1
|
Moraes ANS, Tatara JM, da Rosa RL, Siqueira FM, Domingues G, Berger M, Guimarães JA, Barth AL, Barth PO, Yates JR, Beys-da-Silva WO, Santi L. Metabolic Reprogramming of Klebsiella pneumoniae Exposed to Serum and Its Potential Implications in Host Immune System Evasion and Resistance. J Proteome Res 2024; 23:4896-4906. [PMID: 39360742 DOI: 10.1021/acs.jproteome.4c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The aim of this study was to identify, using proteomics, the molecular alterations caused by human serum exposure to Klebsiella pneumoniae ACH2. The analysis was performed under two different conditions, native serum from healthy donors and heat-inactivated serum (to inactivate the complement system), and at two different times, after 1 and 4 h of serum exposure. More than 1,000 bacterial proteins were identified at each time point. Enterobactin, a siderophore involved in iron uptake, and proteins involved in translation were upregulated at 1 h, while the chaperone ProQ and the glyoxylate cycle were identified after 4 h. Enzymes involved in the stress response were downregulated, and the SOD activity was validated using an enzymatic assay. In addition, an intricate metabolic adaptation was observed, with pyruvate and thiamine possibly involved in survival and virulence in the first hour of serum exposure. The addition of exogenous thiamine contributes to bacterial growth in human serum, corroborating this result. During 4 h of serum exposure, the glyoxylate cycle (GC) probably plays a central role, and the addition of exogenous succinate suppresses the GC, inducing a decrease in serum resistance. Therefore, serum exposure causes important changes in iron acquisition, the expression of virulence factors, and metabolic reprogramming, which could contribute to bacterial serum resistance.
Collapse
Affiliation(s)
- Amanda Naiara Silva Moraes
- Post-Graduation Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul., Porto Alegre, Rio Grande do Sul 91501-970, Brazil
| | - Juliana Miranda Tatara
- Post-Graduation Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul., Porto Alegre, Rio Grande do Sul 91501-970, Brazil
| | - Rafael Lopes da Rosa
- Post-Graduation Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul., Porto Alegre, Rio Grande do Sul 91501-970, Brazil
| | - Franciele Maboni Siqueira
- Faculty of Veterinary, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91540-000, Brazil
| | | | - Markus Berger
- Center of Experimental Research, Clinical Hospital of Porto Alegre, Porto Alegre, Rio Grande do Sul 90035-903, Brazil
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 20892, United States
| | - Jorge Almeida Guimarães
- Center of Experimental Research, Clinical Hospital of Porto Alegre, Porto Alegre, Rio Grande do Sul 90035-903, Brazil
| | - Afonso Luís Barth
- Bacterial Resistance Research Laboratory, Clinical Hospital of Porto Alegre, Porto Alegre, Rio Grande do Sul 90035-903, Brazil
| | - Patricia Orlandi Barth
- Bacterial Resistance Research Laboratory, Clinical Hospital of Porto Alegre, Porto Alegre, Rio Grande do Sul 90035-903, Brazil
| | - John R Yates
- Department of Molecular Medicine, Scripps Research, La Jolla, California 92037, United States
| | - Walter Orlando Beys-da-Silva
- Post-Graduation Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul., Porto Alegre, Rio Grande do Sul 91501-970, Brazil
- Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
| | - Lucélia Santi
- Post-Graduation Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul., Porto Alegre, Rio Grande do Sul 91501-970, Brazil
- Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
| |
Collapse
|
2
|
Hua C, Huang J, Sun Y, Wang T, Li Y, Cui Z, Deng X. Hfq mediates transcriptome-wide RNA structurome reprogramming under virulence-inducing conditions in a phytopathogen. Cell Rep 2024; 43:114544. [PMID: 39052478 DOI: 10.1016/j.celrep.2024.114544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/27/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
Although RNA structures play important roles in regulating gene expression, the mechanism and function of mRNA folding in plant bacterial pathogens remain elusive. Therefore, we perform dimethyl sulfate sequencing (DMS-seq) on the Pseudomonas syringae under nutrition-rich and -deficient conditions, revealing that the mRNA structure changes substantially in the minimal medium (MM) that tunes global translation efficiency (TE), thereby inducing virulence. This process is led by the increased expression of hfq, which is directly activated by transcription regulators RpoS and CysB. The co-occurrence of Hfq and RpoS in diverse bacteria and the deep conservation of Hfq Y25 is critical for RNA-mediated regulation and implicates the wider biological importance of mRNA structure and feedback loops in the control of global gene expression.
Collapse
Affiliation(s)
- Canfeng Hua
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Jiadai Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yue Sun
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Tingting Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Youyue Li
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Zining Cui
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Shenzhen Research Institute, City University of Hong Kong, Shenzhen, Guangdong, China; Tung Biomedical Sciences Center, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
3
|
Humphrey ED, Sukhodolets MV. Isolation and Partial Characterization of Novel, Structurally Uniform (Hfq 6) n≥8 Assemblies Carrying Accessory Transcription and Translation Factors. Biochemistry 2024; 63:1647-1662. [PMID: 38869079 DOI: 10.1021/acs.biochem.3c00728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
In growing E. coli cells, the transcription-translation complexes (TTCs) form characteristic foci; however, the exact molecular composition of these superstructures is not known with certainty. Herein, we report that, during our recently developed "fast" procedures for purification of E. coli RNA polymerase (RP), a fraction of the RP's α/RpoA subunits is displaced from the core RP complexes and copurifies with multiprotein superstructures carrying the nucleic acid-binding protein Hfq and the ribosomal protein S6. We show that the main components of these large multiprotein assemblies are fixed protein copy-number (Hfq6)n≥8 complexes; these complexes have a high level of structural uniformity and are distinctly unlike the previously described (Hfq6)n "head-to-tail" polymers. We describe purification of these novel, structurally uniform (Hfq6)n≥8 complexes to near homogeneity and show that they also contain small nonprotein molecules and accessory S6. We demonstrate that Hfq, S6, and RP have similar solubility profiles and present evidence pointing to a role of the Hfq C-termini in superstructure formation. Taken together, our data offer new insights into the composition of the macromolecular assemblies likely acting as scaffolds for transcription complexes and ribosomes during bacterial cells' active growth.
Collapse
Affiliation(s)
- Elijah D Humphrey
- Department of Chemistry and Biochemistry, Lamar University, Beaumont, Texas 77710, United States
| | - Maxim V Sukhodolets
- Department of Chemistry and Biochemistry, Lamar University, Beaumont, Texas 77710, United States
| |
Collapse
|
4
|
Royzenblat SK, Freddolino L. Spatio-temporal organization of the E. coli chromosome from base to cellular length scales. EcoSal Plus 2024:eesp00012022. [PMID: 38864557 DOI: 10.1128/ecosalplus.esp-0001-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 04/17/2024] [Indexed: 06/13/2024]
Abstract
Escherichia coli has been a vital model organism for studying chromosomal structure, thanks, in part, to its small and circular genome (4.6 million base pairs) and well-characterized biochemical pathways. Over the last several decades, we have made considerable progress in understanding the intricacies of the structure and subsequent function of the E. coli nucleoid. At the smallest scale, DNA, with no physical constraints, takes on a shape reminiscent of a randomly twisted cable, forming mostly random coils but partly affected by its stiffness. This ball-of-spaghetti-like shape forms a structure several times too large to fit into the cell. Once the physiological constraints of the cell are added, the DNA takes on overtwisted (negatively supercoiled) structures, which are shaped by an intricate interplay of many proteins carrying out essential biological processes. At shorter length scales (up to about 1 kb), nucleoid-associated proteins organize and condense the chromosome by inducing loops, bends, and forming bridges. Zooming out further and including cellular processes, topological domains are formed, which are flanked by supercoiling barriers. At the megabase-scale both large, highly self-interacting regions (macrodomains) and strong contacts between distant but co-regulated genes have been observed. At the largest scale, the nucleoid forms a helical ellipsoid. In this review, we will explore the history and recent advances that pave the way for a better understanding of E. coli chromosome organization and structure, discussing the cellular processes that drive changes in DNA shape, and what contributes to compaction and formation of dynamic structures, and in turn how bacterial chromatin affects key processes such as transcription and replication.
Collapse
Affiliation(s)
- Sonya K Royzenblat
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lydia Freddolino
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Vogt LN, Panis G, Schäpers A, Peschek N, Huber M, Papenfort K, Viollier PH, Fröhlich KS. Genome-wide profiling of Hfq-bound RNAs reveals the iron-responsive small RNA RusT in Caulobacter crescentus. mBio 2024; 15:e0315323. [PMID: 38511926 PMCID: PMC11005374 DOI: 10.1128/mbio.03153-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
The alphaproteobacterium Caulobacter crescentus thrives in oligotrophic environments and is able to optimally exploit minimal resources by entertaining an intricate network of gene expression control mechanisms. Numerous transcriptional activators and repressors have been reported to contribute to these processes, but only few studies have focused on regulation at the post-transcriptional level in C. crescentus. Small RNAs (sRNAs) are a prominent class of regulators of bacterial gene expression, and most sRNAs characterized today engage in direct base-pairing interactions to modulate the translation and/or stability of target mRNAs. In many cases, the ubiquitous RNA chaperone, Hfq, contributes to the establishment of RNA-RNA interactions. Although the deletion of the hfq gene is associated with a severe loss of fitness in C. crescentus, the RNA ligands of the chaperone have remained largely unexplored. Here we report on the identification of coding and non-coding transcripts associated with Hfq in C. crescentus and demonstrate Hfq-dependent post-transcriptional regulation in this organism. We show that the Hfq-bound sRNA RusT is transcriptionally controlled by the NtrYX two-component system and induced in response to iron starvation. By combining RusT pulse expression with whole-genome transcriptome analysis, we determine 16 candidate target transcripts that are deregulated, many of which encode outer membrane transporters. We hence suggest RusT to support remodeling of the C. crescentus cell surface when iron supplies are limited.IMPORTANCEThe conserved RNA-binding protein Hfq contributes significantly to the adaptation of bacteria to different environmental conditions. Hfq not only stabilizes associated sRNAs but also promotes inter-molecular base-pairing interactions with target transcripts. Hfq plays a pivotal role for growth and survival, controlling central metabolism and cell wall synthesis in the oligotroph Caulobacter crescentus. However, direct evidence for Hfq-dependent post-transcriptional regulation and potential oligotrophy in C. crescentus has been lacking. Here, we identified sRNAs and mRNAs associated with Hfq in vivo, and demonstrated the requirement of Hfq for sRNA-mediated regulation, particularly of outer membrane transporters in C. crescentus.
Collapse
Affiliation(s)
- Laura N. Vogt
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
- Department of Biology I, Microbiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Gaël Panis
- Department of Microbiology and Molecular Medicine, Faculty of Medicine/Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Anna Schäpers
- Department of Biology I, Microbiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Nikolai Peschek
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
- Department of Biology I, Microbiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Michaela Huber
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
- Department of Biology I, Microbiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kai Papenfort
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
- Department of Biology I, Microbiology, Ludwig-Maximilians-University Munich, Munich, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany
| | - Patrick H. Viollier
- Department of Microbiology and Molecular Medicine, Faculty of Medicine/Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Kathrin S. Fröhlich
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
- Department of Biology I, Microbiology, Ludwig-Maximilians-University Munich, Munich, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
6
|
Turbant F, Esnouf E, Rosaz F, Wien F, Węgrzyn G, Chauvet H, Arluison V. Role of the Bacterial Amyloid-like Hfq in Fluoroquinolone Fluxes. Microorganisms 2023; 12:53. [PMID: 38257880 PMCID: PMC10819720 DOI: 10.3390/microorganisms12010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Due to their two-cell membranes, Gram-negative bacteria are particularly resistant to antibiotics. Recent investigations aimed at exploring new target proteins involved in Gram-negative bacteria adaptation helped to identify environmental changes encountered during infection. One of the most promising approaches in finding novel targets for antibacterial drugs consists of blocking noncoding RNA-based regulation using the protein cofactor, Hfq. Although Hfq is important in many bacterial pathogens, its involvement in antibiotics response is still unclear. Indeed, Hfq may mediate drug resistance by regulating the major efflux system in Escherichia coli, but it could also play a role in the influx of antibiotics. Here, using an imaging approach, we addressed this problem quantitatively at the single-cell level. More precisely, we analyzed how Hfq affects the dynamic influx and efflux of ciprofloxacin, an antibiotic from the group of fluoroquinolones that is used to treat bacterial infections. Our results indicated that the absence of either whole Hfq or its C-terminal domain resulted in a more effective accumulation of ciprofloxacin, irrespective of the presence of the functional AcrAB-TolC efflux pump. However, overproduction of the MicF small regulatory RNA, which reduces the efficiency of expression of the ompF gene (coding for a porin involved in antibiotics influx) in a Hfq-dependent manner, resulted in impaired accumulation of ciprofloxacin. These results led us to propose potential mechanisms of action of Hfq in the regulation of fluoroquinolone fluxes across the E. coli envelope.
Collapse
Affiliation(s)
- Florian Turbant
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint Aubin BP48, 91192 Gif-sur-Yvette, France; (F.T.); (F.W.); (H.C.)
- Laboratoire Léon Brillouin LLB, UMR12 CEA CNRS, CEA Saclay, 91191 Gif-sur-Yvette, France; (E.E.); (F.R.)
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| | - Emeline Esnouf
- Laboratoire Léon Brillouin LLB, UMR12 CEA CNRS, CEA Saclay, 91191 Gif-sur-Yvette, France; (E.E.); (F.R.)
| | - Francois Rosaz
- Laboratoire Léon Brillouin LLB, UMR12 CEA CNRS, CEA Saclay, 91191 Gif-sur-Yvette, France; (E.E.); (F.R.)
| | - Frank Wien
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint Aubin BP48, 91192 Gif-sur-Yvette, France; (F.T.); (F.W.); (H.C.)
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| | - Hugo Chauvet
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint Aubin BP48, 91192 Gif-sur-Yvette, France; (F.T.); (F.W.); (H.C.)
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, UMR12 CEA CNRS, CEA Saclay, 91191 Gif-sur-Yvette, France; (E.E.); (F.R.)
- UFR SDV, Université Paris Cité, 75013 Paris, France
| |
Collapse
|
7
|
Stein EM, Wang S, Dailey KG, Gravel CM, Wang S, Olejniczak M, Berry KE. Biochemical and genetic dissection of the RNA-binding surface of the FinO domain of Escherichia coli ProQ. RNA (NEW YORK, N.Y.) 2023; 29:1772-1791. [PMID: 37607742 PMCID: PMC10578477 DOI: 10.1261/rna.079697.123] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023]
Abstract
RNA-binding proteins play important roles in bacterial gene regulation through interactions with both coding and noncoding RNAs. ProQ is a FinO-domain protein that binds a large set of RNAs in Escherichia coli, though the details of how ProQ binds these RNAs remain unclear. In this study, we used a combination of in vivo and in vitro binding assays to confirm key structural features of E. coli ProQ's FinO domain and explore its mechanism of RNA interactions. Using a bacterial three-hybrid assay, we performed forward genetic screens to confirm the importance of the concave face of ProQ in RNA binding. Using gel shift assays, we directly probed the contributions of ten amino acids on ProQ binding to seven RNA targets. Certain residues (R58, Y70, and R80) were found to be essential for binding of all seven RNAs, while substitutions of other residues (K54 and R62) caused more moderate binding defects. Interestingly, substitutions of two amino acids (K35, R69), which are evolutionarily variable but adjacent to conserved residues, showed varied effects on the binding of different RNAs; these may arise from the differing sequence context around each RNA's terminator hairpin. Together, this work confirms many of the essential RNA-binding residues in ProQ initially identified in vivo and supports a model in which residues on the conserved concave face of the FinO domain such as R58, Y70, and R80 form the main RNA-binding site of E. coli ProQ, while additional contacts contribute to the binding of certain RNAs.
Collapse
Affiliation(s)
- Ewa M Stein
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Suxuan Wang
- Program in Biochemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| | - Katherine G Dailey
- Program in Biochemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| | - Chandra M Gravel
- Program in Biochemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
- Department of Chemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| | - Shiying Wang
- Program in Biochemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| | - Mikołaj Olejniczak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Katherine E Berry
- Program in Biochemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
- Department of Chemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| |
Collapse
|
8
|
Ni J, Li S, Lai Y, Wang Z, Wang D, Tan Y, Fan Y, Lu J, Yao YF. Global profiling of ribosomal protein acetylation reveals essentiality of acetylation homeostasis in maintaining ribosome assembly and function. Nucleic Acids Res 2023; 51:10411-10427. [PMID: 37742082 PMCID: PMC10602876 DOI: 10.1093/nar/gkad768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/15/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023] Open
Abstract
Acetylation is a global post-translational modification that regulates various cellular processes. Bacterial acetylomic studies have revealed extensive acetylation of ribosomal proteins. However, the role of acetylation in regulating ribosome function remains poorly understood. In this study, we systematically profiled ribosomal protein acetylation and identified a total of 289 acetylated lysine residues in 52 ribosomal proteins (r-proteins) from Salmonella Typhimurium. The majority of acetylated lysine residues of r-proteins were found to be regulated by both acetyltransferase Pat and metabolic intermediate acetyl phosphate. Our results show that acetylation plays a critical role in the assembly of the mature 70S ribosome complex by modulating r-proteins binding to rRNA. Moreover, appropriate acetylation is important for the interactions between elongation factors and polysomes, as well as regulating ribosome translation efficiency and fidelity. Dysregulation of acetylation could alter bacterial sensitivity to ribosome-targeting antibiotics. Collectively, our data suggest that the acetylation homeostasis of ribosomes is crucial for their assembly and function. Furthermore, this mechanism may represent a universal response to environmental signals across different cell types.
Collapse
Affiliation(s)
- Jinjing Ni
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shuxian Li
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yanan Lai
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zuoqiang Wang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Danni Wang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yongcong Tan
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yongqiang Fan
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Jie Lu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai 200025, China
| |
Collapse
|
9
|
Mickutė M, Krasauskas R, Kvederavičiūtė K, Tupikaitė G, Osipenko A, Kaupinis A, Jazdauskaitė M, Mineikaitė R, Valius M, Masevičius V, Vilkaitis G. Interplay between bacterial 5'-NAD-RNA decapping hydrolase NudC and DEAD-box RNA helicase CsdA in stress responses. mSystems 2023; 8:e0071823. [PMID: 37706681 PMCID: PMC10654059 DOI: 10.1128/msystems.00718-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 09/15/2023] Open
Abstract
IMPORTANCE Non-canonical 5'-caps removing RNA hydrolase NudC, along with stress-responsive RNA helicase CsdA, is crucial for 5'-NAD-RNA decapping and bacterial movement.
Collapse
Affiliation(s)
- Milda Mickutė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Renatas Krasauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Kotryna Kvederavičiūtė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Gytė Tupikaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Aleksandr Osipenko
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Algirdas Kaupinis
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Monika Jazdauskaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- Thermo Fisher Scientific Baltics, Vilnius, Lithuania
| | - Raminta Mineikaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Mindaugas Valius
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Viktoras Masevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Vilnius, Lithuania
| | - Giedrius Vilkaitis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
10
|
Reichelt R, Rothmeier T, Grünberger F, Willkomm S, Bruckmann A, Hausner W, Grohmann D. The archaeal Lsm protein from Pyrococcus furiosus binds co-transcriptionally to poly(U)-rich target RNAs. Biol Chem 2023; 404:1085-1100. [PMID: 37709673 DOI: 10.1515/hsz-2023-0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
Posttranscriptional processes in Bacteria include the association of small regulatory RNAs (sRNA) with a target mRNA. The sRNA/mRNA annealing process is often mediated by an RNA chaperone called Hfq. The functional role of bacterial and eukaryotic Lsm proteins is partially understood, whereas knowledge about archaeal Lsm proteins is scarce. Here, we used the genetically tractable archaeal hyperthermophile Pyrococcus furiosus to identify the protein interaction partners of the archaeal Sm-like proteins (PfuSmAP1) using mass spectrometry and performed a transcriptome-wide binding site analysis of PfuSmAP1. Most of the protein interaction partners we found are part of the RNA homoeostasis network in Archaea including ribosomal proteins, the exosome, RNA-modifying enzymes, but also RNA polymerase subunits, and transcription factors. We show that PfuSmAP1 preferentially binds messenger RNAs and antisense RNAs recognizing a gapped poly(U) sequence with high affinity. Furthermore, we found that SmAP1 co-transcriptionally associates with target RNAs. Our study reveals that in contrast to bacterial Hfq, PfuSmAP1 does not affect the transcriptional activity or the pausing behaviour of archaeal RNA polymerases. We propose that PfuSmAP1 recruits antisense RNAs to target mRNAs and thereby executes its putative regulatory function on the posttranscriptional level.
Collapse
Affiliation(s)
- Robert Reichelt
- Institute of Microbiology & Archaea Centre, Single-Molecule Biochemistry Lab, University of Regensburg, D-93053 Regensburg, Germany
| | - Tamara Rothmeier
- Institute of Microbiology & Archaea Centre, Single-Molecule Biochemistry Lab, University of Regensburg, D-93053 Regensburg, Germany
| | - Felix Grünberger
- Institute of Microbiology & Archaea Centre, Single-Molecule Biochemistry Lab, University of Regensburg, D-93053 Regensburg, Germany
| | - Sarah Willkomm
- Institute of Microbiology & Archaea Centre, Single-Molecule Biochemistry Lab, University of Regensburg, D-93053 Regensburg, Germany
| | - Astrid Bruckmann
- Institute of Biochemistry, Genetics and Microbiology (Biochemistry I), Protein Mass Spectrometry Laboratory, University of Regensburg, D-93053 Regensburg, Germany
| | - Winfried Hausner
- Institute of Microbiology & Archaea Centre, Single-Molecule Biochemistry Lab, University of Regensburg, D-93053 Regensburg, Germany
| | - Dina Grohmann
- Institute of Microbiology & Archaea Centre, Single-Molecule Biochemistry Lab, University of Regensburg, D-93053 Regensburg, Germany
- Regensburg Center of Biochemistry (RCB), University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
11
|
Hao L, Zhang J, Liu Z, Zhang Z, Mao T, Guo J. Role of the RNA-binding protein family in gynecologic cancers. Am J Cancer Res 2023; 13:3799-3821. [PMID: 37693158 PMCID: PMC10492115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023] Open
Abstract
Gynecological cancers pose a threat to women's health. Although early-stage gynecological cancers show good outcomes after standardized treatment, the prognosis of patients with advanced, met-astatic, and recurrent cancers is poor. RNA-binding proteins (RBPs) are important cellular proteins that interact with RNA through RNA-binding domains and participate extensively in post-transcriptional regulatory processes, such as mRNA alternative splicing, polyadenylation, intracellular localization and stability, and translation. Abnormal RBP expression affects the normal function of oncogenes and tumor suppressor genes in many malignancies, thus leading to the occurrence or progression of cancers. Similarly, RBPs play crucial roles in gynecological carcinogenesis. We summarize the role of RBPs in gynecological malignancies and explore their potential in the diagnosis and treatment of cancers. The findings summarized in this review may provide a guide for future research on the functions of RBPs.
Collapse
Affiliation(s)
- Linlin Hao
- Department of Tumor Radiotherapy, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| | - Jian Zhang
- School of Life Sciences, Department of Biology, Southern University of Science and TechnologyShenzhen 518055, Guangdong, China
| | - Zhongshan Liu
- Department of Tumor Radiotherapy, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| | - Zhiliang Zhang
- Department of Tumor Radiotherapy, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| | - Tiezhu Mao
- Department of Tumor Radiotherapy, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| | - Jie Guo
- Department of Tumor Radiotherapy, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| |
Collapse
|
12
|
Rodgers ML, Sun Y, Woodson SA. Ribosomal Protein S12 Hastens Nucleation of Co-Transcriptional Ribosome Assembly. Biomolecules 2023; 13:951. [PMID: 37371531 DOI: 10.3390/biom13060951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Ribosomal subunits begin assembly during transcription of the ribosomal RNA (rRNA), when the rRNA begins to fold and associate with ribosomal proteins (RPs). In bacteria, the first steps of ribosome assembly depend upon recognition of the properly folded rRNA by primary assembly proteins such as S4, which nucleates assembly of the 16S 5' domain. Recent evidence, however, suggests that initial recognition by S4 is delayed due to variable folding of the rRNA during transcription. Here, using single-molecule colocalization co-transcriptional assembly (smCoCoA), we show that the late-binding RP S12 specifically promotes the association of S4 with the pre-16S rRNA during transcription, thereby accelerating nucleation of 30S ribosome assembly. Order of addition experiments suggest that S12 helps chaperone the rRNA during transcription, particularly near the S4 binding site. S12 interacts transiently with the rRNA during transcription and, consequently, a high concentration is required for its chaperone activity. These results support a model in which late-binding RPs moonlight as RNA chaperones during transcription in order to facilitate rapid assembly.
Collapse
Affiliation(s)
- Margaret L Rodgers
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
- The Laboratory of Biochemistry and Genetics, The National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD 20892, USA
| | - Yunsheng Sun
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sarah A Woodson
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
13
|
Lucena ACR, Ferrarini MG, de Oliveira WK, Marcon BH, Morello LG, Alves LR, Faoro H. Modulation of Klebsiella pneumoniae Outer Membrane Vesicle Protein Cargo under Antibiotic Treatment. Biomedicines 2023; 11:1515. [PMID: 37371610 PMCID: PMC10294825 DOI: 10.3390/biomedicines11061515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/14/2023] [Accepted: 05/14/2023] [Indexed: 06/29/2023] Open
Abstract
Klebsiella pneumoniae is a nosocomial pathogen and an important propagator of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains. Like other Gram-negative bacteria, they secrete outer membrane vesicles (OMVs) that distribute virulence and resistance factors. Here, we subjected a K. pneumoniae-XDR to subinhibitory concentrations of meropenem, amikacin, polymyxin B, and a combination of these agents to evaluate changes in the protein cargo of OMVs through liquid chromatography-tandem mass spectrometry (LC-MS/MS). Genome sequencing of the clinical isolate K. pneumoniae strain HCD1 (KpHCD1) revealed the presence of 41 resistance genes and 159 virulence factors. We identified 64 proteins in KpHCD1-OMVs modulated with different antibiotic treatments involved in processing genetic information, environmental information, cell envelope formation, energy metabolism, and drug resistance. The OMV proteome expression profile suggests that OMVs may be associated with pathogenicity, survival, stress response, and resistance dissemination.
Collapse
Affiliation(s)
- Aline Castro Rodrigues Lucena
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, FIOCRUZ, Curitiba 81350-010, PR, Brazil
| | - Mariana Galvão Ferrarini
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon 1, 69622 Villeurbanne, France
| | - Willian Klassen de Oliveira
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, FIOCRUZ, Curitiba 81350-010, PR, Brazil
| | - Bruna Hilzendeger Marcon
- Laboratory for Basic Biology of Stem Cells, Carlos Chagas Institute, FIOCRUZ, Curitiba 81350-010, PR, Brazil
| | - Luis Gustavo Morello
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, FIOCRUZ, Curitiba 81350-010, PR, Brazil
| | - Lysangela Ronalte Alves
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, FIOCRUZ, Curitiba 81350-010, PR, Brazil
- CHU de Quebec Research Center, Department of Microbiology, Infectious Disease and Immunology, University Laval, Quebec, QC G1V 0A6, Canada
| | - Helisson Faoro
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, FIOCRUZ, Curitiba 81350-010, PR, Brazil
- CHU de Quebec Research Center, Department of Microbiology, Infectious Disease and Immunology, University Laval, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
14
|
Stein EM, Wang S, Dailey K, Gravel CM, Wang S, Olejniczak M, Berry KE. Biochemical and genetic dissection of the RNA-binding surface of the FinO domain of Escherichia coli ProQ. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538249. [PMID: 37163069 PMCID: PMC10168233 DOI: 10.1101/2023.04.25.538249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
RNA-binding proteins play important roles in bacterial gene regulation through interactions with both coding and non-coding RNAs. ProQ is a FinO-domain protein that binds a large set of RNAs in Escherichia coli , though the details of how ProQ binds these RNAs remain unclear. In this study, we used a combination of in vivo and in vitro binding assays to confirm key structural features of E. coli ProQ's FinO domain and explore its mechanism of RNA interactions. Using a bacterial three-hybrid assay, we performed forward genetic screens to confirm the importance of the concave face of ProQ in RNA binding. Using gel shift assays, we directly probed the contributions of ten amino acids on ProQ binding to seven RNA targets. Certain residues (R58, Y70, and R80) were found to be essential for binding of all seven RNAs, while substitutions of other residues (K54 and R62) caused more moderate binding defects. Interestingly, substitutions of two amino acids (K35, R69), which are evolutionarily variable but adjacent to conserved residues, showed varied effects on the binding of different RNAs; these may arise from the differing sequence context around each RNA's terminator hairpin. Together, this work confirms many of the essential RNA-binding residues in ProQ initially identified in vivo and supports a model in which residues on the conserved concave face of the FinO domain such as R58, Y70 and R80 form the main RNA-binding site of E. coli ProQ, while additional contacts contribute to the binding of certain RNAs.
Collapse
Affiliation(s)
- Ewa M. Stein
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Suxuan Wang
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
| | - Katherine Dailey
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
| | - Chandra M Gravel
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
- Department of Chemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
| | - Shiying Wang
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
| | - Mikołaj Olejniczak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Katherine E Berry
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
- Department of Chemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
| |
Collapse
|
15
|
Mikhaylina A, Svoeglazova A, Stolboushkina E, Tishchenko S, Kostareva O. The RNA-Binding and RNA-Melting Activities of the Multifunctional Protein Nucleobindin 1. Int J Mol Sci 2023; 24:ijms24076193. [PMID: 37047165 PMCID: PMC10093973 DOI: 10.3390/ijms24076193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Nucleobindin 1 (NUCB1) is a ubiquitous multidomain protein that belongs to the EF-hand Ca2+-binding superfamily. NUCB1 interacts with Galphai3 protein, cyclooxygenase, amyloid precursor protein, and lipids. It is involved in stress response and human diseases. In addition, this protein is a transcription factor that binds to the DNA E-box motif. Using surface plasmon resonance and molecular beacon approaches, we first showed the RNA binding and RNA melting activities of NUCB1. We suggest that NUCB1 could induce local changes in structured RNAs via binding to the GGAUAU loop sequence. Our results demonstrate the importance of the multidomain structure of NUCB1 for its RNA-chaperone activity in vitro.
Collapse
|
16
|
Wang K, Wang S, Zhang Y, Xie L, Song X, Song X. SNORD88C guided 2'-O-methylation of 28S rRNA regulates SCD1 translation to inhibit autophagy and promote growth and metastasis in non-small cell lung cancer. Cell Death Differ 2023; 30:341-355. [PMID: 36376383 PMCID: PMC9950066 DOI: 10.1038/s41418-022-01087-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) have been shown to play critical regulatory roles in cancer development. SNORD88C, which located at the intronic region of C19orf48 in chromosome 19q.33 with a 97-nt length was screened through database and snoRNA-sequencing. We firstly verified this snoRNA was up-regulated in tissue and plasma and served as a non-invasive diagnostic biomarker; then confirmed that SNORD88C promoted proliferation and metastasis of NSCLC in vitro and in vivo. Mechanistically, SNORD88C promoted 2'-O-methylation modification at the C3680 site on 28S rRNA and in turn enhanced downstream SCD1 translation, a central lipogenic enzyme for the synthesis of MUFA that can inhibit autophagy by regulating lipid peroxidation and mTOR, providing the novel insight into the regulation of SNORD88C in NSCLC.
Collapse
Affiliation(s)
- Kangyu Wang
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shiwen Wang
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yue Zhang
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Li Xie
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xingguo Song
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Xianrang Song
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
17
|
Dendooven T, Sonnleitner E, Bläsi U, Luisi BF. Translational regulation by Hfq-Crc assemblies emerges from polymorphic ribonucleoprotein folding. EMBO J 2023; 42:e111129. [PMID: 36504222 PMCID: PMC9890229 DOI: 10.15252/embj.2022111129] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/25/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022] Open
Abstract
The widely occurring bacterial RNA chaperone Hfq is a key factor in the post-transcriptional control of hundreds of genes in Pseudomonas aeruginosa. How this broadly acting protein can contribute to the regulatory requirements of many different genes remains puzzling. Here, we describe cryo-EM structures of higher order assemblies formed by Hfq and its partner protein Crc on control regions of different P. aeruginosa target mRNAs. Our results show that these assemblies have mRNA-specific quaternary architectures resulting from the combination of multivalent protein-protein interfaces and recognition of patterns in the RNA sequence. The structural polymorphism of these ribonucleoprotein assemblies enables selective translational repression of many different target mRNAs. This system elucidates how highly complex regulatory pathways can evolve with a minimal economy of proteinogenic components in combination with RNA sequence and fold.
Collapse
Affiliation(s)
- Tom Dendooven
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Elisabeth Sonnleitner
- Department of Microbiology, Immunobiology and Genetics, Max Perutz LabsUniversity of ViennaViennaAustria
| | - Udo Bläsi
- Department of Microbiology, Immunobiology and Genetics, Max Perutz LabsUniversity of ViennaViennaAustria
| | - Ben F Luisi
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| |
Collapse
|
18
|
Carrier MC, Lalaouna D, Massé E. Hfq protein and GcvB small RNA tailoring of oppA target mRNA to levels allowing translation activation by MicF small RNA in Escherichia coli. RNA Biol 2023; 20:59-76. [PMID: 36860088 PMCID: PMC9988348 DOI: 10.1080/15476286.2023.2179582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Traffic of molecules across the bacterial membrane mainly relies on porins and transporters, whose expression must adapt to environmental conditions. To ensure bacterial fitness, synthesis and assembly of functional porins and transporters are regulated through a plethora of mechanisms. Among them, small regulatory RNAs (sRNAs) are known to be powerful post-transcriptional regulators. In Escherichia coli, the MicF sRNA is known to regulate only four targets, a very narrow targetome for a sRNA responding to various stresses, such as membrane stress, osmotic shock, or thermal shock. Using an in vivo pull-down assay combined with high-throughput RNA sequencing, we sought to identify new targets of MicF to better understand its role in the maintenance of cellular homoeostasis. Here, we report the first positively regulated target of MicF, the oppA mRNA. The OppA protein is the periplasmic component of the Opp ATP-binding cassette (ABC) oligopeptide transporter and regulates the import of short peptides, some of them bactericides. Mechanistic studies suggest that oppA translation is activated by MicF through a mechanism of action involving facilitated access to a translation-enhancing region in oppA 5'UTR. Intriguingly, MicF activation of oppA translation depends on cross-regulation by negative trans-acting effectors, the GcvB sRNA and the RNA chaperone protein Hfq.
Collapse
Affiliation(s)
- Marie-Claude Carrier
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - David Lalaouna
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Eric Massé
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
19
|
Pleiotropic Effects of Hfq on the Cytochrome c Content and Pyomelanin Production in Shewanella oneidensis. Appl Environ Microbiol 2022; 88:e0128922. [PMID: 36073941 PMCID: PMC9499022 DOI: 10.1128/aem.01289-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shewanella oneidensis is the best understood model microorganism for the study of diverse cytochromes (cytos) c that support its unparallel respiratory versatility. Although RNA chaperone Hfq has been implicated in regulation of cyto c production, little is known about the biological pathways that it affects in this bacterium. In this study, from a spontaneous mutant that secretes pyomelanin and has a lowered cyto c content, we identified Hfq to be the regulator that critically associates with both phenotypes in S. oneidensis. We found that expression of the key genes in biosynthesis and degradation of heme is differentially affected by Hfq at under- and overproduced levels, and through modulating heme levels, Hfq influences the cyto c content. Although Hfq in excess results in overproduction of the enzymes responsible for both generation and removal of homogentisic acid (HGA), the precursor of pyomelanin, it is compromised activity of HmgA that leads to excretion and polymerization of HGA to form pyomelanin. We further show that Hfq mediates HmgA activity by lowering intracellular iron content because HmgA is an iron-dependent enzyme. Overall, our work highlights the significance of Hfq-mediated posttranscriptional regulation in the physiology of S. oneidensis, unraveling unexpected mechanisms by which Hfq affects cyto c biosynthesis and pyomelanin production. IMPORTANCE In bacteria, Hfq has been implicated in regulation of diverse biological processes posttranslationally. In S. oneidensis, Hfq affects the content of cytos c that serve as the basis of its respiratory versatility and potential application in bioenergy and bioremediation. In this study, we found that Hfq differentially regulates heme biosynthesis and degradation, leading to altered cyto c contents. Hfq in excess causes a synthetic effect on HmgA, an enzyme responsible for pyomelanin formation. Overall, the data presented manifest that the biological processes in a given bacterium regulated by Hfq are highly complex, amounting to required coordination among multiple physiological aspects to allow cells to respond to environmental changes promptly.
Collapse
|
20
|
Maksimova E, Kravchenko O, Korepanov A, Stolboushkina E. Protein Assistants of Small Ribosomal Subunit Biogenesis in Bacteria. Microorganisms 2022; 10:microorganisms10040747. [PMID: 35456798 PMCID: PMC9032327 DOI: 10.3390/microorganisms10040747] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/16/2022] [Accepted: 03/26/2022] [Indexed: 01/27/2023] Open
Abstract
Ribosome biogenesis is a fundamental and multistage process. The basic steps of ribosome assembly are the transcription, processing, folding, and modification of rRNA; the translation, folding, and modification of r-proteins; and consecutive binding of ribosomal proteins to rRNAs. Ribosome maturation is facilitated by biogenesis factors that include a broad spectrum of proteins: GTPases, RNA helicases, endonucleases, modification enzymes, molecular chaperones, etc. The ribosome assembly factors assist proper rRNA folding and protein–RNA interactions and may sense the checkpoints during the assembly to ensure correct order of this process. Inactivation of these factors is accompanied by severe growth phenotypes and accumulation of immature ribosomal subunits containing unprocessed rRNA, which reduces overall translation efficiency and causes translational errors. In this review, we focus on the structural and biochemical analysis of the 30S ribosomal subunit assembly factors RbfA, YjeQ (RsgA), Era, KsgA (RsmA), RimJ, RimM, RimP, and Hfq, which take part in the decoding-center folding.
Collapse
Affiliation(s)
| | | | - Alexey Korepanov
- Correspondence: (A.K.); (E.S.); Tel.: +7-925-7180670 (A.K.); +7-915-4791359 (E.S.)
| | - Elena Stolboushkina
- Correspondence: (A.K.); (E.S.); Tel.: +7-925-7180670 (A.K.); +7-915-4791359 (E.S.)
| |
Collapse
|
21
|
Trouillon J, Han K, Attrée I, Lory S. The core and accessory Hfq interactomes across Pseudomonas aeruginosa lineages. Nat Commun 2022; 13:1258. [PMID: 35273147 PMCID: PMC8913705 DOI: 10.1038/s41467-022-28849-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 02/14/2022] [Indexed: 01/16/2023] Open
Abstract
The major RNA-binding protein Hfq interacts with mRNAs, either alone or together with regulatory small noncoding RNAs (sRNAs), affecting mRNA translation and degradation in bacteria. However, studies tend to focus on single reference strains and assume that the findings may apply to the entire species, despite the important intra-species genetic diversity known to exist. Here, we use RIP-seq to identify Hfq-interacting RNAs in three strains representing the major phylogenetic lineages of Pseudomonas aeruginosa. We find that most interactions are in fact not conserved among the different strains. We identify growth phase-specific and strain-specific Hfq targets, including previously undescribed sRNAs. Strain-specific interactions are due to different accessory gene sets, RNA abundances, or potential context- or sequence- dependent regulatory mechanisms. The accessory Hfq interactome includes most mRNAs encoding Type III Secretion System (T3SS) components and secreted toxins in two strains, as well as a cluster of CRISPR guide RNAs in one strain. Conserved Hfq targets include the global virulence regulator Vfr and metabolic pathways involved in the transition from fast to slow growth. Furthermore, we use rGRIL-seq to show that RhlS, a quorum sensing sRNA, activates Vfr translation, thus revealing a link between quorum sensing and virulence regulation. Overall, our work highlights the important intra-species diversity in post-transcriptional regulatory networks in Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Julian Trouillon
- Université Grenoble Alpes, CNRS, CEA, IBS UMR 5075, 38044, Grenoble, France
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Kook Han
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Ina Attrée
- Université Grenoble Alpes, CNRS, CEA, IBS UMR 5075, 38044, Grenoble, France
| | - Stephen Lory
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
22
|
Seixas AF, Quendera AP, Sousa JP, Silva AFQ, Arraiano CM, Andrade JM. Bacterial Response to Oxidative Stress and RNA Oxidation. Front Genet 2022; 12:821535. [PMID: 35082839 PMCID: PMC8784731 DOI: 10.3389/fgene.2021.821535] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/21/2021] [Indexed: 01/03/2023] Open
Abstract
Bacteria have to cope with oxidative stress caused by distinct Reactive Oxygen Species (ROS), derived not only from normal aerobic metabolism but also from oxidants present in their environments. The major ROS include superoxide O2−, hydrogen peroxide H2O2 and radical hydroxide HO•. To protect cells under oxidative stress, bacteria induce the expression of several genes, namely the SoxRS, OxyR and PerR regulons. Cells are able to tolerate a certain number of free radicals, but high levels of ROS result in the oxidation of several biomolecules. Strikingly, RNA is particularly susceptible to this common chemical damage. Oxidation of RNA causes the formation of strand breaks, elimination of bases or insertion of mutagenic lesions in the nucleobases. The most common modification is 8-hydroxyguanosine (8-oxo-G), an oxidized form of guanosine. The structure and function of virtually all RNA species (mRNA, rRNA, tRNA, sRNA) can be affected by RNA oxidation, leading to translational defects with harmful consequences for cell survival. However, bacteria have evolved RNA quality control pathways to eliminate oxidized RNA, involving RNA-binding proteins like the members of the MutT/Nudix family and the ribonuclease PNPase. Here we summarize the current knowledge on the bacterial stress response to RNA oxidation, namely we present the different ROS responsible for this chemical damage and describe the main strategies employed by bacteria to fight oxidative stress and control RNA damage.
Collapse
Affiliation(s)
- André F Seixas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana P Quendera
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - João P Sousa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Alda F Q Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - José M Andrade
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
23
|
Małecka EM, Sobańska D, Olejniczak M. Bacterial Chaperone Protein Hfq Facilitates the Annealing of Sponge RNAs to Small Regulatory RNAs. J Mol Biol 2021; 433:167291. [PMID: 34624296 DOI: 10.1016/j.jmb.2021.167291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 01/08/2023]
Abstract
Bacterial small RNAs (sRNAs) in association with the chaperone protein Hfq regulate the expression of many target mRNAs. Since sRNAs' action is crucial to engendering a response to changing environmental conditions, their activity needs to be regulated. One such mechanism occurs at the post-transcriptional level and involves sponge RNAs, which sequester sRNAs affecting their regulatory output. Both types of RNAs were identified on Hfq, but it is not known how Hfq interacts with RNA sponges and stimulates their base-pairing with sRNAs. Here, we used biochemical methods to demonstrate that sponge RNAs resemble sRNAs by their structure and their modes of Hfq binding. Hfq facilitates the annealing of AgvB and 3'ETSleuZ sponge RNAs to targeted sRNAs: GcvB and RybB, respectively, and each surface of the protein plays a particular role in the process. Moreover, we found that the efficiency of sponge RNA interactions with sRNAs can be improved; therefore, we propose that natural RNA sponges might not sequester sRNAs optimally.
Collapse
Affiliation(s)
- Ewelina M Małecka
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Daria Sobańska
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland. https://twitter.com/SobanskaD
| | - Mikołaj Olejniczak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| |
Collapse
|
24
|
Rodgers ML, Woodson SA. A roadmap for rRNA folding and assembly during transcription. Trends Biochem Sci 2021; 46:889-901. [PMID: 34176739 PMCID: PMC8526401 DOI: 10.1016/j.tibs.2021.05.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/14/2021] [Accepted: 05/27/2021] [Indexed: 01/11/2023]
Abstract
Ribonucleoprotein (RNP) assembly typically begins during transcription when folding of the newly synthesized RNA is coupled with the recruitment of RNA-binding proteins (RBPs). Upon binding, the proteins induce structural rearrangements in the RNA that are crucial for the next steps of assembly. Focusing primarily on bacterial ribosome assembly, we discuss recent work showing that early RNA-protein interactions are more dynamic than previously supposed, and remain so, until sufficient proteins are recruited to each transcript to consolidate an entire domain of the RNP. We also review studies showing that stable assembly of an RNP competes against modification and processing of the RNA. Finally, we discuss how transcription sets the timeline for competing and cooperative RNA-RBP interactions that determine the fate of the nascent RNA. How this dance is coordinated is the focus of this review.
Collapse
Affiliation(s)
- Margaret L Rodgers
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sarah A Woodson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
25
|
Evguenieva-Hackenberg E. Riboregulation in bacteria: From general principles to novel mechanisms of the trp attenuator and its sRNA and peptide products. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1696. [PMID: 34651439 DOI: 10.1002/wrna.1696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/25/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022]
Abstract
Gene expression strategies ensuring bacterial survival and competitiveness rely on cis- and trans-acting RNA-regulators (riboregulators). Among the cis-acting riboregulators are transcriptional and translational attenuators, and antisense RNAs (asRNAs). The trans-acting riboregulators are small RNAs (sRNAs) that bind proteins or base pairs with other RNAs. This classification is artificial since some regulatory RNAs act both in cis and in trans, or function in addition as small mRNAs. A prominent example is the archetypical, ribosome-dependent attenuator of tryptophan (Trp) biosynthesis genes. It responds by transcription attenuation to two signals, Trp availability and inhibition of translation, and gives rise to two trans-acting products, the attenuator sRNA rnTrpL and the leader peptide peTrpL. In Escherichia coli, rnTrpL links Trp availability to initiation of chromosome replication and in Sinorhizobium meliloti, it coordinates regulation of split tryptophan biosynthesis operons. Furthermore, in S. meliloti, peTrpL is involved in mRNA destabilization in response to antibiotic exposure. It forms two types of asRNA-containing, antibiotic-dependent ribonucleoprotein complexes (ARNPs), one of them changing the target specificity of rnTrpL. The posttranscriptional role of peTrpL indicates two emerging paradigms: (1) sRNA reprograming by small molecules and (2) direct involvement of antibiotics in regulatory RNPs. They broaden our view on RNA-based mechanisms and may inspire new approaches for studying, detecting, and using antibacterial compounds. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
|
26
|
Binding of the RNA Chaperone Hfq on Target mRNAs Promotes the Small RNA RyhB-Induced Degradation in Escherichia coli. Noncoding RNA 2021; 7:ncrna7040064. [PMID: 34698252 PMCID: PMC8544716 DOI: 10.3390/ncrna7040064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/03/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022] Open
Abstract
Many RNA-RNA interactions depend on molecular chaperones to form and remain stable in living cells. A prime example is the RNA chaperone Hfq, which is a critical effector involved in regulatory interactions between small RNAs (sRNAs) and cognate target mRNAs in Enterobacteriaceae. While there is a great deal of in vitro biochemical evidence supporting the model that Hfq enhances rates or affinities of sRNA:mRNA interactions, there is little corroborating in vivo evidence. Here we used in vivo tools including reporter genes, co-purification assays, and super-resolution microscopy to analyze the role of Hfq in RyhB-mediated regulation, and we found that Hfq is often unnecessary for efficient RyhB:mRNA complex formation in vivo. Remarkably, our data suggest that a primary function of Hfq is to promote RyhB-induced cleavage of mRNA targets by RNase E. Moreover, our work indicates that Hfq plays a more limited role in dictating regulatory outcomes following sRNAs RybB and DsrA complex formation with specific target mRNAs. Our investigation helps evaluate the roles played by Hfq in some RNA-mediated regulation.
Collapse
|
27
|
Post-Transcriptional Control in the Regulation of Polyhydroxyalkanoates Synthesis. Life (Basel) 2021; 11:life11080853. [PMID: 34440597 PMCID: PMC8401924 DOI: 10.3390/life11080853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 01/08/2023] Open
Abstract
The large production of non-degradable petrol-based plastics has become a major global issue due to its environmental pollution. Biopolymers produced by microorganisms such as polyhydroxyalkanoates (PHAs) are gaining potential as a sustainable alternative, but the high cost associated with their industrial production has been a limiting factor. Post-transcriptional regulation is a key step to control gene expression in changing environments and has been reported to play a major role in numerous cellular processes. However, limited reports are available concerning the regulation of PHA accumulation in bacteria, and many essential regulatory factors still need to be identified. Here, we review studies where the synthesis of PHA has been reported to be regulated at the post-transcriptional level, and we analyze the RNA-mediated networks involved. Finally, we discuss the forthcoming research on riboregulation, synthetic, and metabolic engineering which could lead to improved strategies for PHAs synthesis in industrial production, thereby reducing the costs currently associated with this procedure.
Collapse
|
28
|
Differential Chromosome- and Plasmid-Borne Resistance of Escherichia coli hfq Mutants to High Concentrations of Various Antibiotics. Int J Mol Sci 2021; 22:ijms22168886. [PMID: 34445592 PMCID: PMC8396180 DOI: 10.3390/ijms22168886] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022] Open
Abstract
The Hfq protein is a bacterial RNA chaperone, involved in many molecular interactions, including control of actions of various small RNA regulatory molecules. We found that the presence of Hfq was required for survival of plasmid-containing Escherichia coli cells against high concentrations of chloramphenicol (plasmid p27cmr), tetracycline (pSC101, pBR322) and ampicillin (pBR322), as hfq+ strains were more resistant to these antibiotics than the hfq-null mutant. In striking contrast, production of Hfq resulted in low resistance to high concentrations of kanamycin when the antibiotic-resistance marker was chromosome-borne, with deletion of hfq resulting in increasing bacterial survival. These results were observed both in solid and liquid medium, suggesting that antibiotic resistance is an intrinsic feature of these strains rather than a consequence of adaptation. Despite its major role as RNA chaperone, which also affects mRNA stability, Hfq was not found to significantly affect kan and tet mRNAs turnover. Nevertheless, kan mRNA steady-state levels were higher in the hfq-null mutant compared to the hfq+ strain, suggesting that Hfq can act as a repressor of kan expression.This observation does correlate with the enhanced resistance to high levels of kanamycin observed in the hfq-null mutant. Furthermore, dependency on Hfq for resistance to high doses of tetracycline was found to depend on plasmid copy number, which was only observed when the resistance marker was expressed from a low copy plasmid (pSC101) but not from a medium copy plasmid (pBR322). This suggests that Hfq may influence survival against high doses of antibiotics through mechanisms that remain to be determined. Studies with pBR322Δrom may also suggest an interplay between Hfq and Rom in the regulation of ColE1-like plasmid replication. Results of experiments with a mutant devoid of the part of the hfq gene coding for the C-terminal region of Hfq suggested that this region, as well as the N-terminal region, may be involved in the regulation of expression of antibiotic resistance in E. coli independently.
Collapse
|
29
|
Amemiya HM, Schroeder J, Freddolino PL. Nucleoid-associated proteins shape chromatin structure and transcriptional regulation across the bacterial kingdom. Transcription 2021; 12:182-218. [PMID: 34499567 PMCID: PMC8632127 DOI: 10.1080/21541264.2021.1973865] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 01/21/2023] Open
Abstract
Genome architecture has proven to be critical in determining gene regulation across almost all domains of life. While many of the key components and mechanisms of eukaryotic genome organization have been described, the interplay between bacterial DNA organization and gene regulation is only now being fully appreciated. An increasing pool of evidence has demonstrated that the bacterial chromosome can reasonably be thought of as chromatin, and that bacterial chromosomes contain transcriptionally silent and transcriptionally active regions analogous to heterochromatin and euchromatin, respectively. The roles played by histones in eukaryotic systems appear to be shared across a range of nucleoid-associated proteins (NAPs) in bacteria, which function to compact, structure, and regulate large portions of bacterial chromosomes. The broad range of extant NAPs, and the extent to which they differ from species to species, has raised additional challenges in identifying and characterizing their roles in all but a handful of model bacteria. Here we review the regulatory roles played by NAPs in several well-studied bacteria and use the resulting state of knowledge to provide a working definition for NAPs, based on their function, binding pattern, and expression levels. We present a screening procedure which can be applied to any species for which transcriptomic data are available. Finally, we note that NAPs tend to play two major regulatory roles - xenogeneic silencers and developmental regulators - and that many unrecognized potential NAPs exist in each bacterial species examined.
Collapse
Affiliation(s)
- Haley M. Amemiya
- University of Michigan Medical School, Ann Arbor, MI, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jeremy Schroeder
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Peter L. Freddolino
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
30
|
Wang Z, Huang X, Jan M, Kong D, Pan J, Zhang X. The global regulator Hfq exhibits far more extensive and intensive regulation than Crc in Pseudomonas protegens H78. MOLECULAR PLANT PATHOLOGY 2021; 22:921-938. [PMID: 33963656 PMCID: PMC8295515 DOI: 10.1111/mpp.13070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/22/2021] [Accepted: 03/24/2021] [Indexed: 05/10/2023]
Abstract
The biocontrol rhizobacterium Pseudomonas protegens H78 can produce a large array of antimicrobial secondary metabolites, including pyoluteorin (Plt), 2,4-diacetylphloroglucinol (DAPG), and pyrrolnitrin (Prn). Our preliminary study showed that the biosynthesis of antibiotics including Plt is activated by the RNA chaperone Hfq in P. protegens H78. This prompted us to explore the global regulatory mechanism of Hfq, as well as the catabolite repression control (Crc) protein in H78. The antimicrobial capacity of H78 was positively controlled by Hfq while slightly down-regulated by knockout of crc. Similarly, cell growth of H78 was significantly impaired by deletion of hfq and slightly inhibited by knockout of crc. Transcriptomic profiling revealed that hfq mutation resulted in significant down-regulation of 688 genes and up-regulation of 683 genes. However, only 113 genes were significantly down-regulated and 105 genes up-regulated by the crc mutation in H78. Hfq positively regulated the expression of gene clusters involved in secondary metabolism (plt, prn, phl, hcn, and pvd), the type VI secretion system, and aromatic compound degradation. However, Crc only positively regulated the biosynthesis of Plt but not other antibiotics. Hfq also regulated expression of genes involved in oxidative phosphorylation and flagellar biogenesis. In addition, Hfq and Crc activated transcription of crcY/Z sRNAs by feedback. In summary, Hfq processes far more extensive and intensive regulatory capacity than Crc and shows small cross-regulation with Crc in H78. This study lays the foundation for clarifying the Hfq and/or Crc-dependent global regulatory network and improving antibiotic production by genetic engineering in P. protegens.
Collapse
Affiliation(s)
- Zheng Wang
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic and Developmental SciencesSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xianqing Huang
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic and Developmental SciencesSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Malik Jan
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic and Developmental SciencesSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Deyu Kong
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic and Developmental SciencesSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Jingwen Pan
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic and Developmental SciencesSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xuehong Zhang
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic and Developmental SciencesSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
31
|
Fu Y, Yu Z, Zhu L, Li Z, Yin W, Shang X, Chou SH, Tan Q, He J. The Multiple Regulatory Relationship Between RNA-Chaperone Hfq and the Second Messenger c-di-GMP. Front Microbiol 2021; 12:689619. [PMID: 34335515 PMCID: PMC8323549 DOI: 10.3389/fmicb.2021.689619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022] Open
Abstract
RNA chaperone protein Hfq is an important post-transcriptional regulator in bacteria, while c-di-GMP is a second messenger signaling molecule widely distributed in bacteria. Both factors have been found to play key roles in post-transcriptional regulation and signal transduction pathways, respectively. Intriguingly, the two factors show some common aspects in the regulation of certain physiological functions such as bacterial motility, biofilm formation, pathogenicity and so on. Therefore, there may be regulatory relationship between Hfq and c-di-GMP. For example, Hfq can directly regulate the activity of c-di-GMP metabolic enzymes or alter the c-di-GMP level through other systems, while c-di-GMP can indirectly enhance or inhibit the hfq gene expression through intermediate factors. In this article, after briefly introducing the Hfq and c-di-GMP regulatory systems, we will focus on the direct and indirect regulation reported between Hfq and c-di-GMP, aiming to compare and link the two regulatory systems to further study the complicated physiological and metabolic systems of bacteria, and to lay a solid foundation for drawing a more complete global regulatory network.
Collapse
Affiliation(s)
- Yang Fu
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China.,State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhaoqing Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhou Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wen Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaodong Shang
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qi Tan
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
32
|
McQuail J, Carpousis AJ, Wigneshweraraj S. The association between Hfq and RNase E in long-term nitrogen-starved Escherichia coli. Mol Microbiol 2021; 117:54-66. [PMID: 34219284 DOI: 10.1111/mmi.14782] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/27/2022]
Abstract
Under conditions of nutrient adversity, bacteria adjust metabolism to minimize cellular energy usage. This is often achieved by controlling the synthesis and degradation of RNA. In Escherichia coli, RNase E is the central enzyme involved in RNA degradation and serves as a scaffold for the assembly of the multiprotein complex known as the RNA degradosome. The activity of RNase E against specific mRNAs can also be regulated by the action of small RNAs (sRNA). In this case, the ubiquitous bacterial chaperone Hfq bound to sRNAs can interact with the RNA degradosome for the sRNA guided degradation of target RNAs. The RNA degradosome and Hfq have never been visualized together in live bacteria. We now show that in long-term nitrogen starved E. coli, both RNase E and Hfq co-localize in a single, large focus. This subcellular assembly, which we refer to as the H-body, forms by a liquid-liquid phase separation type mechanism and includes components of the RNA degradosome, namely, the helicase RhlB and the exoribonuclease polynucleotide phosphorylase. The results support the existence of a hitherto unreported subcellular compartmentalization of a process(s) associated with RNA management in stressed bacteria.
Collapse
Affiliation(s)
- Josh McQuail
- MRC Centre for Molecular Bacteriology, Imperial College London, London, UK
| | - Agamemnon J Carpousis
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, Toulouse, France
| | | |
Collapse
|
33
|
Andrade JM, Dos Santos RF, Arraiano CM. RNA Structure Analysis by Chemical Probing with DMS and CMCT. Methods Mol Biol 2021; 2106:209-223. [PMID: 31889260 DOI: 10.1007/978-1-0716-0231-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
RNA structure is important for understanding RNA function and stability within a cell. Chemical probing is a well-established and convenient method to evaluate the structure of an RNA. Several structure-sensitive chemicals can differentiate paired and unpaired nucleotides. This chapter specifically addresses the use of DMS and CMCT. Although exhibiting different affinities, the combination of these two chemical reagents enables screening of all four nucleobases. DMS and CMCT are only reactive with exposed unpaired nucleotides. We have used this method to analyze the effect of the RNA chaperone Hfq on the conformation of the 16S rRNA. The strategy here described may be applied for the study of many other RNA-binding proteins and RNAs.
Collapse
Affiliation(s)
- José M Andrade
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - Ricardo F Dos Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
34
|
RNA Remodeling by RNA Chaperones Monitored by RNA Structure Probing. Methods Mol Biol 2021; 2106:179-192. [PMID: 31889258 DOI: 10.1007/978-1-0716-0231-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
RNA structure probing enables the characterization of RNA secondary structures by established procedures such as the enzyme- or chemical-based detection of single- or double-stranded regions. A specific type of application involves the detection of changes of RNA structures and conformations that are induced by proteins with RNA chaperone activity. This chapter outlines a protocol to analyze RNA structures in vitro in the presence of an RNA-binding protein with RNA chaperone activity. For this purpose, we make use of the methylating agents dimethyl sulfate (DMS) and 1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide metho-p-toluenesulfonate (CMCT). DMS and CMCT specifically modify nucleotides that are not involved in base-pairing or tertiary structure hydrogen bonding and that are not protected by a ligand such as a protein. Modified bases are identified by primer extension. As an example, we describe how the RNA chaperone activity of an isoform of the RNA-binding protein AUF1 induces the flaviviral RNA switch required for viral genome cyclization and viral replication.This chapter includes comprehensive protocols for in vitro synthesis of RNA, 32P-5'-end labeling of DNA primers, primer extension, as well as the preparation and running of analytical gels. The described methodology should be applicable to any other RNA and protein of interest to identify protein-directed RNA remodeling.
Collapse
|
35
|
Yang X, Dong M, Zhou Z, Deng L, Deng C, Liu H, Zhong Z, Fu H, Ren Z, Hu Y, Shen L, Geng Y, Peng G. RNA-binding protein Hfq plays a vital role in cellulose decomposition throughout affecting cellulase gene expression. Biotechnol Lett 2021; 43:1779-1785. [PMID: 34129180 DOI: 10.1007/s10529-021-03145-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/04/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To study the function of the RNA-binding protein Hfq in Bacillus subtilis cellulose decomposition. RESULTS In the medium with sodium carboxymethylcellulose (Na-CMC) as the sole carbon source, the knockout of Hfq resulted in a 38.0% ± 2.1% and 76.6% ± 7.1% decrease in cellulose hydrolysis ability and cellulase activity, respectively. The results of real-time quantitative PCR revealed that several cellulase genes (eglS, bglA, and bglC) were significantly downregulated in the Hfq knockout strain. The isogenic Δhfq complemented strain recovered the cellulose hydrolysis ability, cellulase activity, and expression level of cellulase genes. In addition, the survival of Hfq mutant in stationary phase was significantly affected. CONCLUSION RNA-binding protein Hfq is involved in the regulation of cellulose hydrolysis ability, cellulase activity, cellulase gene expression, and stationary phase survival.
Collapse
Affiliation(s)
- Xingtao Yang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Mengyao Dong
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Ziyao Zhou
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Lei Deng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Cao Deng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Haifeng Liu
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Zhijun Zhong
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Hualin Fu
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Zhihua Ren
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Yanchun Hu
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Liuhong Shen
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Yi Geng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Guangneng Peng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, China.
| |
Collapse
|
36
|
Lekontseva NV, Stolboushkina EA, Nikulin AD. Diversity of LSM Family Proteins: Similarities and Differences. BIOCHEMISTRY (MOSCOW) 2021; 86:S38-S49. [PMID: 33827399 DOI: 10.1134/s0006297921140042] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Members of the Lsm protein family are found in all three domains of life: bacteria, archaea, and eukarya. They are involved in numerous processes associated with RNA processing and gene expression regulation. A common structural feature of all Lsm family proteins is the presence of the Sm fold consisting of a five-stranded β-sheet and an α-helix at the N-terminus. Heteroheptameric eukaryotic Sm and Lsm proteins participate in the formation of spliceosomes and mRNA decapping. Homohexameric bacterial Lsm protein, Hfq, is involved in the regulation of transcription of different mRNAs by facilitating their interactions with small regulatory RNAs. Furthermore, recently obtained data indicate a new role of Hfq as a ribosome biogenesis factor, as it mediates formation of the productive structure of the 17S rRNA 3'- and 5'-sequences, facilitating their further processing by RNases. Lsm archaeal proteins (SmAPs) form homoheptamers and likely interact with single-stranded uridine-rich RNA elements, although the role of these proteins in archaea is still poorly understood. In this review, we discuss the structural features of the Lsm family proteins from different life domains and their structure-function relationships.
Collapse
Affiliation(s)
- Natalia V Lekontseva
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Elena A Stolboushkina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Alexey D Nikulin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
37
|
Payá G, Bautista V, Camacho M, Bonete MJ, Esclapez J. Functional analysis of Lsm protein under multiple stress conditions in the extreme haloarchaeon Haloferax mediterranei. Biochimie 2021; 187:33-47. [PMID: 33992715 DOI: 10.1016/j.biochi.2021.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 01/24/2023]
Abstract
The Sm, like-Sm, and Hfq proteins belonging to the Sm superfamily of proteins are represented in all domains of life. These proteins are involved in several RNA metabolism pathways. The functions of bacterial Hfq and eukaryotic Sm proteins have been described, but knowledge about the in vivo functions of archaeal Sm proteins remains limited. This study aims to improve the understanding of Lsm proteins and their role using the haloarchaeon Haloferax mediterranei as a model microorganism. The Haloferax mediterranei genome contains one lsm gene that overlaps with the rpl37e gene. To determine the expression of lsm and rpl37e genes and the co-transcription of both, reverse transcription-polymerase chain reaction (RT-PCR) analyses were performed under different standard and stress conditions. The results suggest that the expression of lsm and rpl37e is constitutive. Co-transcription occurs at sub-optimal salt concentrations and temperatures, depending on the growth phase. The halophilic Lsm protein contains two Sm motifs, Sm1 and Sm2, and the sequence encoding the Sm2 motif also constitutes the promoter of the rpl37e gene. To investigate their biological functions, the lsm deletion mutant and the Sm1 motif deletion mutant, where the Sm2 motif remained intact, were generated and characterised. Comparison of the lsm deletion mutant, Sm1 deletion mutant, and the parental strain HM26 under standard and stress growth conditions revealed growth differences. Finally, swarming assays in complex and defined media showed greater swarming capacity in the deletion mutants.
Collapse
Affiliation(s)
- Gloria Payá
- Agrochemistry and Biochemistry Department, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Ap 99, 03080, Alicante, Spain.
| | - Vanesa Bautista
- Agrochemistry and Biochemistry Department, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Ap 99, 03080, Alicante, Spain.
| | - Mónica Camacho
- Agrochemistry and Biochemistry Department, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Ap 99, 03080, Alicante, Spain.
| | - María-José Bonete
- Agrochemistry and Biochemistry Department, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Ap 99, 03080, Alicante, Spain.
| | - Julia Esclapez
- Agrochemistry and Biochemistry Department, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Ap 99, 03080, Alicante, Spain.
| |
Collapse
|
38
|
Weixlbaumer A, Grünberger F, Werner F, Grohmann D. Coupling of Transcription and Translation in Archaea: Cues From the Bacterial World. Front Microbiol 2021; 12:661827. [PMID: 33995325 PMCID: PMC8116511 DOI: 10.3389/fmicb.2021.661827] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/30/2021] [Indexed: 01/07/2023] Open
Abstract
The lack of a nucleus is the defining cellular feature of bacteria and archaea. Consequently, transcription and translation are occurring in the same compartment, proceed simultaneously and likely in a coupled fashion. Recent cryo-electron microscopy (cryo-EM) and tomography data, also combined with crosslinking-mass spectrometry experiments, have uncovered detailed structural features of the coupling between a transcribing bacterial RNA polymerase (RNAP) and the trailing translating ribosome in Escherichia coli and Mycoplasma pneumoniae. Formation of this supercomplex, called expressome, is mediated by physical interactions between the RNAP-bound transcription elongation factors NusG and/or NusA and the ribosomal proteins including uS10. Based on the structural conservation of the RNAP core enzyme, the ribosome, and the universally conserved elongation factors Spt5 (NusG) and NusA, we discuss requirements and functional implications of transcription-translation coupling in archaea. We furthermore consider additional RNA-mediated and co-transcriptional processes that potentially influence expressome formation in archaea.
Collapse
Affiliation(s)
- Albert Weixlbaumer
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Université de Strasbourg, Strasbourg, France
- CNRS UMR7104, Illkirch, France
- INSERM U1258, Illkirch, France
| | - Felix Grünberger
- Institute of Microbiology and Archaea Centre, University of Regensburg, Regensburg, Germany
| | - Finn Werner
- RNAP Lab, Division of Biosciences, Institute for Structural and Molecular Biology, London, United Kingdom
| | - Dina Grohmann
- Institute of Microbiology and Archaea Centre, University of Regensburg, Regensburg, Germany
- Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| |
Collapse
|
39
|
Basu P, Elgrably-Weiss M, Hassouna F, Kumar M, Wiener R, Altuvia S. RNA binding of Hfq monomers promotes RelA-mediated hexamerization in a limiting Hfq environment. Nat Commun 2021; 12:2249. [PMID: 33883550 PMCID: PMC8060364 DOI: 10.1038/s41467-021-22553-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 03/20/2021] [Indexed: 02/02/2023] Open
Abstract
The RNA chaperone Hfq, acting as a hexamer, is a known mediator of post-transcriptional regulation, expediting basepairing between small RNAs (sRNAs) and their target mRNAs. However, the intricate details associated with Hfq-RNA biogenesis are still unclear. Previously, we reported that the stringent response regulator, RelA, is a functional partner of Hfq that facilitates Hfq-mediated sRNA-mRNA regulation in vivo and induces Hfq hexamerization in vitro. Here we show that RelA-mediated Hfq hexamerization requires an initial binding of RNA, preferably sRNA to Hfq monomers. By interacting with a Shine-Dalgarno-like sequence (GGAG) in the sRNA, RelA stabilizes the initially unstable complex of RNA bound-Hfq monomer, enabling the attachment of more Hfq subunits to form a functional hexamer. Overall, our study showing that RNA binding to Hfq monomers is at the heart of RelA-mediated Hfq hexamerization, challenges the previous concept that only Hfq hexamers can bind RNA.
Collapse
Affiliation(s)
- Pallabi Basu
- grid.9619.70000 0004 1937 0538Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University, Hadassah Medical School, Jerusalem, Israel
| | - Maya Elgrably-Weiss
- grid.9619.70000 0004 1937 0538Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University, Hadassah Medical School, Jerusalem, Israel
| | - Fouad Hassouna
- grid.9619.70000 0004 1937 0538Department of Biochemistry and Molecular Biology, IMRIC, The Hebrew University, Hadassah Medical School, Jerusalem, Israel
| | - Manoj Kumar
- grid.9619.70000 0004 1937 0538Department of Biochemistry and Molecular Biology, IMRIC, The Hebrew University, Hadassah Medical School, Jerusalem, Israel
| | - Reuven Wiener
- grid.9619.70000 0004 1937 0538Department of Biochemistry and Molecular Biology, IMRIC, The Hebrew University, Hadassah Medical School, Jerusalem, Israel
| | - Shoshy Altuvia
- grid.9619.70000 0004 1937 0538Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University, Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
40
|
Erkelenz S, Stanković D, Mundorf J, Bresser T, Claudius AK, Boehm V, Gehring NH, Uhlirova M. Ecd promotes U5 snRNP maturation and Prp8 stability. Nucleic Acids Res 2021; 49:1688-1707. [PMID: 33444449 PMCID: PMC7897482 DOI: 10.1093/nar/gkaa1274] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/07/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
Pre-mRNA splicing catalyzed by the spliceosome represents a critical step in the regulation of gene expression contributing to transcriptome and proteome diversity. The spliceosome consists of five small nuclear ribonucleoprotein particles (snRNPs), the biogenesis of which remains only partially understood. Here we define the evolutionarily conserved protein Ecdysoneless (Ecd) as a critical regulator of U5 snRNP assembly and Prp8 stability. Combining Drosophila genetics with proteomic approaches, we demonstrate the Ecd requirement for the maintenance of adult healthspan and lifespan and identify the Sm ring protein SmD3 as a novel interaction partner of Ecd. We show that the predominant task of Ecd is to deliver Prp8 to the emerging U5 snRNPs in the cytoplasm. Ecd deficiency, on the other hand, leads to reduced Prp8 protein levels and compromised U5 snRNP biogenesis, causing loss of splicing fidelity and transcriptome integrity. Based on our findings, we propose that Ecd chaperones Prp8 to the forming U5 snRNP allowing completion of the cytoplasmic part of the U5 snRNP biogenesis pathway necessary to meet the cellular demand for functional spliceosomes.
Collapse
Affiliation(s)
- Steffen Erkelenz
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany
| | - Dimitrije Stanković
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany
| | - Juliane Mundorf
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Tina Bresser
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Ann-Katrin Claudius
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Volker Boehm
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany.,Institute for Genetics, University of Cologne, Cologne 50674, Germany
| | - Niels H Gehring
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany.,Institute for Genetics, University of Cologne, Cologne 50674, Germany
| | - Mirka Uhlirova
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany
| |
Collapse
|
41
|
Park S, Prévost K, Heideman EM, Carrier MC, Azam MS, Reyer MA, Liu W, Massé E, Fei J. Dynamic interactions between the RNA chaperone Hfq, small regulatory RNAs, and mRNAs in live bacterial cells. eLife 2021; 10:64207. [PMID: 33616037 PMCID: PMC7987339 DOI: 10.7554/elife.64207] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/19/2021] [Indexed: 12/26/2022] Open
Abstract
RNA-binding proteins play myriad roles in regulating RNAs and RNA-mediated functions. In bacteria, the RNA chaperone Hfq is an important post-transcriptional gene regulator. Using live-cell super-resolution imaging, we can distinguish Hfq binding to different sizes of cellular RNAs. We demonstrate that under normal growth conditions, Hfq exhibits widespread mRNA-binding activity, with the distal face of Hfq contributing mostly to the mRNA binding in vivo. In addition, sRNAs can either co-occupy Hfq with the mRNA as a ternary complex, or displace the mRNA from Hfq in a binding face-dependent manner, suggesting mechanisms through which sRNAs rapidly access Hfq to induce sRNA-mediated gene regulation. Finally, our data suggest that binding of Hfq to certain mRNAs through its distal face can recruit RNase E to promote turnover of these mRNAs in a sRNA-independent manner, and such regulatory function of Hfq can be decoyed by sRNA competitors that bind strongly at the distal face. Messenger RNAs or mRNAs are molecules that the cell uses to transfer the information stored in the cell’s DNA so it can be used to make proteins. Bacteria can regulate their levels of mRNA molecules, and they can therefore control how many proteins are being made, by producing a different type of RNA called small regulatory RNAs or sRNAs. Each sRNA can bind to several specific mRNA targets, and lead to their degradation by an enzyme called RNase E. Certain bacterial RNA-binding proteins, such as Hfq, protect sRNAs from being degraded, and help them find their mRNA targets. Hfq is abundant in bacteria. It is critical for bacterial growth under harsh conditions and it is involved in the process through which pathogenic bacteria infect cells. However, it is outnumbered by the many different RNA molecules in the cell, which compete for binding to the protein. It is not clear how Hfq prioritizes the different RNAs, or how binding to Hfq alters RNA regulation. Park, Prévost et al. imaged live bacterial cells to see how Hfq binds to RNA strands of different sizes. The experiments revealed that, when bacteria are growing normally, Hfq is mainly bound to mRNA molecules, and it can recruit RNase E to speed up mRNA degradation without the need for sRNAs. Park, Prévost et al. also showed that sRNAs could bind to Hfq by either replacing the bound mRNA or co-binding alongside it. The sRNA molecules that strongly bind Hfq can compete against mRNA for binding, and thus slow down the degradation of certain mRNAs. Hfq could be a potential drug target for treating bacterial infections. Understanding how it interacts with other molecules in bacteria could provide help in the development of new therapeutics. These findings suggest that a designed RNA that binds strongly to Hfq could disrupt its regulatory roles in bacteria, killing them. This could be a feasible drug design opportunity to counter the emergence of antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Seongjin Park
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| | - Karine Prévost
- RNA Group, Department of Biochemistry, University of Sherbrooke, Sherbrooke, Canada
| | - Emily M Heideman
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| | - Marie-Claude Carrier
- RNA Group, Department of Biochemistry, University of Sherbrooke, Sherbrooke, Canada
| | - Muhammad S Azam
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| | - Matthew A Reyer
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, United States
| | - Wei Liu
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| | - Eric Massé
- RNA Group, Department of Biochemistry, University of Sherbrooke, Sherbrooke, Canada
| | - Jingyi Fei
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, United States
| |
Collapse
|
42
|
Ng Kwan Lim E, Sasseville C, Carrier MC, Massé E. Keeping Up with RNA-Based Regulation in Bacteria: New Roles for RNA Binding Proteins. Trends Genet 2020; 37:86-97. [PMID: 33077249 DOI: 10.1016/j.tig.2020.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 01/06/2023]
Abstract
RNA binding proteins (RBPs) are ubiquitously found in all kingdoms of life. They are involved in a plethora of regulatory events, ranging from direct regulation of gene expression to guiding modification of RNA molecules. As bacterial regulators, RBPs can act alone or in concert with RNA-based regulators, such as small regulatory RNAs (sRNAs), riboswitches, or clustered regularly interspaced short palindromic repeats (CRISPR) RNAs. Various functions of RBPs, whether dependent or not on an RNA regulator, have been described in the past. However, the past decade has been a fertile ground for the development of novel high-throughput methods. These methods acted as stepping-stones for the discovery of new functions of RBPs and helped in the understanding of the molecular mechanisms behind previously described regulatory events. Here, we present an overview of the recently identified roles of major bacterial RBPs from different model organisms. Moreover, the tight relationship between RBPs and RNA-based regulators will be explored.
Collapse
Affiliation(s)
- Evelyne Ng Kwan Lim
- Faculty of Medicine and Health Sciences, Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, J1H 5N4, QC, Canada
| | - Charles Sasseville
- Faculty of Medicine and Health Sciences, Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, J1H 5N4, QC, Canada
| | - Marie-Claude Carrier
- Faculty of Medicine and Health Sciences, Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, J1H 5N4, QC, Canada
| | - Eric Massé
- Faculty of Medicine and Health Sciences, Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, J1H 5N4, QC, Canada.
| |
Collapse
|
43
|
Abstract
RNA quality control pathways are critical for cell survival. Here, we describe a new surveillance process involved in the degradation of highly structured and stable ribosomal RNAs. The results demonstrated that the RNA chaperone Hfq and the 3'-5' exoribonuclease R mediate the elimination of detrimental rRNA fragments and are required for the correct processing of rRNA precursors. Escherichia coli cells lacking both Hfq and RNase R accumulate a high level of 16S- and 23S-derived rRNA fragments. Hfq and RNase R were also shown to participate in the maturation of 16S and 23S rRNA precursors. This correlates with the fact that in the absence of Hfq and RNase R, there are severe ribosome assembly defects and a sharp reduction in 70S ribosome levels. Hfq and RNase R may act independently or in a complex, as protein interaction studies revealed that these RNA-binding proteins can associate. This is the first demonstration that the well-conserved Hfq and RNase R proteins act on common regulatory pathways, unraveling previously unknown mechanisms of rRNA surveillance with important consequences for translation and cell survival.IMPORTANCE Quality control pathways that oversee the quality of stable RNA molecules are critical for the cell. In this work, we demonstrate, for the first time, a functional link between Hfq and RNase R in the processing and degradation of the highly structured rRNAs. These RNA-binding proteins are required for the maturation of 16S and 23S rRNAs and correct ribosome assembly. Furthermore, they participate in the degradation of rRNAs and clearance of toxic rRNA fragments from the cell. Our studies have also shown that Hfq and RNase R can form a complex. In summary, the cooperation between Hfq and RNase R in metabolic pathways of stable RNAs may represent a broader mechanism of RNA quality control, given the high conservation of these RNA-binding proteins throughout evolution.
Collapse
|
44
|
Stein EM, Kwiatkowska J, Basczok MM, Gravel CM, Berry KE, Olejniczak M. Determinants of RNA recognition by the FinO domain of the Escherichia coli ProQ protein. Nucleic Acids Res 2020; 48:7502-7519. [PMID: 32542384 PMCID: PMC7367173 DOI: 10.1093/nar/gkaa497] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 11/13/2022] Open
Abstract
The regulation of gene expression by small RNAs in Escherichia coli depends on RNA binding proteins Hfq and ProQ, which bind mostly distinct RNA pools. To understand how ProQ discriminates between RNA substrates, we compared its binding to six different RNA molecules. Full-length ProQ bound all six RNAs similarly, while the isolated N-terminal FinO domain (NTD) of ProQ specifically recognized RNAs with Rho-independent terminators. Analysis of malM 3′-UTR mutants showed that tight RNA binding by the ProQ NTD required a terminator hairpin of at least 2 bp preceding an 3′ oligoU tail of at least four uridine residues. Substitution of an A-rich sequence on the 5′ side of the terminator to uridines strengthened the binding of several ProQ-specific RNAs to the Hfq protein, but not to the ProQ NTD. Substitution of the motif in the malM-3′ and cspE-3′ RNAs also conferred the ability to bind Hfq in E. coli cells, as measured using a three-hybrid assay. In summary, these data suggest that the ProQ NTD specifically recognizes 3′ intrinsic terminators of RNA substrates, and that the discrimination between RNA ligands by E. coli ProQ and Hfq depends both on positive determinants for binding to ProQ and negative determinants against binding to Hfq.
Collapse
Affiliation(s)
- Ewa M Stein
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Joanna Kwiatkowska
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Maciej M Basczok
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Chandra M Gravel
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA
| | - Katherine E Berry
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA.,Department of Chemistry, Mount Holyoke College, South Hadley, MA 01075, USA
| | - Mikołaj Olejniczak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
45
|
Abstract
Ro60 ribonucleoproteins (RNPs), composed of the ring-shaped Ro 60-kDa (Ro60) protein and noncoding RNAs called Y RNAs, are present in all three domains of life. Ro60 was first described as an autoantigen in patients with rheumatic disease, and Ro60 orthologs have been identified in 3% to 5% of bacterial genomes, spanning the majority of phyla. Their functions have been characterized primarily in Deinococcus radiodurans, the first sequenced bacterium with a recognizable ortholog. In D. radiodurans, the Ro60 ortholog enhances the ability of 3'-to-5' exoribonucleases to degrade structured RNA during several forms of environmental stress. Y RNAs are regulators that inhibit or allow the interactions of Ro60 with other proteins and RNAs. Studies of Ro60 RNPs in other bacteria hint at additional functions, since the most conserved Y RNA contains a domain that is a close tRNA mimic and Ro60 RNPs are often encoded adjacent to components of RNA repair systems.
Collapse
Affiliation(s)
- Soyeong Sim
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA; , , ,
| | - Kevin Hughes
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA; , , ,
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Xinguo Chen
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA; , , ,
| | - Sandra L Wolin
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA; , , ,
| |
Collapse
|
46
|
McQuail J, Switzer A, Burchell L, Wigneshweraraj S. The RNA-binding protein Hfq assembles into foci-like structures in nitrogen starved Escherichia coli. J Biol Chem 2020; 295:12355-12367. [PMID: 32532816 PMCID: PMC7458820 DOI: 10.1074/jbc.ra120.014107] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/09/2020] [Indexed: 11/13/2022] Open
Abstract
The initial adaptive responses to nutrient depletion in bacteria often occur at the level of gene expression. Hfq is an RNA-binding protein present in diverse bacterial lineages that contributes to many different aspects of RNA metabolism during gene expression. Using photoactivated localization microscopy and single-molecule tracking, we demonstrate that Hfq forms a distinct and reversible focus-like structure in Escherichia coli specifically experiencing long-term nitrogen starvation. Using the ability of T7 phage to replicate in nitrogen-starved bacteria as a biological probe of E. coli cell function during nitrogen starvation, we demonstrate that Hfq foci have a role in the adaptive response of E. coli to long-term nitrogen starvation. We further show that Hfq foci formation does not depend on gene expression once nitrogen starvation has set in and occurs indepen-dently of the transcription factor N-regulatory protein C, which activates the initial adaptive response to N starvation in E. coli These results serve as a paradigm to demonstrate that bacterial adaptation to long-term nutrient starvation can be spatiotemporally coordinated and can occur independently of de novo gene expression during starvation.
Collapse
Affiliation(s)
- Josh McQuail
- Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Amy Switzer
- Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Lynn Burchell
- Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Sivaramesh Wigneshweraraj
- Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| |
Collapse
|
47
|
Sharma H, Anand B. Ribosome assembly defects subvert initiation Factor3 mediated scrutiny of bona fide start signal. Nucleic Acids Res 2020; 47:11368-11386. [PMID: 31586395 PMCID: PMC6868393 DOI: 10.1093/nar/gkz825] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/17/2019] [Accepted: 10/03/2019] [Indexed: 12/02/2022] Open
Abstract
In bacteria, the assembly factors tightly orchestrate the maturation of ribosomes whose competency for protein synthesis is validated by translation machinery at various stages of translation cycle. However, what transpires to the quality control measures when the ribosomes are produced with assembly defects remains enigmatic. In Escherichia coli, we show that 30S ribosomes that harbour assembly defects due to the lack of assembly factors such as RbfA and KsgA display suboptimal initiation codon recognition and bypass the critical codon–anticodon proofreading steps during translation initiation. These premature ribosomes on entering the translation cycle compromise the fidelity of decoding that gives rise to errors during initiation and elongation. We show that the assembly defects compromise the binding of initiation factor 3 (IF3), which in turn appears to license the rapid transition of 30S (pre) initiation complex to 70S initiation complex by tempering the validation of codon–anticodon interaction during translation initiation. This suggests that the premature ribosomes harbouring the assembly defects subvert the IF3 mediated proofreading of cognate initiation codon to enter the translation cycle.
Collapse
Affiliation(s)
- Himanshu Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - B Anand
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
48
|
Wu H, Qin W, Lu S, Wang X, Zhang J, Sun T, Hu X, Li Y, Chen Q, Wang Y, Zhao H, Piao H, Zhang R, Wei M. Long noncoding RNA ZFAS1 promoting small nucleolar RNA-mediated 2'-O-methylation via NOP58 recruitment in colorectal cancer. Mol Cancer 2020; 19:95. [PMID: 32443980 PMCID: PMC7243338 DOI: 10.1186/s12943-020-01201-w] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/15/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Increasing evidence supports the role of small nucleolar RNAs (snoRNAs) and long non-coding RNAs (lncRNAs) as master gene regulators at the epigenetic modification level. However, the underlying mechanism of these functional ncRNAs in colorectal cancer (CRC) has not been well investigated. METHODS The dysregulated expression profiling of lncRNAs-snoRNAs-mRNAs and their correlations and co-expression enrichment were assessed by GeneChip microarray analysis. The candidate lncRNAs, snoRNAs, and target genes were detected by in situ hybridization (ISH), RT-PCR, qPCR and immunofluorescence (IF) assays. The biological functions of these factors were investigated using in vitro and in vivo studies that included CCK8, trans-well, cell apoptosis, IF assay, western blot method, and the xenograft mice models. rRNA 2'-O-methylation (Me) activities were determined by the RTL-P assay and a novel double-stranded primer based on the single-stranded toehold (DPBST) assay. The underlying molecular mechanisms were explored by bioinformatics and RNA stability, RNA fluorescence ISH, RNA pull-down and translation inhibition assays. RESULTS To demonstrate the involvement of lncRNA and snoRNAs in 2'-O-Me modification during tumorigenesis, we uncovered a previously unreported mechanism linking the snoRNPs NOP58 regulated by ZFAS1 in control of SNORD12C, SNORD78 mediated rRNA 2'-O-Me activities in CRC initiation and development. Specifically, ZFAS1 exerts its oncogenic functions and significantly up-regulated accompanied by elevated NOP58, SNORD12C/78 expression in CRC cells and tissues. ZFAS1 knockdown suppressed CRC cell proliferation, migration, and increased cell apoptosis, and this inhibitory effect could be reversed by NOP58 overexpression in vitro and in vivo. Mechanistically, the NOP58 protein could be recognized by the specific motif (AAGA or CAGA) of ZFAS1. This event accelerates the assembly of SNORD12C/78 to allow for further guiding of 2'-O-Me at the corresponding Gm3878 and Gm4593 sites. Importantly, silencing SNORD12C or 78 reduced the rRNAs 2'-O-Me activities, which could be rescued by overexpression ZFAS1, and this subsequently inhibits the RNA stability and translation activity of their downstream targets (e.g., EIF4A3 and LAMC2). CONCLUSION The novel ZFAS1-NOP58-SNORD12C/78-EIF4A3/LAMC2 signaling axis that functions in CRC tumorigenesis provides a better understanding regarding the role of lncRNA-snoRNP-mediated rRNAs 2'-O-Me activities for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, People's Republic of China
| | - Wenyan Qin
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, People's Republic of China
| | - Senxu Lu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, People's Republic of China
| | - Xiufang Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, People's Republic of China
| | - Jing Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, People's Republic of China
| | - Tong Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, People's Republic of China
| | - Xiaoyun Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, People's Republic of China
| | - Yalun Li
- Department of Anorectal Surgery, First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Qiuchen Chen
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, People's Republic of China
| | - Yuanhe Wang
- Department of Medical Oncology, Cancer Hospital of China Medical University, Shenyang, 110042, People's Republic of China
| | - Haishan Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, People's Republic of China
| | - Haiyan Piao
- Department of Medical Oncology, Cancer Hospital of China Medical University, Shenyang, 110042, People's Republic of China
| | - Rui Zhang
- Department of Medical Oncology, Cancer Hospital of China Medical University, Shenyang, 110042, People's Republic of China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China. .,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
49
|
Quendera AP, Seixas AF, Dos Santos RF, Santos I, Silva JPN, Arraiano CM, Andrade JM. RNA-Binding Proteins Driving the Regulatory Activity of Small Non-coding RNAs in Bacteria. Front Mol Biosci 2020; 7:78. [PMID: 32478092 PMCID: PMC7237705 DOI: 10.3389/fmolb.2020.00078] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/06/2020] [Indexed: 12/20/2022] Open
Abstract
Small non-coding RNAs (sRNAs) are critical post-transcriptional regulators of gene expression. Distinct RNA-binding proteins (RBPs) influence the processing, stability and activity of bacterial small RNAs. The vast majority of bacterial sRNAs interact with mRNA targets, affecting mRNA stability and/or its translation rate. The assistance of RNA-binding proteins facilitates and brings accuracy to sRNA-mRNA basepairing and the RNA chaperones Hfq and ProQ are now recognized as the most prominent RNA matchmakers in bacteria. These RBPs exhibit distinct high affinity RNA-binding surfaces, promoting RNA strand interaction between a trans-encoding sRNA and its mRNA target. Nevertheless, some organisms lack ProQ and/or Hfq homologs, suggesting the existence of other RBPs involved in sRNA function. Along this line of thought, the global regulator CsrA was recently shown to facilitate the access of an sRNA to its target mRNA and may represent an additional factor involved in sRNA function. Ribonucleases (RNases) can be considered a class of RNA-binding proteins with nucleolytic activity that are responsible for RNA maturation and/or degradation. Presently RNase E, RNase III, and PNPase appear to be the main players not only in sRNA turnover but also in sRNA processing. Here we review the current knowledge on the most important bacterial RNA-binding proteins affecting sRNA activity and sRNA-mediated networks.
Collapse
Affiliation(s)
- Ana P Quendera
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - André F Seixas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo F Dos Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Inês Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - João P N Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - José M Andrade
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
50
|
Iosub IA, van Nues RW, McKellar SW, Nieken KJ, Marchioretto M, Sy B, Tree JJ, Viero G, Granneman S. Hfq CLASH uncovers sRNA-target interaction networks linked to nutrient availability adaptation. eLife 2020; 9:54655. [PMID: 32356726 PMCID: PMC7213987 DOI: 10.7554/elife.54655] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/30/2020] [Indexed: 01/10/2023] Open
Abstract
By shaping gene expression profiles, small RNAs (sRNAs) enable bacteria to efficiently adapt to changes in their environment. To better understand how Escherichia coli acclimatizes to nutrient availability, we performed UV cross-linking, ligation and sequencing of hybrids (CLASH) to uncover Hfq-associated RNA-RNA interactions at specific growth stages. We demonstrate that Hfq CLASH robustly captures bona fide RNA-RNA interactions. We identified hundreds of novel sRNA base-pairing interactions, including many sRNA-sRNA interactions and involving 3’UTR-derived sRNAs. We rediscovered known and identified novel sRNA seed sequences. The sRNA-mRNA interactions identified by CLASH have strong base-pairing potential and are highly enriched for complementary sequence motifs, even those supported by only a few reads. Yet, steady state levels of most mRNA targets were not significantly affected upon over-expression of the sRNA regulator. Our results reinforce the idea that the reproducibility of the interaction, not base-pairing potential, is a stronger predictor for a regulatory outcome.
Collapse
Affiliation(s)
- Ira Alexandra Iosub
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Stuart William McKellar
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Karen Jule Nieken
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Brandon Sy
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Jai Justin Tree
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | | | - Sander Granneman
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|