1
|
Villarreal-Puente A, Altamirano-Torres C, Jiménez-Mejía G, Hernández-Bautista C, Montalvo-Méndez R, Vázquez M, Zurita M, Reséndez-Pérez D. Novel Antennapedia and Ultrabithorax trimeric complexes with TBP and Exd regulate transcription. Hereditas 2024; 161:25. [PMID: 39080786 PMCID: PMC11290222 DOI: 10.1186/s41065-024-00327-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Hox proteins interact with DNA and many other proteins, co-factors, transcriptional factors, chromatin remodeling components, non-coding RNAs and even the extracellular matrix that assembles the Hox complexes. The number of interacting partners continues to grow with diverse components and more transcriptional factors than initially thought. Hox complexes present many activities, but their molecular mechanisms to modulate their target genes remain unsolved. RESULTS In this paper we showed the protein-protein interaction of Antp with Ubx through the homeodomain using BiFC in Drosophila. Analysis of Antp-deletional mutants showed that AntpHD helixes 1 and 2 are required for the interaction with Ubx. Also, we found a novel interaction of Ubx with TBP, in which the PolyQ domain of TBP is required for the interaction. Moreover, we also detected the formation of two new trimeric complexes of Antp with Ubx, TBP and Exd using BiFC-FRET; these proteins, however, do not form a trimeric interaction with BIP2 or TFIIEβ. The novel trimeric complexes reduced Antp transcriptional activity, indicating that they could confer specificity for repression. CONCLUSIONS Our results increase the number of transcriptional factors in the Antp and Ubx interactomes that form two novel trimeric complexes with TBP and Exd. We also report a new Ubx interaction with TBP. These novel interactions provide important clues of the dynamics of Hox-interacting complexes involved in transcriptional regulation, contributing to better understand Hox function.
Collapse
Affiliation(s)
- Alely Villarreal-Puente
- Facultad de Ciencias Biológicas, Departamento de Inmunología y Virología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
- Facultad de Ciencias Biológicas, Departamento de Biología Celular y Genética, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Claudia Altamirano-Torres
- Facultad de Ciencias Biológicas, Departamento de Inmunología y Virología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
- Facultad de Ciencias Biológicas, Departamento de Biología Celular y Genética, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Gustavo Jiménez-Mejía
- Facultad de Ciencias Biológicas, Departamento de Inmunología y Virología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
- Facultad de Ciencias Biológicas, Departamento de Biología Celular y Genética, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Carolina Hernández-Bautista
- Facultad de Ciencias Biológicas, Departamento de Inmunología y Virología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
- Facultad de Ciencias Biológicas, Departamento de Biología Celular y Genética, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Rubén Montalvo-Méndez
- Facultad de Ciencias Biológicas, Departamento de Inmunología y Virología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
- Facultad de Ciencias Biológicas, Departamento de Biología Celular y Genética, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Martha Vázquez
- Instituto de Biotecnología, Departamento de Fisiología Molecular y Genética del Desarrollo, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Mario Zurita
- Instituto de Biotecnología, Departamento de Fisiología Molecular y Genética del Desarrollo, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Diana Reséndez-Pérez
- Facultad de Ciencias Biológicas, Departamento de Inmunología y Virología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México.
- Facultad de Ciencias Biológicas, Departamento de Biología Celular y Genética, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México.
| |
Collapse
|
2
|
Wernig-Zorc S, Kugler F, Schmutterer L, Räß P, Hausmann C, Holzinger S, Längst G, Schwartz U. nucMACC: An MNase-seq pipeline to identify structurally altered nucleosomes in the genome. SCIENCE ADVANCES 2024; 10:eadm9740. [PMID: 38959309 PMCID: PMC11221511 DOI: 10.1126/sciadv.adm9740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
Micrococcal nuclease sequencing is the state-of-the-art method for determining chromatin structure and nucleosome positioning. Data analysis is complex due to the AT-dependent sequence bias of the endonuclease and the requirement for high sequencing depth. Here, we present the nucleosome-based MNase accessibility (nucMACC) pipeline unveiling the regulatory chromatin landscape by measuring nucleosome accessibility and stability. The nucMACC pipeline represents a systematic and genome-wide approach for detecting unstable ("fragile") nucleosomes. We have characterized the regulatory nucleosome landscape in Drosophila melanogaster, Saccharomyces cerevisiae, and mammals. Two functionally distinct sets of promoters were characterized, one associated with an unstable nucleosome and the other being nucleosome depleted. We show that unstable nucleosomes present intermediate states of nucleosome remodeling, preparing inducible genes for transcriptional activation in response to stimuli or stress. The presence of unstable nucleosomes correlates with RNA polymerase II proximal pausing. The nucMACC pipeline offers unparalleled precision and depth in nucleosome research and is a valuable tool for future nucleosome studies.
Collapse
Affiliation(s)
- Sara Wernig-Zorc
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Fabian Kugler
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Leo Schmutterer
- NGS Analysis Center Biology and Pre-clinical Medicine, University of Regensburg, Regensburg, Germany
| | - Patrick Räß
- NGS Analysis Center Biology and Pre-clinical Medicine, University of Regensburg, Regensburg, Germany
| | - Clemens Hausmann
- NGS Analysis Center Biology and Pre-clinical Medicine, University of Regensburg, Regensburg, Germany
| | - Simon Holzinger
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Gernot Längst
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Uwe Schwartz
- NGS Analysis Center Biology and Pre-clinical Medicine, University of Regensburg, Regensburg, Germany
| |
Collapse
|
3
|
Katagade V, Kandroo M, Ratnaparkhi A. Embryonic spatiotemporal expression pattern of Folded gastrulation suggests roles in multiple morphogenetic events and regulation by AbdA. G3 (BETHESDA, MD.) 2024; 14:jkae032. [PMID: 38366558 DOI: 10.1093/g3journal/jkae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/03/2023] [Accepted: 01/31/2024] [Indexed: 02/18/2024]
Abstract
In Drosophila, the signaling pathway activated by the ligand Folded gastrulation (Fog) is among the few known G protein-coupled receptor (GPCR) pathways to regulate cell shape change with a well-characterized role in gastrulation. However, an understanding of the spectrum of morphogenetic events regulated by Fog signaling is still lacking. Here, we present an analysis of the expression pattern and regulation of fog using a genome-engineered Fog::sfGFP line. We show that Fog expression is widespread and in tissues previously not associated with the signaling pathway including germ cells, trachea, and amnioserosa. In the central nervous system (CNS), we find that the ligand is expressed in multiple types of glia indicating a prominent role in the development of these cells. Consistent with this, we have identified 3 intronic enhancers whose expression in the CNS overlaps with Fog::sfGFP. Further, we show that enhancer-1, (fogintenh-1) located proximal to the coding exon is responsive to AbdA. Supporting this, we find that fog expression is downregulated in abdA mutants. Together, our study highlights the broad scope of Fog-GPCR signaling during embryogenesis and identifies Hox gene AbdA as a novel regulator of fog expression.
Collapse
Affiliation(s)
- Vrushali Katagade
- MACS-Agharkar Research Institute (Affiliated to Savitribai Phule Pune University), Developmental Biology Group, G.G. Agarkar Road, Pune 411 004, Maharashtra, India
| | - Manisha Kandroo
- MACS-Agharkar Research Institute (Affiliated to Savitribai Phule Pune University), Developmental Biology Group, G.G. Agarkar Road, Pune 411 004, Maharashtra, India
| | - Anuradha Ratnaparkhi
- MACS-Agharkar Research Institute (Affiliated to Savitribai Phule Pune University), Developmental Biology Group, G.G. Agarkar Road, Pune 411 004, Maharashtra, India
| |
Collapse
|
4
|
Gibson TJ, Larson ED, Harrison MM. Protein-intrinsic properties and context-dependent effects regulate pioneer factor binding and function. Nat Struct Mol Biol 2024; 31:548-558. [PMID: 38365978 PMCID: PMC11261375 DOI: 10.1038/s41594-024-01231-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
Chromatin is a barrier to the binding of many transcription factors. By contrast, pioneer factors access nucleosomal targets and promote chromatin opening. Despite binding to target motifs in closed chromatin, many pioneer factors display cell-type-specific binding and activity. The mechanisms governing pioneer factor occupancy and the relationship between chromatin occupancy and opening remain unclear. We studied three Drosophila transcription factors with distinct DNA-binding domains and biological functions: Zelda, Grainy head and Twist. We demonstrated that the level of chromatin occupancy is a key determinant of pioneering activity. Multiple factors regulate occupancy, including motif content, local chromatin and protein concentration. Regions outside the DNA-binding domain are required for binding and chromatin opening. Our results show that pioneering activity is not a binary feature intrinsic to a protein but occurs on a spectrum and is regulated by a variety of protein-intrinsic and cell-type-specific features.
Collapse
Affiliation(s)
- Tyler J Gibson
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth D Larson
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Melissa M Harrison
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
5
|
Auradkar A, Guichard A, Kaduwal S, Sneider M, Bier E. tgCRISPRi: efficient gene knock-down using truncated gRNAs and catalytically active Cas9. Nat Commun 2023; 14:5587. [PMID: 37696787 PMCID: PMC10495392 DOI: 10.1038/s41467-023-40836-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/14/2023] [Indexed: 09/13/2023] Open
Abstract
CRISPR-interference (CRISPRi), a highly effective method for silencing genes in mammalian cells, employs an enzymatically dead form of Cas9 (dCas9) complexed with one or more guide RNAs (gRNAs) with 20 nucleotides (nt) of complementarity to transcription initiation sites of target genes. Such gRNA/dCas9 complexes bind to DNA, impeding transcription of the targeted locus. Here, we present an alternative gene-suppression strategy using active Cas9 complexed with truncated gRNAs (tgRNAs). Cas9/tgRNA complexes bind to specific target sites without triggering DNA cleavage. When targeted near transcriptional start sites, these short 14-15 nts tgRNAs efficiently repress expression of several target genes throughout somatic tissues in Drosophila melanogaster without generating any detectable target site mutations. tgRNAs also can activate target gene expression when complexed with a Cas9-VPR fusion protein or modulate enhancer activity, and can be incorporated into a gene-drive, wherein a traditional gRNA sustains drive while a tgRNA inhibits target gene expression.
Collapse
Affiliation(s)
- Ankush Auradkar
- Department of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0335, USA
| | - Annabel Guichard
- Department of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0335, USA
| | - Saluja Kaduwal
- Department of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0335, USA
| | - Marketta Sneider
- Department of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0335, USA
| | - Ethan Bier
- Department of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0335, USA.
- Tata Institute for Genetics and Society - UCSD, La Jolla, USA.
| |
Collapse
|
6
|
Poliacikova G, Barthez M, Rival T, Aouane A, Luis NM, Richard F, Daian F, Brouilly N, Schnorrer F, Maurel-Zaffran C, Graba Y, Saurin AJ. M1BP is an essential transcriptional activator of oxidative metabolism during Drosophila development. Nat Commun 2023; 14:3187. [PMID: 37268614 DOI: 10.1038/s41467-023-38986-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 05/23/2023] [Indexed: 06/04/2023] Open
Abstract
Oxidative metabolism is the predominant energy source for aerobic muscle contraction in adult animals. How the cellular and molecular components that support aerobic muscle physiology are put in place during development through their transcriptional regulation is not well understood. Using the Drosophila flight muscle model, we show that the formation of mitochondria cristae harbouring the respiratory chain is concomitant with a large-scale transcriptional upregulation of genes linked with oxidative phosphorylation (OXPHOS) during specific stages of flight muscle development. We further demonstrate using high-resolution imaging, transcriptomic and biochemical analyses that Motif-1-binding protein (M1BP) transcriptionally regulates the expression of genes encoding critical components for OXPHOS complex assembly and integrity. In the absence of M1BP function, the quantity of assembled mitochondrial respiratory complexes is reduced and OXPHOS proteins aggregate in the mitochondrial matrix, triggering a strong protein quality control response. This results in isolation of the aggregate from the rest of the matrix by multiple layers of the inner mitochondrial membrane, representing a previously undocumented mitochondrial stress response mechanism. Together, this study provides mechanistic insight into the transcriptional regulation of oxidative metabolism during Drosophila development and identifies M1BP as a critical player in this process.
Collapse
Affiliation(s)
- Gabriela Poliacikova
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Marine Barthez
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Thomas Rival
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Aïcha Aouane
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Nuno Miguel Luis
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Fabrice Richard
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Fabrice Daian
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Nicolas Brouilly
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Frank Schnorrer
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Corinne Maurel-Zaffran
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Yacine Graba
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Andrew J Saurin
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France.
| |
Collapse
|
7
|
Gibson TJ, Harrison MM. Protein-intrinsic properties and context-dependent effects regulate pioneer-factor binding and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.18.533281. [PMID: 37066406 PMCID: PMC10103944 DOI: 10.1101/2023.03.18.533281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Chromatin is a barrier to the binding of many transcription factors. By contrast, pioneer factors access nucleosomal targets and promote chromatin opening. Despite binding to target motifs in closed chromatin, many pioneer factors display cell-type specific binding and activity. The mechanisms governing pioneer-factor occupancy and the relationship between chromatin occupancy and opening remain unclear. We studied three Drosophila transcription factors with distinct DNA-binding domains and biological functions: Zelda, Grainy head, and Twist. We demonstrated that the level of chromatin occupancy is a key determinant of pioneering activity. Multiple factors regulate occupancy, including motif content, local chromatin, and protein concentration. Regions outside the DNA-binding domain are required for binding and chromatin opening. Our results show that pioneering activity is not a binary feature intrinsic to a protein but occurs on a spectrum and is regulated by a variety of protein-intrinsic and cell-type-specific features.
Collapse
Affiliation(s)
- Tyler J. Gibson
- Department of Biomolecular Chemistry, University of Wisconsin-Madison Madison, WI
| | - Melissa M. Harrison
- Department of Biomolecular Chemistry, University of Wisconsin-Madison Madison, WI
| |
Collapse
|
8
|
Boumpas P, Merabet S, Carnesecchi J. Integrating transcription and splicing into cell fate: Transcription factors on the block. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1752. [PMID: 35899407 DOI: 10.1002/wrna.1752] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 11/10/2022]
Abstract
Transcription factors (TFs) are present in all life forms and conserved across great evolutionary distances in eukaryotes. From yeast to complex multicellular organisms, they are pivotal players of cell fate decision by orchestrating gene expression at diverse molecular layers. Notably, TFs fine-tune gene expression by coordinating RNA fate at both the expression and splicing levels. They regulate alternative splicing, an essential mechanism for cell plasticity, allowing the production of many mRNA and protein isoforms in precise cell and tissue contexts. Despite this apparent role in splicing, how TFs integrate transcription and splicing to ultimately orchestrate diverse cell functions and cell fate decisions remains puzzling. We depict substantial studies in various model organisms underlining the key role of TFs in alternative splicing for promoting tissue-specific functions and cell fate. Furthermore, we emphasize recent advances describing the molecular link between the transcriptional and splicing activities of TFs. As TFs can bind both DNA and/or RNA to regulate transcription and splicing, we further discuss their flexibility and compatibility for DNA and RNA substrates. Finally, we propose several models integrating transcription and splicing activities of TFs in the coordination and diversification of cell and tissue identities. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Processing > Splicing Mechanisms.
Collapse
Affiliation(s)
- Panagiotis Boumpas
- Institut de Génomique Fonctionnelle de Lyon, UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard-Lyon 1, Lyon, France
| | - Samir Merabet
- Institut de Génomique Fonctionnelle de Lyon, UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard-Lyon 1, Lyon, France
| | - Julie Carnesecchi
- Institut de Génomique Fonctionnelle de Lyon, UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard-Lyon 1, Lyon, France
| |
Collapse
|
9
|
Carnesecchi J, Boumpas P, van Nierop Y Sanchez P, Domsch K, Pinto HD, Borges Pinto P, Lohmann I. The Hox transcription factor Ultrabithorax binds RNA and regulates co-transcriptional splicing through an interplay with RNA polymerase II. Nucleic Acids Res 2021; 50:763-783. [PMID: 34931250 PMCID: PMC8789087 DOI: 10.1093/nar/gkab1250] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Transcription factors (TFs) play a pivotal role in cell fate decision by coordinating gene expression programs. Although most TFs act at the DNA layer, few TFs bind RNA and modulate splicing. Yet, the mechanistic cues underlying TFs activity in splicing remain elusive. Focusing on the Drosophila Hox TF Ultrabithorax (Ubx), our work shed light on a novel layer of Ubx function at the RNA level. Transcriptome and genome-wide binding profiles in embryonic mesoderm and Drosophila cells indicate that Ubx regulates mRNA expression and splicing to promote distinct outcomes in defined cellular contexts. Our results demonstrate a new RNA-binding ability of Ubx. We find that the N51 amino acid of the DNA-binding Homeodomain is non-essential for RNA interaction in vitro, but is required for RNA interaction in vivo and Ubx splicing activity. Moreover, mutation of the N51 amino acid weakens the interaction between Ubx and active RNA Polymerase II (Pol II). Our results reveal that Ubx regulates elongation-coupled splicing, which could be coordinated by a dynamic interplay with active Pol II on chromatin. Overall, our work uncovered a novel role of the Hox TFs at the mRNA regulatory layer. This could be an essential function for other classes of TFs to control cell diversity.
Collapse
Affiliation(s)
- Julie Carnesecchi
- Heidelberg University, Centre for Organismal Studies (COS) Heidelberg, Department of Developmental Biology, Heidelberg, Germany.,Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Panagiotis Boumpas
- Heidelberg University, Centre for Organismal Studies (COS) Heidelberg, Department of Developmental Biology, Heidelberg, Germany
| | - Patrick van Nierop Y Sanchez
- Heidelberg University, Centre for Organismal Studies (COS) Heidelberg, Department of Developmental Biology, Heidelberg, Germany
| | - Katrin Domsch
- Heidelberg University, Centre for Organismal Studies (COS) Heidelberg, Department of Developmental Biology, Heidelberg, Germany.,Friedrich-Alexander-University Erlangen-Nürnberg, Department Biology, Division of Developmental Biology, Erlangen, Germany
| | - Hugo Daniel Pinto
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Pedro Borges Pinto
- Heidelberg University, Centre for Organismal Studies (COS) Heidelberg, Department of Developmental Biology, Heidelberg, Germany.,Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Ingrid Lohmann
- Heidelberg University, Centre for Organismal Studies (COS) Heidelberg, Department of Developmental Biology, Heidelberg, Germany
| |
Collapse
|
10
|
M1BP cooperates with CP190 to activate transcription at TAD borders and promote chromatin insulator activity. Nat Commun 2021; 12:4170. [PMID: 34234130 PMCID: PMC8263732 DOI: 10.1038/s41467-021-24407-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/09/2021] [Indexed: 11/10/2022] Open
Abstract
Genome organization is driven by forces affecting transcriptional state, but the relationship between transcription and genome architecture remains unclear. Here, we identified the Drosophila transcription factor Motif 1 Binding Protein (M1BP) in physical association with the gypsy chromatin insulator core complex, including the universal insulator protein CP190. M1BP is required for enhancer-blocking and barrier activities of the gypsy insulator as well as its proper nuclear localization. Genome-wide, M1BP specifically colocalizes with CP190 at Motif 1-containing promoters, which are enriched at topologically associating domain (TAD) borders. M1BP facilitates CP190 chromatin binding at many shared sites and vice versa. Both factors promote Motif 1-dependent gene expression and transcription near TAD borders genome-wide. Finally, loss of M1BP reduces chromatin accessibility and increases both inter- and intra-TAD local genome compaction. Our results reveal physical and functional interaction between CP190 and M1BP to activate transcription at TAD borders and mediate chromatin insulator-dependent genome organization. Transcriptional state plays a role in genome organization, however factors that link these processes are not well known. Here, the authors show Drosophila transcription factor Motif 1-binding protein (M1BP) interacts with the insulator protein CP190 to promote insulator function and activate Motif 1-dependent transcription at topologically associating domain (TAD) borders.
Collapse
|
11
|
Shapiro-Kulnane L, Bautista O, Salz HK. An RNA-interference screen in Drosophila to identify ZAD-containing C2H2 zinc finger genes that function in female germ cells. G3-GENES GENOMES GENETICS 2021; 11:6025177. [PMID: 33561227 PMCID: PMC8022714 DOI: 10.1093/g3journal/jkaa016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/14/2020] [Indexed: 11/24/2022]
Abstract
The zinc finger-associated domain (ZAD) is present in over 90 C2H2 zinc finger (ZNF) proteins. Despite their abundance, only a few ZAD-ZNF genes have been characterized to date. Here, we systematically analyze the function of 68 ZAD-ZNF genes in Drosophila female germ cells by performing an in vivo RNA-interference screen. We identified eight ZAD-ZNF genes required for oogenesis, and based on further characterization of the knockdown phenotypes, we uncovered defects broadly consistent with functions in germ cell specification and/or survival, early differentiation, and egg chamber maturation. These results provide a candidate pool for future studies aimed at functionalization of this large but poorly characterized gene family.
Collapse
Affiliation(s)
- Laura Shapiro-Kulnane
- Department of Genetics and Genome Sciences, Case Western Reserve University, School of Medicine, 10900 Euclid Ave. Cleveland, OH 44106, USA
| | - Oscar Bautista
- Department of Genetics and Genome Sciences, Case Western Reserve University, School of Medicine, 10900 Euclid Ave. Cleveland, OH 44106, USA
| | - Helen K Salz
- Department of Genetics and Genome Sciences, Case Western Reserve University, School of Medicine, 10900 Euclid Ave. Cleveland, OH 44106, USA
| |
Collapse
|
12
|
The Hox protein conundrum: The "specifics" of DNA binding for Hox proteins and their partners. Dev Biol 2021; 477:284-292. [PMID: 34102167 PMCID: PMC8846413 DOI: 10.1016/j.ydbio.2021.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 11/25/2022]
Abstract
Homeotic genes (Hox genes) are homeodomain-transcription factors involved in conferring segmental identity along the anterior-posterior body axis. Molecular characterization of HOX protein function raises some interesting questions regarding the source of the binding specificity of the HOX proteins. How do HOX proteins regulate common and unique target specificity across space and time? This review attempts to summarize and interpret findings in this area, largely focused on results from in vitro and in vivo studies in Drosophila and mouse systems. Recent studies related to HOX protein binding specificity compel us to reconsider some of our current models for transcription factor-DNA interactions. It is crucial to study transcription factor binding by incorporating components of more complex, multi-protein interactions in concert with small changes in binding motifs that can significantly impact DNA binding specificity and subsequent alterations in gene expression. To incorporate the multiple elements that can determine HOX protein binding specificity, we propose a more integrative Cooperative Binding model.
Collapse
|
13
|
Raj A, Chimata AV, Singh A. Motif 1 Binding Protein suppresses wingless to promote eye fate in Drosophila. Sci Rep 2020; 10:17221. [PMID: 33057115 PMCID: PMC7560846 DOI: 10.1038/s41598-020-73891-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/31/2020] [Indexed: 01/19/2023] Open
Abstract
The phenomenon of RNA polymerase II (Pol II) pausing at transcription start site (TSS) is one of the key rate-limiting steps in regulating genome-wide gene expression. In Drosophila embryo, Pol II pausing is known to regulate the developmental control genes expression, however, the functional implication of Pol II pausing during later developmental time windows remains largely unknown. A highly conserved zinc finger transcription factor, Motif 1 Binding Protein (M1BP), is known to orchestrate promoter-proximal pausing. We found a new role of M1BP in regulating Drosophila eye development. Downregulation of M1BP function suppresses eye fate resulting in a reduced eye or a "no-eye" phenotype. The eye suppression function of M1BP has no domain constraint in the developing eye. Downregulation of M1BP results in more than two-fold induction of wingless (wg) gene expression along with robust induction of Homothorax (Hth), a negative regulator of eye fate. The loss-of-eye phenotype of M1BP downregulation is dependent on Wg upregulation as downregulation of both M1BP and wg, by using wgRNAi, shows a significant rescue of a reduced eye or a "no-eye" phenotype, which is accompanied by normalizing of wg and hth expression levels in the eye imaginal disc. Ectopic induction of Wg is known to trigger developmental cell death. We found that upregulation of wg as a result of downregulation of M1BP also induces apoptotic cell death, which can be significantly restored by blocking caspase-mediated cell death. Our data strongly imply that transcriptional regulation of wg by Pol II pausing factor M1BP may be one of the important regulatory mechanism(s) during Drosophila eye development.
Collapse
Affiliation(s)
- Akanksha Raj
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA
| | | | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA. .,Premedical Program, University of Dayton, Dayton, OH, USA. .,Center for Tissue Regeneration and Engineering (TREND), University of Dayton, Dayton, OH, USA. .,Integrative Science and Engineering (ISE), University of Dayton, Dayton, OH, USA. .,Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, USA.
| |
Collapse
|
14
|
Heurteau A, Perrois C, Depierre D, Fosseprez O, Humbert J, Schaak S, Cuvier O. Insulator-based loops mediate the spreading of H3K27me3 over distant micro-domains repressing euchromatin genes. Genome Biol 2020; 21:193. [PMID: 32746892 PMCID: PMC7397589 DOI: 10.1186/s13059-020-02106-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 07/14/2020] [Indexed: 12/16/2022] Open
Abstract
Abstract
Background
Chromosomes are subdivided spatially to delimit long-range interactions into topologically associating domains (TADs). TADs are often flanked by chromatin insulators and transcription units that may participate in such demarcation. Remarkably, single-cell Drosophila TAD units correspond to dynamic heterochromatin nano-compartments that can self-assemble. The influence of insulators on such dynamic compartmentalization remains unclear. Moreover, to what extent heterochromatin domains are fully compartmentalized away from active genes remains unclear from Drosophila to human.
Results
Here, we identify H3K27me3 micro-domains genome-wide in Drosophila, which are attributed to the three-dimensional spreading of heterochromatin marks into euchromatin. Whereas depletion of insulator proteins increases H3K27me3 spreading locally, across heterochromatin borders, it concomitantly decreases H3K27me3 levels at distant micro-domains discrete sites. Quantifying long-range interactions suggests that random interactions between heterochromatin TADs and neighbor euchromatin cannot predict the presence of micro-domains, arguing against the hypothesis that they reflect defects in self-folding or in insulating repressive TADs. Rather, micro-domains are predicted by specific long-range interactions with the TAD borders bound by insulator proteins and co-factors required for looping. Accordingly, H3K27me3 spreading to distant sites is impaired by insulator mutants that compromise recruitment of looping co-factors. Both depletions and insulator mutants significantly reduce H3K27me3 micro-domains, deregulating the flanking genes.
Conclusions
Our data highlight a new regulatory mode of H3K27me3 by insulator-based long-range interactions controlling distant euchromatic genes.
Collapse
Affiliation(s)
- Alexandre Heurteau
- Chromatin Dynamics and Cell Proliferation, Center of Integrative Biology (CBI), Laboratoire de Biologie Moléculaire Eucaryote (LBME), CNRS, Université Fédérale Paul Sabatier de Toulouse (UPS), F-31000, Toulouse, France
| | - Charlène Perrois
- Chromatin Dynamics and Cell Proliferation, Center of Integrative Biology (CBI), Laboratoire de Biologie Moléculaire Eucaryote (LBME), CNRS, Université Fédérale Paul Sabatier de Toulouse (UPS), F-31000, Toulouse, France
| | - David Depierre
- Chromatin Dynamics and Cell Proliferation, Center of Integrative Biology (CBI), Laboratoire de Biologie Moléculaire Eucaryote (LBME), CNRS, Université Fédérale Paul Sabatier de Toulouse (UPS), F-31000, Toulouse, France
| | - Olivier Fosseprez
- Chromatin Dynamics and Cell Proliferation, Center of Integrative Biology (CBI), Laboratoire de Biologie Moléculaire Eucaryote (LBME), CNRS, Université Fédérale Paul Sabatier de Toulouse (UPS), F-31000, Toulouse, France
| | - Jonathan Humbert
- Chromatin Dynamics and Cell Proliferation, Center of Integrative Biology (CBI), Laboratoire de Biologie Moléculaire Eucaryote (LBME), CNRS, Université Fédérale Paul Sabatier de Toulouse (UPS), F-31000, Toulouse, France
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Centre Hospitalier Universitaire de Québec City, Quebec, QC, G1R 3S3, Canada
| | - Stéphane Schaak
- Chromatin Dynamics and Cell Proliferation, Center of Integrative Biology (CBI), Laboratoire de Biologie Moléculaire Eucaryote (LBME), CNRS, Université Fédérale Paul Sabatier de Toulouse (UPS), F-31000, Toulouse, France
| | - Olivier Cuvier
- Chromatin Dynamics and Cell Proliferation, Center of Integrative Biology (CBI), Laboratoire de Biologie Moléculaire Eucaryote (LBME), CNRS, Université Fédérale Paul Sabatier de Toulouse (UPS), F-31000, Toulouse, France.
| |
Collapse
|
15
|
Gentile C, Kmita M. Polycomb Repressive Complexes in Hox Gene Regulation: Silencing and Beyond: The Functional Dynamics of Polycomb Repressive Complexes in Hox Gene Regulation. Bioessays 2020; 42:e1900249. [PMID: 32743818 DOI: 10.1002/bies.201900249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/17/2020] [Indexed: 11/10/2022]
Abstract
The coordinated expression of the Hox gene family encoding transcription factors is critical for proper embryonic development and patterning. Major efforts have thus been dedicated to understanding mechanisms controlling Hox expression. In addition to the temporal and spatial sequential activation of Hox genes, proper embryonic development requires that Hox genes get differentially silenced in a cell-type specific manner as development proceeds. Factors contributing to Hox silencing include the polycomb repressive complexes (PRCs), which control gene expression through epigenetic modifications. This review focuses on PRC-dependent regulation of the Hox genes and is aimed at integrating the growing complexity of PRC functional properties in the context of Hox regulation. In particular, mechanisms underlying PRC binding dynamics as well as a series of studies that have revealed the impact of PRC on the 3D organization of the genome is discussed, which has a significant role on Hox regulation during development.
Collapse
Affiliation(s)
- Claudia Gentile
- Genetics and Development Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Québec, H2W 1R7, Canada.,Department of Experimental Medicine, McGill University, Montreal, Quebec, H4A 3J1, Canada.,Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
| | - Marie Kmita
- Genetics and Development Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Québec, H2W 1R7, Canada.,Department of Experimental Medicine, McGill University, Montreal, Quebec, H4A 3J1, Canada.,Département de Médecine, Université de Montréal, Montréal, Quebec, H3C 3J7, Canada
| |
Collapse
|
16
|
Barthez M, Poplineau M, Elrefaey M, Caruso N, Graba Y, Saurin AJ. Human ZKSCAN3 and Drosophila M1BP are functionally homologous transcription factors in autophagy regulation. Sci Rep 2020; 10:9653. [PMID: 32541927 PMCID: PMC7296029 DOI: 10.1038/s41598-020-66377-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/20/2020] [Indexed: 01/02/2023] Open
Abstract
Autophagy is an essential cellular process that maintains homeostasis by recycling damaged organelles and nutrients during development and cellular stress. ZKSCAN3 is the sole identified master transcriptional repressor of autophagy in human cell lines. How ZKSCAN3 achieves autophagy repression at the mechanistic or organismal level however still remains to be elucidated. Furthermore, Zkscan3 knockout mice display no discernable autophagy-related phenotypes, suggesting that there may be substantial differences in the regulation of autophagy between normal tissues and tumor cell lines. Here, we demonstrate that vertebrate ZKSCAN3 and Drosophila M1BP are functionally homologous transcription factors in autophagy repression. Expression of ZKSCAN3 in Drosophila prevents premature autophagy onset due to loss of M1BP function and conversely, M1BP expression in human cells can prevent starvation-induced autophagy due to loss of nuclear ZKSCAN3 function. In Drosophila ZKSCAN3 binds genome-wide to sequences targeted by M1BP and transcriptionally regulates the majority of M1BP-controlled genes, demonstrating the evolutionary conservation of the transcriptional repression of autophagy. This study thus allows the potential for transitioning the mechanisms, gene targets and plethora metabolic processes controlled by M1BP onto ZKSCAN3 and opens up Drosophila as a tool in studying the function of ZKSCAN3 in autophagy and tumourigenesis.
Collapse
Affiliation(s)
- Marine Barthez
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, 13288, Cedex 09, France
| | - Mathilde Poplineau
- Epigenetic Factors in Normal and Malignant Hematopoiesis, Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Marwa Elrefaey
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, 13288, Cedex 09, France
| | - Nathalie Caruso
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, 13288, Cedex 09, France
| | - Yacine Graba
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, 13288, Cedex 09, France
| | - Andrew J Saurin
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, 13288, Cedex 09, France.
| |
Collapse
|
17
|
Chereji RV, Bryson TD, Henikoff S. Quantitative MNase-seq accurately maps nucleosome occupancy levels. Genome Biol 2019; 20:198. [PMID: 31519205 PMCID: PMC6743174 DOI: 10.1186/s13059-019-1815-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 09/04/2019] [Indexed: 12/15/2022] Open
Abstract
Micrococcal nuclease (MNase) is widely used to map nucleosomes. However, its aggressive endo-/exo-nuclease activities make MNase-seq unreliable for determining nucleosome occupancies, because cleavages within linker regions produce oligo- and mono-nucleosomes, whereas cleavages within nucleosomes destroy them. Here, we introduce a theoretical framework for predicting nucleosome occupancies and an experimental protocol with appropriate spike-in normalization that confirms our theory and provides accurate occupancy levels over an MNase digestion time course. As with human cells, we observe no overall differences in nucleosome occupancies between Drosophila euchromatin and heterochromatin, which implies that heterochromatic compaction does not reduce MNase accessibility of linker DNA.
Collapse
Affiliation(s)
- Răzvan V Chereji
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Terri D Bryson
- Howard Hughes Medical Institute and Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute and Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
| |
Collapse
|
18
|
Porcelli D, Fischer B, Russell S, White R. Chromatin accessibility plays a key role in selective targeting of Hox proteins. Genome Biol 2019; 20:115. [PMID: 31159833 PMCID: PMC6547607 DOI: 10.1186/s13059-019-1721-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/21/2019] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Hox transcription factors specify segmental diversity along the anterior-posterior body axis in metazoans. While the different Hox family members show clear functional specificity in vivo, they all show similar binding specificity in vitro and a satisfactory understanding of in vivo Hox target selectivity is still lacking. RESULTS Using transient transfection in Kc167 cells, we systematically analyze the binding of all eight Drosophila Hox proteins. We find that Hox proteins show considerable binding selectivity in vivo even in the absence of canonical Hox cofactors Extradenticle and Homothorax. Hox binding selectivity is strongly associated with chromatin accessibility, being highest in less accessible chromatin. Individual Hox proteins exhibit different propensities to bind less accessible chromatin, and high binding selectivity is associated with high-affinity binding regions, leading to a model where Hox proteins derive binding selectivity through affinity-based competition with nucleosomes. Extradenticle/Homothorax cofactors generally facilitate Hox binding, promoting binding to regions in less accessible chromatin but with little effect on the overall selectivity of Hox targeting. These cofactors collaborate with Hox proteins in opening chromatin, in contrast to the pioneer factor, Glial cells missing, which facilitates Hox binding by independently generating accessible chromatin regions. CONCLUSIONS These studies indicate that chromatin accessibility plays a key role in Hox selectivity. We propose that relative chromatin accessibility provides a basis for subtle differences in binding specificity and affinity to generate significantly different sets of in vivo genomic targets for different Hox proteins.
Collapse
Affiliation(s)
- Damiano Porcelli
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY UK
| | - Bettina Fischer
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH UK
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, CB2 1QR UK
| | - Steven Russell
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH UK
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, CB2 1QR UK
| | - Robert White
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY UK
| |
Collapse
|
19
|
Domsch K, Carnesecchi J, Disela V, Friedrich J, Trost N, Ermakova O, Polychronidou M, Lohmann I. The Hox transcription factor Ubx stabilizes lineage commitment by suppressing cellular plasticity in Drosophila. eLife 2019; 8:42675. [PMID: 31050646 PMCID: PMC6513553 DOI: 10.7554/elife.42675] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 04/30/2019] [Indexed: 12/22/2022] Open
Abstract
During development cells become restricted in their differentiation potential by repressing alternative cell fates, and the Polycomb complex plays a crucial role in this process. However, how alternative fate genes are lineage-specifically silenced is unclear. We studied Ultrabithorax (Ubx), a multi-lineage transcription factor of the Hox class, in two tissue lineages using sorted nuclei and interfered with Ubx in mesodermal cells. We find that depletion of Ubx leads to the de-repression of genes normally expressed in other lineages. Ubx silences expression of alternative fate genes by retaining the Polycomb Group protein Pleiohomeotic at Ubx targeted genomic regions, thereby stabilizing repressive chromatin marks in a lineage-dependent manner. Our study demonstrates that Ubx stabilizes lineage choice by suppressing the multipotency encoded in the genome via its interaction with Pho. This mechanism may explain why the Hox code is maintained throughout the lifecycle, since it could set a block to transdifferentiation in adult cells.
Collapse
Affiliation(s)
- Katrin Domsch
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg, Germany
| | | | - Vanessa Disela
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg, Germany
| | - Jana Friedrich
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg, Germany
| | - Nils Trost
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg, Germany
| | - Olga Ermakova
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg, Germany
| | | | - Ingrid Lohmann
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg, Germany
| |
Collapse
|
20
|
Altamirano-Torres C, Salinas-Hernández JE, Cárdenas-Chávez DL, Rodríguez-Padilla C, Reséndez-Pérez D. Transcription factor TFIIEβ interacts with two exposed positions in helix 2 of the Antennapedia homeodomain to control homeotic function in Drosophila. PLoS One 2018; 13:e0205905. [PMID: 30321227 PMCID: PMC6188894 DOI: 10.1371/journal.pone.0205905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/03/2018] [Indexed: 01/02/2023] Open
Abstract
Homeoproteins contain the conserved homeodomain (HD) and have an important role determining embryo body plan during development. HDs increase their DNA-binding specificity by interacting with additional cofactors outlining a Hox interactome with a multiplicity of protein-protein interactions. In Drosophila, the first link of functional contact with a general transcription factor (GTF) was found between Antennapedia (Antp) and BIP2 (TFIID complex). Hox proteins also interact with other components of Pol II machinery such as the subunit Med19 from Mediator (MED) complex, TFIIEβ and transcription-pausing factor M1BP. All these interactions clearly demonstrate Hox-driven transcriptional regulation, but the precise molecular mechanism remains unclear. In this paper, we focused on the Antp-TFIIEβ protein-protein interface to establish the specific contacts as well as its functional role. Using Bimolecular Fluorescence Complementation (BiFC) in cell culture and in vivo we found that TFIIEβ interacts with Antp through the HD independently of the YPWM motif and the direct physical interaction is at helix 2, specifically aminoacidic positions I32 and H36 of Antp. We also found, through ectopic assays, that these two positions in helix 2 are crucial for Antp homeotic function in head involution, and thoracic and antenna-to tarsus transformations. Interestingly, overexpression of Antp and TFIIEβ in the antennal disc showed that this interaction is required for the antenna-to-tarsus transformation. In conclusion, interaction of Antp with TFIIEβ is important for the functional specificity of Antennapedia, and amino acids 32 and 36 in Antp HD helix 2 are key for this interaction. Our results open the possibility to more broadly analyze Antp-TFIIEβ interaction on the transcriptional control for the activation and/or repression of target genes in the Hox interactome during Drosophila development.
Collapse
Affiliation(s)
- Claudia Altamirano-Torres
- Department of Immunology and Virology, College of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
- Department of Cell Biology and Genetics, College of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Jannet E. Salinas-Hernández
- Department of Immunology and Virology, College of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Diana L. Cárdenas-Chávez
- Department of Immunology and Virology, College of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Cristina Rodríguez-Padilla
- Department of Immunology and Virology, College of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Diana Reséndez-Pérez
- Department of Immunology and Virology, College of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
- Department of Cell Biology and Genetics, College of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
- * E-mail:
| |
Collapse
|
21
|
Saurin AJ, Delfini MC, Maurel-Zaffran C, Graba Y. The Generic Facet of Hox Protein Function. Trends Genet 2018; 34:941-953. [PMID: 30241969 DOI: 10.1016/j.tig.2018.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/07/2018] [Accepted: 08/21/2018] [Indexed: 11/16/2022]
Abstract
Hox transcription factors are essential to promote morphological diversification of the animal body. A substantial number of studies have focused on how Hox proteins reach functional specificity, an issue that arises from the fact that these transcription factors control distinct developmental functions despite sharing similar molecular properties. In this review, we highlight that, besides specific functions, for which these transcription factors are renowned, Hox proteins also often have nonspecific functions. We next discuss some emerging principles of these generic functions and how they relate to specific functions and explore our current grasp of the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Andrew J Saurin
- Aix Marseille Univ, CNRS, IBDM, Marseille, France; http://www.ibdm.univ-mrs.fr/equipe/mechanisms-of-gene-regulation-by-transcription-factors/.
| | - Marie Claire Delfini
- Aix Marseille Univ, CNRS, IBDM, Marseille, France; http://www.ibdm.univ-mrs.fr/equipe/mechanisms-of-gene-regulation-by-transcription-factors/
| | - Corinne Maurel-Zaffran
- Aix Marseille Univ, CNRS, IBDM, Marseille, France; http://www.ibdm.univ-mrs.fr/equipe/mechanisms-of-gene-regulation-by-transcription-factors/
| | - Yacine Graba
- Aix Marseille Univ, CNRS, IBDM, Marseille, France; http://www.ibdm.univ-mrs.fr/equipe/mechanisms-of-gene-regulation-by-transcription-factors/.
| |
Collapse
|
22
|
Webber JL, Zhang J, Massey A, Sanchez-Luege N, Rebay I. Collaborative repressive action of the antagonistic ETS transcription factors Pointed and Yan fine-tunes gene expression to confer robustness in Drosophila. Development 2018; 145:dev.165985. [PMID: 29848501 DOI: 10.1242/dev.165985] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/17/2018] [Indexed: 01/29/2023]
Abstract
The acquisition of cellular identity during development depends on precise spatiotemporal regulation of gene expression, with combinatorial interactions between transcription factors, accessory proteins and the basal transcription machinery together translating complex signaling inputs into appropriate gene expression outputs. The opposing repressive and activating inputs of the Drosophila ETS family transcription factors Yan and Pointed orchestrate numerous cell fate transitions downstream of receptor tyrosine kinase signaling, providing one of the premier systems for studying this process. Current models describe the differentiative transition as a switch from Yan-mediated repression to Pointed-mediated activation of common target genes. We describe here a new layer of regulation whereby Yan and Pointed co-occupy regulatory elements to repress gene expression in a coordinated manner, with Pointed being unexpectedly required for the genome-wide occupancy of both Yan and the co-repressor Groucho. Using even skipped as a test-case, synergistic genetic interactions between Pointed, Groucho, Yan and components of the RNA polymerase II pausing machinery suggest that Pointed integrates multiple scales of repressive regulation to confer robustness. We speculate that this mechanism may be used broadly to fine-tune the expression of many genes crucial for development.
Collapse
Affiliation(s)
- Jemma L Webber
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Jie Zhang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Alex Massey
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Nicelio Sanchez-Luege
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Ilaria Rebay
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
23
|
Zouaz A, Auradkar A, Delfini MC, Macchi M, Barthez M, Ela Akoa S, Bastianelli L, Xie G, Deng WM, Levine SS, Graba Y, Saurin AJ. The Hox proteins Ubx and AbdA collaborate with the transcription pausing factor M1BP to regulate gene transcription. EMBO J 2017; 36:2887-2906. [PMID: 28871058 DOI: 10.15252/embj.201695751] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 11/09/2022] Open
Abstract
In metazoans, the pausing of RNA polymerase II at the promoter (paused Pol II) has emerged as a widespread and conserved mechanism in the regulation of gene transcription. While critical in recruiting Pol II to the promoter, the role transcription factors play in transitioning paused Pol II into productive Pol II is, however, little known. By studying how Drosophila Hox transcription factors control transcription, we uncovered a molecular mechanism that increases productive transcription. We found that the Hox proteins AbdA and Ubx target gene promoters previously bound by the transcription pausing factor M1BP, containing paused Pol II and enriched with promoter-proximal Polycomb Group (PcG) proteins, yet lacking the classical H3K27me3 PcG signature. We found that AbdA binding to M1BP-regulated genes results in reduction in PcG binding, the release of paused Pol II, increases in promoter H3K4me3 histone marks and increased gene transcription. Linking transcription factors, PcG proteins and paused Pol II states, these data identify a two-step mechanism of Hox-driven transcription, with M1BP binding leading to Pol II recruitment followed by AbdA targeting, which results in a change in the chromatin landscape and enhanced transcription.
Collapse
Affiliation(s)
- Amel Zouaz
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
| | - Ankush Auradkar
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
| | | | - Meiggie Macchi
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
| | - Marine Barthez
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
| | - Serge Ela Akoa
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
| | - Leila Bastianelli
- MGX-Montpellier GenomiX c/o Institut de Génomique Fonctionnelle, Montpellier, France
| | - Gengqiang Xie
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Stuart S Levine
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yacine Graba
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
| | - Andrew J Saurin
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
| |
Collapse
|