1
|
Chen X, Wang K, Mufti FUD, Xu D, Zhu C, Huang X, Zeng C, Jin Q, Huang X, Yan YH, Dong MQ, Feng X, Shi Y, Kennedy S, Guang S. Germ granule compartments coordinate specialized small RNA production. Nat Commun 2024; 15:5799. [PMID: 38987544 PMCID: PMC11236994 DOI: 10.1038/s41467-024-50027-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/26/2024] [Indexed: 07/12/2024] Open
Abstract
Germ granules are biomolecular condensates present in most animal germ cells. One function of germ granules is to help maintain germ cell totipotency by organizing mRNA regulatory machinery, including small RNA-based gene regulatory pathways. The C. elegans germ granule is compartmentalized into multiple subcompartments whose biological functions are largely unknown. Here, we identify an uncharted subcompartment of the C. elegans germ granule, which we term the E granule. The E granule is nonrandomly positioned within the germ granule. We identify five proteins that localize to the E granule, including the RNA-dependent RNA polymerase (RdRP) EGO-1, the Dicer-related helicase DRH-3, the Tudor domain-containing protein EKL-1, and two intrinsically disordered proteins, EGC-1 and ELLI-1. Localization of EGO-1 to the E granule enables synthesis of a specialized class of 22G RNAs, which derive exclusively from 5' regions of a subset of germline-expressed mRNAs. Defects in E granule assembly elicit disordered production of endogenous siRNAs, which disturbs fertility and the RNAi response. Our results define a distinct subcompartment of the C. elegans germ granule and suggest that one function of germ granule compartmentalization is to facilitate the localized production of specialized classes of small regulatory RNAs.
Collapse
Affiliation(s)
- Xiangyang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Ke Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Farees Ud Din Mufti
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Demin Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Chengming Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Xinya Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Chenming Zeng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Qile Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Xiaona Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Yong-Hong Yan
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Xuezhu Feng
- School of Basic Medicine, Anhui Medical University, Hefei, China.
| | - Yunyu Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| | - Scott Kennedy
- Department of Genetics, Blavatnik Institute at Harvard Medical School, Boston, MA, 02115, USA.
| | - Shouhong Guang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Hefei, Anhui, 230027, China.
| |
Collapse
|
2
|
Dai S, Tang X, Li L, Ishidate T, Ozturk AR, Chen H, Dude AL, Yan YH, Dong MQ, Shen EZ, Mello CC. A family of C. elegans VASA homologs control Argonaute pathway specificity and promote transgenerational silencing. Cell Rep 2022; 40:111265. [PMID: 36070689 PMCID: PMC9887883 DOI: 10.1016/j.celrep.2022.111265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/01/2022] [Accepted: 08/04/2022] [Indexed: 02/02/2023] Open
Abstract
Germline Argonautes direct transcriptome surveillance within perinuclear membraneless organelles called nuage. In C. elegans, a family of Vasa-related Germ Line Helicase (GLH) proteins localize in and promote the formation of nuage. Previous studies have implicated GLH proteins in inherited silencing, but direct roles in small-RNA production, Argonaute binding, or mRNA targeting have not been identified. Here we show that GLH proteins compete with each other to control Argonaute pathway specificity, bind directly to Argonaute target mRNAs, and promote the amplification of small RNAs required for transgenerational inheritance. We show that the ATPase cycle of GLH-1 regulates direct binding to the Argonaute WAGO-1, which engages amplified small RNAs. Our findings support a dynamic and direct role for GLH proteins in inherited silencing beyond their role as structural components of nuage.
Collapse
Affiliation(s)
- Siyuan Dai
- RNA Therapeutic Institute, UMass Chan Medical School, Worcester, MA 01605, USA; Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Xiaoyin Tang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Lili Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Takao Ishidate
- RNA Therapeutic Institute, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Ahmet R Ozturk
- RNA Therapeutic Institute, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Hao Chen
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01605, USA; Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Altair L Dude
- RNA Therapeutic Institute, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Yong-Hong Yan
- National Institute of Biological Sciences, Beijing 102206, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
| | - En-Zhi Shen
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| | - Craig C Mello
- RNA Therapeutic Institute, UMass Chan Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, Worcester, MA 01605, USA.
| |
Collapse
|
3
|
Li T, Yang X, Feng Z, Nie W, Fang Z, Zou Y. P5A ATPase controls ER translocation of Wnt in neuronal migration. Cell Rep 2021; 37:109901. [PMID: 34706230 DOI: 10.1016/j.celrep.2021.109901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/09/2021] [Accepted: 10/06/2021] [Indexed: 11/28/2022] Open
Abstract
The Wnt family contains conserved secretory proteins required for developmental patterning and tissue homeostasis. However, how Wnt is targeted to the endoplasmic reticulum (ER) for processing and secretion remains poorly understood. Here, we report that CATP-8/P5A ATPase directs neuronal migration non-cell autonomously in Caenorhabditis elegans by regulating EGL-20/Wnt biogenesis. CATP-8 likely functions as a translocase to translocate nascent EGL-20/Wnt polypeptide into the ER by interacting with the highly hydrophobic core region of EGL-20 signal sequence. Such regulation of Wnt biogenesis by P5A ATPase is common in C. elegans and conserved in human cells. These findings describe the physiological roles of P5A ATPase in neural development and identify Wnt proteins as direct substrates of P5A ATPase for ER translocation.
Collapse
Affiliation(s)
- Tingting Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhigang Feng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wang Nie
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyu Fang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yan Zou
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
4
|
Wang Y, Weng C, Chen X, Zhou X, Huang X, Yan Y, Zhu C. CDE-1 suppresses the production of risiRNA by coupling polyuridylation and degradation of rRNA. BMC Biol 2020; 18:115. [PMID: 32887607 PMCID: PMC7472701 DOI: 10.1186/s12915-020-00850-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 08/17/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Modification of RNAs, particularly at the terminals, is critical for various essential cell processes; for example, uridylation is implicated in tumorigenesis, proliferation, stem cell maintenance, and immune defense against viruses and retrotransposons. Ribosomal RNAs can be regulated by antisense ribosomal siRNAs (risiRNAs), which downregulate pre-rRNAs through the nuclear RNAi pathway in Caenorhabditis elegans. However, the biogenesis and regulation of risiRNAs remain obscure. Previously, we showed that 26S rRNAs are uridylated at the 3'-ends by an unknown terminal polyuridylation polymerase before the rRNAs are degraded by a 3' to 5' exoribonuclease SUSI-1(ceDIS3L2). RESULTS Here, we found that CDE-1, one of the three C.elegans polyuridylation polymerases (PUPs), is specifically involved in suppressing risiRNA production. CDE-1 localizes to perinuclear granules in the germline and uridylates Argonaute-associated 22G-RNAs, 26S, and 5.8S rRNAs at the 3'-ends. Immunoprecipitation followed by mass spectrometry (IP-MS) revealed that CDE-1 interacts with SUSI-1(ceDIS3L2). Consistent with these results, both CDE-1 and SUSI-1(ceDIS3L2) are required for the inheritance of RNAi. CONCLUSIONS This work identified a rRNA surveillance machinery of rRNAs that couples terminal polyuridylation and degradation.
Collapse
Affiliation(s)
- Yun Wang
- National Science Center for Physical Sciences at Microscale Division of Molecular & Cell Biophysics, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China.
- School of Bioengineering, Huainan Normal University, Huainan, 232038, Anhui, People's Republic of China.
| | - Chenchun Weng
- National Science Center for Physical Sciences at Microscale Division of Molecular & Cell Biophysics, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
| | - Xiangyang Chen
- National Science Center for Physical Sciences at Microscale Division of Molecular & Cell Biophysics, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
| | - Xufei Zhou
- National Science Center for Physical Sciences at Microscale Division of Molecular & Cell Biophysics, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
| | - Xinya Huang
- National Science Center for Physical Sciences at Microscale Division of Molecular & Cell Biophysics, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
| | - Yonghong Yan
- National Institute of Biological Sciences, Beijing, 102206, People's Republic of China
| | - Chengming Zhu
- National Science Center for Physical Sciences at Microscale Division of Molecular & Cell Biophysics, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
| |
Collapse
|
5
|
Jia R, Chai Y, Xie C, Liu G, Zhu Z, Huang K, Li W, Ou G. The spectrin-based membrane skeleton is asymmetric and remodels during neural development in C. elegans. J Cell Sci 2020; 133:jcs248583. [PMID: 32620698 DOI: 10.1242/jcs.248583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/25/2020] [Indexed: 01/22/2023] Open
Abstract
Perturbation of spectrin-based membrane mechanics causes hereditary elliptocytosis and spinocerebellar ataxia, but the underlying cellular basis of pathogenesis remains unclear. Here, we introduced conserved disease-associated spectrin mutations into the Caenorhabditis elegans genome and studied the contribution of spectrin to neuronal migration and dendrite formation in developing larvae. The loss of spectrin resulted in ectopic actin polymerization outside of the existing front and secondary membrane protrusions, leading to defective neuronal positioning and dendrite morphology in adult animals. Spectrin accumulated in the lateral region and rear of migrating neuroblasts and redistributes from the soma into the newly formed dendrites, indicating that the spectrin-based membrane skeleton is asymmetric and remodels to regulate actin assembly and cell shape during development. We affinity-purified spectrin from C. elegans and showed that its binding partner ankyrin functions with spectrin. Asymmetry and remodeling of the membrane skeleton might enable spatiotemporal modulation of membrane mechanics for distinct developmental events.
Collapse
Affiliation(s)
- Ru Jia
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | - Yongping Chai
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | - Chao Xie
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | - Gai Liu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhiwen Zhu
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Li
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Zeng C, Weng C, Wang X, Yan YH, Li WJ, Xu D, Hong M, Liao S, Dong MQ, Feng X, Xu C, Guang S. Functional Proteomics Identifies a PICS Complex Required for piRNA Maturation and Chromosome Segregation. Cell Rep 2020; 27:3561-3572.e3. [PMID: 31216475 DOI: 10.1016/j.celrep.2019.05.076] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/08/2019] [Accepted: 05/20/2019] [Indexed: 01/19/2023] Open
Abstract
piRNAs play significant roles in suppressing transposons and nonself nucleic acids, maintaining genome integrity, and defending against viral infections. In C. elegans, piRNA precursors are transcribed in the nucleus and are subjected to a number of processing and maturation steps. The biogenesis of piRNAs is not fully understood. We use functional proteomics in C. elegans and identify a piRNA biogenesis and chromosome segregation (PICS) complex. The PICS complex contains TOFU-6, PID-1, PICS-1, TOST-1, and ERH-2, which exhibit dynamic localization among different subcellular compartments. In the germlines, the PICS complex contains TOFU-6/PICS-1/ERH-2/PID-1, is largely concentrated at the perinuclear granule zone, and engages in piRNA processing. During embryogenesis, the TOFU-6/PICS-1/ERH-2/TOST-1 complex accumulates in the nucleus and plays essential roles in chromosome segregation. The functions of these factors in mediating chromosome segregation are independent of piRNA production. We speculate that differential compositions of PICS factors may help cells coordinate distinct cellular processes.
Collapse
Affiliation(s)
- Chenming Zeng
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Chenchun Weng
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Xiaoyang Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Yong-Hong Yan
- National Institute of Biological Sciences, Beijing 102206, China
| | - Wen-Jun Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Demin Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Minjie Hong
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Shanhui Liao
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xuezhu Feng
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China.
| | - Chao Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China.
| | - Shouhong Guang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China; CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Hefei, Anhui 230027, P.R. China.
| |
Collapse
|
7
|
Spatial confinement of receptor activity by tyrosine phosphatase during directional cell migration. Proc Natl Acad Sci U S A 2020; 117:14270-14279. [PMID: 32513699 DOI: 10.1073/pnas.2003019117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Directional cell migration involves signaling cascades that stimulate actin assembly at the leading edge, and additional pathways must inhibit actin polymerization at the rear. During neuroblast migration in Caenorhabditis elegans, the transmembrane protein MIG-13/Lrp12 acts through the Arp2/3 nucleation-promoting factors WAVE and WASP to guide the anterior migration. Here we show that a tyrosine kinase, SRC-1, directly phosphorylates MIG-13 and promotes its activity on actin assembly at the leading edge. In GFP knockin animals, SRC-1 and MIG-13 distribute along the entire plasma membrane of migrating cells. We reveal that a receptor-like tyrosine phosphatase, PTP-3, maintains the F-actin polarity during neuroblast migration. Recombinant PTP-3 dephosphorylates SRC-1-dependent MIG-13 phosphorylation in vitro. Importantly, the endogenous PTP-3 accumulates at the rear of the migrating neuroblast, and its extracellular domain is essential for directional cell migration. We provide evidence that the asymmetrically localized tyrosine phosphatase PTP-3 spatially restricts MIG-13/Lrp12 receptor activity in migrating cells.
Collapse
|
8
|
Xiao Q, Hu Y, Yang X, Tang J, Wang X, Xue X, Li M, Wang M, Zhao Y, Liu J, Wang H. Changes in Protein Phosphorylation during Salivary Gland Degeneration in Haemaphysalis longicornis. THE KOREAN JOURNAL OF PARASITOLOGY 2020; 58:161-171. [PMID: 32418385 PMCID: PMC7231830 DOI: 10.3347/kjp.2020.58.2.161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/10/2020] [Indexed: 01/19/2023]
Abstract
The ticks feed large amount of blood from their hosts and transmit pathogens to the victims. The salivary gland plays an important role in the blood feeding. When the female ticks are near engorgement, the salivary gland gradually loses its functions and begins to rapidly degenerate. In this study, data-independent acquisition quantitative proteomics was used to study changes in the phosphorylation modification of proteins during salivary gland degeneration in Haemaphysalis longicornis. In this quantitative study, 400 phosphorylated proteins and 850 phosphorylation modification sites were identified. Trough RNA interference experiments, we found that among the proteins with changes in phosphorylation, apoptosis-promoting Hippo protein played a role in salivary gland degeneration.
Collapse
Affiliation(s)
- Qi Xiao
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Yuhong Hu
- Instrumental Analysis Center, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Xiaohong Yang
- Department of Pathogenic Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China.,State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, PR China
| | - Jianna Tang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Xiaoshuang Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Xiaomin Xue
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Mengxue Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Minjing Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Yinan Zhao
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Hui Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| |
Collapse
|
9
|
Lee H, Kang J, Ahn S, Lee J. The Hippo Pathway Is Essential for Maintenance of Apicobasal Polarity in the Growing Intestine of Caenorhabditis elegans. Genetics 2019; 213:501-515. [PMID: 31358532 PMCID: PMC6781910 DOI: 10.1534/genetics.119.302477] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/25/2019] [Indexed: 12/20/2022] Open
Abstract
Although multiple determinants for establishing polarity in membranes of epithelial cells have been identified, the mechanism for maintaining apicobasal polarity is not fully understood. Here, we show that the conserved Hippo kinase pathway plays a role in the maintenance of apicobasal polarity in the developing intestine of Caenorhabditis elegans We screened suppressors of the mutation in wts-1-the gene that encodes the LATS kinase homolog, deficiency of which leads to disturbance of the apicobasal polarity of the intestinal cells and to eventual death of the organism. We identified several alleles of yap-1 and egl-44 that suppress the effects of this mutation. yap-1 encodes a homolog of YAP/Yki, and egl-44 encodes a homolog of TEAD/Sd. WTS-1 bound directly to YAP-1 and inhibited its nuclear accumulation in intestinal cells. We also found that NFM-1, which is a homolog of NF2/Merlin, functioned in the same genetic pathway as WTS-1 to regulate YAP-1 to maintain cellular polarity. Transcriptome analysis identified several target candidates of the YAP-1-EGL-44 complex including TAT-2, which encodes a putative P-type ATPase. In summary, we have delineated the conserved Hippo pathway in C. elegans consisting of NFM-1-WTS-1-YAP-1-EGL-44 and proved that the proper regulation of YAP-1 by upstream NFM-1 and WTS-1 is essential for maintenance of apicobasal membrane identities of the growing intestine.
Collapse
Affiliation(s)
- Hanee Lee
- Department of Biological Sciences, Seoul National University, Gwanak-gu 08826, Korea
| | - Junsu Kang
- Department of Biological Sciences, Seoul National University, Gwanak-gu 08826, Korea
| | - Soungyub Ahn
- Department of Biological Sciences, Seoul National University, Gwanak-gu 08826, Korea
| | - Junho Lee
- Department of Biological Sciences, Seoul National University, Gwanak-gu 08826, Korea
| |
Collapse
|
10
|
Jia R, Li D, Li M, Chai Y, Liu Y, Xie Z, Shao W, Xie C, Li L, Huang X, Chen L, Li W, Ou G. Spectrin-based membrane skeleton supports ciliogenesis. PLoS Biol 2019; 17:e3000369. [PMID: 31299042 PMCID: PMC6655744 DOI: 10.1371/journal.pbio.3000369] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/24/2019] [Accepted: 06/25/2019] [Indexed: 12/14/2022] Open
Abstract
Cilia are remarkable cellular devices that power cell motility and transduce extracellular signals. To assemble a cilium, a cylindrical array of 9 doublet microtubules push out an extension of the plasma membrane. Membrane tension regulates cilium formation; however, molecular pathways that link mechanical stimuli to ciliogenesis are unclear. Using genome editing, we introduced hereditary elliptocytosis (HE)- and spinocerebellar ataxia (SCA)-associated mutations into the Caenorhabditis elegans membrane skeletal protein spectrin. We show that these mutations impair mechanical support for the plasma membrane and change cell shape. RNA sequencing (RNA-seq) analyses of spectrin-mutant animals uncovered a global down-regulation of ciliary gene expression, prompting us to investigate whether spectrin participates in ciliogenesis. Spectrin mutations affect intraflagellar transport (IFT), disrupt axonemal microtubules, and inhibit cilium formation, and the endogenous spectrin periodically distributes along cilia. Mammalian spectrin also localizes in cilia and regulates ciliogenesis. These results define a previously unrecognized yet conserved role of spectrin-based mechanical support for cilium biogenesis.
Collapse
Affiliation(s)
- Ru Jia
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Dongdong Li
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Ming Li
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Yongping Chai
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Yufan Liu
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Zhongyun Xie
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Wenxin Shao
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Chao Xie
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Liuju Li
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xiaoshuai Huang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Wei Li
- School of Medicine, Tsinghua University, Beijing, China
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| |
Collapse
|
11
|
Weng C, Kosalka J, Berkyurek AC, Stempor P, Feng X, Mao H, Zeng C, Li WJ, Yan YH, Dong MQ, Morero NR, Zuliani C, Barabas O, Ahringer J, Guang S, Miska EA. The USTC co-opts an ancient machinery to drive piRNA transcription in C. elegans. Genes Dev 2019; 33:90-102. [PMID: 30567997 PMCID: PMC6317315 DOI: 10.1101/gad.319293.118] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/19/2018] [Indexed: 01/15/2023]
Abstract
Piwi-interacting RNAs (piRNAs) engage Piwi proteins to suppress transposons and nonself nucleic acids and maintain genome integrity and are essential for fertility in a variety of organisms. In Caenorhabditis elegans, most piRNA precursors are transcribed from two genomic clusters that contain thousands of individual piRNA transcription units. While a few genes have been shown to be required for piRNA biogenesis, the mechanism of piRNA transcription remains elusive. Here we used functional proteomics approaches to identify an upstream sequence transcription complex (USTC) that is essential for piRNA biogenesis. The USTC contains piRNA silencing-defective 1 (PRDE-1), SNPC-4, twenty-one-U fouled-up 4 (TOFU-4), and TOFU-5. The USTC forms unique piRNA foci in germline nuclei and coats the piRNA cluster genomic loci. USTC factors associate with the Ruby motif just upstream of type I piRNA genes. USTC factors are also mutually dependent for binding to the piRNA clusters and forming the piRNA foci. Interestingly, USTC components bind differentially to piRNAs in the clusters and other noncoding RNA genes. These results reveal the USTC as a striking example of the repurposing of a general transcription factor complex to aid in genome defense against transposons.
Collapse
Affiliation(s)
- Chenchun Weng
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Joanna Kosalka
- Wellcome Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom; Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Ahmet C Berkyurek
- Wellcome Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom; Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Przemyslaw Stempor
- Wellcome Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom; Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Xuezhu Feng
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Hui Mao
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Chenming Zeng
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Wen-Jun Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yong-Hong Yan
- National Institute of Biological Sciences, Beijing 102206, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Natalia Rosalía Morero
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Cecilia Zuliani
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Orsolya Barabas
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Julie Ahringer
- Wellcome Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom; Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Shouhong Guang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Eric A Miska
- Wellcome Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom; Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
- Wellcome Sanger Institute, Cambridge CB10 1SA, United Kingdom
| |
Collapse
|
12
|
Li K, Guo J, Wu Y, Jin D, Jiang H, Liu C, Qin C. Suppression of YAP by DDP disrupts colon tumor progression. Oncol Rep 2018; 39:2114-2126. [PMID: 29512779 PMCID: PMC5928767 DOI: 10.3892/or.2018.6297] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/28/2018] [Indexed: 01/16/2023] Open
Abstract
Colon cancer is a commonly diagnosed cancer that often has a poor prognosis. Combined with the development of drug resistance to cancer treatment agents the treatment efficacy of colon cancer can be limited. Activation of the oncogene YAP has been shown to be related to colon cancer progression and is associated with poor prognosis, drug resistance and metastasis, even under treatment. Cisplatin (DDP) is a commonly used drug that can control carcinoma progression, although its mechanisms are poorly understood. In the present study, we examined whether DDP specifically suppressed YAP in order to inhibit colon carcinoma progression. Our data revealed that Mst/Yap signaling was unusually activated in colon cancers, promoting cell proliferation and invasion. DDP treatment decreased the expression of YAP at both the transcriptional and post-translational levels, leading to cell cycle arrest, apoptosis and senescence in cancer cells, in addition to decreasing epithelial-to-mesenchymal transition, cell motility and in vitro cell invasion and migration. Ultimately, DDP increased the expression of E-cadherin and decreased the expression of vimentin. The present study also revealed that post-translational regulation of YAP phosphorylation controlled the subcellular distribution between the nucleus and the cytoplasm. In conclusion, the findings of the present study revealed that DDP was a suitable therapeutic candidate for colon cancer that specifically targets the Mst/Yap signaling pathway.
Collapse
Affiliation(s)
- Kun Li
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Jiwei Guo
- Cancer Research Institute, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Yan Wu
- Cancer Research Institute, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Dan Jin
- Department of Pain Management, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Hong Jiang
- Department of Anorectal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Chengxia Liu
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Chengyong Qin
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
13
|
Feng G, Zhu Z, Li WJ, Lin Q, Chai Y, Dong MQ, Ou G. Hippo kinases maintain polarity during directional cell migration in Caenorhabditis elegans. EMBO J 2016; 36:334-345. [PMID: 28011581 DOI: 10.15252/embj.201695734] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/07/2016] [Accepted: 11/16/2016] [Indexed: 01/21/2023] Open
Abstract
Precise positioning of cells is crucial for metazoan development. Despite immense progress in the elucidation of the attractive cues of cell migration, the repulsive mechanisms that prevent the formation of secondary leading edges remain less investigated. Here, we demonstrate that Caenorhabditis elegans Hippo kinases promote cell migration along the anterior-posterior body axis via the inhibition of dorsal-ventral (DV) migration. Ectopic DV polarization was also demonstrated in gain-of-function mutant animals for C. elegans RhoG MIG-2. We identified serine 139 of MIG-2 as a novel conserved Hippo kinase phosphorylation site and demonstrated that purified Hippo kinases directly phosphorylate MIG-2S139 Live imaging analysis of genome-edited animals indicates that MIG-2S139 phosphorylation impedes actin assembly in migrating cells. Intriguingly, Hippo kinases are excluded from the leading edge in wild-type cells, while MIG-2 loss induces uniform distribution of Hippo kinases. We provide evidence that Hippo kinases inhibit RhoG activity locally and are in turn restricted to the cell body by RhoG-mediated polarization. Therefore, we propose that the Hippo-RhoG feedback regulation maintains cell polarity during directional cell motility.
Collapse
Affiliation(s)
- Guoxin Feng
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Zhiwen Zhu
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Wen-Jun Li
- National Institute of Biological Science, Beijing, China
| | - Qirong Lin
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Yongping Chai
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Meng-Qiu Dong
- National Institute of Biological Science, Beijing, China
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| |
Collapse
|