homology with enzyme families but that are proven or predicted to lack enzyme activity due to mutations in otherwise conserved catalytic amino acids. The best-studied pseudoenzymes are pseudokinases, although examples from other families are emerging at a rapid rate as experimental approaches catch up with an avalanche of freely available informatics data. Kingdom-wide analysis in prokaryotes, archaea and eukaryotes reveals that between 5 and 10% of proteins that make up enzyme families are pseudoenzymes, with notable expansions and contractions seemingly associated with specific signaling niches. Pseudoenzymes can allosterically activate canonical enzymes, act as scaffolds to control assembly of signaling complexes and their localization, serve as molecular switches, or regulate signaling networks through substrate or enzyme sequestration. Molecular analysis of pseudoenzymes is rapidly advancing knowledge of how they perform noncatalytic functions and is enabling the discovery of unexpected, and previously unappreciated, functions of their intensively studied enzyme counterparts. Notably, upon further examination, some pseudoenzymes have previously unknown enzymatic activities that could not have been predicted a priori. Pseudoenzymes can be targeted and manipulated by small molecules and therefore represent new therapeutic targets (or anti-targets, where intervention should be avoided) in various diseases. In this review, which brings together broad bioinformatics and cell signaling approaches in the field, we highlight a selection of findings relevant to a contemporary understanding of pseudoenzyme-based biology.
Collapse
Affiliation(s)
- António J M Ribeiro
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Sayoni Das
- Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Natalie Dawson
- Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Rossana Zaru
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Sandra Orchard
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Janet M Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Christine Orengo
- Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Elton Zeqiraj
- Astbury Centre for Structural Molecular Biology, Molecular and Cellular Biology, Faculty of Biological Sciences, Astbury Building, Room 8.109, University of Leeds, Leeds LS2 9JT, UK
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| |
Collapse
|
14
|
Richter KT, Kschonsak YT, Vodicska B, Hoffmann I. FBXO45-MYCBP2 regulates mitotic cell fate by targeting FBXW7 for degradation. Cell Death Differ 2019; 27:758-772. [PMID: 31285543 DOI: 10.1038/s41418-019-0385-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 11/09/2022] Open
Abstract
Cell fate decision upon prolonged mitotic arrest induced by microtubule-targeting agents depends on the activity of the tumor suppressor and F-box protein FBXW7. FBXW7 promotes mitotic cell death and prevents premature escape from mitosis through mitotic slippage. Mitotic slippage is a process that can cause chemoresistance and tumor relapse. Therefore, understanding the mechanisms that regulate the balance between mitotic cell death and mitotic slippage is an important task. Here we report that FBXW7 protein levels markedly decline during extended mitotic arrest. FBXO45 binds to a conserved acidic N-terminal motif of FBXW7 specifically under a prolonged delay in mitosis, leading to ubiquitylation and subsequent proteasomal degradation of FBXW7 by the FBXO45-MYCBP2 E3 ubiquitin ligase. Moreover, we find that FBXO45-MYCBP2 counteracts FBXW7 in that it promotes mitotic slippage and prevents cell death in mitosis. Targeting this interaction represents a promising strategy to prevent chemotherapy resistance.
Collapse
Affiliation(s)
- Kai T Richter
- Cell Cycle Control and Carcinogenesis, F045, German Cancer Research Center, DKFZ, Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Yvonne T Kschonsak
- Cell Cycle Control and Carcinogenesis, F045, German Cancer Research Center, DKFZ, Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Barbara Vodicska
- Cell Cycle Control and Carcinogenesis, F045, German Cancer Research Center, DKFZ, Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Ingrid Hoffmann
- Cell Cycle Control and Carcinogenesis, F045, German Cancer Research Center, DKFZ, Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.
| |
Collapse
|
15
|
He D, Ma Z, Fang C, Ding J, Yang W, Chen P, Huang L, Wang C, Yu Y, Yang L, Li Y, Zhou Z. Pseudophosphatase STYX promotes tumor growth and metastasis by inhibiting FBXW7 function in colorectal cancer. Cancer Lett 2019; 454:53-65. [PMID: 30981757 DOI: 10.1016/j.canlet.2019.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/14/2019] [Accepted: 04/09/2019] [Indexed: 02/05/2023]
Abstract
Serine/threonine/tyrosine interacting protein (STYX), a member of protein tyrosine phosphatases, has recently been reported as a potential oncogene. However, the role of STYX in colorectal cancer (CRC) remains unknown. In this study, we found that STYX was highly expressed in CRC tissues and closely correlated with tumor development and survival of CRC patients. In vitro studies showed that overexpression of STYX promoted proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) and inhibited apoptosis in CRC cells, while STYX knockdown had the opposite effects. Consistently, in vivo experiments showed that overexpression of STYX promoted tumor growth and lung metastasis. Mechanically, STYX bound to the F-box and WD repeat domain-containing7 (FBXW7) protein and inhibited its function. Co-regulation of STYX and FBXW7 expression reversed the biological changes mediated by regulation of STYX expression alone in CRC cells. Additionally, FBXW7 expression was negatively associated with STYX expression in CRC tissues, and low STYX levels accompanying high FBXW7 levels predicted favorable prognosis of CRC patients. In conclusion, our results suggest that STYX plays an oncogenic role by inhibiting FBXW7 and represents a potential therapeutic target and prognostic biomarker in CRC.
Collapse
Affiliation(s)
- Diao He
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Institute of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zida Ma
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Institute of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chao Fang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Institute of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jingjing Ding
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wenming Yang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Peng Chen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Libin Huang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Institute of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Cun Wang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yongyang Yu
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lie Yang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Institute of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yuan Li
- Institute of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zongguang Zhou
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Institute of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
16
|
Shiba-Ishii A, Hong J, Hirokawa T, Kim Y, Nakagawa T, Sakashita S, Sakamoto N, Kozuma Y, Sato Y, Noguchi M. Stratifin Inhibits SCFFBW7 Formation and Blocks Ubiquitination of Oncoproteins during the Course of Lung Adenocarcinogenesis. Clin Cancer Res 2019; 25:2809-2820. [DOI: 10.1158/1078-0432.ccr-18-3631] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/11/2018] [Accepted: 01/17/2019] [Indexed: 11/16/2022]
|
17
|
Zhang H, Zhang Q, Gao G, Wang X, Wang T, Kong Z, Wang G, Zhang C, Wang Y, Peng G. UBTOR/KIAA1024 regulates neurite outgrowth and neoplasia through mTOR signaling. PLoS Genet 2018; 14:e1007583. [PMID: 30080879 PMCID: PMC6095612 DOI: 10.1371/journal.pgen.1007583] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 08/16/2018] [Accepted: 07/23/2018] [Indexed: 12/22/2022] Open
Abstract
The mTOR signaling pathways regulate cell growth and are involved in multiple human diseases. Here, we identify UBTOR, a previously unannotated gene as a functional player in regulating cell growth and mTOR signaling. Reduction of UBTOR function in cultured hippocampal neurons and PC12 cells promotes neurite outgrowth. UBTOR depletion activates mTOR signaling and promotes cell growth, whilst UBTOR overexpression suppresses colony formation in cancer cell lines. Studies in cultured cells and zebrafish model show that UBTOR inhibits mTOR signaling by stabilizing the mTOR complex component DEPTOR, and ubtor gene disruption result in higher mTOR activity and aggravate HRAS(G12V) induced neoplasia in the zebrafish. Lastly, UBTOR depletion promotes tumor growth and mTOR signaling in a xenograft mouse model. Together, our results demonstrate how UBTOR regulates cell growth and neoplasia via mTOR signaling. Cell growth is a fundamental aspect of cell behavior in all organisms. The mTOR signaling pathways are essential for cell growth and clinically mis-regulation of the mTOR pathways are implicated in human diseases including tumor formation, obesity, epilepsy, autism and neurodegeneration. Here, we identify a novel gene, Ubtor as a functional player in regulating cell growth and mTOR signaling. Inhibiting Ubtor function promotes cell growth in neurons and cancer cells. Increasing Ubtor function reduces cancer cell growth. Functional analyses in human cells and the zebrafish model indicate Ubtor inhibits mTOR signaling by stabilizing the mTOR complex component DEPTOR, and ubtor gene disruption resulted in higher mTOR activity and aggravated cancer formation in the zebrafish. UBTOR depletion promotes tumor growth and mTOR signaling in xenograft-bearing mice. Thus our study provide evidence that Ubtor constitutes a novel negative feedback mechanism to control mTOR signaling and cell growth, and manipulations of Ubtor function may potentially be utilized to optimize mTOR signaling activities for treatments of cancers and other diseases.
Collapse
Affiliation(s)
- Hefei Zhang
- Institute of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Quan Zhang
- Institute of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Ge Gao
- Institute of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Xinjian Wang
- Institute of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Tiantian Wang
- Institute of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Zhitao Kong
- Institute of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Guoxiang Wang
- Institute of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Cuizhen Zhang
- Institute of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yun Wang
- Institute of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Gang Peng
- Institute of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
18
|
Hinton SD. The role of pseudophosphatases as signaling regulators. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:167-174. [PMID: 30077638 DOI: 10.1016/j.bbamcr.2018.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022]
Abstract
Pseudophosphatases are atypical members of the protein tyrosine phosphatase superfamily. Mutations within their catalytic signature motif render them catalytically inactive. Despite this lack of catalytic function, pseudophosphatases have been implicated in various diseases such as Charcot Marie-Tooth disorder, cancer, metabolic disorder, and obesity. Moreover, they have roles in various signaling networks such as spermatogenesis, apoptosis, stress response, tumorigenesis, and neurite differentiation. This review highlights the roles of pseudophosphatases as essential regulators in signaling cascades, providing insight into the function of these catalytically inactive enzymes.
Collapse
Affiliation(s)
- Shantá D Hinton
- Department of Biology, Integrated Science Center, College of William and Mary, Williamsburg, VA, USA.
| |
Collapse
|
19
|
Physiological functions of FBW7 in cancer and metabolism. Cell Signal 2018; 46:15-22. [PMID: 29474981 DOI: 10.1016/j.cellsig.2018.02.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 02/16/2018] [Accepted: 02/18/2018] [Indexed: 12/11/2022]
Abstract
FBW7 is one of the most well characterized F-box proteins that serve as substrate recognition subunits of SCF (Skp1-Cullin 1-F-box proteins) E3 ubiquitin ligase complexes. SCFFBW7 plays key roles in regulating cell cycle progression, differentiation, and stem cell maintenance largely through targeting a broad range of oncogenic substrates for proteasome-dependent degradation. The identification of an increasing number of FBW7 substrates for ubiquitination, and intensive in vitro and in vivo studies have revealed a network of signaling components controlled by FBW7 that contributes to metabolic regulation as well as its tumor suppressor role. Here we mainly focus on recent findings that highlight a critical role for FBW7 in cancer and metabolism.
Collapse
|
20
|
Banks DA, Dahal A, McFarland AG, Flowers BM, Stephens CA, Swack B, Gugssa A, Anderson WA, Hinton SD. MK-STYX Alters the Morphology of Primary Neurons, and Outgrowths in MK-STYX Overexpressing PC-12 Cells Develop a Neuronal Phenotype. Front Mol Biosci 2017; 4:76. [PMID: 29250526 PMCID: PMC5715325 DOI: 10.3389/fmolb.2017.00076] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 11/02/2017] [Indexed: 01/14/2023] Open
Abstract
We previously reported that the pseudophosphatase MK-STYX (mitogen activated kinase phosphoserine/threonine/tyrosine binding protein) dramatically increases the number of what appeared to be primary neurites in rat pheochromocytoma (PC-12) cells; however, the question remained whether these MK-STYX-induced outgrowths were bona fide neurites, and formed synapses. Here, we report that microtubules and microfilaments, components of the cytoskeleton that are involved in the formation of neurites, are present in MK-STYX-induced outgrowths. In addition, in response to nerve growth factor (NGF), MK-STYX-expressing cells produced more growth cones than non-MK-STYX-expressing cells, further supporting a model in which MK-STYX has a role in actin signaling. Furthermore, immunoblot analysis demonstrates that MK-STYX modulates actin expression. Transmission electron microscopy confirmed that MK-STYX-induced neurites form synapses. To determine whether these MK-STYX-induced neurites have pre-synaptic or post-synaptic properties, we used classical markers for axons and dendrites, Tau-1 and MAP2 (microtubule associated protein 2), respectively. MK-STYX induced neurites were dopaminergic and expression of both Tau-1 and MAP2 suggests that they have both axonal and dendritic properties. Further studies in rat hippocampal primary neurons demonstrated that MK-STYX altered their morphology. A significant number of primary neurons in the presence of MK-STYX had more than the normal number of primary neurites. Our data illustrate the novel findings that MK-STYX induces outgrowths in PC-12 cells that fit the criteria for neurites, have a greater number of growth cones, form synapses, and have pre-synaptic and post-synaptic properties. It also highlights that the pseudophosphatase MK-STYX significantly alters the morphology of primary neurons.
Collapse
Affiliation(s)
- Dallas A Banks
- Department of Biology, Integrated Science Center, College of William and Mary, Williamsburg, VA, United States
| | - Arya Dahal
- Department of Biology, Integrated Science Center, College of William and Mary, Williamsburg, VA, United States
| | - Alexander G McFarland
- Department of Biology, Integrated Science Center, College of William and Mary, Williamsburg, VA, United States
| | - Brittany M Flowers
- Department of Biology, Integrated Science Center, College of William and Mary, Williamsburg, VA, United States.,National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Christina A Stephens
- Department of Chemistry, Integrated Science Center, College of William and Mary, Williamsburg, VA, United States
| | - Benjamin Swack
- Department of Biology, Integrated Science Center, College of William and Mary, Williamsburg, VA, United States
| | - Ayele Gugssa
- Department of Biology, Howard University, Washington, DC, United States
| | | | - Shantá D Hinton
- Department of Biology, Integrated Science Center, College of William and Mary, Williamsburg, VA, United States
| |
Collapse
|
21
|
Composition and Regulation of the Cellular Repertoire of SCF Ubiquitin Ligases. Cell 2017; 171:1326-1339.e14. [PMID: 29103612 DOI: 10.1016/j.cell.2017.10.016] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/17/2017] [Accepted: 10/12/2017] [Indexed: 12/17/2022]
Abstract
SCF (Skp1-Cullin-F-box) ubiquitin ligases comprise several dozen modular enzymes that have diverse roles in biological regulation. SCF enzymes share a common catalytic core containing Cul1⋅Rbx1, which is directed toward different substrates by a variable substrate receptor (SR) module comprising 1 of 69 F-box proteins bound to Skp1. Despite the broad cellular impact of SCF enzymes, important questions remain about the architecture and regulation of the SCF repertoire, including whether SRs compete for Cul1 and, if so, how this competition is managed. Here, we devise methods that preserve the in vivo assemblages of SCF complexes and apply quantitative mass spectrometry to perform a census of these complexes (the "SCFome") in various states. We show that Nedd8 conjugation and the SR exchange factor Cand1 have a profound effect on shaping the SCFome. Together, these factors enable rapid remodeling of SCF complexes to promote biased assembly of SR modules bound to substrate.
Collapse
|
22
|
Murphy JM, Mace PD, Eyers PA. Live and let die: insights into pseudoenzyme mechanisms from structure. Curr Opin Struct Biol 2017; 47:95-104. [PMID: 28787627 DOI: 10.1016/j.sbi.2017.07.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/30/2017] [Accepted: 07/20/2017] [Indexed: 12/22/2022]
Abstract
Pseudoenzymes were first described more than 50 years ago, when it was recognised that a subset of proteins that are structurally homologous to active enzymes lack amino acids necessary for catalytic activity. Recently, interest in pseudoenzymes has surged as it has become apparent that they constitute ∼10% of proteomes and perform essential metabolic and signalling functions that can be experimentally distinguished from catalytic outputs of enzymes. Here, we highlight recent structural studies of pseudoenzymes, which have revealed the molecular basis for roles as allosteric regulators of conventional enzymes, as molecular switches and integrators, as hubs for assembling protein complexes, and as competitors of substrate availability and holoenzyme assembly. As structural studies continue to illuminate pseudoenzyme molecular mechanisms, we anticipate that our knowledge of the breadth of their biological functions will expand in parallel.
Collapse
Affiliation(s)
- James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia.
| | - Peter D Mace
- Biochemistry Department, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| |
Collapse
|
23
|
STYX: a versatile pseudophosphatase. Biochem Soc Trans 2017; 45:449-456. [PMID: 28408485 DOI: 10.1042/bst20160279] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/16/2017] [Accepted: 02/20/2017] [Indexed: 01/12/2023]
Abstract
The pseudophosphatase STYX (serine/threonine/tyrosine interacting protein) is a catalytically inactive member of the protein tyrosine phosphatase family. We perform a phylogenetic analysis of STYX and ask how far does the pseudoenzyme status of STYX reaches in evolution. Based on our previous work, we use STYX as a showcase to discuss four basic modes of action that any given pseudoenzyme may exert. Our previous work on the effect of STYX on mitogen-activated protein kinase (MAPK) signaling led us to identify two complementary modes of action. On the one hand, STYX competes with active phosphatases for binding to MAPKs. On the other hand, STYX acts as a nuclear anchor for MAPKs, affecting their nucleo-cytoplasmic shuttling. Finally, we discuss our recent work on the regulation of FBXW7 by this pseudophosphatase and how it affects the ubiquitylation and degradation of its substrates. We discuss the biological significance of this regulatory mechanism and use it as an example for the versatility of pseudoenzymes that may divert away from merely regulating their active homologs.
Collapse
|
24
|
Murphy JM, Farhan H, Eyers PA. Bio-Zombie: the rise of pseudoenzymes in biology. Biochem Soc Trans 2017; 45:537-544. [PMID: 28408493 DOI: 10.1042/bst20160400] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 02/19/2017] [Accepted: 02/21/2017] [Indexed: 11/17/2022]
Abstract
Pseudoenzymes are catalytically dead counterparts of enzymes. Despite their first description some 50 years ago, the importance and functional diversity of these 'fit-for-purpose' polypeptides is only now being appreciated. Pseudoenzymes have been identified throughout all the kingdoms of life and, owing to predicted deficits in enzyme activity due to the absence of catalytic residues, have been variously referred to as pseudoenzymes, non-enzymes, dead enzymes, prozymes or 'zombie' proteins. An important goal of the recent Biochemical Society Pseudoenzymes-focused meeting was to explore the functional and evolutionary diversity of pseudoenzymes and to begin to evaluate their functions in biology, including cell signalling and metabolism. Here, we summarise the impressive breadth of enzyme classes that are known to have pseudoenzyme counterparts and present examples of known cellular functions. We predict that the next decades will represent golden years for the analysis of pseudoenzymes.
Collapse
Affiliation(s)
- James M Murphy
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Hesso Farhan
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| |
Collapse
|
25
|
Gough NR. Pseudophosphatase as E3 ubiquitin ligase inhibitor. Sci Signal 2017; 10:10/466/eaam9607. [DOI: 10.1126/scisignal.aam9607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The pseudophosphatase STYX prevents the substrate recognition subunit FBXW7 from binding the catalytic E3 ubiquitin ligase complex.
Collapse
|
26
|
Reiterer V, Figueras-Puig C, Le Guerroue F, Confalonieri S, Vecchi M, Jalapothu D, Kanse SM, Deshaies RJ, Di Fiore PP, Behrends C, Farhan H. The pseudophosphatase STYX targets the F-box of FBXW7 and inhibits SCFFBXW7 function. EMBO J 2016; 36:260-273. [PMID: 28007894 DOI: 10.15252/embj.201694795] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 11/11/2016] [Accepted: 11/17/2016] [Indexed: 11/09/2022] Open
Abstract
The F-box protein FBXW7 is the substrate-recruiting subunit of an SCF ubiquitin ligase and a major tumor-suppressor protein that is altered in several human malignancies. Loss of function of FBXW7 results in the stabilization of numerous proteins that orchestrate cell proliferation and survival. Little is known about proteins that directly regulate the function of this protein. In the current work, we have mapped the interactome of the enigmatic pseudophosphatase STYX We reasoned that a catalytically inactive phosphatase might have adopted novel mechanisms of action. The STYX interactome contained several F-box proteins, including FBXW7. We show that STYX binds to the F-box domain of FBXW7 and disables its recruitment into the SCF complex. Therefore, STYX acts as a direct inhibitor of FBXW7, affecting the cellular levels of its substrates. Furthermore, we find that levels of STYX and FBXW7 are anti-correlated in breast cancer patients, which affects disease prognosis. We propose the STYX-FBXW7 interaction as a promising drug target for future investigations.
Collapse
Affiliation(s)
- Veronika Reiterer
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Biotechnology Institute Thurgau, Kreuzlingen, Switzerland
| | | | - Francois Le Guerroue
- Institute of Biochemistry II, Medical School Goethe University, Frankfurt, Germany
| | - Stefano Confalonieri
- The FIRC Institute for Molecular Oncology, IFOM, Milan, Italy.,Molecular Medicine Program, European Institute of Oncology, Milan, Italy
| | - Manuela Vecchi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | | | - Sandip M Kanse
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Raymond J Deshaies
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | - Pier Paolo Di Fiore
- The FIRC Institute for Molecular Oncology, IFOM, Milan, Italy.,Molecular Medicine Program, European Institute of Oncology, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Christian Behrends
- Institute of Biochemistry II, Medical School Goethe University, Frankfurt, Germany .,Munich Cluster for Systems Neurology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Hesso Farhan
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway .,Biotechnology Institute Thurgau, Kreuzlingen, Switzerland.,Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|