1
|
Li Y, Li L, Wang X, Zhao F, Yang Y, Zhou Y, Zhang J, Wang L, Jiang Z, Zhang Y, Chen Y, Wu C, Li K, Zhang T, Wang P, Mao Z, Zhu W, Xu X, Liang S, Lou Z, Yuan J. USP25 Elevates SHLD2-Mediated DNA Double-Strand Break Repair and Regulates Chemoresponse in Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403485. [PMID: 38803048 PMCID: PMC11267380 DOI: 10.1002/advs.202403485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Indexed: 05/29/2024]
Abstract
DNA damage plays a significant role in the tumorigenesis and progression of the disease. Abnormal DNA repair affects the therapy and prognosis of cancer. In this study, it is demonstrated that the deubiquitinase USP25 promotes non-homologous end joining (NHEJ), which in turn contributes to chemoresistance in cancer. It is shown that USP25 deubiquitinates SHLD2 at the K64 site, which enhances its binding with REV7 and promotes NHEJ. Furthermore, USP25 deficiency impairs NHEJ-mediated DNA repair and reduces class switch recombination (CSR) in USP25-deficient mice. USP25 is overexpressed in a subset of colon cancers. Depletion of USP25 sensitizes colon cancer cells to IR, 5-Fu, and cisplatin. TRIM25 is also identified, an E3 ligase, as the enzyme responsible for degrading USP25. Downregulation of TRIM25 leads to an increase in USP25 levels, which in turn induces chemoresistance in colon cancer cells. Finally, a peptide that disrupts the USP25-SHLD2 interaction is successfully identified, impairing NHEJ and increasing sensitivity to chemotherapy in PDX model. Overall, these findings reveal USP25 as a critical effector of SHLD2 in regulating the NHEJ repair pathway and suggest its potential as a therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Yunhui Li
- Medical Innovation CenterShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
- Cancer CenterTongji University School of MedicineShanghai200331China
- Department of Biochemistry and Molecular BiologyTongji University School of MedicineShanghai200331China
| | - Lei Li
- Medical Innovation CenterShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
- Cancer CenterTongji University School of MedicineShanghai200331China
| | - Xinshu Wang
- Medical Innovation CenterShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
- Department of Biochemistry and Molecular BiologyTongji University School of MedicineShanghai200331China
| | - Fei Zhao
- College of BiologyHunan UniversityChangsha410082China
| | - Yuntong Yang
- Medical Innovation CenterShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
- Department of Biochemistry and Molecular BiologyTongji University School of MedicineShanghai200331China
| | - Yujuan Zhou
- Medical Innovation CenterShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
- Department of Biochemistry and Molecular BiologyTongji University School of MedicineShanghai200331China
| | - Jiyuan Zhang
- Medical Innovation CenterShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
- Department of Biochemistry and Molecular BiologyTongji University School of MedicineShanghai200331China
| | - Li Wang
- Medical Innovation CenterShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
- Department of Biochemistry and Molecular BiologyTongji University School of MedicineShanghai200331China
| | - Zeshan Jiang
- Medical Innovation CenterShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
- Department of Biochemistry and Molecular BiologyTongji University School of MedicineShanghai200331China
| | - Yuanyuan Zhang
- Department of General Surgery and Colorectal SurgeryShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Yuping Chen
- Cancer CenterTongji University School of MedicineShanghai200331China
- Department of Biochemistry and Molecular BiologyTongji University School of MedicineShanghai200331China
- Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200080China
| | - Chenming Wu
- Medical Innovation CenterShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
- Cancer CenterTongji University School of MedicineShanghai200331China
| | - Ke Li
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Medicinal BiotechnologyChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
| | - Tingting Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Medicinal BiotechnologyChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
| | - Ping Wang
- Tongji University Cancer CenterShanghai Tenth People's HospitalSchool of MedicineShanghai200072China
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal‐Fetal MedicineClinical and Translational Research Center of Shanghai First Maternity and Infant HospitalFrontier Science Center for Stem Cell ResearchTongji University School of MedicineShanghai200040China
| | - Weiguo Zhu
- International Cancer CenterGuangdong Key Laboratory of Genome Instability and Human Disease PreventionMarshall Laboratory of Biomedical EngineeringDepartment of Biochemistry and Molecular BiologyShenzhen University Medical SchoolShenzhen518037China
| | - Xingzhi Xu
- The Sixth Affiliated Hospital of Shenzhen UniversityGuangdong Key Laboratory for Genome Stability and Disease Prevention and Carson International Cancer CenterMarshall Laboratory of Biomedical EngineeringShenzhen University School of MedicineShenzhen518055China
| | - Shikang Liang
- School of Biomedical SciencesLKS Faculty of MedicineThe University of Hong KongHong Kong SAR999077Hong Kong
| | - Zhenkun Lou
- Department of OncologyMayo ClinicRochesterMNUSA
| | - Jian Yuan
- Medical Innovation CenterShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
- Cancer CenterTongji University School of MedicineShanghai200331China
- Department of Biochemistry and Molecular BiologyTongji University School of MedicineShanghai200331China
| |
Collapse
|
2
|
Huang J, Xu Z, Wang Z, Zhou C, Shen Y. Development of Chromatin Regulator-related Molecular Subtypes and a Signature to Predict Prognosis and Immunotherapeutic Response in Head and Neck Squamous Cell Carcinoma. Curr Cancer Drug Targets 2024; 24:804-819. [PMID: 38310463 PMCID: PMC11340294 DOI: 10.2174/0115680096274798231121053634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND Chromatin regulators (CRs) serve as indispensable factors in tumor biological processes by influencing tumorigenesis and the immune microenvironment and have been identified in head and neck squamous cell carcinoma (HNSCC). Hence, CR-related genes (CRRGs) are considered potential biomarkers for predicting prognosis and immune infiltration in HNSCC. In this study, we established a novel signature for predicting the prognosis and immunotherapeutic response of HSNCC. METHODS A total of 870 CRRGs were obtained according to previous studies. Subsequently, patients in the TCGA-HNSC cohort were divided into different clusters based on the expression of prognostic CRRGs. Kaplan‒Meier (K‒M) survival analysis was conducted to compare the prognosis in clusters, and the CIBERSORT and ssGSEA methods assessed the immune infiltration status. In addition, the differences in immunotherapeutic responses were determined based on the TICA database. Furthermore, the differentially expressed CRRGs between clusters were identified, and the predictive signature was established according to the results of univariate Cox, least absolute shrinkage and selection operator regression analysis, and multivariate Cox. The predictive effects of the risk model were evaluated according to the area under the receiver operating characteristic (ROC) curve (AUC) in both the training and external test cohorts. A nomogram was established, and survival comparisons, functional enrichment analyses, and immune infiltration status and clinical treatment assessments were performed. In addition, the hub gene network and related analysis were conducted with the Cytohubba application. RESULTS Based on the expression of prognostic CRRGs, patients were divided into two clusters, in which Cluster 1 exhibited a better prognosis, more enriched immune infiltration, and a better immunotherapeutic response but exhibited chemotherapy sensitivity. The AUC values of the 1-, 3- and 5- year ROC curves for the risk model were 0.673, 0.732, and 0.692, respectively, as well as 0.645, 0.608, and 0.623 for the test set. In addition, patients in the low-risk group exhibited more immune cell enrichment and immune function activation, as well as a better immunotherapy response. The hub gene network indicated ACTN2 as the core gene differentially expressed between the two risk groups. CONCLUSION We identified molecular subtypes and established a novel predictive signature based on CRRGs. This effective CRRS system can possibly provide a novel research direction for exploring the correlation between CRs and HNSCC and requires further experimental validation.
Collapse
Affiliation(s)
- Juntao Huang
- Department of Otolaryngology-Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Ziqian Xu
- Department of Dermatology, Ningbo First Hospital, Ningbo, China
| | - Zhenzhen Wang
- Department of Otolaryngology-Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Chongchang Zhou
- Department of Otolaryngology-Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yi Shen
- Department of Otolaryngology-Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Centre for Medical Research, Ningbo No.2 Hospital, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
3
|
Lv S, Zhang J, Peng X, Liu H, Liu Y, Wei F. Ubiquitin signaling in pancreatic ductal adenocarcinoma. Front Mol Biosci 2023; 10:1304639. [PMID: 38174069 PMCID: PMC10761520 DOI: 10.3389/fmolb.2023.1304639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignant tumor of the digestive system, characterized by rapid progression and being prone to metastasis. Few effective treatment options are available for PDAC, and its 5-year survival rate is less than 9%. Many cell biological and signaling events are involved in the development of PDAC, among which protein post-translational modifications (PTMs), such as ubiquitination, play crucial roles. Catalyzed mostly by a three-enzyme cascade, ubiquitination induces changes in protein activity mainly by altering their stability in PDAC. Due to their role in substrate recognition, E3 ubiquitin ligases (E3s) dictate the outcome of the modification. Ubiquitination can be reversed by deubiquitylases (DUBs), which, in return, modified proteins to their native form. Dysregulation of E3s or DUBs that disrupt protein homeostasis is involved in PDAC. Moreover, the ubiquitination system has been exploited to develop therapeutic strategies, such as proteolysis-targeting chimeras (PROTACs). In this review, we summarize recent progress in our understanding of the role of ubiquitination in the development of PDAC and offer perspectives in the design of new therapies against this highly challenging disease.
Collapse
Affiliation(s)
- Shengnan Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jian Zhang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xinyu Peng
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Huan Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yan Liu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Feng Wei
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Ren J, Yu P, Liu S, Li R, Niu X, Chen Y, Zhang Z, Zhou F, Zhang L. Deubiquitylating Enzymes in Cancer and Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303807. [PMID: 37888853 PMCID: PMC10754134 DOI: 10.1002/advs.202303807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/30/2023] [Indexed: 10/28/2023]
Abstract
Deubiquitylating enzymes (DUBs) maintain relative homeostasis of the cellular ubiquitome by removing the post-translational modification ubiquitin moiety from substrates. Numerous DUBs have been demonstrated specificity for cleaving a certain type of ubiquitin linkage or positions within ubiquitin chains. Moreover, several DUBs perform functions through specific protein-protein interactions in a catalytically independent manner, which further expands the versatility and complexity of DUBs' functions. Dysregulation of DUBs disrupts the dynamic equilibrium of ubiquitome and causes various diseases, especially cancer and immune disorders. This review summarizes the Janus-faced roles of DUBs in cancer including proteasomal degradation, DNA repair, apoptosis, and tumor metastasis, as well as in immunity involving innate immune receptor signaling and inflammatory and autoimmune disorders. The prospects and challenges for the clinical development of DUB inhibitors are further discussed. The review provides a comprehensive understanding of the multi-faced roles of DUBs in cancer and immunity.
Collapse
Affiliation(s)
- Jiang Ren
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Peng Yu
- Zhongshan Institute for Drug DiscoveryShanghai Institute of Materia MedicaChinese Academy of SciencesZhongshanGuangdongP. R. China
| | - Sijia Liu
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310058China
| | - Ran Li
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Xin Niu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Yan Chen
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Zhenyu Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450003P. R. China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| |
Collapse
|
5
|
Chen X, Lv Q, Liu Y. A Comprehensive Genome-Wide Analysis of lncRNA Expression Profile during Hepatic Carcinoma Cell Proliferation Promoted by Phospholipase Cγ2. CYTOL GENET+ 2023. [DOI: 10.3103/s0095452723020032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
6
|
Li Y, Chen J, Wang B, Xu Z, Wu C, Ma J, Song Q, Geng Q, Yu J, Pei H, Yao Y. FOXK2 affects cancer cell response to chemotherapy by promoting nucleotide de novo synthesis. Drug Resist Updat 2023; 67:100926. [PMID: 36682222 DOI: 10.1016/j.drup.2023.100926] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
AIMS Nucleotide de novo synthesis is essential to cell growth and survival, and its dysregulation leads to cancers and drug resistance. However, how this pathway is dysregulated in cancer has not been well clarified. This study aimed to identify the regulatory mechanisms of nucleotide de novo synthesis and drug resistance. METHODS By combining the ChIP-Seq data from the Cistrome Data Browser, RNA sequencing (RNA-Seq) and a luciferase-based promoter assay, we identified transcription factor FOXK2 as a regulator of nucleotide de novo synthesis. To explore the biological functions and mechanisms of FOXK2 in cancers, we conducted biochemical and cell biology assays in vitro and in vivo. Finally, we assessed the clinical significance of FOXK2 in hepatocellular carcinoma. RESULTS FOXK2 directly regulates the expression of nucleotide synthetic genes, promoting tumor growth and cancer cell resistance to chemotherapy. FOXK2 is SUMOylated by PIAS4, which elicits FOXK2 nuclear translocation, binding to the promoter regions and transcription of nucleotide synthetic genes. FOXK2 SUMOylation is repressed by DNA damage, and elevated FOXK2 SUMOylation promotes nucleotide de novo synthesis which causes resistance to 5-FU in hepatocellular carcinoma. Clinically, elevated expression of FOXK2 in hepatocellular carcinoma patients was associated with increased nucleotide synthetic gene expression and correlated with poor prognoses for patients. CONCLUSION Our findings establish FOXK2 as a novel regulator of nucleotide de novo synthesis, with potentially important implications for cancer etiology and drug resistance.
Collapse
Affiliation(s)
- Yingge Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - Jie Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Bin Wang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ziwen Xu
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - Ci Wu
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - Junfeng Ma
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jinming Yu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; Department of Radiation Oncology, Shandong University Cancer Center, Jinan, Shandong 250117, China.
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA.
| | - Yi Yao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
7
|
Campos-Iglesias D, Fraile JM, Bretones G, Montero AA, Bonzon-Kulichenko E, Vázquez J, López-Otín C, Freije JMP. USP49 deubiquitinase regulates the mitotic spindle checkpoint and prevents aneuploidy. Cell Death Dis 2023; 14:60. [PMID: 36702832 PMCID: PMC9879932 DOI: 10.1038/s41419-023-05600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023]
Abstract
The spindle assembly checkpoint (SAC) is an essential mechanism that ensures the accurate chromosome segregation during mitosis, thus preventing genomic instability. Deubiquitinases have emerged as key regulators of the SAC, mainly by determining the fate of proteins during cell cycle progression. Here, we identify USP49 deubiquitinase as a novel regulator of the spindle checkpoint. We show that loss of USP49 in different cancer cell lines impairs proliferation and increases aneuploidy. In addition, USP49-depleted cells overcome the arrest induced by the SAC in the presence of nocodazole. Finally, we report new binding partners of USP49, including ribophorin 1, USP44, and different centrins.
Collapse
Affiliation(s)
- Diana Campos-Iglesias
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Julia M Fraile
- Elasmogen Ltd, Liberty Building, Foresterhill Road, Aberdeen, AB25 2ZP, UK
| | - Gabriel Bretones
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Alejandro A Montero
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Elena Bonzon-Kulichenko
- Biochemistry Section, Regional Center for Biomedical Research (CRIB), Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071, Toledo, Spain
| | - Jesús Vázquez
- Laboratorio de Proteómica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
| | - José M P Freije
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
| |
Collapse
|
8
|
Computational gene expression analysis reveals distinct molecular subgroups of T-cell prolymphocytic leukemia. PLoS One 2022; 17:e0274463. [PMID: 36129940 PMCID: PMC9491575 DOI: 10.1371/journal.pone.0274463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/29/2022] [Indexed: 11/20/2022] Open
Abstract
T-cell prolymphocytic leukemia (T-PLL) is a rare blood cancer with poor prognosis. Overexpression of the proto-oncogene TCL1A and missense mutations of the tumor suppressor ATM are putative main drivers of T-PLL development, but so far only little is known about the existence of T-PLL gene expression subtypes. We performed an in-depth computational reanalysis of 68 gene expression profiles of one of the largest currently existing T-PLL patient cohorts. Hierarchical clustering combined with bootstrapping revealed three robust T-PLL gene expression subgroups. Additional comparative analyses revealed similarities and differences of these subgroups at the level of individual genes, signaling and metabolic pathways, and associated gene regulatory networks. Differences were mainly reflected at the transcriptomic level, whereas gene copy number profiles of the three subgroups were much more similar to each other, except for few characteristic differences like duplications of parts of the chromosomes 7, 8, 14, and 22. At the network level, most of the 41 predicted potential major regulators showed subgroup-specific expression levels that differed at least in comparison to one other subgroup. Functional annotations suggest that these regulators contribute to differences between the subgroups by altering processes like immune responses, angiogenesis, cellular respiration, cell proliferation, apoptosis, or migration. Most of these regulators are known from other cancers and several of them have been reported in relation to leukemia (e.g. AHSP, CXCL8, CXCR2, ELANE, FFAR2, G0S2, GIMAP2, IL1RN, LCN2, MBTD1, PPP1R15A). The existence of the three revealed T-PLL subgroups was further validated by a classification of T-PLL patients from two other smaller cohorts. Overall, our study contributes to an improved stratification of T-PLL and the observed subgroup-specific molecular characteristics could help to develop urgently needed targeted treatment strategies.
Collapse
|
9
|
USP17L2-SIRT7 axis regulates DNA damage repair and chemoresistance in breast cancer cells. Breast Cancer Res Treat 2022; 196:31-44. [PMID: 36040642 DOI: 10.1007/s10549-022-06711-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/17/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE Sirtuin7 (SIRT7), as a member of the sirtuin and NAD+-dependent protein-modifying enzyme family, plays an important role in regulating cellular metabolism, stress responses, tumorigenesis, and aging. Ubiquitination and deubiquitination are reversible post-translational modifications that regulate protein stability, enzyme activity, protein-protein interactions, and cellular signaling transduction. However, whether SIRT7 is regulated by deubiquitination signaling is unclear. This study aims to elucidate the molecular mechanism of SIRT7 via deubiquitination signaling. METHODS USP17L2 or SIRT7-targeting shRNAs were used to deplete USP17L2 or SIRT7. Western blot was applied to assess the effects of USP17L2 or SIRT7 depletion. A co-immunoprecipitation assay was used to detect the interaction relationship. Cell Counting Kit-8 assays were applied to assess the viability of breast cancer cells. An immunohistochemistry assay was employed to detect the protein level in samples from breast cancer patients, and the TCGA database was applied to analyze the survival rate of breast cancer patients. Statistical analyses were performed with the Student's t test (two-tailed unpaired) and χ2 test. RESULTS We find that the deubiquitinase USP17L2 interacts with and deubiquitinates SIRT7, thereby increasing SIRT7 protein stability. In addition, USP17L2 regulates DNA damage repair through SIRT7. Furthermore, SIRT7 polyubiquitination is increased by knocking down of USP17L2, which leads to cancer cells sensitizing to chemotherapy. In breast cancer patient samples, high expression of USP17L2 is correlated with increased levels of SIRT7 protein. In conclusion, our study demonstrates that the USP17L2-SIRT7 axis is the new regulator in DNA damage response and chemo-response, suggesting that USP17L2 may be a prognostic factor and a potential therapeutic target in breast cancer. CONCLUSION Our results highlighted that USP17L2 regulates the chemoresistance of breast cancer cells in a SIRT7-dependent manner. Moreover, the role of USP17L2 as a potential therapeutic target in breast cancer and a prognostic factor for patients was elucidated.
Collapse
|
10
|
Zhou M, Chen Y, Gu X, Wang C. A Comprehensive Bioinformatic Analysis for Identification of Myeloid-Associated Differentiation Marker as a Potential Negative Prognostic Biomarker in Non-Small-Cell Lung Cancer. Pathol Oncol Res 2022; 28:1610504. [PMID: 36061144 PMCID: PMC9437211 DOI: 10.3389/pore.2022.1610504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022]
Abstract
Objectives: This study aimed to identify a molecular marker associated with the prognosis of non-small-cell lung cancer (NSCLC). Materials and Methods: The RNA sequencing data and clinical information of NSCLC patients were obtained from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). The weighted gene co-expression network analysis (WGCNA) was used to identify the co-expression gene modules and differentially expressed genes (DEGs) by comparing gene expression between NSCLC tumor tissues and normal tissues. Subsequently, the functional enrichment analysis of the DEGs was performed. Kaplan-Meier survival analysis and the GEPIA2 online tool were performed to investigate the relationship between the expression of these genes of interest and the survival of NSCLC patients, and to validate one most survival-relevent hub gene, as well as validated the hub gene using independent datasets from the GEO database. Further analysis was carried out to characterize the relationship between the hub gene and tumor immune cell infiltration, tumor mutation burden (TMB), microsatellite instability (MSI), and other known biomarkers of lung cancer. The related genes were screened by analyzing the protein-protein interaction (PPI) network and the survival model was constructed. GEPIA2 was applied in the potential analysis of pan-cancer biomarker of hub gene. Results: 57 hub genes were found to be involved in intercellular connectivity from the 779 identified differentially co-expressed genes. Myeloid-associated differentiation marker (MYADM) was strongly associated with overall survival (OS) and disease-free survival (DFS) of NSCLC patients, and high MYADM expression was associated with poor prognosis. Thus, MYADM was identified as a risk factor. Additionally, MYADM was validated as a survival risk factor in NSCLC patients in two independent datasets. Further analysis showed that MYADM was nagetively associated with TMB, and was positively correlated with macrophages, neutrophils, and dendritic cells, suggesting its role in regulating tumor immunity. The MYADM expression differed across many types of cancer and had the potential to serve as a pan-cancer marker. Conclusion:MYADM is an independent prognostic factor for NSCLC patients, which can predict the progression of cancer and play a role in the tumor immune cell infiltration in NSCLC.
Collapse
|
11
|
Matsui M, Kajita S, Tsuchiya Y, Torii W, Tamekuni S, Nishi R. USP49 is a novel deubiquitylating enzyme for γ H2AX in DNA double-strand break repair. Gene 2022; 833:146599. [PMID: 35598681 DOI: 10.1016/j.gene.2022.146599] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/16/2022] [Indexed: 12/29/2022]
Abstract
DNA double-strand break (DSB) that is one of the most serious DNA lesions is mainly repaired by two mutually exclusive pathways, homologous recombination and non-homologous end-joining. Proper choice of DSB repair pathway, in which recruitment of 53BP1 to chromatin around DSB sites plays a pivotal role, is crucial for maintaining genome integrity. Ubiquitylations of histone H2A and H2AX on Lys15 are prerequisite for 53BP1 loading onto chromatin. Although ubiquitylation mechanism of H2A and H2AX had been extensively studied, mechanism regulating deubiquitylation of γH2AX that is a phosphorylated form of H2AX remains elusive. Here, we identified USP49 as a novel deubiquitylating enzyme targeting DSB-induced γH2AX ubiquitylation. Over-expressed USP49 suppressed ubiquitylation of γH2AX in an enzymatic activity-dependent manner. Catalytic dead mutant of USP49 interacted and colocalized with γH2AX. Consequently, over-expression of USP49 inhibited the DSB-induced foci formation of 53BP1 and resulted in higher cell sensitivity to DSB-inducing drug treatment. Furthermore, endogenous USP49 protein was degraded via the proteasome upon DSB induction, indicating the importance of modulating USP49 protein level for γH2AX deubiquitylation. Consistent with our cell-based data, kidney renal clear cell carcinoma patients with higher expression of USP49 showed poor survival rate in comparison to the patients with unaltered USP49 expression. In conclusion, these data suggest that fine tuning of protein level of USP49 and USP49-mediated deubiquitylation of γH2AX are important for genome integrity.
Collapse
Affiliation(s)
- Misaki Matsui
- Graduate School of Bionics, Tokyo University of Technology, Hachioji, Tokyo 192-0982, Japan
| | - Shoki Kajita
- Department of Biomedical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Yuina Tsuchiya
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo 192-0982, Japan
| | - Wakana Torii
- Department of Biomedical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Shiori Tamekuni
- Department of Biomedical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Ryotaro Nishi
- Graduate School of Bionics, Tokyo University of Technology, Hachioji, Tokyo 192-0982, Japan; Department of Biomedical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo 192-0982, Japan.
| |
Collapse
|
12
|
LIU J, LEUNG CT, LIANG L, WANG Y, CHEN J, LAI KP, TSE WKF. Deubiquitinases in Cancers: Aspects of Proliferation, Metastasis, and Apoptosis. Cancers (Basel) 2022; 14:cancers14143547. [PMID: 35884607 PMCID: PMC9323628 DOI: 10.3390/cancers14143547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary This review summarizes the current DUBs findings that correlate with the most common cancers in the world (liver, breast, prostate, colorectal, pancreatic, and lung cancers). The DUBs were further classified by their biological functions in terms of proliferation, metastasis, and apoptosis. The work provides an updated of the current findings, and could be used as a quick guide for researchers to identify target DUBs in cancers. Abstract Deubiquitinases (DUBs) deconjugate ubiquitin (UBQ) from ubiquitylated substrates to regulate its activity and stability. They are involved in several cellular functions. In addition to the general biological regulation of normal cells, studies have demonstrated their critical roles in various cancers. In this review, we evaluated and grouped the biological roles of DUBs, including proliferation, metastasis, and apoptosis, in the most common cancers in the world (liver, breast, prostate, colorectal, pancreatic, and lung cancers). The current findings in these cancers are summarized, and the relevant mechanisms and relationship between DUBs and cancers are discussed. In addition to highlighting the importance of DUBs in cancer biology, this study also provides updated information on the roles of DUBs in different types of cancers.
Collapse
Affiliation(s)
- Jiaqi LIU
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541004, China; (J.L.); (L.L.); (Y.W.); (K.P.L.)
| | - Chi Tim LEUNG
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China;
| | - Luyun LIANG
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541004, China; (J.L.); (L.L.); (Y.W.); (K.P.L.)
| | - Yuqin WANG
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541004, China; (J.L.); (L.L.); (Y.W.); (K.P.L.)
| | - Jian CHEN
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China
- Correspondence: (J.C.); (W.K.F.T.); Tel.: +86-773-5895860 (J.C.); +81-92-802-4767 (W.K.F.T.)
| | - Keng Po LAI
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541004, China; (J.L.); (L.L.); (Y.W.); (K.P.L.)
| | - William Ka Fai TSE
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Correspondence: (J.C.); (W.K.F.T.); Tel.: +86-773-5895860 (J.C.); +81-92-802-4767 (W.K.F.T.)
| |
Collapse
|
13
|
Sun H, Liu X, Wang L, Cui B, Mu W, Xia Y, Liu S, Liu X, Jiao Y, Zhao Y. Dexamethasone Sensitizes Acute Monocytic Leukemia Cells to Ara-C by Upregulating FKBP51. Front Oncol 2022; 12:888695. [PMID: 35860568 PMCID: PMC9290766 DOI: 10.3389/fonc.2022.888695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022] Open
Abstract
In this study, we demonstrated that the expression of FK506 binding protein 51 (FKBP51) is upregulated in acute monocytic leukemia (AML-M5) cells by dexamethasone and aimed to investigate the possible effects of FKBP51 on the growth and cytarabine sensitivity of AML-M5 cells. THP-1 and U937cells were used to establish AML-M5 cell models with FKBP51 overexpression and knockdown, respectively. Cell proliferation, apoptosis and response to cytarabine were investigated by cell cycle, CCK-8 and Flow cytometry analyses. The mice experiment was conducted to detect the role of FKBP51 on AML-M5 cells proliferation and antileukemia effect of Ara-C/Dexamethasone co-therapy in vivo. Western blots were employed to determine protein expression levels. FKBP51 upregulation significantly attenuated THP-1 cell proliferation and sensitized the cells to cytarabine treatment which was further enhanced by dexamethasone. These effects were indicated by decreases in cell viability, S-G2/M phase cell cycle distribution, cytarabine 50% inhibitory concentration (IC50) values and increases in apoptosis and were supported by decreased phosphorylation levels of AKT, GSK3β and FOXO1A and decreased levels of BCL-2 and increased levels of P21 and P27. In contrast, FKBP51 knockdown led to excessive U937 cell proliferation and cytarabine resistance, as indicated by increased cell viability and S-G2/M phase cell cycle distribution, decreased apoptosis, increased phosphorylation levels of AKT, GSK3β and FOXO1A, and increased BCL-2 and decreased P21 and P27 expression. In addition, an AKT inhibitor blocked cell cycle progression and reduced cell viability in all groups of cells. Furthermore, SAFit2, a specific FKBP51 inhibitor, increased U937 cell viability and cytarabine resistance as well as AKT phosphorylation. In conclusion, FKBP51 decelerates proliferation and improves the cytarabine sensitivity of AML-M5 cells by inhibiting AKT pathways, and dexamethasone in combination with Ara-C improves the chemosensitivity of AML-M5.
Collapse
Affiliation(s)
- Huanxin Sun
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Xiaowen Liu
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Laicheng Wang
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Bin Cui
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Wenli Mu
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Yu Xia
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Shuang Liu
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Xin Liu
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Yulian Jiao
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China
- *Correspondence: Yulian Jiao, ; Yueran Zhao,
| | - Yueran Zhao
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China
- Center for Reproductive Medicine, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory for Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- *Correspondence: Yulian Jiao, ; Yueran Zhao,
| |
Collapse
|
14
|
c-MYC-USP49-BAG2 axis promotes proliferation and chemoresistance of colorectal cancer cells in vitro. Biochem Biophys Res Commun 2022; 607:117-123. [DOI: 10.1016/j.bbrc.2022.03.138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 03/26/2022] [Indexed: 12/26/2022]
|
15
|
Ge F, Li Y, Yuan T, Wu Y, He Q, Yang B, Zhu H. Deubiquitinating enzymes: promising targets for drug resistance. Drug Discov Today 2022; 27:2603-2613. [DOI: 10.1016/j.drudis.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/05/2022] [Accepted: 06/22/2022] [Indexed: 11/03/2022]
|
16
|
DUB3/KLF4 combats tumor growth and chemoresistance in hepatocellular carcinoma. Cell Death Dis 2022; 8:166. [PMID: 35383144 PMCID: PMC8983766 DOI: 10.1038/s41420-022-00988-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/26/2022] [Accepted: 03/21/2022] [Indexed: 11/08/2022]
Abstract
This study aimed to investigate the role of deubiquitinating enzyme 3 (DUB3) in the regulation of Krüppel-like factor 4 (KLF4) expression in hepatocellular carcinoma (HCC). Gain- and loss-of-function assay, luciferase reporter assay, co-immunoprecipitation, and intracellular and extracellular deubiquitination assays were conducted in vitro. A tumor xenograft mouse model was established. The expression of DUB3 and KLF4 was examined in HCC patient specimens. The results showed that DUB3 upregulated KLF4 expression by deubiquitinating and stabilizing KLF4 protein in HCC cells through binding with KLF4. DUB3 inhibited HCC cell proliferation in vitro and tumor growth in vivo while enhancing the chemosensitivity of HCC cells in a KLF4-dependent manner. Furthermore, KLF4 promoted DUB3 transcription by binding to the DUB3 promoter. In HCC patients, DUB3 expression positively correlated with KLF4 expression in HCC tissues. Low DUB3 expression predicted worse overall survival and recurrence in HCC patients. In conclusion, this study revealed a positive DUB3/KLF4 feedback loop that inhibits tumor growth and chemoresistance in HCC. These results suggest that DUB3/KLF4 activation might be a potential therapeutic approach for HCC treatment.
Collapse
|
17
|
Miglioli C, Bakalli G, Orso S, Karemera M, Molinari R, Guerrier S, Mili N. Evidence of antagonistic predictive effects of miRNAs in breast cancer cohorts through data-driven networks. Sci Rep 2022; 12:5166. [PMID: 35338170 PMCID: PMC8956684 DOI: 10.1038/s41598-022-08737-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/07/2022] [Indexed: 12/03/2022] Open
Abstract
Non-coding micro RNAs (miRNAs) dysregulation seems to play an important role in the pathways involved in breast cancer occurrence and progression. In different studies, opposite functions may be assigned to the same miRNA, either promoting the disease or protecting from it. Our research tackles the following issues: (i) why aren’t there any concordant findings in many research studies regarding the role of miRNAs in the progression of breast cancer? (ii) could a miRNA have either an activating effect or an inhibiting one in cancer progression according to the other miRNAs with which it interacts? For this purpose, we analyse the AHUS dataset made available on the ArrayExpress platform by Haakensen et al. The breast tissue specimens were collected over 7 years between 2003 and 2009. miRNA-expression profiling was obtained for 55 invasive carcinomas and 70 normal breast tissue samples. Our statistical analysis is based on a recently developed model and feature selection technique which, instead of selecting a single model (i.e. a unique combination of miRNAs), delivers a set of models with equivalent predictive capabilities that allows to interpret and visualize the interaction of these features. As a result, we discover a set of 112 indistinguishable models (in a predictive sense) each with 4 or 5 miRNAs. Within this set, by comparing the model coefficients, we are able to identify three classes of miRNA: (i) oncogenic miRNAs; (ii) protective miRNAs; (iii) undefined miRNAs which can play both an oncogenic and a protective role according to the network with which they interact. These results shed new light on the biological action of miRNAs in breast cancer and may contribute to explain why, in some cases, different studies attribute opposite functions to the same miRNA.
Collapse
Affiliation(s)
- Cesare Miglioli
- University of Geneva, Geneva School of Economics and Management, Geneva, 1205, Switzerland.
| | - Gaetan Bakalli
- Auburn University, Department of Mathematics and Statistics, Auburn, AL, 36849, USA
| | - Samuel Orso
- University of Geneva, Geneva School of Economics and Management, Geneva, 1205, Switzerland
| | - Mucyo Karemera
- Auburn University, Department of Mathematics and Statistics, Auburn, AL, 36849, USA
| | - Roberto Molinari
- Auburn University, Department of Mathematics and Statistics, Auburn, AL, 36849, USA
| | - Stéphane Guerrier
- University of Geneva, Geneva School of Economics and Management, Geneva, 1205, Switzerland.,University of Geneva, Faculty of Science, Geneva, 1211, Switzerland
| | - Nabil Mili
- University of Lausanne, Lausanne, 1015, Switzerland.
| |
Collapse
|
18
|
USP49 mediates tumor progression and poor prognosis through a YAP1-dependent feedback loop in gastric cancer. Oncogene 2022; 41:2555-2570. [PMID: 35318441 DOI: 10.1038/s41388-022-02267-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 02/12/2022] [Accepted: 03/01/2022] [Indexed: 11/08/2022]
Abstract
The importance of the Hippo-Yes-associated protein 1 (YAP1) pathway in gastric carcinogenesis and metastasis has attracted considerable research attention; however, the regulatory network of YAP1 in gastric cancer (GC) is not completely understood. In this study, ubiquitin-specific peptidase 49 (USP49) was identified as a novel deubiquitinase of YAP1, knockdown of USP49 inhibited the proliferation, metastasis, chemoresistance, and peritoneal metastasis of GC cells. Overexpression of USP49 showed opposing biological effects. Moreover, USP49 was transcriptionally activated by the YAP1/TEAD4 complex, which formed a positive feedback loop with YAP1 to promote the malignant progression of GC cells. Finally, we collected tissue samples and clinical follow-up information from 482 GC patients. The results showed that USP49 expression was high in GC cells and positively correlated with the expression of YAP1 and its target genes, connective tissue growth factor (CTGF) and cysteine-rich angiogenic inducer 61 (CYR61). Survival and Cox regression analysis showed that high USP49 expression was associated with poor prognosis and was an independent prognostic factor. Moreover, patients with high USP49 and YAP1 expression had extremely short overall survival. The findings of this study reveal that the aberrant activation of the USP49/YAP1 positive feedback loop plays a critical role in the malignant progression of GC, thus providing potential novel prognostic factors and therapeutic targets for GC.
Collapse
|
19
|
Wu L, Yu K, Chen K, Zhu X, Yang Z, Wang Q, Gao J, Wang Y, Cao T, Xu H, Pan X, Wang L, Xia J, Li Y, Wang ZP, Ma J. Fbxo45 facilitates pancreatic carcinoma progression by targeting USP49 for ubiquitination and degradation. Cell Death Dis 2022; 13:231. [PMID: 35279684 PMCID: PMC8918322 DOI: 10.1038/s41419-022-04675-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 12/27/2022]
Abstract
Fbxo45, a conserved F-box protein, comprises of an atypical SKP1, CUL1, F-box protein (SCF) ubiquitin ligase complex that promotes tumorigenesis and development. However, the biological function and molecular mechanisms of Fbxo45 involved in pancreatic carcinogenesis are ambiguous. We conducted several approaches, including transfection, coIP, real-time polymerase chain reaction (RT-PCR), Western blotting, ubiquitin assays, and animal studies, to explore the role of Fbxo45 in pancreatic cancer. Here, we report that USP49 stability is governed by Fbxo45-mediated ubiquitination and is enhanced by the absence of Fbxo45. Moreover, Fbxo45 binds to a short consensus sequence of USP49 through its SPRY domain. Furthermore, Fbxo45-mediated USP49 ubiquitination and degradation are enhanced by NEK6 kinase. Functionally, Fbxo45 increases cell viability and motility capacity by targeting USP49 in pancreatic cancer cells. Xenograft mouse experiments demonstrated that ectopic expression of Fbxo45 enhanced tumor growth in mice and that USP49 overexpression inhibited tumor growth in vivo. Notably, Fbxo45 expression was negatively associated with USP49 expression in pancreatic cancer tissues. Fbxo45 serves as an oncoprotein to facilitate pancreatic oncogenesis by regulating the stability of the tumor suppressor USP49 in pancreatic cancer.
Collapse
Affiliation(s)
- Linhui Wu
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Ke Yu
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Kai Chen
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Xuelian Zhu
- Department of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Zheng Yang
- Department of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Qi Wang
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Junjie Gao
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Yingying Wang
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Tong Cao
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, China
| | - Hui Xu
- Department of Clinical Laboratory Diagnostics, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Xueshan Pan
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Lixia Wang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jun Xia
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Yuyun Li
- Department of Clinical Laboratory Diagnostics, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Zhiwei Peter Wang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China.
- Center of Scientific Research, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Jia Ma
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China.
| |
Collapse
|
20
|
USP49-mediated histone H2B deubiquitination regulates HCT116 cell proliferation through MDM2-p53 axis. Mol Cell Biol 2022; 42:e0043421. [PMID: 35072515 DOI: 10.1128/mcb.00434-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Post-translational histone modifications play important roles in regulating chromatin structure and transcriptional regulation. Histone H2B monoubiquitination (H2Bub) is an essential regulator for transcriptional elongation and ongoing transcription. Here we reported that USP49, as a histone H2B deubiquitinase, is involved in HCT116 cell proliferation through modulating MDM2-p53 pathway genes. USP49 knockout contributes to increased HCT116 cell proliferation and migration. Importantly, USP49 knockout stimulated MDM2 transcriptional level and then inhibited the mRNA levels of TP53 target genes. Conversely, overexpression of USP49 suppressed MDM2 gene expression and then promoted TP53 target genes. Moreover, chromatin immunoprecipitation revealed that USP49 directly bound to the promoter of MDM2 gene. USP49 knockout increased the H2Bub enrichment at MDM2 gene whereas USP49 overexpression downregulated the H2Bub level at MDM2 gene. Therefore, our findings indicated that USP49-mediated H2B deubiquitination controls the transcription of MDM2-p53 axis genes in the process of HCT116 cell proliferation.
Collapse
|
21
|
Hu Y, Jiang Y, Zhang Z, Wang J, Zhang B, Gong L, Ji L, Pu Z, Yang X, Zou J, Yin Y. Oncogenic Activity of Glucocorticoid Receptor β Is Controlled by Ubiquitination-Dependent Interaction with USP49 in Glioblastoma Cells. Mol Cancer Res 2022; 20:92-101. [PMID: 34610959 PMCID: PMC9398152 DOI: 10.1158/1541-7786.mcr-20-1068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/20/2021] [Accepted: 09/28/2021] [Indexed: 01/07/2023]
Abstract
Previous studies have demonstrated that glucocorticoid receptor β (GRβ) functions as an oncoprotein, regulating the malignant phenotypes and stem-like cell maintaining in human glioblastoma (GBM). Of the glucocorticoid receptor (GR) isoforms, GRβ and GRα are highly homologous, though the mechanism underlying the distinct functions of these two isoforms in GBM has not been clarified. Here by establishing a carboxyl-terminal (COOH-terminal) deletion mutant, we determined that GRβ can be ubiquitinated. We also found that its COOH terminal is essential for this ubiquitination. The mutation of a lysine to arginine at residue 733 (K733R) blocked the ubiquitination of GRβ, indicating that K733 is a key site for ubiquitination. Using K733R to establish nonubiquitinated GRβ, we demonstrated that ubiquitination not only regulates the stability and nuclear translocation of GRβ, but is also a vital mechanism for its oncogenic functions in vitro and in vivo. Protein interaction assay further indicated that ubiquitin-specific protease 49 (USP49) is a GRβ-binding protein and the interaction depends on GRβ ubiquitination. USP49 knockdown resulted in a decrease of cell proliferation, invasion, and an increase of cell apoptosis. More importantly, USP49 knockdown increased ubiquitination and amplified the oncogenic effects of GRβ, confirming the decisive role of ubiquitination on GRβ carcinogenicity. Taken together, these findings established that ubiquitination is a vial process for GRβ the execution of oncogenic functions in GBM and that the K733 site is crucial for ubiquitination of GRβ. IMPLICATIONS: This work is the first identify of the activation GRβ by a single lysine point-mediated ubiquitination and proteasome degradation, which determines its oncogenic functions in GBM.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jian Zou
- Corresponding Authors: Jian Zou, Center of Clinical Research, The Affiliated Wuxi People's Hospital, Nanjing Medical University, No. 299 Qingyang Road, Wuxi, 214023, Jiangsu, China. Phone: 86510-8535-0368; E-mail: ; and Ying Yin, Phone: 510-8535-0363; E-mail:
| | - Ying Yin
- Corresponding Authors: Jian Zou, Center of Clinical Research, The Affiliated Wuxi People's Hospital, Nanjing Medical University, No. 299 Qingyang Road, Wuxi, 214023, Jiangsu, China. Phone: 86510-8535-0368; E-mail: ; and Ying Yin, Phone: 510-8535-0363; E-mail:
| |
Collapse
|
22
|
FKBP51 promotes invasion and migration by increasing the autophagic degradation of TIMP3 in clear cell renal cell carcinoma. Cell Death Dis 2021; 12:899. [PMID: 34599146 PMCID: PMC8486832 DOI: 10.1038/s41419-021-04192-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/05/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022]
Abstract
The occurrence of metastasis is a serious risk for renal cell carcinoma (RCC) patients. In order to develop novel therapeutic approaches to control the progression of metastatic RCC, it is of urgent need to understand the molecular mechanisms underlying RCC metastasis and identify prognostic markers of metastatic risk. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) have been known to be closely associated with extracellular matrix (ECM) turnover, which plays a highly active role in tumor metastasis. Recent studies have shown that immunophilin FK-506-binding protein 51 (FKBP51) may be important for the regulation of ECM function, and exert effects on the invasion and migration of tumor cells. However, the mechanisms underlying these activities remain unclear. The present study detected the role of FKBP51 in clear cell renal cell carcinoma (ccRCC), the most common subtype of RCC, and found that FKBP51 significantly promotes ccRCC invasion and migration by binding with the TIMP3, connecting TIMP3 with Beclin1 complex and increasing autophagic degradation of TIMP3. Given the important roles that TIMPs/MMPs play in ECM regulation and remodeling, our findings will provide new perspective for future investigation of the regulation of metastasis of kidney cancer and other types of cancer.
Collapse
|
23
|
Chen J, Alduais Y, Zhang K, Zhu X, Chen B. CCAT1/FABP5 promotes tumour progression through mediating fatty acid metabolism and stabilizing PI3K/AKT/mTOR signalling in lung adenocarcinoma. J Cell Mol Med 2021; 25:9199-9213. [PMID: 34431227 PMCID: PMC8500980 DOI: 10.1111/jcmm.16815] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 01/17/2023] Open
Abstract
Long non‐coding RNA (lncRNA) colon cancer associated transcript 1 (CCAT1) has been identified as an oncogene in many cancers, but its role in lung adenocarcinoma (LUAD) remains to be further investigated. We identified the upregulation of CCAT1 in LUAD tissues and LUAD cells. Through RNA pull‐down and mass spectrometry analysis, we obtained the interacting proteins with CCAT1 and discovered their functional relation with ‘signal transduction’, ‘energy pathways’ and ‘metabolism’ and revealed the potential of CCAT1 on fatty acid (FA) metabolism. For mechanism exploration, we uncovered the mediation of CCAT1 on the translocation of fatty acid binding protein 5 (FABP5) into nucleus by confirming their interaction and localization. Also, CCAT1 was discovered to promote the formation of the transcription complex by RXR and PPARγ so as to activate the transcription of CD36, PDK1 and VEGFA. Moreover, we found that CCAT1 regulated the activity of AKT by promoting the ubiquitination of FKBP51 through binding with USP49. Subsequently, cell function assays revealed the enhancement of CCAT1 on LUAD cell proliferation and angiogenesis in vitro and in vivo. Collectively, CCAT1 regulated cell proliferation and angiogenesis through regulating FA metabolism in LUAD, providing a novel target for LUAD treatment.
Collapse
Affiliation(s)
- Jing Chen
- Department of Hematology and Oncology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yaser Alduais
- Department of Hematology and Oncology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Kai Zhang
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing, China
| | - Xiaoli Zhu
- Department of Respiratory Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Baoan Chen
- Department of Hematology and Oncology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
24
|
Park JM, Yang SW, Zhuang W, Bera AK, Liu Y, Gurbani D, von Hoyningen-Huene SJ, Sakurada SM, Gan H, Pruett-Miller SM, Westover KD, Potts MB. The nonreceptor tyrosine kinase SRMS inhibits autophagy and promotes tumor growth by phosphorylating the scaffolding protein FKBP51. PLoS Biol 2021; 19:e3001281. [PMID: 34077419 PMCID: PMC8202955 DOI: 10.1371/journal.pbio.3001281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 06/14/2021] [Accepted: 05/10/2021] [Indexed: 01/18/2023] Open
Abstract
Nutrient-responsive protein kinases control the balance between anabolic growth and catabolic processes such as autophagy. Aberrant regulation of these kinases is a major cause of human disease. We report here that the vertebrate nonreceptor tyrosine kinase Src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristylation sites (SRMS) inhibits autophagy and promotes growth in a nutrient-responsive manner. Under nutrient-replete conditions, SRMS phosphorylates the PHLPP scaffold FK506-binding protein 51 (FKBP51), disrupts the FKBP51-PHLPP complex, and promotes FKBP51 degradation through the ubiquitin-proteasome pathway. This prevents PHLPP-mediated dephosphorylation of AKT, causing sustained AKT activation that promotes growth and inhibits autophagy. SRMS is amplified and overexpressed in human cancers where it drives unrestrained AKT signaling in a kinase-dependent manner. SRMS kinase inhibition activates autophagy, inhibits cancer growth, and can be accomplished using the FDA-approved tyrosine kinase inhibitor ibrutinib. This illuminates SRMS as a targetable vulnerability in human cancers and as a new target for pharmacological induction of autophagy in vertebrates. This study describes the discovery and characterization of a nutrient-sensitive signaling pathway that drives growth and inhibits autophagy in mammalian cells. This pathway, which involves the non-receptor tyrosine kinase SRMS and the PHLPP scaffold protein FKBP51, promotes tumor growth and is amenable to pharmacological inhibition.
Collapse
Affiliation(s)
- Jung Mi Park
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Oncology Research, Amgen Research, Thousand Oaks, California, United States of America
| | - Seung Wook Yang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Wei Zhuang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Asim K. Bera
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Yan Liu
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Deepak Gurbani
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Sergei J. von Hoyningen-Huene
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Sadie Miki Sakurada
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Haiyun Gan
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Shondra M. Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Kenneth D. Westover
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Malia B. Potts
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Oncology Research, Amgen Research, Thousand Oaks, California, United States of America
- * E-mail:
| |
Collapse
|
25
|
miR-5000-3p confers oxaliplatin resistance by targeting ubiquitin-specific peptidase 49 in colorectal cancer. Cell Death Discov 2021; 7:129. [PMID: 34075026 PMCID: PMC8169888 DOI: 10.1038/s41420-021-00494-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/07/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the most common form of gastrointestinal malignancies. A growing number of reports focusing on oxaliplatin (OXA) resistance in CRC treatment have revealed that drug resistance is an urgent issue in clinical applications, especially for finding effective therapeutic targets. Recently, microRNAs (miRNAs) are reported to play a critical role in tumor progressions and multi-drug resistance. The main aim of this study is to establish whether miR-5000-3p is an oncogene that is resistant to OXA and further confirm its underlying regulatory role in CRC. The OXA-associated gene expression dataset in CRC cells was downloaded from Gene Expression Omnibus (GEO) database. Statistical software R was used for significance analysis of differentially expressed genes (DEGs) between OXA-resistant (OR)-CRC cells and CRC cells, and results indicated ubiquitin-specific peptidase 49 (USP49) was upregulated in OR-CRC cells. Luciferase reporter assay showed that USP49 was verified to act as a downstream target gene of miR-5000-3p. From the results of TCGA database, miR-5000-3p expression was upregulated and USP49 was downregulated in patients with CRC. The function of miR-5000-3p was detected using MTT assay, wound healing, Transwell, and flow cytometry assays. Moreover, through in vitro and in vivo experiments, miR-5000-3p expression was confirmed to be upregulated in CRC cells or OR-CRC cells comparing to normal cell lines. Molecular mechanism assays revealed that USP49 binds to the miR-5000-3p promoter to increase the expression of miR-5000-3p, resulting in cancer cells sensitized to OXA. To sum up, these results suggest that miR-5000-3p may be a novel biomarker involved in drug-resistance progression of CRC. Moreover, the drug-resistance mechanism of miR-5000-3p/USP49 axis provides new treatment strategies for CRC in clinical trials.
Collapse
|
26
|
Zhou S, Cai Y, Liu X, Jin L, Wang X, Ma W, Zhang T. Role of H2B mono-ubiquitination in the initiation and progression of cancer. Bull Cancer 2021; 108:385-398. [PMID: 33685627 DOI: 10.1016/j.bulcan.2020.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 01/07/2023]
Abstract
Numerous epigenetic alterations are observed in cancer cells, and dysregulation of mono-ubiquitination of histone H2B (H2Bub1) has often been linked to tumorigenesis. H2Bub1 is a dynamic post-translational histone modification associated with transcriptional elongation and DNA damage response. Histone H2B monoubiquitination occurs in the site of lysine 120, written predominantly by E3 ubiquitin ligases RNF20/RNF40 and deubiquitinated by ubiquitin specific peptidase 22 (USP22). RNF20/40 is often altered in the primary tumors including colorectal cancer, breast cancer, ovarian cancer, prostate cancer, and lung cancer, and the loss of H2Bub1 is usually associated with poor prognosis in tumor patients. The purpose of this review is to summarize the current knowledge of H2Bub1 in transcription, DNA damage response and primary tumors. This review also provides novel options for exploiting the potential therapeutic target H2Bub1 in personalized cancer therapy.
Collapse
Affiliation(s)
- Sa Zhou
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, PR China
| | - Yuqiao Cai
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, PR China
| | - Xinyi Liu
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, PR China
| | - Lijun Jin
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, PR China
| | - Xiaoqin Wang
- Beijing University of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing 102206, PR China
| | - Wenjian Ma
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, PR China; Qilu Institute of Technology, Shandong 250200, PR China.
| | - Tongcun Zhang
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, PR China; Wuhan University of Science and Technology, Institute of Biology and Medicine, Wuhan 430081, PR China.
| |
Collapse
|
27
|
Zhang H, Zhang LQ, Yang CC, Li J, Tian XY, Li DN, Cui J, Cai JP. The high expression of NUDT5 indicates poor prognosis of breast cancer by modulating AKT / Cyclin D signaling. PLoS One 2021; 16:e0245876. [PMID: 33571243 PMCID: PMC7877577 DOI: 10.1371/journal.pone.0245876] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 01/08/2021] [Indexed: 11/24/2022] Open
Abstract
NUDIX hydrolase type 5 (NUDT5) is a kind of ADP-ribose pyrophosphatase and nucleotide metabolizing enzyme in cell metabolism. Previous studies have shown NUDT5 expression affected chromosome remodeling, involved in cell adhesion, cancer stem cell maintenance and epithelial to mesenchyme transition in breast cancer cells. Nevertheless, the role of NUDT5 in breast cancer progression and prognosis has not yet been systematically studied. This study explored the association of NUDT5 with the tumor development and poor prognosis in patients with breast cancer. Our results show that the levels of NUDT5 were upregulated in breast cancer cell lines and breast tumor tissues, and the expression of NUDT5 in breast tumor tissues increased significantly when compared with adjacent non-tumorous tissues by immunohistochemical staining of tissue microarrays. Breast cancer patients with high NUDT5 expression had a worse prognosis than those with low expression of NUDT5. In addition, the knockdown of NUDT5 suppressed breast cancer cell lines proliferation, migration and invasion, and dramatically inhibited the AKT phosphorylation at Thr308 and expression of Cyclin D1. The opposite effects were observed in vitro following NUDT5 rescue. Our findings indicated that the high expression of NUDT5 is probably involved in the poor prognosis of breast cancer via the activation of the AKT / Cyclin D pathways, which could be a prognostic factor and potential target in the diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- He Zhang
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Dongdan, Beijing, P.R China
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Dong Dan, Beijing, P.R. China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Dong Dan, Beijing, P.R. China
| | - Li-Qun Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Dong Dan, Beijing, P.R. China
| | - Cheng-Cheng Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Dong Dan, Beijing, P.R. China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Dong Dan, Beijing, P.R. China
- Department of Pharmacy, Wenzhou Medical College, Wenzhou, Zhejiang, P.R China
| | - Jin Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Dong Dan, Beijing, P.R. China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Dong Dan, Beijing, P.R. China
| | - Xin-Yuan Tian
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Dong Dan, Beijing, P.R. China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Dong Dan, Beijing, P.R. China
- Peking University Fifth School of Clinical Medicine, Beijing Hospital, Beijing, P.R. China
| | - Dan-Ni Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Dong Dan, Beijing, P.R. China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Dong Dan, Beijing, P.R. China
- Peking University Fifth School of Clinical Medicine, Beijing Hospital, Beijing, P.R. China
| | - Ju Cui
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Dong Dan, Beijing, P.R. China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Dong Dan, Beijing, P.R. China
| | - Jian-Ping Cai
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Dongdan, Beijing, P.R China
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Dong Dan, Beijing, P.R. China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Dong Dan, Beijing, P.R. China
- * E-mail:
| |
Collapse
|
28
|
Cai HQ, Zhang MJ, Cheng ZJ, Yu J, Yuan Q, Zhang J, Cai Y, Yang LY, Zhang Y, Hao JJ, Wang MR, Wan JH. FKBP10 promotes proliferation of glioma cells via activating AKT-CREB-PCNA axis. J Biomed Sci 2021; 28:13. [PMID: 33557829 PMCID: PMC7871608 DOI: 10.1186/s12929-020-00705-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 12/26/2020] [Indexed: 01/21/2023] Open
Abstract
Background Although the availability of therapeutic options including temozolomide, radiotherapy and some target agents following neurosurgery, the prognosis of glioma patients remains poor. Thus, there is an urgent need to explore possible targets for clinical treatment of this disease. Methods Tissue microarrays and immunohistochemistry were used to detect FKBP10, Hsp47, p-AKT (Ser473), p-CREB (Ser133) and PCNA expression in glioma tissues and xenografts. CCK-8 tests, colony formation assays and xenograft model were performed to test proliferation ability of FKBP10 in glioma cells in vitro and in vivo. Quantitative reverse transcriptase-PCR, western-blotting, GST-pull down, co-immunoprecipitation and confocal-immunofluorescence staining assay were used to explore the molecular mechanism underlying the functions of overexpressed FKBP10 in glioma cells. Results FKBP10 was highly expressed in glioma tissues and its expression was positively correlates with grade, poor prognosis. FKBP10-knockdown suppressed glioma cell proliferation in vitro and subcutaneous/orthotopic xenograft tumor growth in vivo. Silencing of FKBP10 reduced p-AKT (Ser473), p-CREB (Ser133), PCNA mRNA and PCNA protein expression in glioma cells. FKBP10 interacting with Hsp47 enhanced the proliferation ability of glioma cells via AKT-CREB-PCNA cascade. In addition, correlation between these molecules were also found in xenograft tumor and glioma tissues. Conclusions We showed for the first time that FKBP10 is overexpressed in glioma and involved in proliferation of glioma cells by interacting with Hsp47 and activating AKT-CREB-PCNA signaling pathways. Our findings suggest that inhibition of FKBP10 related signaling might offer a potential therapeutic option for glioma patients.
Collapse
Affiliation(s)
- Hong-Qing Cai
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min-Jie Zhang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Neurosurgery, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Zhi-Jian Cheng
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Neurosurgery, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Jing Yu
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qing Yuan
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Neurosurgery, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Jin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yan Cai
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Yan Yang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Zhang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia-Jie Hao
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming-Rong Wang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jing-Hai Wan
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. .,Department of Neurosurgery, The Second Affiliated Hospital, Anhui Medical University, Hefei, China.
| |
Collapse
|
29
|
Chen X, Jiang Y, Li W, Li X, Lin Y, Liu X, Jiang Z, Xiao Z. Six-ingredient-Xiao-qing-long decoction inhibited TGF- β1-induced proliferation and migration of human airway smooth muscle cells by regulating FKBP51/AKT signaling. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1875055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Xiufeng Chen
- Department of Pediatrics, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yonghong Jiang
- Department of Pediatrics, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Wen Li
- Department of Pediatrics, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xiao Li
- Department of Pediatrics, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yan Lin
- Department of Pediatrics, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xiuxiu Liu
- Department of Pediatrics, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Zhiyan Jiang
- Department of Pediatrics, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Zhen Xiao
- Department of Pediatrics, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
30
|
Yan Y, Xu Z, Huang J, Guo G, Gao M, Kim W, Zeng X, Kloeber JA, Zhu Q, Zhao F, Luo K, Lou Z. The deubiquitinase USP36 Regulates DNA replication stress and confers therapeutic resistance through PrimPol stabilization. Nucleic Acids Res 2021; 48:12711-12726. [PMID: 33237263 PMCID: PMC7736794 DOI: 10.1093/nar/gkaa1090] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/21/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
PrimPol has been recently identified as a DNA damage tolerant polymerase that plays an important role in replication stress response. However, the regulatory mechanisms of PrimPol are not well defined. In this study, we identify that the deubiquitinase USP36 interferes with degradation of PrimPol to regulate the replication stress response. Mechanistically, USP36 is deubiquitinated following DNA replication stress, which in turn facilitates its upregulation and interaction with PrimPol. USP36 deubiquitinates K29-linked polyubiquitination of PrimPol and increases its protein stability. Depletion of USP36 results in replication stress-related defects and elevates cell sensitivity to DNA-damage agents, such as cisplatin and olaparib. Moreover, USP36 expression positively correlates with the level of PrimPol protein and poor prognosis in patient samples. These findings indicate that the regulation of PrimPol K29-linked ubiquitination by USP36 plays a critical role in DNA replication stress and chemotherapy response.
Collapse
Affiliation(s)
- Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhijie Xu
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Jinzhou Huang
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Guijie Guo
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ming Gao
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Wootae Kim
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiangyu Zeng
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jake A Kloeber
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA.,Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN 55905, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Qian Zhu
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Fei Zhao
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kuntian Luo
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
31
|
Liu S, Tian Y, Zheng Y, Cheng Y, Zhang D, Jiang J, Li S. TRIM27 acts as an oncogene and regulates cell proliferation and metastasis in non-small cell lung cancer through SIX3-β-catenin signaling. Aging (Albany NY) 2020; 12:25564-25580. [PMID: 33264103 PMCID: PMC7803540 DOI: 10.18632/aging.104163] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/27/2020] [Indexed: 12/16/2022]
Abstract
The Wnt/β-catenin pathway plays vital roles in diverse biological processes, including cell differentiation, proliferation, migration, and insulin sensitivity. A recent study reported that the DNA-binding transcriptional factor SIX3 is essential during embryonic development in vertebrates and capable of downregulating target genes of the Wnt/β-catenin pathway in lung cancer, indicating negative regulation of Wnt/β-catenin activation. However, regulation of the SIX3-Wnt/β-catenin pathway axis remains unknown. We measured the expression of TRIM27 and SIX3 as well as investigated whether there was a correlation between them in lung cancer tissue samples. Herein, we found that the E3 ubiquitin ligase, TRIM27, ubiquitinates, and degrades SIX3. TRIM27 induces non-small cell lung cancer (NSCLC) cell proliferation and metastasis, and the expression of β-catenin, S100P, TGFB3, and MMP-9 were significantly inhibited by SIX3. Furthermore, XAV939 is a selective β-catenin-mediated transcription inhibitor that inhibited TRIM27- and SIX3-mediated NSCLC cell proliferation, migration, and invasion. Clinically, lung tissue samples of cancer patients showed increased TRIM27 expression and decreased SIX3 expression. Taken together, these data demonstrate that TRIM27 acts as an oncogene regulating cell proliferation and metastasis in NSCLC through SIX3-β-catenin signaling.
Collapse
Affiliation(s)
- Shiyuan Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Ying Tian
- Xi'an Jiaotong University Press, Xi'an 710049, China
| | - Ying Zheng
- Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - Yao Cheng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Danjie Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Jiantao Jiang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Shaomin Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
32
|
Yu B, Shen B, Ba Z, Liu Z, Yuan J, Zhao W, Wu D. USP15 promotes the apoptosis of degenerative nucleus pulposus cells by suppressing the PI3K/AKT signalling pathway. J Cell Mol Med 2020; 24:13813-13823. [PMID: 33135363 PMCID: PMC7754067 DOI: 10.1111/jcmm.15971] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Degenerative disc disease is characterized by an enhanced breakdown of its existing nucleus pulposus (NP) matrix due to the dysregulation of matrix enzymes and factors. Ubiquitin-specific protease 15 (USP15) is reported to be abnormal in certain human diseases. However, its role in NP degeneration remains unclear. Therefore, we aimed to explore the function of USP15 in degenerative NP cell specimens. METHODS We induced gene silencing and overexpression of USP15 in degenerative NP cells using RNA interference (RNAi) and a lentiviral vector, respectively. qRT-PCR and Western blotting were used to determine gene and protein expression levels. Cell apoptosis was analysed via flow cytometry. Protein interaction was examined by performing a co-immunoprecipitation assay. Furthermore, the PI3K inhibitor LY294002 and agonist IGF-1 were used to investigate the link between USP15 and AKT in NP degeneration. RESULTS We found that USP15 was up-regulated in degenerative NP cells and that its overexpression accelerated the process of apoptosis. Moreover, USP15 expression levels negatively correlated with AKT phosphorylation in degenerative NP cells. Furthermore, targeting and silencing USP15 with miR-338-3p and studying its interaction with FK506-binding protein 5 (FKBP5) revealed enhancement of FKBP5 ubiquitination, indicating that USP15 is a component of the FKBP5/AKT signalling pathway in degenerative NP cells. CONCLUSIONS Our results show that USP15 exacerbates NP degradation by deubiquitinating and stabilizing FKBP5. This in turn results in the suppression of AKT phosphorylation in degenerative NP cells. Therefore, our study provides insights into the understanding of USP15 function as a potential molecule in the network of NP degeneration.
Collapse
Affiliation(s)
- Bin Yu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bin Shen
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhaoyu Ba
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhonghan Liu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing Yuan
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weidong Zhao
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Desheng Wu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Zhang Q, Song W, Ayidaerhan N, He Z. PTPLAD2 and USP49 Involved in the Pathogenesis of Smoke-Induced COPD by Integrative Bioinformatics Analysis. Int J Chron Obstruct Pulmon Dis 2020; 15:2515-2526. [PMID: 33116468 PMCID: PMC7571584 DOI: 10.2147/copd.s250576] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose Chronic obstructive pulmonary disease (COPD) is a typical chronic disease, but its molecular pathogenesis remains unclear. This study aimed to investigate the expression of biomarkers during COPD development. Methods Markers significantly associated with COPD were screened using bioinformatics tools. qRT-PCR and Western blot were used to explore the expression of PTPLAD2 and USP49 in BEAS-2B cells. CCK-8 assay was used to determine the influence of PTPLAD2 and USP49 in BEAS-2B on cell proliferation. Results In this study, 86 DEGs were identified in GSE76925. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses suggested that the phosphoinositide 3-kinase-Akt signaling pathway, ECM-receptor interaction, mRNA process, and viral transcription were all involved in the development of COPD. In addition, 14 hub genes were identified by WGCNA. PTPLAD2 and USP49 shared DEGs and hub genes and their expression levels were significantly reduced after CSE-treatment in BEAS-2B cells. Conclusion Our results suggest that PTPLAD2 and USP49 may be useful biomarkers of COPD.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province110042, People’s Republic of China
| | - Wei Song
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province110042, People’s Republic of China
| | - Nahemuguli Ayidaerhan
- Department of Pulmonary and Critical Care Medicine, Tarbagatay Prefecture People’s Hospital, Tacheng, Xinjiang, People’s Republic of China
| | - Zheng He
- Department of Obstetrics and Gynecology Medicine, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
34
|
Yang L, Wang Z, Zou C, Mi Y, Tang H, Wu X. Ubiquitin-specific protease 49 attenuates IL-1β-induced rat primary chondrocyte apoptosis by facilitating Axin deubiquitination and subsequent Wnt/β-catenin signaling cascade inhibition. Mol Cell Biochem 2020; 474:263-275. [PMID: 32737772 DOI: 10.1007/s11010-020-03850-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022]
Abstract
Osteoarthritis (OA) is an age-related chronic joint degenerative disease. Interleukin 1 beta (IL-1β) is considered a marker for the progression of OA. In this study, we found that Ubiquitin-Specific Peptidase 49 (USP49) was significantly less expressed in OA patients compared with healthy individuals. Treating primary rat chondrocytes with different concentrations of IL-1β resulted in decreased Usp49 expression, while Usp49 overexpression could attenuate IL-1β-induced chondrocyte apoptosis by promoting Axin deubiquitination. The deubiquitination of Axin led to the accumulation of the protein, which in turn resulted in β-catenin degradation and Wnt/β-catenin signaling cascade inhibition. Interestingly, we also found that [6]-gingerol, an anti-OA drug, could upregulate the protein level of Usp49 and suppress the Wnt/β-catenin signaling cascade in primary rat chondrocytes. Taken together, our study not only demonstrates that Usp49 can negatively regulate the progression of OA by inhibiting the Wnt/β-catenin signaling cascade, but also elucidates the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Lanbo Yang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhanchao Wang
- Knee Injury Center, Luoyang Orthopedic Hospital of Henan Province (Henan Provincial Orthopaedic Hospital), Luoyang, 471000, Henan, China
| | - Chunyu Zou
- Knee Injury Center, Luoyang Orthopedic Hospital of Henan Province (Henan Provincial Orthopaedic Hospital), Luoyang, 471000, Henan, China
| | - Yufei Mi
- Knee Injury Center, Luoyang Orthopedic Hospital of Henan Province (Henan Provincial Orthopaedic Hospital), Luoyang, 471000, Henan, China
| | - Hengtao Tang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xuejian Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
35
|
Qian X, Li S, Yang Z, Zhang J. The long non-coding RNA HLNC1 potentiates hepatocellular carcinoma progression via interaction with USP49. J Clin Lab Anal 2020; 34:e23462. [PMID: 32691951 PMCID: PMC7676201 DOI: 10.1002/jcla.23462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/06/2020] [Accepted: 06/11/2020] [Indexed: 12/21/2022] Open
Abstract
Background The hepatocellular carcinoma (HCC) represents a serious malignancy worldwide especially in China. Our transcriptome analysis identifies a novel long non‐coding RNA (lncRNA) termed HLNC1. However, the function of HLNC1 in HCC remains to be determined. Methods Novel lncRNAs were screened using lncRNA profiling. Relative expression was quantified by qRT‐PCR. In vitro experiments such as migration and viability assays were performed. In vivo implantation experiments were conducted to investigate tumorigenic functions. RNA‐RNA interaction assay was performed to determine USP49 as HLNC1 binding partner. Results We found that HLNC1 was markedly upregulated in HCC samples and cell lines. HLNC1 could promote viability and migration of HCC cells. Meanwhile, we could also observe an oncogenic effect of HLNC1 in vivo. By RNA‐RNA interaction assay, we unraveled USP49 transcript as the HLNC1 binding partner. HLNC1‐USP49 interaction dramatically destabilized USP49. Heat‐shock factor 1 (HSF1) was shown to directly induce HLNC1 expression. The therapeutic potential of targeting HLNC1 was investigated using antisense oligonucleotides (ASOs). The ASO construct which significantly depleted HLNC1 expression could strongly attenuate xenograft tumor growth. Conclusions Our data suggested that HLNC1 may advance HCC progression and act as a potential target for intervention.
Collapse
Affiliation(s)
- Xinye Qian
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shitong Li
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhoujing Yang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Annett S, Moore G, Robson T. FK506 binding proteins and inflammation related signalling pathways; basic biology, current status and future prospects for pharmacological intervention. Pharmacol Ther 2020; 215:107623. [PMID: 32622856 DOI: 10.1016/j.pharmthera.2020.107623] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023]
Abstract
FK506 binding (FKBP) proteins are part of the highly conserved immunophilin family and its members have fundamental roles in the regulation of signalling pathways involved in inflammation, adaptive immune responses, cancer and developmental biology. The original member of this family, FKBP12, is a well-known binding partner for the immunosuppressive drugs tacrolimus (FK506) and sirolimus (rapamycin). FKBP12 and its analog, FKBP12.6, function as cis/trans peptidyl prolyl isomerases (PPIase) and they catalyse the interconversion of cis/trans prolyl conformations. Members of this family uniquely contain a PPIase domain, which may not be functional. The larger FKBPs, such as FKBP51, FKBP52 and FKBPL, contain extra regions, including tetratricopeptide repeat (TPR) domains, which are important for their versatile protein-protein interactions with inflammation-related signalling pathways. In this review we focus on the pivotal role of FKBP proteins in regulating glucocorticoid signalling, canonical and non-canonical NF-κB signalling, mTOR/AKT signalling and TGF-β signalling. We examine the mechanism of action of FKBP based immunosuppressive drugs on these cell signalling pathways and how off target interactions lead to the development of side effects often seen in the clinic. Finally, we discuss the latest advances in the role of FKBPs as therapeutic targets and the development of novel agents for a range of indications of unmet clinical need, including glucocorticoid resistance, obesity, stress-induced inflammation and novel cancer immunotherapy.
Collapse
Affiliation(s)
- Stephanie Annett
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Gillian Moore
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
| |
Collapse
|
37
|
Zhao X, Wu X, Wang H, Yu H, Wang J. USP53 promotes apoptosis and inhibits glycolysis in lung adenocarcinoma through FKBP51-AKT1 signaling. Mol Carcinog 2020; 59:1000-1011. [PMID: 32511815 DOI: 10.1002/mc.23230] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/15/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022]
Abstract
Despite an overall decline in the incidence of new cases, lung adenocarcinoma continues to be a leading cause of cancer death worldwide. Due to lack of gene expression signatures for risk and prognosis stratification of lung adenocarcinoma, identifying novel molecular biomarkers and therapeutic targets may potentially improve lung adenocarcinoma prognosis and treatment. In the current study, we investigate the role of USP53 in lung adenocarcinoma. Bioinformatics analysis, quantitative reverse transcription polymerase chain reaction, and Western blot were employed to examine patterns of gene expression in human lung adenocarcinoma database, patient samples, and cancer cell lines. Stable cell lines were produced by transducing with USP53 overexpression vector or short hairpin RNA targeting USP53 in the presence and absence of AKT pathway inhibitor LY294002. Functional assays were carried out to examine the impact of USP53 and AKT pathway on lung adenocarcinoma cell viability, apoptosis, and glycolysis in vitro, as well as tumor growth in vivo. The correlation between USP53 and FKBP51 was measured by coimmunoprecipitation and ubiquitination assay. Decreased USP53 levels are a reliable marker of lung adenocarcinoma across published datasets, clinical samples, and cell culture lines. Low USP53 expression is linked to decreased apoptosis and increased metabolic activity, suggesting it acts as a tumor suppressor. USP53 regulates cell apoptosis and glycolysis through the AKT1 pathway. Mechanistically, USP53 deubiquitinates FKBP51, which in turn dephosphorylates AKT1, and ultimately inhibits tumor growth in lung adenocarcinoma. Taken together, our study establishes USP53 as a novel regulator of AKT1 pathway with an important role in tumorigenesis in lung adenocarcinoma.
Collapse
Affiliation(s)
- Xinmin Zhao
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xianghua Wu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huijie Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hui Yu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jialei Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Ma F, Wang H, Liu K, Wang Z, Chen S. CSN6 inhibition suppresses pancreatic adenocarcinoma metastasis via destabilizing the c-Fos protein. Exp Cell Res 2020; 391:112004. [PMID: 32289284 DOI: 10.1016/j.yexcr.2020.112004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/31/2022]
Abstract
Deubiquitinase (DUB) can reverse the ubiquitin signal, and participate in virtually all aspects of cancer progression. Thus, DUB represents an attractive target for development of anticancer drugs. However, little is known about DUB which can be used as drug targets. Here, we found that the constitutive photomorphogenic 9 (COP9) signalosome complex subunit 6 (COPS6/CSN6), a DUB belongs to JAMM/MPN domain-associated metallopeptidases(JAMMs) class, was highly expressed in pancreatic adenocarcinoma(PAAD) tissues. High expression of CSN6 was associated with tumor TNM stage and metastasis in PAAD patients. Moreover, we demonstrated that CSN6 promoted invasion and metastasis through regulating forkhead box protein A1 (FOXA1) in PAAD cells. Re-expression of FOXA1 rescued the decreased invasion and metastasis caused by CSN6 knockdown, whereas inhibition of FOXA1 alleviated the pro-metastasis effect induced by CSN6 overexpression. Further, CSN6 regulated the expression of FOXA1 via c-Fos in PAAD cells. Mechanistically, CSN6 stabilized c-Fos protein by binding to it and decreasing its ubiquitination. Our work identified CSN6 as a targeting-permissible deubiquitinase, and CSN6 inhibition maybe a potential treatment strategy for PAAD.
Collapse
Affiliation(s)
- Fangqi Ma
- Department of Oncology, Shanxian Central Hospital, Heze, Shandong, 274300, PR China
| | - Hong Wang
- Department of Oncology, Shanxian Central Hospital, Heze, Shandong, 274300, PR China
| | - Kefen Liu
- Department of Oncology, Shanxian Central Hospital, Heze, Shandong, 274300, PR China
| | - Zhongqiang Wang
- Department of Oncology, Shanxian Haijiya Hospital, Heze, Shandong, 274300, PR China
| | - Shijun Chen
- Department of Oncology, Shanxian Haijiya Hospital, Heze, Shandong, 274300, PR China.
| |
Collapse
|
39
|
Ding X, Gu Y, Jin M, Guo X, Xue S, Tan C, Huang J, Yang W, Xue M, Zhou Q, Wang W, Zhang Y. The deubiquitinating enzyme UCHL1 promotes resistance to pemetrexed in non-small cell lung cancer by upregulating thymidylate synthase. Theranostics 2020; 10:6048-6060. [PMID: 32483437 PMCID: PMC7255002 DOI: 10.7150/thno.42096] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/29/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: Resistance to pemetrexed (PEM)-based chemotherapy is a major cause of progression in non-small cell lung cancer (NSCLC) patients. The deubiquitinating enzyme UCHL1 was recently found to play important roles in chemoresistance and tumor progression. However, the potential roles and mechanisms of UCHL1 in PEM resistance remain unclear. Methods: Bioinformatics analyses and immunohistochemistry were used to evaluate UCHL1 expression in NSCLC specimens. Kaplan-Meier analysis with the log-rank test was used for survival analyses. We established PEM-resistant NSCLC cell lines by exposing them to step-wise increases in PEM concentrations, and in vitro and in vivo assays were used to explore the roles and mechanisms of UCHL1 in PEM resistance using the NSCLC cells. Results: In chemoresistant tumors from NSCLC patients, UCHL1 was highly expressed and elevated UCHL1 expression was strongly associated with poor outcomes. Furthermore, UCHL1 expression was significantly upregulated in PEM-resistant NSCLC cells, while genetic silencing or inhibiting UCHL1 suppressed resistance to PEM and other drugs in NSCLC cells. Mechanistically, UCHL1 promoted PEM resistance in NSCLC by upregulating the expression of thymidylate synthase (TS), based on reduced TS expression after UCHL1 inhibition and re-emergence of PEM resistance upon TS restoration. Furthermore, UCHL1 upregulated TS expression, which mitigated PEM-induced DNA damage and cell cycle arrest in NSCLC cells, and also conferred resistance to PEM and other drugs. Conclusions: It appears that UCHL1 promotes PEM resistance by upregulating TS in NSCLC cells, which mitigated DNA damage and cell cycle arrest. Thus, UCHL1 may be a therapeutic target for overcoming PEM resistance in NSCLC patients.
Collapse
|
40
|
Post-translational modifications and stress adaptation: the paradigm of FKBP51. Biochem Soc Trans 2020; 48:441-449. [PMID: 32318709 PMCID: PMC7200631 DOI: 10.1042/bst20190332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 01/22/2023]
Abstract
Adaptation to stress is a fundamental requirement to cope with changing environmental conditions that pose a threat to the homeostasis of cells and organisms. Post-translational modifications (PTMs) of proteins represent a possibility to quickly produce proteins with new features demanding relatively little cellular resources. FK506 binding protein (FKBP) 51 is a pivotal stress protein that is involved in the regulation of several executers of PTMs. This mini-review discusses the role of FKBP51 in the function of proteins responsible for setting the phosphorylation, ubiquitination and lipidation of other proteins. Examples include the kinases Akt1, CDK5 and GSK3β, the phosphatases calcineurin, PP2A and PHLPP, and the ubiquitin E3-ligase SKP2. The impact of FKBP51 on PTMs of signal transduction proteins significantly extends the functional versatility of this protein. As a stress-induced protein, FKBP51 uses re-setting of PTMs to relay the effect of stress on various signaling pathways.
Collapse
|
41
|
Ma L, He H, Jiang K, Jiang P, He H, Feng S, Chen K, Shao J, Deng G. FAM46C inhibits cell proliferation and cell cycle progression and promotes apoptosis through PTEN/AKT signaling pathway and is associated with chemosensitivity in prostate cancer. Aging (Albany NY) 2020; 12:6352-6369. [PMID: 32283544 PMCID: PMC7185131 DOI: 10.18632/aging.103030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/23/2020] [Indexed: 04/11/2023]
Abstract
Family with sequence similarity 46 member C (FAM46C) is a non-canonical poly(A) polymerase that is associated with tumorigenesis. However, its role in prostate cancer development is not fully understood. Herein, we determined expression pattern of FAM46C in prostate cancer and further identified its effect on the tumorigenesis and chemosensitivity. FAM46C expression was decreased in prostate cancer tissues and cell lines compared with corresponding controls. FAM46C expression was significantly associated with the Gleason score, tumor size and overall survival. FAM46C knockdown in 22RV1 and DU145 cells significantly inhibited apoptosis and promoted cell proliferation and cell cycle progression as well as activation of AKT. FAM46C overexpression had an inverse effect in DU145 cells and inhibited tumor growth in vivo. FAM46C inhibited cell proliferation and cell cycle progression and induced apoptosis via the PTEN/AKT signaling pathway. FAM46C promoted PTEN expression through inhibiting PTEN ubiquitination. The prostate cancer cells and patient-derived xenograft (PDX) mice with high-FAM46C-expressing demonstrated an enhanced chemosensitivity to docetaxel. These findings suggest that FAM46C control cell proliferation, cell cycle and apoptosis through PTEN/AKT signaling pathway and is associated with chemosensitivity of prostate cancer. Modulation of their levels may offer a new approach for improving anti-tumor efficacy for chemotherapeutic agents in prostate cancer.
Collapse
Affiliation(s)
- Libin Ma
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China
| | - Huadong He
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Kang Jiang
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Peiwu Jiang
- Surgical Department I, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310007, Zhejiang, China
| | - Han He
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Shengjia Feng
- Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang, China
| | - Kean Chen
- Department of Urology, The Second Hospital of Jiaxing, Jiaxing 314001, Zhejiang, China
| | - Jia Shao
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Gang Deng
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| |
Collapse
|
42
|
Fu X, Tang N, Xie WQ, Mao L, Qiu YD. MUC1 promotes glycolysis through inhibiting BRCA1 expression in pancreatic cancer. Chin J Nat Med 2020; 18:178-185. [PMID: 32245587 DOI: 10.1016/s1875-5364(20)30019-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Indexed: 12/14/2022]
Abstract
Enhanced glucose metabolism is one of the hallmarks of pancreatic cancer. MUC1, a transmembrane protein, is a global regulator of glucose metabolism and essential for progression of pancreatic cancer. To clarify the role of MUC1 in glucose metabolism, we knocked out MUC1 in Capan-1 and CFPAC-1 cells. MUC1 knockout (KO) cells uptook less glucose and secreted less lactate with a much lower proliferating rate. The mRNA level of key enzymes in glycolysis also decreased significantly in MUC1 KO cells. We also observed increased expression of breast cancer type 1 susceptibility protein (BRCA1) in MUC1 KO cells. Since BRCA1 has a strong inhibitory effect on glycolysis, we want to know whether the decreased glucose metabolism in MUC1 KO cells is due to increased BRCA1 expression. We treated wild type (WT) and MUC1 KO cells with BRCA1 inhibitor. BRCA1 inhibition significantly enhanced glucose uptake and lactate secretion in both WT and MUC1 KO cells. Expression of key enzymes in glycolysis also elevated after BRCA1 inhibition. Elevated glucose metabolism is known to facilitate cancer cells to gain chemoresistance. We treated MUC1 KO cells with gemcitabine and FOLFIRINOX in vitro and in vivo. The results showed that MUC1 KO sensitized pancreatic cancer cells to chemotherapy both in vitro and in vivo. In conclusion, we demonstrated that MUC1 promotes glycolysis through inhibiting BRCA1 expression. MUC1 may be a therapeutic target in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Xiao Fu
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210009, China
| | - Neng Tang
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210009, China
| | - Wei-Qi Xie
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210009, China
| | - Liang Mao
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210009, China
| | - Yu-Dong Qiu
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210009, China.
| |
Collapse
|
43
|
Lai KP, Chen J, Tse WKF. Role of Deubiquitinases in Human Cancers: Potential Targeted Therapy. Int J Mol Sci 2020; 21:ijms21072548. [PMID: 32268558 PMCID: PMC7177317 DOI: 10.3390/ijms21072548] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Deubiquitinases (DUBs) are involved in various cellular functions. They deconjugate ubiquitin (UBQ) from ubiquitylated substrates to regulate their activity and stability. Studies on the roles of deubiquitylation have been conducted in various cancers to identify the carcinogenic roles of DUBs. In this review, we evaluate the biological roles of DUBs in cancer, including proliferation, cell cycle control, apoptosis, the DNA damage response, tumor suppression, oncogenesis, and metastasis. This review mainly focuses on the regulation of different downstream effectors and pathways via biochemical regulation and posttranslational modifications. We summarize the relationship between DUBs and human cancers and discuss the potential of DUBs as therapeutic targets for cancer treatment. This review also provides basic knowledge of DUBs in the development of cancers and highlights the importance of DUBs in cancer biology.
Collapse
Affiliation(s)
- Keng Po Lai
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China;
| | - Jian Chen
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China;
- Correspondence: (J.C.); (W.K.F.T.); Tel.: +86-773-5895810 (J.C.); +81-92-802-4767 (W.K.F.T.)
| | - William Ka Fai Tse
- Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Correspondence: (J.C.); (W.K.F.T.); Tel.: +86-773-5895810 (J.C.); +81-92-802-4767 (W.K.F.T.)
| |
Collapse
|
44
|
Dou N, Hu Q, Li L, Wu Q, Li Y, Gao Y. USP32 promotes tumorigenesis and chemoresistance in gastric carcinoma via upregulation of SMAD2. Int J Biol Sci 2020; 16:1648-1657. [PMID: 32226309 PMCID: PMC7097920 DOI: 10.7150/ijbs.43117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/29/2020] [Indexed: 12/21/2022] Open
Abstract
USP32, a member of the ubiquitin-specific proteases family, has been implicated in the development of breast cancer and small lung cancer. However, its biological functions and clinical significance in gastric cancer (GC) remain unclear. In the present study, we reported that knockdown or depletion of USP32 significantly inhibited GC cell proliferation and migration in vitro and in vivo, indicating that USP32 functions as an oncogene in GC. Importantly, results from immunohistochemical staining in a tissue microarray revealed that USP32 was upregulated in GC tissues compared with paracancerous tissues. Further analyses showed that high expression of USP32 was closely related with high T-staging and poor outcomes of GC patients. Mechanistically, USP32 silencing caused a decrease in the expression of SMAD2, which resulted in the inhibitory effects of GC cells on growth, motility, and chemoresistance to cisplatin. Therefore, our findings strongly suggest the involvement of USP32 in GC progression and provide a potential target for future therapy of GC.
Collapse
Affiliation(s)
- Ning Dou
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qingqing Hu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Li Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qiong Wu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yandong Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| |
Collapse
|
45
|
Differential Expression of DUB Genes in Ovarian Cells Treated with Di-2-Ethylhexyl Phthalate. Int J Mol Sci 2020; 21:ijms21051755. [PMID: 32143396 PMCID: PMC7084536 DOI: 10.3390/ijms21051755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/11/2020] [Accepted: 03/03/2020] [Indexed: 11/16/2022] Open
Abstract
Premature ovarian failure (POF) is defined as loss of ovarian function in women less than 40 years of age. The causes of POF are diverse and include environmental factors. Di-2-ethylhexyl phthalate (DEHP) is one factor that may cause POF. The ubiquitin-proteasome system maintains intracellular balance by promoting or inhibiting protein degradation. To investigate the differential expressions of deubiquitinating enzyme (DUB) genes in patients with POF, we developed two in vitro POF models by treating A2780 or OVCAR5 with DEHP. Using these models, a multiplex RT-PCR system for DUB genes was applied to identify biomarkers by comparing expression patterns and DUB mRNA levels; multiplex RT-PCR results were validated by qRT-PCR and Western blotting analyses. Observed differential expression levels of several DUB genes including USP12, COPS5, ATXN3L, USP49, and USP34 in A2780 and OVCAR5 cells at the mRNA and protein levels suggest that they should be investigated as potential biomarkers of POF.
Collapse
|
46
|
Regulation of FKBP51 and FKBP52 functions by post-translational modifications. Biochem Soc Trans 2020; 47:1815-1831. [PMID: 31754722 DOI: 10.1042/bst20190334] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/22/2019] [Accepted: 10/28/2019] [Indexed: 12/17/2022]
Abstract
FKBP51 and FKBP52 are two iconic members of the family of peptidyl-prolyl-(cis/trans)-isomerases (EC: 5.2.1.8), which comprises proteins that catalyze the cis/trans isomerization of peptidyl-prolyl peptide bonds in unfolded and partially folded polypeptide chains and native state proteins. Originally, both proteins have been studied as molecular chaperones belonging to the steroid receptor heterocomplex, where they were first discovered. In addition to their expected role in receptor folding and chaperoning, FKBP51 and FKBP52 are also involved in many biological processes, such as signal transduction, transcriptional regulation, protein transport, cancer development, and cell differentiation, just to mention a few examples. Recent studies have revealed that both proteins are subject of post-translational modifications such as phosphorylation, SUMOlyation, and acetylation. In this work, we summarize recent advances in the study of these immunophilins portraying them as scaffolding proteins capable to organize protein heterocomplexes, describing some of their antagonistic properties in the physiology of the cell, and the putative regulation of their properties by those post-translational modifications.
Collapse
|
47
|
Radford BN, Han VKM. Evidence of increased hypoxia signaling in fetal liver from maternal nutrient restriction in mice. Pediatr Res 2020; 87:450-455. [PMID: 31185486 DOI: 10.1038/s41390-019-0447-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/19/2019] [Accepted: 05/18/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND Intrauterine growth restriction (IUGR) is a pregnancy condition where fetal growth is reduced, and offspring from IUGR pregnancies are at increased risk for type II diabetes as adults. The liver is susceptible to fetal undernutrition experienced by IUGR infants and animal models of growth restriction. This study aimed to examine hepatic expression changes in a maternal nutrient restriction (MNR) mouse model of IUGR to understand fetal adaptations that influence adult metabolism. METHODS Liver samples of male offspring from MNR (70% of ad libitum starting at E6.5) or control pregnancies were obtained at E18.5 and differential expression was assessed by RNAseq and western blots. RESULTS Forty-nine differentially expressed (FDR < 0.1) transcripts were enriched in hypoxia-inducible pathways including Fkbp5 (1.6-fold change), Ccng2 (1.5-fold change), Pfkfb3 (1.5-fold change), Kdm3a (1.2-fold change), Btg2 (1.6-fold change), Vhl (1.3-fold change), and Hif-3a (1.3-fold change) (FDR < 0.1). Fkbp5, Pfkfb3, Kdm3a, and Hif-3a were confirmed by qPCR, but only HIF-2a (2.2-fold change, p = 0.002) and HIF-3a (1.3 p = 0.03) protein were significantly increased. CONCLUSION Although a moderate impact, these data support evidence of fetal adaptation to reduced nutrients by increased hypoxia signaling in the liver.
Collapse
Affiliation(s)
- Bethany N Radford
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada.,Children's Health Research Institute, London, ON, Canada
| | - Victor K M Han
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada. .,Children's Health Research Institute, London, ON, Canada. .,Department of Pediatrics, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
48
|
Chen Y, Liu Z, Wang Y, Zhuang J, Peng Y, Mo X, Chen J, Shi Y, Yu M, Cai W, Li Y, Zhu X, Yuan W, Li Y, Li F, Zhou Z, Dai G, Ye X, Wan Y, Jiang Z, Zhu P, Fan X, Wu X. FKBP51 induces p53-dependent apoptosis and enhances drug sensitivity of human non-small-cell lung cancer cells. Exp Ther Med 2020; 19:2236-2242. [PMID: 32104289 PMCID: PMC7027341 DOI: 10.3892/etm.2020.8450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is one of the most prevalent cancer types worldwide, and non-small-cell lung cancer (NSCLC) accounts for ~85% of all lung cancer cases. Despite the notable prevalence of NSCLC, the mechanisms underlying its progression remain unclear. The present study investigated the involvement of FK506-binding protein 51 (FKBP51) in NSCLC development and determined the factors associated with FKBP51 modification for NSCLC treatment. Immunohistochemical analysis was performed to analyze FKBP51 expression in human NSCLC tissue samples. Additionally, flow cytometry was performed to observe the apoptosis of FKBP51-overexpressing A549 cells. A dual-luciferase reporter assay was performed to confirm the association between FKBP51 and p53 expression, and western blotting was performed to analyze the effects of FKBP51 on the p53 signaling pathway. Finally, cell viability was measured using a Cell Counting Kit-8 assay. The results suggested FKBP51 downregulation in human lung cancer. Furthermore, apoptosis rates may be increased in FKBP51-overexpressing A549 cells. Moreover, FKBP51 promoted p53 expression and subsequent p53 signaling pathway activation. These results indicated that FKBP51 promoted A549 cell apoptosis via the p53 signaling pathway. Additionally, FKBP51 enhanced the sensitivity of A549 cells to cisplatin. Collectively, these data suggested that FKBP51 could serve as a biomarker for human lung cancer and can thus be tailored for incorporation into NSCLC therapy in the future.
Collapse
Affiliation(s)
- Yu Chen
- Center for Heart Development, State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Zhiqiang Liu
- Center for Heart Development, State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Yuequn Wang
- Center for Heart Development, State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Jian Zhuang
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, P.R. China
| | - Yun Peng
- Center for Heart Development, State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Xiaoyang Mo
- Center for Heart Development, State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Jimei Chen
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, P.R. China
| | - Yan Shi
- Center for Heart Development, State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Mengxiong Yu
- Center for Heart Development, State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Wanwan Cai
- Center for Heart Development, State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Yahuan Li
- Center for Heart Development, State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Xiaolan Zhu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, P.R. China
| | - Wuzhou Yuan
- Center for Heart Development, State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Yongqing Li
- Center for Heart Development, State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Fang Li
- Center for Heart Development, State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Zuoqiong Zhou
- Center for Heart Development, State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P.R. China.,Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, P.R. China
| | - Guo Dai
- Center for Heart Development, State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Xiangli Ye
- Center for Heart Development, State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Yongqi Wan
- Center for Heart Development, State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Zhigang Jiang
- Center for Heart Development, State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Ping Zhu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, P.R. China
| | - Xiongwei Fan
- Center for Heart Development, State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Xiushan Wu
- Center for Heart Development, State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P.R. China
| |
Collapse
|
49
|
Gâtel P, Piechaczyk M, Bossis G. Ubiquitin, SUMO, and Nedd8 as Therapeutic Targets in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:29-54. [PMID: 32274752 DOI: 10.1007/978-3-030-38266-7_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ubiquitin defines a family of approximately 20 peptidic posttranslational modifiers collectively called the Ubiquitin-like (UbLs). They are conjugated to thousands of proteins, modifying their function and fate in many ways. Dysregulation of these modifications has been implicated in a variety of pathologies, in particular cancer. Ubiquitin, SUMO (-1 to -3), and Nedd8 are the best-characterized UbLs. They have been involved in the regulation of the activity and/or the stability of diverse components of various oncogenic or tumor suppressor pathways. Moreover, the dysregulation of enzymes responsible for their conjugation/deconjugation has also been associated with tumorigenesis and cancer resistance to therapies. The UbL system therefore constitutes an attractive target for developing novel anticancer therapeutic strategies. Here, we review the roles and dysregulations of Ubiquitin, SUMO, and Nedd8 pathways in tumorigenesis, as well as recent advances in the identification of small molecules targeting their conjugating machineries for potential application in the fight against cancer.
Collapse
Affiliation(s)
- Pierre Gâtel
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Marc Piechaczyk
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Guillaume Bossis
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
50
|
Liberman AC, Budziñski ML, Sokn C, Gobbini RP, Ugo MB, Arzt E. SUMO conjugation as regulator of the glucocorticoid receptor-FKBP51 cellular response to stress. Steroids 2020; 153:108520. [PMID: 31604074 DOI: 10.1016/j.steroids.2019.108520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/20/2019] [Accepted: 10/01/2019] [Indexed: 01/19/2023]
Abstract
In order to adequately respond to stressful stimuli, glucocorticoids (GCs) target almost every tissue of the body. By exerting a negative feedback loop in the hypothalamic-pituitary-adrenal (HPA) axis GCs inhibit their own synthesis and restore homeostasis. GCs actions are mostly mediated by the GC receptor (GR), a member of the nuclear receptor superfamily. Alterations of the GR activity have been associatedto different diseases including mood disorders and can lead to severe complication. Therefore, understanding the molecular complexity of GR modulation is mandatory for the development of new and effective drugs for treating GR-associated disorders. FKBP51 is a GR chaperone that has gained much attention because it is a strong inhibitor of GR activity and has a crucial role in psychiatric diseases. Both GR and FKBP51 activity are regulated by SUMOylation, a posttranslational (PTM). In this review, we focus on the impact of SUMO-conjugation as a regulator of this pathway.
Collapse
Affiliation(s)
- Ana C Liberman
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)- CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina.
| | - Maia L Budziñski
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)- CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Clara Sokn
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)- CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Romina P Gobbini
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)- CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Maria B Ugo
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)- CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)- CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina; Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.
| |
Collapse
|