1
|
Li Z, Zhang Z. A tale of two strands: Decoding chromatin replication through strand-specific sequencing. Mol Cell 2025; 85:238-261. [PMID: 39824166 PMCID: PMC11750172 DOI: 10.1016/j.molcel.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/03/2024] [Accepted: 10/25/2024] [Indexed: 01/20/2025]
Abstract
DNA replication, a fundamental process in all living organisms, proceeds with continuous synthesis of the leading strand by DNA polymerase ε (Pol ε) and discontinuous synthesis of the lagging strand by polymerase δ (Pol δ). This inherent asymmetry at each replication fork necessitates the development of methods to distinguish between these two nascent strands in vivo. Over the past decade, strand-specific sequencing strategies, such as enrichment and sequencing of protein-associated nascent DNA (eSPAN) and Okazaki fragment sequencing (OK-seq), have become essential tools for studying chromatin replication in eukaryotic cells. In this review, we outline the foundational principles underlying these methodologies and summarize key mechanistic insights into DNA replication, parental histone transfer, epigenetic inheritance, and beyond, gained through their applications. Finally, we discuss the limitations and challenges of current techniques, highlighting the need for further technological innovations to better understand the dynamics and regulation of chromatin replication in eukaryotic cells.
Collapse
Affiliation(s)
- Zhiming Li
- Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; West China School of Public Health and West China Fourth Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Zhiguo Zhang
- Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pediatrics and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
2
|
Tye BK. Four decades of Eukaryotic DNA replication: From yeast genetics to high-resolution cryo-EM structures of the replisome. Proc Natl Acad Sci U S A 2024; 121:e2415231121. [PMID: 39365830 PMCID: PMC11494305 DOI: 10.1073/pnas.2415231121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 08/22/2024] [Indexed: 10/06/2024] Open
Abstract
I had my eyes set on DNA replication research when I took my first molecular biology course in graduate school. My election to the National Academy of Sciences came just when I was retiring from active research. It gives me an opportunity to reflect on my personal journey in eukaryotic DNA replication research, which started as a thought experiment and culminated in witnessing the determination of the cryoelectron microscopic structure of the yeast replisome in the act of transferring histone-encoded epigenetic information at the replication fork. I would like to dedicate this inaugural article to my talented trainees and valuable collaborators in gratitude for the joy they gave me in this journey. I also want to thank my mentors who instilled in me the purpose of science. I hope junior scientists will not be disheartened by the marathon nature of research, but mindful enough to integrate and pause for other equally fun and meaningful activities of life into the marathon.
Collapse
Affiliation(s)
- Bik-Kwoon Tye
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY14853
| |
Collapse
|
3
|
Ivanov KI, Yang H, Sun R, Li C, Guo D. The emerging role of SARS-CoV-2 nonstructural protein 1 (nsp1) in epigenetic regulation of host gene expression. FEMS Microbiol Rev 2024; 48:fuae023. [PMID: 39231808 PMCID: PMC11418652 DOI: 10.1093/femsre/fuae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/06/2024] Open
Abstract
Infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes widespread changes in epigenetic modifications and chromatin architecture in the host cell. Recent evidence suggests that SARS-CoV-2 nonstructural protein 1 (nsp1) plays an important role in driving these changes. Previously thought to be primarily involved in host translation shutoff and cellular mRNA degradation, nsp1 has now been shown to be a truly multifunctional protein that affects host gene expression at multiple levels. The functions of nsp1 are surprisingly diverse and include not only the downregulation of cellular mRNA translation and stability, but also the inhibition of mRNA export from the nucleus, the suppression of host immune signaling, and, most recently, the epigenetic regulation of host gene expression. In this review, we first summarize the current knowledge on SARS-CoV-2-induced changes in epigenetic modifications and chromatin structure. We then focus on the role of nsp1 in epigenetic reprogramming, with a particular emphasis on the silencing of immune-related genes. Finally, we discuss potential molecular mechanisms underlying the epigenetic functions of nsp1 based on evidence from SARS-CoV-2 interactome studies.
Collapse
Affiliation(s)
- Konstantin I Ivanov
- Guangzhou National Laboratory, Guangzhou, 510320, China
- Department of Microbiology, University of Helsinki, Helsinki, 00014, Finland
| | - Haibin Yang
- MOE Key Laboratory of Tropical Disease Control, Center for Infection and Immunity Studies (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Ruixue Sun
- Guangzhou National Laboratory, Guangzhou, 510320, China
| | - Chunmei Li
- MOE Key Laboratory of Tropical Disease Control, Center for Infection and Immunity Studies (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Deyin Guo
- Guangzhou National Laboratory, Guangzhou, 510320, China
- MOE Key Laboratory of Tropical Disease Control, Center for Infection and Immunity Studies (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China
| |
Collapse
|
4
|
Charlton SJ, Flury V, Kanoh Y, Genzor AV, Kollenstart L, Ao W, Brøgger P, Weisser MB, Adamus M, Alcaraz N, Delvaux de Fenffe CM, Mattiroli F, Montoya G, Masai H, Groth A, Thon G. The fork protection complex promotes parental histone recycling and epigenetic memory. Cell 2024; 187:5029-5047.e21. [PMID: 39094569 PMCID: PMC11383432 DOI: 10.1016/j.cell.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/16/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
The inheritance of parental histones across the replication fork is thought to mediate epigenetic memory. Here, we reveal that fission yeast Mrc1 (CLASPIN in humans) binds H3-H4 tetramers and operates as a central coordinator of symmetric parental histone inheritance. Mrc1 mutants in a key connector domain disrupted segregation of parental histones to the lagging strand comparable to Mcm2 histone-binding mutants. Both mutants showed clonal and asymmetric loss of H3K9me-mediated gene silencing. AlphaFold predicted co-chaperoning of H3-H4 tetramers by Mrc1 and Mcm2, with the Mrc1 connector domain bridging histone and Mcm2 binding. Biochemical and functional analysis validated this model and revealed a duality in Mrc1 function: disabling histone binding in the connector domain disrupted lagging-strand recycling while another histone-binding mutation impaired leading strand recycling. We propose that Mrc1 toggles histones between the lagging and leading strand recycling pathways, in part by intra-replisome co-chaperoning, to ensure epigenetic transmission to both daughter cells.
Collapse
Affiliation(s)
- Sebastian Jespersen Charlton
- Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark; Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Valentin Flury
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Yutaka Kanoh
- Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | | | - Leonie Kollenstart
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Wantong Ao
- Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Peter Brøgger
- Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Melanie Bianca Weisser
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Marek Adamus
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Nicolas Alcaraz
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | | | - Francesca Mattiroli
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Guillermo Montoya
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Hisao Masai
- Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark; Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen 2200, Denmark; Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark.
| | - Geneviève Thon
- Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
5
|
Yu J, Zhang Y, Fang Y, Paulo JA, Yaghoubi D, Hua X, Shipkovenska G, Toda T, Zhang Z, Gygi SP, Jia S, Li Q, Moazed D. A replisome-associated histone H3-H4 chaperone required for epigenetic inheritance. Cell 2024; 187:5010-5028.e24. [PMID: 39094570 PMCID: PMC11380579 DOI: 10.1016/j.cell.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/17/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024]
Abstract
Faithful transfer of parental histones to newly replicated daughter DNA strands is critical for inheritance of epigenetic states. Although replication proteins that facilitate parental histone transfer have been identified, how intact histone H3-H4 tetramers travel from the front to the back of the replication fork remains unknown. Here, we use AlphaFold-Multimer structural predictions combined with biochemical and genetic approaches to identify the Mrc1/CLASPIN subunit of the replisome as a histone chaperone. Mrc1 contains a conserved histone-binding domain that forms a brace around the H3-H4 tetramer mimicking nucleosomal DNA and H2A-H2B histones, is required for heterochromatin inheritance, and promotes parental histone recycling during replication. We further identify binding sites for the FACT histone chaperone in Swi1/TIMELESS and DNA polymerase α that are required for heterochromatin inheritance. We propose that Mrc1, in concert with FACT acting as a mobile co-chaperone, coordinates the distribution of parental histones to newly replicated DNA.
Collapse
Affiliation(s)
- Juntao Yu
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Yujie Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yimeng Fang
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Dadmehr Yaghoubi
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Xu Hua
- Institute for Cancer Genetics, Department of Pediatrics, and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Gergana Shipkovenska
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Takenori Toda
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Zhiguo Zhang
- Institute for Cancer Genetics, Department of Pediatrics, and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Songtao Jia
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Qing Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| | - Danesh Moazed
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Toda T, Fang Y, Shan CM, Hua X, Kim JK, Tang LC, Jovanovic M, Tong L, Qiao F, Zhang Z, Jia S. Mrc1 regulates parental histone segregation and heterochromatin inheritance. Mol Cell 2024; 84:3223-3236.e4. [PMID: 39094566 PMCID: PMC11414769 DOI: 10.1016/j.molcel.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024]
Abstract
Chromatin-based epigenetic memory relies on the symmetric distribution of parental histones to newly synthesized daughter DNA strands, aided by histone chaperones within the DNA replication machinery. However, the mechanism of parental histone transfer remains elusive. Here, we reveal that in fission yeast, the replisome protein Mrc1 plays a crucial role in promoting the transfer of parental histone H3-H4 to the lagging strand, ensuring proper heterochromatin inheritance. In addition, Mrc1 facilitates the interaction between Mcm2 and DNA polymerase alpha, two histone-binding proteins critical for parental histone transfer. Furthermore, Mrc1's involvement in parental histone transfer and epigenetic inheritance is independent of its known functions in DNA replication checkpoint activation and replisome speed control. Instead, Mrc1 interacts with Mcm2 outside of its histone-binding region, creating a physical barrier to separate parental histone transfer pathways. These findings unveil Mrc1 as a key player within the replisome, coordinating parental histone segregation to regulate epigenetic inheritance.
Collapse
Affiliation(s)
- Takenori Toda
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Yimeng Fang
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Chun-Min Shan
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xu Hua
- Institute for Cancer Genetics, Department of Pediatrics, and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jin-Kwang Kim
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
| | | | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Feng Qiao
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Zhiguo Zhang
- Institute for Cancer Genetics, Department of Pediatrics, and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Songtao Jia
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
7
|
Tian C, Zhang Q, Jia J, Zhou J, Zhang Z, Karri S, Jiang J, Dickinson Q, Yao Y, Tang X, Huang Y, Guo T, He Z, Liu Z, Gao Y, Yang X, Wu Y, Chan KM, Zhang D, Han J, Yu C, Gan H. DNA polymerase delta governs parental histone transfer to DNA replication lagging strand. Proc Natl Acad Sci U S A 2024; 121:e2400610121. [PMID: 38713623 PMCID: PMC11098083 DOI: 10.1073/pnas.2400610121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/01/2024] [Indexed: 05/09/2024] Open
Abstract
Chromatin replication is intricately intertwined with the recycling of parental histones to the newly duplicated DNA strands for faithful genetic and epigenetic inheritance. The transfer of parental histones occurs through two distinct pathways: leading strand deposition, mediated by the DNA polymerase ε subunits Dpb3/Dpb4, and lagging strand deposition, facilitated by the MCM helicase subunit Mcm2. However, the mechanism of the facilitation of Mcm2 transferring parental histones to the lagging strand while moving along the leading strand remains unclear. Here, we show that the deletion of Pol32, a nonessential subunit of major lagging-strand DNA polymerase δ, results in a predominant transfer of parental histone H3-H4 to the leading strand during replication. Biochemical analyses further demonstrate that Pol32 can bind histone H3-H4 both in vivo and in vitro. The interaction of Pol32 with parental histone H3-H4 is disrupted through the mutation of the histone H3-H4 binding domain within Mcm2. Our findings identify the DNA polymerase δ subunit Pol32 as a critical histone chaperone downstream of Mcm2, mediating the transfer of parental histones to the lagging strand during DNA replication.
Collapse
Affiliation(s)
- Congcong Tian
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Qin Zhang
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province610041, China
| | - Jing Jia
- Hormel Institute, University of Minnesota, Austin, MN55912
| | - Jiaqi Zhou
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Ziwei Zhang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | | | - Jiuhang Jiang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong510642, China
| | | | - Yuan Yao
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Xiaorong Tang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China
| | - Yuxin Huang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong510642, China
| | - Ting Guo
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- School of Life Sciences, Henan University, Kaifeng475004, China
- Shenzhen Research Institute of Henan University, Shenzhen518000, China
| | - Ziwei He
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, Chinese University of Hong Kong, Shenzhen518172, China
| | - Zheng Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, Chinese University of Hong Kong, Shenzhen518172, China
| | - Yuan Gao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Xinran Yang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Yuchun Wu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Pathology and Pathophysiology Basic Medical School, Qingdao University, Qindao266000, China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administration Region, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen518172, China
| | - Daoqin Zhang
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA94305
| | - Junhong Han
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province610041, China
| | - Chuanhe Yu
- Hormel Institute, University of Minnesota, Austin, MN55912
| | - Haiyun Gan
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| |
Collapse
|
8
|
Mullins EA, Salay LE, Durie CL, Bradley NP, Jackman JE, Ohi MD, Chazin WJ, Eichman BF. A mechanistic model of primer synthesis from catalytic structures of DNA polymerase α-primase. Nat Struct Mol Biol 2024; 31:777-790. [PMID: 38491139 PMCID: PMC11102853 DOI: 10.1038/s41594-024-01227-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 01/12/2024] [Indexed: 03/18/2024]
Abstract
The mechanism by which polymerase α-primase (polα-primase) synthesizes chimeric RNA-DNA primers of defined length and composition, necessary for replication fidelity and genome stability, is unknown. Here, we report cryo-EM structures of Xenopus laevis polα-primase in complex with primed templates representing various stages of DNA synthesis. Our data show how interaction of the primase regulatory subunit with the primer 5' end facilitates handoff of the primer to polα and increases polα processivity, thereby regulating both RNA and DNA composition. The structures detail how flexibility within the heterotetramer enables synthesis across two active sites and provide evidence that termination of DNA synthesis is facilitated by reduction of polα and primase affinities for the varied conformations along the chimeric primer-template duplex. Together, these findings elucidate a critical catalytic step in replication initiation and provide a comprehensive model for primer synthesis by polα-primase.
Collapse
Affiliation(s)
- Elwood A Mullins
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Lauren E Salay
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Clarissa L Durie
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Noah P Bradley
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Jane E Jackman
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Melanie D Ohi
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Walter J Chazin
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA.
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
| | - Brandt F Eichman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA.
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
9
|
Flury V, Groth A. Safeguarding the epigenome through the cell cycle: a multitasking game. Curr Opin Genet Dev 2024; 85:102161. [PMID: 38447236 DOI: 10.1016/j.gde.2024.102161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024]
Abstract
Sustaining cell identity and function across cell division is germane to human development, healthspan, and cancer avoidance. This relies significantly on propagation of chromatin organization between cell generations, as chromatin presents a barrier to cell fate and cell state conversions. Inheritance of chromatin states across the many cell divisions required for development and tissue homeostasis represents a major challenge, especially because chromatin is disrupted to allow passage of the DNA replication fork to synthesize the two daughter strands. This process also leads to a twofold dilution of epigenetic information in histones, which needs to be accurately restored for faithful propagation of chromatin states across cell divisions. Recent research has identified distinct multilayered mechanisms acting to propagate epigenetic information to daughter strands. Here, we summarize key principles of how epigenetic information in parental histones is transferred across DNA replication and how new histones robustly acquire the same information postreplication, representing a core component of epigenetic cell memory.
Collapse
Affiliation(s)
- Valentin Flury
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark. https://twitter.com/@ValeFlury
| | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
10
|
Li N, Gao Y, Zhang Y, Yu D, Lin J, Feng J, Li J, Xu Z, Zhang Y, Dang S, Zhou K, Liu Y, Li XD, Tye BK, Li Q, Gao N, Zhai Y. Parental histone transfer caught at the replication fork. Nature 2024; 627:890-897. [PMID: 38448592 DOI: 10.1038/s41586-024-07152-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024]
Abstract
In eukaryotes, DNA compacts into chromatin through nucleosomes1,2. Replication of the eukaryotic genome must be coupled to the transmission of the epigenome encoded in the chromatin3,4. Here we report cryo-electron microscopy structures of yeast (Saccharomyces cerevisiae) replisomes associated with the FACT (facilitates chromatin transactions) complex (comprising Spt16 and Pob3) and an evicted histone hexamer. In these structures, FACT is positioned at the front end of the replisome by engaging with the parental DNA duplex to capture the histones through the middle domain and the acidic carboxyl-terminal domain of Spt16. The H2A-H2B dimer chaperoned by the carboxyl-terminal domain of Spt16 is stably tethered to the H3-H4 tetramer, while the vacant H2A-H2B site is occupied by the histone-binding domain of Mcm2. The Mcm2 histone-binding domain wraps around the DNA-binding surface of one H3-H4 dimer and extends across the tetramerization interface of the H3-H4 tetramer to the binding site of Spt16 middle domain before becoming disordered. This arrangement leaves the remaining DNA-binding surface of the other H3-H4 dimer exposed to additional interactions for further processing. The Mcm2 histone-binding domain and its downstream linker region are nested on top of Tof1, relocating the parental histones to the replisome front for transfer to the newly synthesized lagging-strand DNA. Our findings offer crucial structural insights into the mechanism of replication-coupled histone recycling for maintaining epigenetic inheritance.
Collapse
Affiliation(s)
- Ningning Li
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Yuan Gao
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Yujie Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Daqi Yu
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Jianwei Lin
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Jianxun Feng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jian Li
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Zhichun Xu
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Yingyi Zhang
- Biological Cryo-EM Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Shangyu Dang
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
| | - Keda Zhou
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Yang Liu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Bik Kwoon Tye
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, USA.
| | - Qing Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China.
| | - Yuanliang Zhai
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
11
|
Yuan AH, Moazed D. Minimal requirements for the epigenetic inheritance of engineered silent chromatin domains. Proc Natl Acad Sci U S A 2024; 121:e2318455121. [PMID: 38198529 PMCID: PMC10801849 DOI: 10.1073/pnas.2318455121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
Mechanisms enabling genetically identical cells to differentially regulate gene expression are complex and central to organismal development and evolution. While gene silencing pathways involving DNA sequence-specific recruitment of histone-modifying enzymes are prevalent in nature, examples of sequence-independent heritable gene silencing are scarce. Studies of the fission yeast Schizosaccharomyces pombe indicate that sequence-independent propagation of heterochromatin can occur but requires numerous multisubunit protein complexes and their diverse activities. Such complexity has so far precluded a coherent articulation of the minimal requirements for heritable gene silencing by conventional in vitro reconstitution approaches. Here, we take an unconventional approach to defining these requirements by engineering sequence-independent silent chromatin inheritance in budding yeast Saccharomyces cerevisiae cells. The mechanism conferring memory upon these cells is remarkably simple and requires only two proteins, one that recognizes histone H3 lysine 9 methylation (H3K9me) and catalyzes the deacetylation of histone H4 lysine 16 (H4K16), and another that recognizes deacetylated H4K16 and catalyzes H3K9me. Together, these bilingual "read-write" proteins form an interdependent positive feedback loop that is sufficient for the transmission of DNA sequence-independent silent information over multiple generations.
Collapse
Affiliation(s)
- Andy H. Yuan
- HHMI, Harvard Medical School, Boston, MA02115
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Danesh Moazed
- HHMI, Harvard Medical School, Boston, MA02115
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| |
Collapse
|
12
|
Mullins EA, Salay LE, Durie CL, Bradley NP, Jackman JE, Ohi MD, Chazin WJ, Eichman BF. A mechanistic model of primer synthesis from catalytic structures of DNA polymerase α-primase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.533013. [PMID: 36993335 PMCID: PMC10055150 DOI: 10.1101/2023.03.16.533013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The mechanism by which polymerase α-primase (polα-primase) synthesizes chimeric RNA-DNA primers of defined length and composition, necessary for replication fidelity and genome stability, is unknown. Here, we report cryo-EM structures of polα-primase in complex with primed templates representing various stages of DNA synthesis. Our data show how interaction of the primase regulatory subunit with the primer 5'-end facilitates handoff of the primer to polα and increases polα processivity, thereby regulating both RNA and DNA composition. The structures detail how flexibility within the heterotetramer enables synthesis across two active sites and provide evidence that termination of DNA synthesis is facilitated by reduction of polα and primase affinities for the varied conformations along the chimeric primer/template duplex. Together, these findings elucidate a critical catalytic step in replication initiation and provide a comprehensive model for primer synthesis by polα-primase.
Collapse
|
13
|
Olivier M, Hesketh A, Pouch-Pélissier MN, Pélissier T, Huang Y, Latrasse D, Benhamed M, Mathieu O. RTEL1 is required for silencing and epigenome stability. Nucleic Acids Res 2023; 51:8463-8479. [PMID: 37471026 PMCID: PMC10484728 DOI: 10.1093/nar/gkad610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/13/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
Transcriptional silencing is an essential mechanism for controlling the expression of genes, transgenes and heterochromatic repeats through specific epigenetic marks on chromatin that are maintained during DNA replication. In Arabidopsis, silenced transgenes and heterochromatic sequences are typically associated with high levels of DNA methylation, while silenced genes are enriched in H3K27me3. Reactivation of these loci is often correlated with decreased levels of these repressive epigenetic marks. Here, we report that the DNA helicase REGULATOR OF TELOMERE ELONGATION 1 (RTEL1) is required for transcriptional silencing. RTEL1 deficiency causes upregulation of many genes enriched in H3K27me3 accompanied by a moderate decrease in this mark, but no loss of DNA methylation at reactivated heterochromatic loci. Instead, heterochromatin exhibits DNA hypermethylation and increased H3K27me3 in rtel1. We further find that loss of RTEL1 suppresses the release of heterochromatin silencing caused by the absence of the MOM1 silencing factor. RTEL1 is conserved among eukaryotes and plays a key role in resolving DNA secondary structures during DNA replication. Inducing such aberrant DNA structures using DNA cross-linking agents also results in a loss of transcriptional silencing. These findings uncover unappreciated roles for RTEL1 in transcriptional silencing and in stabilizing DNA methylation and H3K27me3 patterns.
Collapse
Affiliation(s)
- Margaux Olivier
- Institute of Genetics Reproduction and Development (iGReD), Université Clermont Auvergne, CNRS, Inserm, F-63000 Clermont-Ferrand, France
| | - Amy Hesketh
- Institute of Genetics Reproduction and Development (iGReD), Université Clermont Auvergne, CNRS, Inserm, F-63000 Clermont-Ferrand, France
| | - Marie-Noëlle Pouch-Pélissier
- Institute of Genetics Reproduction and Development (iGReD), Université Clermont Auvergne, CNRS, Inserm, F-63000 Clermont-Ferrand, France
| | - Thierry Pélissier
- Institute of Genetics Reproduction and Development (iGReD), Université Clermont Auvergne, CNRS, Inserm, F-63000 Clermont-Ferrand, France
| | - Ying Huang
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université d’Évry, F-91405 Orsay, France
| | - David Latrasse
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université d’Évry, F-91405 Orsay, France
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université d’Évry, F-91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, F-75006 Paris, France
- Institut Universitaire de France (IUF), France
| | - Olivier Mathieu
- Institute of Genetics Reproduction and Development (iGReD), Université Clermont Auvergne, CNRS, Inserm, F-63000 Clermont-Ferrand, France
| |
Collapse
|
14
|
Jones ML, Aria V, Baris Y, Yeeles JTP. How Pol α-primase is targeted to replisomes to prime eukaryotic DNA replication. Mol Cell 2023; 83:2911-2924.e16. [PMID: 37506699 PMCID: PMC10501992 DOI: 10.1016/j.molcel.2023.06.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023]
Abstract
During eukaryotic DNA replication, Pol α-primase generates primers at replication origins to start leading-strand synthesis and every few hundred nucleotides during discontinuous lagging-strand replication. How Pol α-primase is targeted to replication forks to prime DNA synthesis is not fully understood. Here, by determining cryoelectron microscopy (cryo-EM) structures of budding yeast and human replisomes containing Pol α-primase, we reveal a conserved mechanism for the coordination of priming by the replisome. Pol α-primase binds directly to the leading edge of the CMG (CDC45-MCM-GINS) replicative helicase via a complex interaction network. The non-catalytic PRIM2/Pri2 subunit forms two interfaces with CMG that are critical for in vitro DNA replication and yeast cell growth. These interactions position the primase catalytic subunit PRIM1/Pri1 directly above the exit channel for lagging-strand template single-stranded DNA (ssDNA), revealing why priming occurs efficiently only on the lagging-strand template and elucidating a mechanism for Pol α-primase to overcome competition from RPA to initiate primer synthesis.
Collapse
Affiliation(s)
- Morgan L Jones
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Valentina Aria
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Yasemin Baris
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | |
Collapse
|
15
|
Rouillon C, Eckhardt BV, Kollenstart L, Gruss F, Verkennis AE, Rondeel I, Krijger PHL, Ricci G, Biran A, van Laar T, Delvaux de Fenffe CM, Luppens G, Albanese P, Sato K, Scheltema RA, de Laat W, Knipscheer P, Dekker N, Groth A, Mattiroli F. CAF-1 deposits newly synthesized histones during DNA replication using distinct mechanisms on the leading and lagging strands. Nucleic Acids Res 2023; 51:3770-3792. [PMID: 36942484 PMCID: PMC10164577 DOI: 10.1093/nar/gkad171] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023] Open
Abstract
During every cell cycle, both the genome and the associated chromatin must be accurately replicated. Chromatin Assembly Factor-1 (CAF-1) is a key regulator of chromatin replication, but how CAF-1 functions in relation to the DNA replication machinery is unknown. Here, we reveal that this crosstalk differs between the leading and lagging strand at replication forks. Using biochemical reconstitutions, we show that DNA and histones promote CAF-1 recruitment to its binding partner PCNA and reveal that two CAF-1 complexes are required for efficient nucleosome assembly under these conditions. Remarkably, in the context of the replisome, CAF-1 competes with the leading strand DNA polymerase epsilon (Polϵ) for PCNA binding. However, CAF-1 does not affect the activity of the lagging strand DNA polymerase Delta (Polδ). Yet, in cells, CAF-1 deposits newly synthesized histones equally on both daughter strands. Thus, on the leading strand, chromatin assembly by CAF-1 cannot occur simultaneously to DNA synthesis, while on the lagging strand these processes may be coupled. We propose that these differences may facilitate distinct parental histone recycling mechanisms and accommodate the inherent asymmetry of DNA replication.
Collapse
Affiliation(s)
- Clément Rouillon
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bruna V Eckhardt
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leonie Kollenstart
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Fabian Gruss
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Inge Rondeel
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter H L Krijger
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Giulia Ricci
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alva Biran
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Theo van Laar
- Kavli Institute of Nanoscience Delft, TU Delft, The Netherlands
| | | | - Georgiana Luppens
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pascal Albanese
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands
| | - Koichi Sato
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Richard A Scheltema
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Puck Knipscheer
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Nynke H Dekker
- Kavli Institute of Nanoscience Delft, TU Delft, The Netherlands
| | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Francesca Mattiroli
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
16
|
Bhandari SK, Wiest N, Sallmyr A, Du R, Ferry L, Defossez PA, Tomkinson AE. Unchanged PCNA and DNMT1 dynamics during replication in DNA ligase I-deficient cells but abnormal chromatin levels of non-replicative histone H1. Sci Rep 2023; 13:4363. [PMID: 36928068 PMCID: PMC10020546 DOI: 10.1038/s41598-023-31367-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
DNA ligase I (LigI), the predominant enzyme that joins Okazaki fragments, interacts with PCNA and Pol δ. LigI also interacts with UHRF1, linking Okazaki fragment joining with DNA maintenance methylation. Okazaki fragments can also be joined by a relatively poorly characterized DNA ligase IIIα (LigIIIα)-dependent backup pathway. Here we examined the effect of LigI-deficiency on proteins at the replication fork. Notably, LigI-deficiency did not alter the kinetics of association of the PCNA clamp, the leading strand polymerase Pol ε, DNA maintenance methylation proteins and core histones with newly synthesized DNA. While the absence of major changes in replication and methylation proteins is consistent with the similar proliferation rate and DNA methylation levels of the LIG1 null cells compared with the parental cells, the increased levels of LigIIIα/XRCC1 and Pol δ at the replication fork and in bulk chromatin indicate that there are subtle replication defects in the absence of LigI. Interestingly, the non-replicative histone H1 variant, H1.0, is enriched in the chromatin of LigI-deficient mouse CH12F3 and human 46BR.1G1 cells. This alteration was not corrected by expression of wild type LigI, suggesting that it is a relatively stable epigenetic change that may contribute to the immunodeficiencies linked with inherited LigI-deficiency syndrome.
Collapse
Affiliation(s)
- Seema Khattri Bhandari
- Cancer Research Facility, Departments of Internal Medicine and Molecular Genetics & Microbiology, University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, 915 Camino de Salud, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Nathaniel Wiest
- Cancer Research Facility, Departments of Internal Medicine and Molecular Genetics & Microbiology, University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, 915 Camino de Salud, 1 University of New Mexico, Albuquerque, NM, 87131, USA
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Annahita Sallmyr
- Cancer Research Facility, Departments of Internal Medicine and Molecular Genetics & Microbiology, University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, 915 Camino de Salud, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Ruofei Du
- Cancer Research Facility, Departments of Internal Medicine and Molecular Genetics & Microbiology, University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, 915 Camino de Salud, 1 University of New Mexico, Albuquerque, NM, 87131, USA
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Laure Ferry
- Epigenetics and Cell Fate, CNRS, Université Paris Cité, 750013, Paris, France
| | | | - Alan E Tomkinson
- Cancer Research Facility, Departments of Internal Medicine and Molecular Genetics & Microbiology, University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, 915 Camino de Salud, 1 University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
17
|
Flury V, Reverón-Gómez N, Alcaraz N, Stewart-Morgan KR, Wenger A, Klose RJ, Groth A. Recycling of modified H2A-H2B provides short-term memory of chromatin states. Cell 2023; 186:1050-1065.e19. [PMID: 36750094 PMCID: PMC9994263 DOI: 10.1016/j.cell.2023.01.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/11/2022] [Accepted: 01/06/2023] [Indexed: 02/08/2023]
Abstract
Chromatin landscapes are disrupted during DNA replication and must be restored faithfully to maintain genome regulation and cell identity. The histone H3-H4 modification landscape is restored by parental histone recycling and modification of new histones. How DNA replication impacts on histone H2A-H2B is currently unknown. Here, we measure H2A-H2B modifications and H2A.Z during DNA replication and across the cell cycle using quantitative genomics. We show that H2AK119ub1, H2BK120ub1, and H2A.Z are recycled accurately during DNA replication. Modified H2A-H2B are segregated symmetrically to daughter strands via POLA1 on the lagging strand, but independent of H3-H4 recycling. Post-replication, H2A-H2B modification and variant landscapes are quickly restored, and H2AK119ub1 guides accurate restoration of H3K27me3. This work reveals epigenetic transmission of parental H2A-H2B during DNA replication and identifies cross talk between H3-H4 and H2A-H2B modifications in epigenome propagation. We propose that rapid short-term memory of recycled H2A-H2B modifications facilitates restoration of stable H3-H4 chromatin states.
Collapse
Affiliation(s)
- Valentin Flury
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nazaret Reverón-Gómez
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nicolas Alcaraz
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kathleen R Stewart-Morgan
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Alice Wenger
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
18
|
González-Garrido C, Prado F. Parental histone distribution and location of the replication obstacle at nascent strands control homologous recombination. Cell Rep 2023; 42:112174. [PMID: 36862554 DOI: 10.1016/j.celrep.2023.112174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/09/2022] [Accepted: 02/10/2023] [Indexed: 03/03/2023] Open
Abstract
The advance and stability of replication forks rely on a tight co-regulation of DNA synthesis and nucleosome assembly. We show that mutants affected in parental histone recycling are impaired in the recombinational repair of the single-stranded DNA gaps generated in response to DNA adducts that hamper replication, which are then filled in by translesion synthesis. These recombination defects are in part due to an excess of parental nucleosomes at the invaded strand that destabilizes the sister chromatid junction formed after strand invasion through a Srs2-dependent mechanism. In addition, we show that a dCas9∗/R-loop is more recombinogenic when the dCas9∗/DNA-RNA hybrid interferes with the lagging than with the leading strand, and this recombination is particularly sensitive to problems in the deposition of parental histones at the strand that contains the hindrance. Therefore, parental histone distribution and location of the replication obstacle at the lagging or leading strand regulate homologous recombination.
Collapse
Affiliation(s)
- Cristina González-Garrido
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Félix Prado
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain.
| |
Collapse
|
19
|
Urban JA, Ranjan R, Chen X. Asymmetric Histone Inheritance: Establishment, Recognition, and Execution. Annu Rev Genet 2022; 56:113-143. [PMID: 35905975 PMCID: PMC10054593 DOI: 10.1146/annurev-genet-072920-125226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The discovery of biased histone inheritance in asymmetrically dividing Drosophila melanogaster male germline stem cells demonstrates one means to produce two distinct daughter cells with identical genetic material. This inspired further studies in different systems, which revealed that this phenomenon may be a widespread mechanism to introduce cellular diversity. While the extent of asymmetric histone inheritance could vary among systems, this phenomenon is proposed to occur in three steps: first, establishment of histone asymmetry between sister chromatids during DNA replication; second, recognition of sister chromatids carrying asymmetric histone information during mitosis; and third, execution of this asymmetry in the resulting daughter cells. By compiling the current knowledge from diverse eukaryotic systems, this review comprehensively details and compares known chromatin factors, mitotic machinery components, and cell cycle regulators that may contribute to each of these three steps. Also discussed are potential mechanisms that introduce and regulate variable histone inheritance modes and how these different modes may contribute to cell fate decisions in multicellular organisms.
Collapse
Affiliation(s)
- Jennifer A Urban
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA;
| | - Rajesh Ranjan
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA; .,Howard Hughes Medical Institute, The Johns Hopkins University, Baltimore, Maryland, USA; ,
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA; .,Howard Hughes Medical Institute, The Johns Hopkins University, Baltimore, Maryland, USA; ,
| |
Collapse
|
20
|
Du W, Shi G, Shan CM, Li Z, Zhu B, Jia S, Li Q, Zhang Z. Mechanisms of chromatin-based epigenetic inheritance. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2162-2190. [PMID: 35792957 PMCID: PMC10311375 DOI: 10.1007/s11427-022-2120-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Multi-cellular organisms such as humans contain hundreds of cell types that share the same genetic information (DNA sequences), and yet have different cellular traits and functions. While how genetic information is passed through generations has been extensively characterized, it remains largely obscure how epigenetic information encoded by chromatin regulates the passage of certain traits, gene expression states and cell identity during mitotic cell divisions, and even through meiosis. In this review, we will summarize the recent advances on molecular mechanisms of epigenetic inheritance, discuss the potential impacts of epigenetic inheritance during normal development and in some disease conditions, and outline future research directions for this challenging, but exciting field.
Collapse
Affiliation(s)
- Wenlong Du
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guojun Shi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Chun-Min Shan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhiming Li
- Institutes of Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Bing Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Songtao Jia
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
| | - Qing Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Zhiguo Zhang
- Institutes of Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
21
|
Gillespie PJ, Blow JJ. DDK: The Outsourced Kinase of Chromosome Maintenance. BIOLOGY 2022; 11:biology11060877. [PMID: 35741398 PMCID: PMC9220011 DOI: 10.3390/biology11060877] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022]
Abstract
The maintenance of genomic stability during the mitotic cell-cycle not only demands that the DNA is duplicated and repaired with high fidelity, but that following DNA replication the chromatin composition is perpetuated and that the duplicated chromatids remain tethered until their anaphase segregation. The coordination of these processes during S phase is achieved by both cyclin-dependent kinase, CDK, and Dbf4-dependent kinase, DDK. CDK orchestrates the activation of DDK at the G1-to-S transition, acting as the ‘global’ regulator of S phase and cell-cycle progression, whilst ‘local’ control of the initiation of DNA replication and repair and their coordination with the re-formation of local chromatin environments and the establishment of chromatid cohesion are delegated to DDK. Here, we discuss the regulation and the multiple roles of DDK in ensuring chromosome maintenance. Regulation of replication initiation by DDK has long been known to involve phosphorylation of MCM2-7 subunits, but more recent results have indicated that Treslin:MTBP might also be important substrates. Molecular mechanisms by which DDK regulates replisome stability and replicated chromatid cohesion are less well understood, though important new insights have been reported recently. We discuss how the ‘outsourcing’ of activities required for chromosome maintenance to DDK allows CDK to maintain outright control of S phase progression and the cell-cycle phase transitions whilst permitting ongoing chromatin replication and cohesion establishment to be completed and achieved faithfully.
Collapse
|
22
|
Evrin C, Serra‐Cardona A, Duan S, Mukherjee PP, Zhang Z, Labib KPM. Spt5 histone binding activity preserves chromatin during transcription by RNA polymerase II. EMBO J 2022; 41:e109783. [PMID: 35102600 PMCID: PMC8886531 DOI: 10.15252/embj.2021109783] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 12/30/2022] Open
Abstract
Nucleosomes are disrupted transiently during eukaryotic transcription, yet the displaced histones must be retained and redeposited onto DNA, to preserve nucleosome density and associated histone modifications. Here, we show that the essential Spt5 processivity factor of RNA polymerase II (Pol II) plays a direct role in this process in budding yeast. Functional orthologues of eukaryotic Spt5 are present in archaea and bacteria, reflecting its universal role in RNA polymerase processivity. However, eukaryotic Spt5 is unique in having an acidic amino terminal tail (Spt5N) that is sandwiched between the downstream nucleosome and the upstream DNA that emerges from Pol II. We show that Spt5N contains a histone-binding motif that is required for viability in yeast cells and prevents loss of nucleosomal histones within actively transcribed regions. These findings indicate that eukaryotic Spt5 combines two essential activities, which together couple processive transcription to the efficient capture and re-deposition of nucleosomal histones.
Collapse
Affiliation(s)
- Cecile Evrin
- The MRC Protein Phosphorylation and Ubiquitylation UnitSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Albert Serra‐Cardona
- Institute for Cancer GeneticsDepartment of Pediatrics and Department of Genetics and DevelopmentColumbia University Irving Medical CenterNew YorkNYUSA
| | - Shoufu Duan
- Institute for Cancer GeneticsDepartment of Pediatrics and Department of Genetics and DevelopmentColumbia University Irving Medical CenterNew YorkNYUSA
| | - Progya P Mukherjee
- The MRC Protein Phosphorylation and Ubiquitylation UnitSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Zhiguo Zhang
- Institute for Cancer GeneticsDepartment of Pediatrics and Department of Genetics and DevelopmentColumbia University Irving Medical CenterNew YorkNYUSA
| | - Karim P M Labib
- The MRC Protein Phosphorylation and Ubiquitylation UnitSchool of Life SciencesUniversity of DundeeDundeeUK
| |
Collapse
|
23
|
Multiple roles of Pol epsilon in eukaryotic chromosome replication. Biochem Soc Trans 2022; 50:309-320. [PMID: 35129614 PMCID: PMC9022971 DOI: 10.1042/bst20210082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/23/2021] [Accepted: 01/06/2022] [Indexed: 11/17/2022]
Abstract
Pol epsilon is a tetrameric assembly that plays distinct roles during eukaryotic chromosome replication. It catalyses leading strand DNA synthesis; yet this function is dispensable for viability. Its non-catalytic domains instead play an essential role in the assembly of the active replicative helicase and origin activation, while non-essential histone-fold subunits serve a critical function in parental histone redeposition onto newly synthesised DNA. Furthermore, Pol epsilon plays a structural role in linking the RFC–Ctf18 clamp loader to the replisome, supporting processive DNA synthesis, DNA damage response signalling as well as sister chromatid cohesion. In this minireview, we discuss recent biochemical and structural work that begins to explain various aspects of eukaryotic chromosome replication, with a focus on the multiple roles of Pol epsilon in this process.
Collapse
|
24
|
Dolce V, Dusi S, Giannattasio M, Joseph CR, Fumasoni M, Branzei D. Parental histone deposition on the replicated strands promotes error-free DNA damage tolerance and regulates drug resistance. Genes Dev 2022; 36:167-179. [PMID: 35115379 PMCID: PMC8887126 DOI: 10.1101/gad.349207.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/12/2022] [Indexed: 11/24/2022]
Abstract
In this study, Dolce et al. investigated connections between Ctf4-mediated processes involved in drug resistance, and conducted a suppressor screen of ctf4Δ sensitivity to the methylating agent MMS. Their findings demonstrate a chromatin-based drug resistance mechanism in which defects in parental histone transfer after replication fork passage impair error-free recombination bypass and lead to up-regulation of TLS-mediated mutagenesis and drug resistance. Ctf4 is a conserved replisome component with multiple roles in DNA metabolism. To investigate connections between Ctf4-mediated processes involved in drug resistance, we conducted a suppressor screen of ctf4Δ sensitivity to the methylating agent MMS. We uncovered that mutations in Dpb3 and Dpb4 components of polymerase ε result in the development of drug resistance in ctf4Δ via their histone-binding function. Alleviated sensitivity to MMS of the double mutants was not associated with rescue of ctf4Δ defects in sister chromatid cohesion, replication fork architecture, or template switching, which ensures error-free replication in the presence of genotoxic stress. Strikingly, the improved viability depended on translesion synthesis (TLS) polymerase-mediated mutagenesis, which was drastically increased in ctf4 dpb3 double mutants. Importantly, mutations in Mcm2–Ctf4–Polα and Dpb3–Dpb4 axes of parental (H3–H4)2 deposition on lagging and leading strands invariably resulted in reduced error-free DNA damage tolerance through gap filling by template switch recombination. Overall, we uncovered a chromatin-based drug resistance mechanism in which defects in parental histone transfer after replication fork passage impair error-free recombination bypass and lead to up-regulation of TLS-mediated mutagenesis and drug resistance.
Collapse
Affiliation(s)
- Valeria Dolce
- Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare (IFOM), the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Sabrina Dusi
- Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare (IFOM), the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Michele Giannattasio
- Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare (IFOM), the FIRC Institute of Molecular Oncology, 20139 Milan, Italy.,Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano, 20122 Milan, Italy
| | - Chinnu Rose Joseph
- Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare (IFOM), the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Marco Fumasoni
- Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare (IFOM), the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Dana Branzei
- Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare (IFOM), the FIRC Institute of Molecular Oncology, 20139 Milan, Italy.,Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), 27100 Pavia, Italy
| |
Collapse
|
25
|
Kilkenny ML, Veale CE, Guppy A, Hardwick SW, Chirgadze DY, Rzechorzek NJ, Maman JD, Pellegrini L. Structural basis for the interaction of SARS-CoV-2 virulence factor nsp1 with DNA polymerase α-primase. Protein Sci 2022; 31:333-344. [PMID: 34719824 PMCID: PMC8661717 DOI: 10.1002/pro.4220] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 11/21/2022]
Abstract
The molecular mechanisms that drive the infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-the causative agent of coronavirus disease 2019 (COVID-19)-are under intense current scrutiny to understand how the virus operates and to uncover ways in which the disease can be prevented or alleviated. Recent proteomic screens of the interactions between viral and host proteins have identified the human proteins targeted by SARS-CoV-2. The DNA polymerase α (Pol α)-primase complex or primosome-responsible for initiating DNA synthesis during genomic duplication-was identified as a target of nonstructural protein 1 (nsp1), a major virulence factor in the SARS-CoV-2 infection. Here, we validate the published reports of the interaction of nsp1 with the primosome by demonstrating direct binding with purified recombinant components and providing a biochemical characterization of their interaction. Furthermore, we provide a structural basis for the interaction by elucidating the cryo-electron microscopy structure of nsp1 bound to the primosome. Our findings provide biochemical evidence for the reported targeting of Pol α by the virulence factor nsp1 and suggest that SARS-CoV-2 interferes with Pol α's putative role in the immune response during the viral infection.
Collapse
Affiliation(s)
| | | | - Amir Guppy
- Department of BiochemistryUniversity of CambridgeCambridgeCB2 1GAUK
| | | | | | - Neil J. Rzechorzek
- Department of BiochemistryUniversity of CambridgeCambridgeCB2 1GAUK
- Present address:
The Francis Crick InstituteLondonNW1 1ATUK
| | - Joseph D. Maman
- Department of BiochemistryUniversity of CambridgeCambridgeCB2 1GAUK
| | - Luca Pellegrini
- Department of BiochemistryUniversity of CambridgeCambridgeCB2 1GAUK
| |
Collapse
|
26
|
Safaric B, Chacin E, Scherr MJ, Rajappa L, Gebhardt C, Kurat CF, Cordes T, Duderstadt KE. The fork protection complex recruits FACT to reorganize nucleosomes during replication. Nucleic Acids Res 2022; 50:1317-1334. [PMID: 35061899 PMCID: PMC8860610 DOI: 10.1093/nar/gkac005] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/21/2021] [Accepted: 01/05/2022] [Indexed: 01/14/2023] Open
Abstract
Chromosome replication depends on efficient removal of nucleosomes by accessory factors to ensure rapid access to genomic information. Here, we show this process requires recruitment of the nucleosome reorganization activity of the histone chaperone FACT. Using single-molecule FRET, we demonstrate that reorganization of nucleosomal DNA by FACT requires coordinated engagement by the middle and C-terminal domains of Spt16 and Pob3 but does not require the N-terminus of Spt16. Using structure-guided pulldowns, we demonstrate instead that the N-terminal region is critical for recruitment by the fork protection complex subunit Tof1. Using in vitro chromatin replication assays, we confirm the importance of these interactions for robust replication. Our findings support a mechanism in which nucleosomes are removed through the coordinated engagement of multiple FACT domains positioned at the replication fork by the fork protection complex.
Collapse
Affiliation(s)
- Barbara Safaric
- Structure and Dynamics of Molecular Machines, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Erika Chacin
- Biomedical Center (BMC), Division of Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Planegg, Germany
| | - Matthias J Scherr
- Structure and Dynamics of Molecular Machines, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Lional Rajappa
- Structure and Dynamics of Molecular Machines, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Christian Gebhardt
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Christoph F Kurat
- Biomedical Center (BMC), Division of Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Planegg, Germany
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Karl E Duderstadt
- Structure and Dynamics of Molecular Machines, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.,Physics Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| |
Collapse
|
27
|
Yao Y, Wen Q, Zhang T, Yu C, Chan KM, Gan H. Advances in Approaches to Study Chromatin-Mediated Epigenetic Memory. ACS Synth Biol 2022; 11:16-25. [PMID: 34965084 DOI: 10.1021/acssynbio.1c00394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chromatin structure contains critical epigenetic information in various forms, such as histone post-translational modifications (PTMs). The deposition of certain histone PTMs can remodel the chromatin structure, resulting in gene expression alteration. The epigenetic information carried by histone PTMs could be inherited by daughter cells to maintain the gene expression status. Recently, studies revealed that several conserved replisome proteins regulate the recycling of parental histones carrying epigenetic information in Saccharomyces cerevisiae. Hence, the proper recycling and deposition of parental histones onto newly synthesized DNA strands is presumed to be essential for epigenetic inheritance. Here, we first reviewed the fundamental mechanisms of epigenetic modification establishment and maintenance discovered within fungal models. Next, we discussed the functions of parental histone chaperones and the potential impacts of the parental histone recycling process on heterochromatin-mediated transcriptional silencing inheritance. Subsequently, we summarized novel synthetic biology approaches developed to analyze individual epigenetic components during epigenetic inheritance in fungal and mammalian systems. These newly emerged research paradigms enable us to dissect epigenetic systems in a bottom-up manner. Furthermore, we highlighted the approaches developed in this emerging field and discussed the potential applications of these engineered regulators to building synthetic epigenetic systems.
Collapse
Affiliation(s)
- Yuan Yao
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qing Wen
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tianjun Zhang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Chuanhe Yu
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, United States
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR 999077, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518172, China
| | - Haiyun Gan
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
28
|
Chacin E, Bansal P, Reusswig KU, Diaz-Santin LM, Ortega P, Vizjak P, Gómez-González B, Müller-Planitz F, Aguilera A, Pfander B, Cheung ACM, Kurat CF. A CDK-regulated chromatin segregase promoting chromosome replication. Nat Commun 2021; 12:5224. [PMID: 34471130 PMCID: PMC8410769 DOI: 10.1038/s41467-021-25424-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 08/05/2021] [Indexed: 11/09/2022] Open
Abstract
The replication of chromosomes during S phase is critical for cellular and organismal function. Replicative stress can result in genome instability, which is a major driver of cancer. Yet how chromatin is made accessible during eukaryotic DNA synthesis is poorly understood. Here, we report the characterization of a chromatin remodeling enzyme-Yta7-entirely distinct from classical SNF2-ATPase family remodelers. Yta7 is a AAA+ -ATPase that assembles into ~1 MDa hexameric complexes capable of segregating histones from DNA. The Yta7 chromatin segregase promotes chromosome replication both in vivo and in vitro. Biochemical reconstitution experiments using purified proteins revealed that the enzymatic activity of Yta7 is regulated by S phase-forms of Cyclin-Dependent Kinase (S-CDK). S-CDK phosphorylation stimulates ATP hydrolysis by Yta7, promoting nucleosome disassembly and chromatin replication. Our results present a mechanism for how cells orchestrate chromatin dynamics in co-ordination with the cell cycle machinery to promote genome duplication during S phase.
Collapse
Affiliation(s)
- Erika Chacin
- Molecular Biology Division, Biomedical Center Munich, Ludwig-Maximilians-Universität, Munich, Planegg-Martinsried, Germany
| | - Priyanka Bansal
- Molecular Biology Division, Biomedical Center Munich, Ludwig-Maximilians-Universität, Munich, Planegg-Martinsried, Germany
| | - Karl-Uwe Reusswig
- Max Planck Institute of Biochemistry, DNA Replication and Genome Integrity, Planegg-Martinsried, Germany
| | - Luis M Diaz-Santin
- Department of Structural and Molecular Biology, Institute of Structural and Molecular Biology, University College London, London, UK.,Institute of Structural and Molecular Biology, Biological Sciences, Birkbeck College, London, UK
| | - Pedro Ortega
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, University of Seville-CSIC, Seville, Spain
| | - Petra Vizjak
- Molecular Biology Division, Biomedical Center Munich, Ludwig-Maximilians-Universität, Munich, Planegg-Martinsried, Germany
| | - Belen Gómez-González
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, University of Seville-CSIC, Seville, Spain
| | - Felix Müller-Planitz
- Molecular Biology Division, Biomedical Center Munich, Ludwig-Maximilians-Universität, Munich, Planegg-Martinsried, Germany.,Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Andrés Aguilera
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, University of Seville-CSIC, Seville, Spain
| | - Boris Pfander
- Max Planck Institute of Biochemistry, DNA Replication and Genome Integrity, Planegg-Martinsried, Germany
| | - Alan C M Cheung
- Department of Structural and Molecular Biology, Institute of Structural and Molecular Biology, University College London, London, UK.,Institute of Structural and Molecular Biology, Biological Sciences, Birkbeck College, London, UK.,School of Biochemistry, University of Bristol, Bristol, UK
| | - Christoph F Kurat
- Molecular Biology Division, Biomedical Center Munich, Ludwig-Maximilians-Universität, Munich, Planegg-Martinsried, Germany.
| |
Collapse
|
29
|
Guilliam TA. Mechanisms for Maintaining Eukaryotic Replisome Progression in the Presence of DNA Damage. Front Mol Biosci 2021; 8:712971. [PMID: 34295925 PMCID: PMC8290200 DOI: 10.3389/fmolb.2021.712971] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/25/2021] [Indexed: 12/04/2022] Open
Abstract
The eukaryotic replisome coordinates template unwinding and nascent-strand synthesis to drive DNA replication fork progression and complete efficient genome duplication. During its advancement along the parental template, each replisome may encounter an array of obstacles including damaged and structured DNA that impede its progression and threaten genome stability. A number of mechanisms exist to permit replisomes to overcome such obstacles, maintain their progression, and prevent fork collapse. A combination of recent advances in structural, biochemical, and single-molecule approaches have illuminated the architecture of the replisome during unperturbed replication, rationalised the impact of impediments to fork progression, and enhanced our understanding of DNA damage tolerance mechanisms and their regulation. This review focusses on these studies to provide an updated overview of the mechanisms that support replisomes to maintain their progression on an imperfect template.
Collapse
Affiliation(s)
- Thomas A. Guilliam
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
30
|
Willhoft O, Costa A. A structural framework for DNA replication and transcription through chromatin. Curr Opin Struct Biol 2021; 71:51-58. [PMID: 34218162 DOI: 10.1016/j.sbi.2021.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
In eukaryotic cells, DNA replication and transcription machineries uncoil nucleosomes along the double helix, to achieve the exposure of the single-stranded DNA template for nucleic acid synthesis. The replisome and RNA polymerases then redeposit histones onto DNA behind the advancing molecular motor, in a process that is crucial for epigenetic inheritance and homeostasis, respectively. Here, we compare and contrast the mechanisms by which these molecular machines advance through nucleosome arrays and discuss how chromatin remodellers can facilitate DNA replication and transcription.
Collapse
Affiliation(s)
- Oliver Willhoft
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
31
|
Hammond-Martel I, Verreault A, Wurtele H. Chromatin dynamics and DNA replication roadblocks. DNA Repair (Amst) 2021; 104:103140. [PMID: 34087728 DOI: 10.1016/j.dnarep.2021.103140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/27/2022]
Abstract
A broad spectrum of spontaneous and genotoxin-induced DNA lesions impede replication fork progression. The DNA damage response that acts to promote completion of DNA replication is associated with dynamic changes in chromatin structure that include two distinct processes which operate genome-wide during S-phase. The first, often referred to as histone recycling or parental histone segregation, is characterized by the transfer of parental histones located ahead of replication forks onto nascent DNA. The second, known as de novo chromatin assembly, consists of the deposition of new histone molecules onto nascent DNA. Because these two processes occur at all replication forks, their potential to influence a multitude of DNA repair and DNA damage tolerance mechanisms is considerable. The purpose of this review is to provide a description of parental histone segregation and de novo chromatin assembly, and to illustrate how these processes influence cellular responses to DNA replication roadblocks.
Collapse
Affiliation(s)
- Ian Hammond-Martel
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montreal, H1T 2M4, Canada
| | - Alain Verreault
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Succursale Centre-Ville, Montreal, H3C 3J7, Canada; Département de Pathologie et Biologie Cellulaire, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, H3T 1J4, Canada
| | - Hugo Wurtele
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montreal, H1T 2M4, Canada; Département de Médecine, Université de Montréal, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, H3T 1J4, Canada.
| |
Collapse
|
32
|
Abstract
The faithful and timely copying of DNA by molecular machines known as replisomes depends on a disparate suite of enzymes and scaffolding factors working together in a highly orchestrated manner. Large, dynamic protein-nucleic acid assemblies that selectively morph between distinct conformations and compositional states underpin this critical cellular process. In this article, we discuss recent progress outlining the physical basis of replisome construction and progression in eukaryotes.
Collapse
Affiliation(s)
- Ilan Attali
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA;
| | - Michael R Botchan
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA;
| |
Collapse
|
33
|
Caught in the act: structural dynamics of replication origin activation and fork progression. Biochem Soc Trans 2021; 48:1057-1066. [PMID: 32369549 PMCID: PMC7329347 DOI: 10.1042/bst20190998] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 01/03/2023]
Abstract
This review discusses recent advances in single-particle cryo-EM and single-molecule approaches used to visualise eukaryotic DNA replication reactions reconstituted in vitro. We comment on the new challenges facing structural biologists, as they turn to describing the dynamic cascade of events that lead to replication origin activation and fork progression.
Collapse
|
34
|
Gutierrez C. Chromatin, DNA Replication, and Transcription: Closing the Triangle. TRENDS IN PLANT SCIENCE 2021; 26:10-12. [PMID: 33203531 DOI: 10.1016/j.tplants.2020.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Chromatin features are correctly transferred to the daughter strands during genome replication. Recent discoveries demonstrate that replicative DNA polymerases interact physically with histone dimers and tetramers, facilitating histone transfer at the DNA replication fork. This role may explain the transcriptional phenotypic defects of Arabidopsis mutants in genes encoding DNA polymerase subunits.
Collapse
Affiliation(s)
- Crisanto Gutierrez
- Centro de Biología Molecular, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
35
|
Kellner V, Smith DJ. Hold on Tight: Lagging-Strand DNA Polymerases Synthesize Multiple Okazaki Fragments without Letting Go. Mol Cell 2020; 80:6-8. [PMID: 33007257 DOI: 10.1016/j.molcel.2020.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Kapadia et al. (2020) use an innovative single-molecule imaging approach in yeast cells to measure chromatin association of individual replisome subunits, thereby challenging the notion that lagging-strand DNA polymerases frequently dissociate from replisomes during DNA replication in vivo.
Collapse
Affiliation(s)
- Vanessa Kellner
- Department of Biology, New York University, New York, NY, USA
| | - Duncan J Smith
- Department of Biology, New York University, New York, NY, USA.
| |
Collapse
|
36
|
Kapadia N, El-Hajj ZW, Zheng H, Beattie TR, Yu A, Reyes-Lamothe R. Processive Activity of Replicative DNA Polymerases in the Replisome of Live Eukaryotic Cells. Mol Cell 2020; 80:114-126.e8. [DOI: 10.1016/j.molcel.2020.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 07/02/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022]
|
37
|
Yuan Z, Li H. Molecular mechanisms of eukaryotic origin initiation, replication fork progression, and chromatin maintenance. Biochem J 2020; 477:3499-3525. [PMID: 32970141 PMCID: PMC7574821 DOI: 10.1042/bcj20200065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/29/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022]
Abstract
Eukaryotic DNA replication is a highly dynamic and tightly regulated process. Replication involves several dozens of replication proteins, including the initiators ORC and Cdc6, replicative CMG helicase, DNA polymerase α-primase, leading-strand DNA polymerase ε, and lagging-strand DNA polymerase δ. These proteins work together in a spatially and temporally controlled manner to synthesize new DNA from the parental DNA templates. During DNA replication, epigenetic information imprinted on DNA and histone proteins is also copied to the daughter DNA to maintain the chromatin status. DNA methyltransferase 1 is primarily responsible for copying the parental DNA methylation pattern into the nascent DNA. Epigenetic information encoded in histones is transferred via a more complex and less well-understood process termed replication-couple nucleosome assembly. Here, we summarize the most recent structural and biochemical insights into DNA replication initiation, replication fork elongation, chromatin assembly and maintenance, and related regulatory mechanisms.
Collapse
Affiliation(s)
- Zuanning Yuan
- Structural Biology Program, Van Andel Institute, Grand Rapids, Michigan, U.S.A
| | - Huilin Li
- Structural Biology Program, Van Andel Institute, Grand Rapids, Michigan, U.S.A
| |
Collapse
|
38
|
Eickhoff P, Kose HB, Martino F, Petojevic T, Abid Ali F, Locke J, Tamberg N, Nans A, Berger JM, Botchan MR, Yardimci H, Costa A. Molecular Basis for ATP-Hydrolysis-Driven DNA Translocation by the CMG Helicase of the Eukaryotic Replisome. Cell Rep 2020; 28:2673-2688.e8. [PMID: 31484077 PMCID: PMC6737378 DOI: 10.1016/j.celrep.2019.07.104] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/15/2019] [Accepted: 07/26/2019] [Indexed: 01/12/2023] Open
Abstract
In the eukaryotic replisome, DNA unwinding by the Cdc45-MCM-Go-Ichi-Ni-San (GINS) (CMG) helicase requires a hexameric ring-shaped ATPase named minichromosome maintenance (MCM), which spools single-stranded DNA through its central channel. Not all six ATPase sites are required for unwinding; however, the helicase mechanism is unknown. We imaged ATP-hydrolysis-driven translocation of the CMG using cryo-electron microscopy (cryo-EM) and found that the six MCM subunits engage DNA using four neighboring protomers at a time, with ATP binding promoting DNA engagement. Morphing between different helicase states leads us to suggest a non-symmetric hand-over-hand rotary mechanism, explaining the asymmetric requirements of ATPase function around the MCM ring of the CMG. By imaging of a higher-order replisome assembly, we find that the Mrc1-Csm3-Tof1 fork-stabilization complex strengthens the interaction between parental duplex DNA and the CMG at the fork, which might support the coupling between DNA translocation and fork unwinding. Vertical DNA movement through the MCM ring requires rotation inside the pore Structural asymmetries in MCM-DNA are captured during ATPase-powered translocation Asymmetric rotation explains selective ATPase site requirements for translocation The fork-stabilization complex strengthens parental-DNA engagement by the MCM
Collapse
Affiliation(s)
- Patrik Eickhoff
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Hazal B Kose
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Fabrizio Martino
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Tatjana Petojevic
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ferdos Abid Ali
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Julia Locke
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Nele Tamberg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael R Botchan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hasan Yardimci
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
39
|
Li Z, Hua X, Serra-Cardona A, Xu X, Gan S, Zhou H, Yang WS, Chen CL, Xu RM, Zhang Z. DNA polymerase α interacts with H3-H4 and facilitates the transfer of parental histones to lagging strands. SCIENCE ADVANCES 2020; 6:eabb5820. [PMID: 32923642 PMCID: PMC7449674 DOI: 10.1126/sciadv.abb5820] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/14/2020] [Indexed: 05/03/2023]
Abstract
How parental histones, the carriers of epigenetic modifications, are deposited onto replicating DNA remains poorly understood. Here, we describe the eSPAN method (enrichment and sequencing of protein-associated nascent DNA) in mouse embryonic stem (ES) cells and use it to detect histone deposition onto replicating DNA strands with a relatively small number of cells. We show that DNA polymerase α (Pol α), which synthesizes short primers for DNA synthesis, binds histone H3-H4 preferentially. A Pol α mutant defective in histone binding in vitro impairs the transfer of parental H3-H4 to lagging strands in both yeast and mouse ES cells. Last, dysregulation of both coding genes and noncoding endogenous retroviruses is detected in mutant ES cells defective in parental histone transfer. Together, we report an efficient eSPAN method for analysis of DNA replication-linked processes in mouse ES cells and reveal the mechanism of Pol α in parental histone transfer.
Collapse
Affiliation(s)
- Zhiming Li
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Xu Hua
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Albert Serra-Cardona
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Xiaowei Xu
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Songlin Gan
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zhou
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Wen-Si Yang
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun-long Chen
- Curie Institute, PSL Research University, CNRS UMR 3244, F-75005, Paris, France
- Sorbonne University, F-75005 Paris, France
| | - Rui-Ming Xu
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiguo Zhang
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
40
|
Scott WA, Campos EI. Interactions With Histone H3 & Tools to Study Them. Front Cell Dev Biol 2020; 8:701. [PMID: 32850821 PMCID: PMC7411163 DOI: 10.3389/fcell.2020.00701] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/10/2020] [Indexed: 01/12/2023] Open
Abstract
Histones are an integral part of chromatin and thereby influence its structure, dynamics, and functions. The effects of histone variants, posttranslational modifications, and binding proteins is therefore of great interest. From the moment that they are deposited on chromatin, nucleosomal histones undergo dynamic changes in function of the cell cycle, and as DNA is transcribed and replicated. In the process, histones are not only modified and bound by various proteins, but also shuffled, evicted, or replaced. Technologies and tools to study such dynamic events continue to evolve and better our understanding of chromatin and of histone proteins proper. Here, we provide an overview of H3.1 and H3.3 histone dynamics throughout the cell cycle, while highlighting some of the tools used to study their protein–protein interactions. We specifically discuss how histones are chaperoned, modified, and bound by various proteins at different stages of the cell cycle. Established and select emerging technologies that furthered (or have a high potential of furthering) our understanding of the dynamic histone–protein interactions are emphasized. This includes experimental tools to investigate spatiotemporal changes on chromatin, the role of histone chaperones, histone posttranslational modifications, and histone-binding effector proteins.
Collapse
Affiliation(s)
- William A Scott
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Eric I Campos
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
41
|
Porcella SY, Koussa NC, Tang CP, Kramer DN, Srivastava P, Smith DJ. Separable, Ctf4-mediated recruitment of DNA Polymerase α for initiation of DNA synthesis at replication origins and lagging-strand priming during replication elongation. PLoS Genet 2020; 16:e1008755. [PMID: 32379761 PMCID: PMC7237047 DOI: 10.1371/journal.pgen.1008755] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 05/19/2020] [Accepted: 04/03/2020] [Indexed: 01/17/2023] Open
Abstract
During eukaryotic DNA replication, DNA polymerase alpha/primase (Pol α) initiates synthesis on both the leading and lagging strands. It is unknown whether leading- and lagging-strand priming are mechanistically identical, and whether Pol α associates processively or distributively with the replisome. Here, we titrate cellular levels of Pol α in S. cerevisiae and analyze Okazaki fragments to study both replication initiation and ongoing lagging-strand synthesis in vivo. We observe that both Okazaki fragment initiation and the productive firing of replication origins are sensitive to Pol α abundance, and that both processes are disrupted at similar Pol α concentrations. When the replisome adaptor protein Ctf4 is absent or cannot interact with Pol α, lagging-strand initiation is impaired at Pol α concentrations that still support normal origin firing. Additionally, we observe that activation of the checkpoint becomes essential for viability upon severe depletion of Pol α. Using strains in which the Pol α-Ctf4 interaction is disrupted, we demonstrate that this checkpoint requirement is not solely caused by reduced lagging-strand priming. Our results suggest that Pol α recruitment for replication initiation and ongoing lagging-strand priming are distinctly sensitive to the presence of Ctf4. We propose that the global changes we observe in Okazaki fragment length and origin firing efficiency are consistent with distributive association of Pol α at the replication fork, at least when Pol α is limiting. Half of each eukaryotic genome is replicated continuously as the leading strand, while the other half is synthesized discontinuously as Okazaki fragments on the lagging strand. The bulk of DNA replication is completed by DNA polymerases ε and δ on the leading and lagging strand respectively, while synthesis on each strand is initiated by DNA polymerase α-primase (Pol α). Using the model eukaryote S. cerevisiae, we modulate cellular levels of Pol α and interrogate the impact of this perturbation on both replication initiation on DNA synthesis and cellular viability. We observe that Pol α can associate dynamically at the replication fork for initiation on both strands. Although the initiation of both strands is widely thought to be mechanistically similar, we determine that Ctf4, a hub that connects proteins to the replication fork, stimulates lagging-strand priming to a greater extent than leading-strand initiation. We also find that decreased leading-strand initiation results in a checkpoint response that is necessary for viability when Pol α is limiting. Because the DNA replication machinery is highly conserved from budding yeast to humans, this research provides insights into how DNA replication is accomplished throughout eukaryotes.
Collapse
Affiliation(s)
- Sarina Y. Porcella
- Department of Biology, New York University, New York, NY, United States of America
| | - Natasha C. Koussa
- Department of Biology, New York University, New York, NY, United States of America
| | - Colin P. Tang
- Department of Biology, New York University, New York, NY, United States of America
| | - Daphne N. Kramer
- Department of Biology, New York University, New York, NY, United States of America
| | - Priyanka Srivastava
- Department of Biology, New York University, New York, NY, United States of America
| | - Duncan J. Smith
- Department of Biology, New York University, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
42
|
Baretić D, Jenkyn-Bedford M, Aria V, Cannone G, Skehel M, Yeeles JTP. Cryo-EM Structure of the Fork Protection Complex Bound to CMG at a Replication Fork. Mol Cell 2020; 78:926-940.e13. [PMID: 32369734 PMCID: PMC7276988 DOI: 10.1016/j.molcel.2020.04.012] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 12/15/2022]
Abstract
The eukaryotic replisome, organized around the Cdc45-MCM-GINS (CMG) helicase, orchestrates chromosome replication. Multiple factors associate directly with CMG, including Ctf4 and the heterotrimeric fork protection complex (Csm3/Tof1 and Mrc1), which has important roles including aiding normal replication rates and stabilizing stalled forks. How these proteins interface with CMG to execute these functions is poorly understood. Here we present 3 to 3.5 Å resolution electron cryomicroscopy (cryo-EM) structures comprising CMG, Ctf4, and the fork protection complex at a replication fork. The structures provide high-resolution views of CMG-DNA interactions, revealing a mechanism for strand separation, and show Csm3/Tof1 “grip” duplex DNA ahead of CMG via a network of interactions important for efficient replication fork pausing. Although Mrc1 was not resolved in our structures, we determine its topology in the replisome by cross-linking mass spectrometry. Collectively, our work reveals how four highly conserved replisome components collaborate with CMG to facilitate replisome progression and maintain genome stability. Cryo-EM structure of Csm3/Tof1 and Ctf4 bound to the eukaryotic CMG helicase Csm3/Tof1 are positioned at the front of the replisome where they grip duplex DNA High-resolution views of CMG-DNA contacts suggest a mechanism for strand separation Mrc1 binds across one side of CMG contacting the front and back of the replisome
Collapse
Affiliation(s)
- Domagoj Baretić
- Laboratory of Molecular Biology, Medical Research Council, Cambridge CB2 0QH, UK
| | | | - Valentina Aria
- Laboratory of Molecular Biology, Medical Research Council, Cambridge CB2 0QH, UK
| | - Giuseppe Cannone
- Laboratory of Molecular Biology, Medical Research Council, Cambridge CB2 0QH, UK
| | - Mark Skehel
- Laboratory of Molecular Biology, Medical Research Council, Cambridge CB2 0QH, UK
| | - Joseph T P Yeeles
- Laboratory of Molecular Biology, Medical Research Council, Cambridge CB2 0QH, UK.
| |
Collapse
|
43
|
Stewart-Morgan KR, Petryk N, Groth A. Chromatin replication and epigenetic cell memory. Nat Cell Biol 2020; 22:361-371. [PMID: 32231312 DOI: 10.1038/s41556-020-0487-y] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/18/2020] [Indexed: 02/07/2023]
Abstract
Propagation of the chromatin landscape across cell divisions is central to epigenetic cell memory. Mechanistic analysis of the interplay between DNA replication, the cell cycle, and the epigenome has provided insights into replication-coupled chromatin assembly and post-replicative chromatin maintenance. These breakthroughs are critical for defining how proliferation impacts the epigenome during cell identity changes in development and disease. Here we review these findings in the broader context of epigenetic inheritance across mitotic cell division.
Collapse
Affiliation(s)
- Kathleen R Stewart-Morgan
- The Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Nataliya Petryk
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.,Epigenetics and Cell Fate, UMR7216 CNRS, University of Paris, Paris, France
| | - Anja Groth
- The Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark. .,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
44
|
Zhang W, Feng J, Li Q. The replisome guides nucleosome assembly during DNA replication. Cell Biosci 2020; 10:37. [PMID: 32190287 PMCID: PMC7066812 DOI: 10.1186/s13578-020-00398-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/29/2020] [Indexed: 12/18/2022] Open
Abstract
Nucleosome assembly during DNA replication is tightly coupled to ongoing DNA synthesis. This process, termed DNA replication-coupled (RC) nucleosome assembly, is essential for chromatin replication and has a great impact on both genome stability maintenance and epigenetic inheritance. This review discusses a set of recent findings regarding the role of replisome components contributing to RC nucleosome assembly. Starting with a brief introduction to the factors involved in nucleosome assembly and some aspects of the architecture of the eukaryotic replisome, we discuss studies from yeast to mammalian cells and the interactions of replisome components with histones and histone chaperones. We describe the proposed functions of replisome components during RC nucleosome assembly and discuss their impacts on histone segregation and implications for epigenetic inheritance.
Collapse
Affiliation(s)
- Wenshuo Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 China
| | - Jianxun Feng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 China
| | - Qing Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 China
| |
Collapse
|
45
|
Tsegay PS, Lai Y, Liu Y. Replication Stress and Consequential Instability of the Genome and Epigenome. Molecules 2019; 24:molecules24213870. [PMID: 31717862 PMCID: PMC6864812 DOI: 10.3390/molecules24213870] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
Cells must faithfully duplicate their DNA in the genome to pass their genetic information to the daughter cells. To maintain genomic stability and integrity, double-strand DNA has to be replicated in a strictly regulated manner, ensuring the accuracy of its copy number, integrity and epigenetic modifications. However, DNA is constantly under the attack of DNA damage, among which oxidative DNA damage is the one that most frequently occurs, and can alter the accuracy of DNA replication, integrity and epigenetic features, resulting in DNA replication stress and subsequent genome and epigenome instability. In this review, we summarize DNA damage-induced replication stress, the formation of DNA secondary structures, peculiar epigenetic modifications and cellular responses to the stress and their impact on the instability of the genome and epigenome mainly in eukaryotic cells.
Collapse
Affiliation(s)
- Pawlos S. Tsegay
- Biochemistry Ph.D. Program, Florida International University, Miami, FL 33199, USA;
| | - Yanhao Lai
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA;
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Yuan Liu
- Biochemistry Ph.D. Program, Florida International University, Miami, FL 33199, USA;
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA;
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
- Correspondence:
| |
Collapse
|
46
|
Yuan Z, Georgescu R, Santos RDLA, Zhang D, Bai L, Yao NY, Zhao G, O'Donnell ME, Li H. Ctf4 organizes sister replisomes and Pol α into a replication factory. eLife 2019; 8:47405. [PMID: 31589141 PMCID: PMC6800005 DOI: 10.7554/elife.47405] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022] Open
Abstract
The current view is that eukaryotic replisomes are independent. Here we show that Ctf4 tightly dimerizes CMG helicase, with an extensive interface involving Psf2, Cdc45, and Sld5. Interestingly, Ctf4 binds only one Pol α-primase. Thus, Ctf4 may have evolved as a trimer to organize two helicases and one Pol α-primase into a replication factory. In the 2CMG–Ctf43–1Pol α-primase factory model, the two CMGs nearly face each other, placing the two lagging strands toward the center and two leading strands out the sides. The single Pol α-primase is centrally located and may prime both sister replisomes. The Ctf4-coupled-sister replisome model is consistent with cellular microscopy studies revealing two sister forks of an origin remain attached and are pushed forward from a protein platform. The replication factory model may facilitate parental nucleosome transfer during replication.
Collapse
Affiliation(s)
- Zuanning Yuan
- Structural Biology Program, Van Andel Institute, Grand Rapids, United States
| | - Roxana Georgescu
- Howard Hughes Medical Institute, Chevy Chase, United States.,DNA Replication Laboratory, The Rockefeller University, New York, United States
| | | | - Daniel Zhang
- DNA Replication Laboratory, The Rockefeller University, New York, United States
| | - Lin Bai
- Structural Biology Program, Van Andel Institute, Grand Rapids, United States
| | - Nina Y Yao
- DNA Replication Laboratory, The Rockefeller University, New York, United States
| | - Gongpu Zhao
- David Van Andel Advanced Cryo-EM Suite, Van Andel Institute, Grand Rapids, United States
| | - Michael E O'Donnell
- Howard Hughes Medical Institute, Chevy Chase, United States.,DNA Replication Laboratory, The Rockefeller University, New York, United States
| | - Huilin Li
- Structural Biology Program, Van Andel Institute, Grand Rapids, United States
| |
Collapse
|
47
|
Casar Tena T, Maerz LD, Szafranski K, Groth M, Blätte TJ, Donow C, Matysik S, Walther P, Jeggo PA, Burkhalter MD, Philipp M. Resting cells rely on the DNA helicase component MCM2 to build cilia. Nucleic Acids Res 2019; 47:134-151. [PMID: 30329080 PMCID: PMC6326816 DOI: 10.1093/nar/gky945] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 10/04/2018] [Indexed: 12/24/2022] Open
Abstract
Minichromosome maintenance (MCM) proteins facilitate replication by licensing origins and unwinding the DNA double strand. Interestingly, the number of MCM hexamers greatly exceeds the number of firing origins suggesting additional roles of MCMs. Here we show a hitherto unanticipated function of MCM2 in cilia formation in human cells and zebrafish that is uncoupled from replication. Zebrafish depleted of MCM2 develop ciliopathy-phenotypes including microcephaly and aberrant heart looping due to malformed cilia. In non-cycling human fibroblasts, loss of MCM2 promotes transcription of a subset of genes, which cause cilia shortening and centriole overduplication. Chromatin immunoprecipitation experiments show that MCM2 binds to transcription start sites of cilia inhibiting genes. We propose that such binding may block RNA polymerase II-mediated transcription. Depletion of a second MCM (MCM7), which functions in complex with MCM2 during its canonical functions, reveals an overlapping cilia-deficiency phenotype likely unconnected to replication, although MCM7 appears to regulate a distinct subset of genes and pathways. Our data suggests that MCM2 and 7 exert a role in ciliogenesis in post-mitotic tissues.
Collapse
Affiliation(s)
- Teresa Casar Tena
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Lars D Maerz
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Karol Szafranski
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745 Jena, Germany
| | - Marco Groth
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745 Jena, Germany
| | - Tamara J Blätte
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Cornelia Donow
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Sabrina Matysik
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, 89081 Ulm, Germany
| | - Penelope A Jeggo
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | - Martin D Burkhalter
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Melanie Philipp
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
48
|
A quest for coordination among activities at the replisome. Biochem Soc Trans 2019; 47:1067-1075. [PMID: 31395754 DOI: 10.1042/bst20180402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 11/17/2022]
Abstract
Faithful DNA replication is required for transmission of the genetic material across generations. The basic mechanisms underlying this process are shared among all organisms: progressive unwinding of the long double-stranded DNA; synthesis of RNA primers; and synthesis of a new DNA chain. These activities are invariably performed by a multi-component machine called the replisome. A detailed description of this molecular machine has been achieved in prokaryotes and phages, with the replication processes in eukaryotes being comparatively less known. However, recent breakthroughs in the in vitro reconstitution of eukaryotic replisomes have resulted in valuable insight into their functions and mechanisms. In conjunction with the developments in eukaryotic replication, an emerging overall view of replisomes as dynamic protein ensembles is coming into fruition. The purpose of this review is to provide an overview of the recent insights into the dynamic nature of the bacterial replisome, revealed through single-molecule techniques, and to describe some aspects of the eukaryotic replisome under this framework. We primarily focus on Escherichia coli and Saccharomyces cerevisiae (budding yeast), since a significant amount of literature is available for these two model organisms. We end with a description of the methods of live-cell fluorescence microscopy for the characterization of replisome dynamics.
Collapse
|
49
|
Tang L, Sheraz M, McGrane M, Chang J, Guo JT. DNA Polymerase alpha is essential for intracellular amplification of hepatitis B virus covalently closed circular DNA. PLoS Pathog 2019; 15:e1007742. [PMID: 31026293 PMCID: PMC6505960 DOI: 10.1371/journal.ppat.1007742] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 05/08/2019] [Accepted: 03/29/2019] [Indexed: 02/07/2023] Open
Abstract
Persistent hepatitis B virus (HBV) infection relies on the establishment and maintenance of covalently closed circular (ccc) DNA, a 3.2 kb episome that serves as a viral transcription template, in the nucleus of an infected hepatocyte. Although evidence suggests that cccDNA is the repair product of nucleocapsid associated relaxed circular (rc) DNA, the cellular DNA polymerases involving in repairing the discontinuity in both strands of rcDNA as well as the underlying mechanism remain to be fully understood. Taking a chemical genetics approach, we found that DNA polymerase alpha (Pol α) is essential for cccDNA intracellular amplification, a genome recycling pathway that maintains a stable cccDNA pool in infected hepatocytes. Specifically, inhibition of Pol α by small molecule inhibitors aphidicolin or CD437 as well as silencing of Pol α expression by siRNA led to suppression of cccDNA amplification in human hepatoma cells. CRISPR-Cas9 knock-in of a CD437-resistant mutation into Pol α genes completely abolished the effect of CD437 on cccDNA formation, indicating that CD437 directly targets Pol α to disrupt cccDNA biosynthesis. Mechanistically, Pol α is recruited to HBV rcDNA and required for the generation of minus strand covalently closed circular rcDNA, suggesting that Pol α is involved in the repair of the minus strand DNA nick in cccDNA synthesis. Our study thus reveals that the distinct host DNA polymerases are hijacked by HBV to support the biosynthesis of cccDNA from intracellular amplification pathway compared to that from de novo viral infection, which requires Pol κ and Pol λ. CCC DNA is the most refractory HBV replication intermediate under long-term antiviral therapies and is responsible for the viral rebound after treatment cessation. Therefore, understanding the biosynthesis and maintenance of cccDNA minichromosome is crucial for the development of novel antiviral therapeutics to cure chronic HBV infection. Although it has been clearly demonstrated that cccDNA biosynthesis relies on host cellular DNA repair machinery, the molecular pathways that convert rcDNA into cccDNA remain to be identified. Here we report that DNA polymerase alpha (Pol α) as well as Pol δ and ɛ are required for converting rcDNA into cccDNA through intracellular cccDNA amplification. This finding adds novel molecular insights on cccDNA biosynthesis. Further understanding the mechanism of cccDNA synthesis should reveal molecular targets for developing therapeutic agents to eradicate cccDNA and cure chronic hepatitis B.
Collapse
Affiliation(s)
- Liudi Tang
- Microbiology and Immunology Graduate Program, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Muhammad Sheraz
- Microbiology and Immunology Graduate Program, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Michael McGrane
- FlowMetric Diagnostics, Doylestown, PA, United States of America
| | - Jinhong Chang
- Baruch S. Blumberg Institute, Doylestown, PA, United States of America
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Doylestown, PA, United States of America
- * E-mail:
| |
Collapse
|
50
|
The histone chaperoning pathway: from ribosome to nucleosome. Essays Biochem 2019; 63:29-43. [PMID: 31015382 PMCID: PMC6484783 DOI: 10.1042/ebc20180055] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 12/15/2022]
Abstract
Nucleosomes represent the fundamental repeating unit of eukaryotic DNA, and comprise eight core histones around which DNA is wrapped in nearly two superhelical turns. Histones do not have the intrinsic ability to form nucleosomes; rather, they require an extensive repertoire of interacting proteins collectively known as ‘histone chaperones’. At a fundamental level, it is believed that histone chaperones guide the assembly of nucleosomes through preventing non-productive charge-based aggregates between the basic histones and acidic cellular components. At a broader level, histone chaperones influence almost all aspects of chromatin biology, regulating histone supply and demand, governing histone variant deposition, maintaining functional chromatin domains and being co-factors for histone post-translational modifications, to name a few. In this essay we review recent structural insights into histone-chaperone interactions, explore evidence for the existence of a histone chaperoning ‘pathway’ and reconcile how such histone-chaperone interactions may function thermodynamically to assemble nucleosomes and maintain chromatin homeostasis.
Collapse
|