1
|
Sun Y, Jenkins LM, El Touny LH, Zhu L, Yang X, Jo U, Escobedo L, Maity TK, Saha LK, Uribe I, Saha S, Takeda S, Leung AKL, Cheng K, Pommier Y. Flap endonuclease 1 repairs DNA-protein cross-links via ADP-ribosylation-dependent mechanisms. SCIENCE ADVANCES 2025; 11:eads2919. [PMID: 39792662 PMCID: PMC11721697 DOI: 10.1126/sciadv.ads2919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025]
Abstract
DNA-protein cross-links (DPCs) are among the most detrimental genomic lesions. They are ubiquitously produced by formaldehyde (FA), and failure to repair FA-induced DPCs blocks chromatin-based processes, leading to neurodegeneration and cancer. The type, structure, and repair of FA-induced DPCs remain largely unknown. Here, we profiled the proteome of FA-induced DPCs and found that flap endonuclease 1 (FEN1) resolves FA-induced DPCs. We revealed that FA also damages DNA bases adjoining the DPCs, leading to DPC-conjugated 5' flap structures via the base excision repair (BER) pathway. We also found that FEN1 repairs enzymatic topoisomerase II (TOP2)-DPCs. Furthermore, we report that both FA-induced and TOP2-DPCs are adenosine diphosphate (ADP) ribosylated by poly(ADP-ribose) polymerase 1 (PARP1). PARylation of the DPCs in association with FEN1 PARylation at residue E285 is required for the recruitment of FEN1. Our work unveils the identity of proteins forming FA-induced DPCs and a previously unrecognized PARP1-FEN1 nuclease pathway repairing both FA- and TOP2-DPCs.
Collapse
Affiliation(s)
- Yilun Sun
- Department of Pharmacology, Physiology and Drug Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- University of Maryland Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, Baltimore, MD 21201, USA
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Lisa M. Jenkins
- Mass Spectrometry Section, Collaborative Protein Technology Resource, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Lara H. El Touny
- Function Genomics Laboratory, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD 20850, USA
| | - Linying Zhu
- Department of Pharmacology, Physiology and Drug Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- University of Maryland Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Xi Yang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Ukhyun Jo
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Lauren Escobedo
- Department of Pharmacology, Physiology and Drug Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- University of Maryland Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Tapan K. Maity
- Mass Spectrometry Section, Collaborative Protein Technology Resource, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Liton Kumar Saha
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Isabel Uribe
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sourav Saha
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Shunichi Takeda
- Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Anthony K. L. Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ken Cheng
- Function Genomics Laboratory, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD 20850, USA
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Erber L, Groehler AS, Cyuzuzo CI, Baker-Wainwright J, Maskey RS, Li L, Machida YJ, Tretyakova N. SPRTN metalloprotease participates in repair of ROS-mediated DNA-protein crosslinks. Sci Rep 2024; 14:30919. [PMID: 39730693 DOI: 10.1038/s41598-024-81799-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/29/2024] [Indexed: 12/29/2024] Open
Abstract
Exposure to reactive oxygen species (ROS) can induce DNA-protein crosslinks (DPCs), unusually bulky DNA lesions that block replication and transcription and play a role in aging, cancer, cardiovascular disease, and neurodegenerative disorders. Repair of DPCs depends on the coordinated efforts of proteases and DNA repair enzymes to cleave the protein component of the lesion to smaller DNA-peptide crosslinks which can be processed by tyrosyl-DNA phosphodiesterases 1 and 2, nucleotide excision and homologous recombination repair pathways. DNA-dependent metalloprotease SPRTN plays a role in DPC repair, and SPRTN-deficient mice exhibit an accelerated aging phenotype and develop liver cancer early in life. We investigated the role of the SPRTN enzyme in the repair of DPCs produced by a free radical mechanism. Sprtn-deficient MEF cells treated with ionizing radiation had higher levels of total DPCs and exhibited greater sensitivity upon exposure to hydrogen peroxide and other crosslinking agents including cisplatin, phosphoramide mustard, and 1,2,3,4-diepoxybutane. Using a sensitive and accurate nanoLC-ESI+-MS/MS assay, we specifically measured the radical-induced crosslinking of thymidine in DNA crosslinking of thymidine in DNA to tyrosine in proteins (dT-Tyr) in the tissues of SPRTN hypomorphic (SprtnH/H) and wild type mice. Genomic DNA isolated from the tissues of SPRTN hypomorphic (SprtnH/H) mice exhibited higher levels of dT-Tyr in the liver, brain, heart, and kidney than wild-type animals. Overall, our results are consistent with the understanding that SPRTN has a role in maintaining genomic integrity upon exposure to ionizing radiation and endogenous reactive oxygen species.
Collapse
Affiliation(s)
- Luke Erber
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, 66045, USA
| | - Arnold S Groehler
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Cesar I Cyuzuzo
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | | | - Reeja S Maskey
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lei Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yuichi J Machida
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Natalia Tretyakova
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
3
|
Yabushita T, Goyama S. Nucleic acid metabolism: the key therapeutic target for myeloid tumors. Exp Hematol 2024; 142:104693. [PMID: 39647658 DOI: 10.1016/j.exphem.2024.104693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/10/2024]
Abstract
Nucleic acid analogs, including cytarabine, decitabine, and azacitidine, have significantly advanced therapeutic approaches for myeloid tumors over the past five decades. Nucleic acid metabolism is a crucial pathway driving myeloid tumorigenesis, with emerging evidence indicating that myeloid tumors are particularly dependent on the de novo nucleotide synthesis pathway, underscoring its potential as a therapeutic target. This review provides a comprehensive overview of nucleic acid metabolism, focusing on de novo nucleotide synthesis. We then described the range of clinically utilized agents targeting nucleic acid metabolism and discussed our recent findings on the nonepigenetic actions of decitabine, as well as the therapeutic effects of inosine monophosphate dehydrogenase (IMPDH) inhibitors in the treatment of myeloid tumors.
Collapse
Affiliation(s)
- Tomohiro Yabushita
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Susumu Goyama
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Japan.
| |
Collapse
|
4
|
Thu YM. Multifaceted roles of SUMO in DNA metabolism. Nucleus 2024; 15:2398450. [PMID: 39287196 PMCID: PMC11409511 DOI: 10.1080/19491034.2024.2398450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Sumoylation, a process in which SUMO (small ubiquitin like modifier) is conjugated to target proteins, emerges as a post-translational modification that mediates protein-protein interactions, protein complex assembly, and localization of target proteins. The coordinated actions of SUMO ligases, proteases, and SUMO-targeted ubiquitin ligases determine the net result of sumoylation. It is well established that sumoylation can somewhat promiscuously target proteins in groups as well as selectively target individual proteins. Through changing protein dynamics, sumoylation orchestrates multi-step processes in chromatin biology. Sumoylation influences various steps of mitosis, DNA replication, DNA damage repair, and pathways protecting chromosome integrity. This review highlights examples of SUMO-regulated nuclear processes to provide mechanistic views of sumoylation in DNA metabolism.
Collapse
Affiliation(s)
- Yee Mon Thu
- Department of Biology, Colby College, Waterville, ME, USA
| |
Collapse
|
5
|
Song W, Zhao Y, Ruggiano A, Redfield C, Newman JA, Zhu X, Cruz-Migoni A, Roddan R, McHugh P, Elliott P, Ramadan K. The dual ubiquitin binding mode of SPRTN secures rapid spatiotemporal proteolysis of DNA-protein crosslinks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625361. [PMID: 39651247 PMCID: PMC11623616 DOI: 10.1101/2024.11.26.625361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
DNA-protein crosslinks (DPCs) are endogenous and chemotherapy-induced genotoxic DNA lesions and, if not repaired, lead to embryonic lethality, neurodegeneration, premature ageing, and cancer. DPCs are heavily polyubiquitinated, and the SPRTN protease and 26S proteasome emerged as two central enzymes for DPC proteolysis. The proteasome recognises its substrates by their ubiquitination status. How SPRTN protease, an essential enzyme for DPC proteolysis, achieves specificity for DPCs still needs to be discovered. We found that the N-terminal SPRTN catalytic region (SprT) possesses a ubiquitin-binding domain named the U biquitin interface of S prT D omain (USD). Using multiple biochemical, biophysical, and structural approaches, we reveal that USD binds ubiquitin chains. SPRTN binding to ubiquitin chains via USD leads to ∼ 67-fold higher activation of SPRTN proteolysis towards polyubiquitinated DPCs than the unmodified DPCs. This study reveals the ubiquitination of DPCs is the key signal for SPRTN's substrate specificity and rapid proteolysis.
Collapse
|
6
|
Weickert P, Dürauer S, Götz MJ, Li HY, Stingele J. Electro-elution-based purification of covalent DNA-protein cross-links. Nat Protoc 2024; 19:2891-2914. [PMID: 38890499 DOI: 10.1038/s41596-024-01004-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 02/19/2024] [Indexed: 06/20/2024]
Abstract
Covalent DNA-protein cross-links (DPCs) are pervasive DNA lesions that challenge genome stability and can be induced by metabolic or chemotherapeutic cross-linking agents including reactive aldehydes, topoisomerase poisons and DNMT1 inhibitors. The purification of x-linked proteins (PxP), where DNA-cross-linked proteins are separated from soluble proteins via electro-elution, can be used to identify DPCs. Here we describe a versatile and sensitive strategy for PxP. Mammalian cells are collected following exposure to a DPC-inducing agent, embedded in low-melt agarose plugs and lysed under denaturing conditions. Following lysis, the soluble proteins are extracted from the agarose plug by electro-elution, while genomic DNA and cross-linked proteins are retained in the plug. The cross-linked proteins can then be analyzed by standard analytical techniques such as sodium dodecyl-sulfate-polyacrylamide gel electrophoresis followed by western blotting or fluorescent staining. Alternatively, quantitative mass spectrometry-based proteomics can be used for the unbiased identification of DPCs. The isolation and analysis of DPCs by PxP overcomes the limitations of alternative methods to analyze DPCs that rely on precipitation as the separating principle and can be performed by users trained in molecular or cell biology within 2-3 d. The protocol has been optimized to study DPC induction and repair in mammalian cells but may also be adapted to other sample types including bacteria, yeast and tissue samples.
Collapse
Affiliation(s)
- Pedro Weickert
- Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sophie Dürauer
- Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Maximilian J Götz
- Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hao-Yi Li
- Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Julian Stingele
- Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
7
|
Wojtaszek JL, Williams RS. From the TOP: Formation, recognition and resolution of topoisomerase DNA protein crosslinks. DNA Repair (Amst) 2024; 142:103751. [PMID: 39180935 PMCID: PMC11404304 DOI: 10.1016/j.dnarep.2024.103751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
Since the report of "DNA untwisting" activity in 1972, ∼50 years of research has revealed seven topoisomerases in humans (TOP1, TOP1mt, TOP2α, TOP2β, TOP3α, TOP3β and Spo11). These conserved regulators of DNA topology catalyze controlled breakage to the DNA backbone to relieve the torsional stress that accumulates during essential DNA transactions including DNA replication, transcription, and DNA repair. Each topoisomerase-catalyzed reaction involves the formation of a topoisomerase cleavage complex (TOPcc), a covalent protein-DNA reaction intermediate formed between the DNA phosphodiester backbone and a topoisomerase catalytic tyrosine residue. A variety of perturbations to topoisomerase reaction cycles can trigger failure of the enzyme to re-ligate the broken DNA strand(s), thereby generating topoisomerase DNA-protein crosslinks (TOP-DPC). TOP-DPCs pose unique threats to genomic integrity. These complex lesions are comprised of structurally diverse protein components covalently linked to genomic DNA, which are bulky DNA adducts that can directly impact progression of the transcription and DNA replication apparatus. A variety of genome maintenance pathways have evolved to recognize and resolve TOP-DPCs. Eukaryotic cells harbor tyrosyl DNA phosphodiesterases (TDPs) that directly reverse 3'-phosphotyrosyl (TDP1) and 5'-phoshotyrosyl (TDP2) protein-DNA linkages. The broad specificity Mre11-Rad50-Nbs1 and APE2 nucleases are also critical for mitigating topoisomerase-generated DNA damage. These DNA-protein crosslink metabolizing enzymes are further enabled by proteolytic degradation, with the proteasome, Spartan, GCNA, Ddi2, and FAM111A proteases implicated thus far. Strategies to target, unfold, and degrade the protein component of TOP-DPCs have evolved as well. Here we survey mechanisms for addressing Topoisomerase 1 (TOP1) and Topoisomerase 2 (TOP2) DPCs, highlighting systems for which molecular structure information has illuminated function of these critical DNA damage response pathways.
Collapse
Affiliation(s)
- Jessica L Wojtaszek
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, United States
| | - R Scott Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
8
|
Kroonen JS, Wouters AK, de Graaf IJ, Remst DFG, Kumar S, Wachsmann TLA, Teunisse AFAS, Roelands JP, de Miranda NFCC, Griffioen M, Heemskerk MHM, Vertegaal ACO. Targeting epigenetic regulation and post-translational modification with 5-Aza-2' deoxycytidine and SUMO E1 inhibition augments T-cell receptor therapy. J Immunother Cancer 2024; 12:e008654. [PMID: 39326886 PMCID: PMC11425949 DOI: 10.1136/jitc-2023-008654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Cellular immunotherapy using modified T cells offers new avenues for cancer treatment. T-cell receptor (TCR) engineering of CD8 T cells enables these cells to recognize tumor-associated antigens and tumor-specific neoantigens. Improving TCR T-cell therapy through increased potency and in vivo persistence will be critical for clinical success. METHODS We evaluated a novel drug combination to enhance TCR therapy in mouse models for acute myeloid leukemia (AML) and multiple myeloma (MM). RESULTS Combining TCR therapy with the SUMO E1 inhibitor TAK981 and the DNA methylation inhibitor 5-Aza-2' deoxycytidine resulted in strong antitumor activity in a persistent manner against two in vivo tumor models of established AML and MM. We uncovered that the drug combination caused strong T-cell proliferation, increased cytokine signaling in T cells, improved persistence of T cells, and reduced differentiation towards exhausted phenotype. Simultaneously the drug combination enhanced immunogenicity of the tumor by increasing HLA and co-stimulation and surprisingly reducing inhibitory ligand expression. CONCLUSION Combining T-cell therapy with TAK981 and 5-Aza-2' deoxycytidine may be an important step towards improved clinical outcome.
Collapse
Affiliation(s)
- Jessie S Kroonen
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Anne K Wouters
- Department of Hematology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Ilona J de Graaf
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Dennis F G Remst
- Department of Hematology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Sumit Kumar
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Amina F A S Teunisse
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jessica P Roelands
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Mirjam H M Heemskerk
- Department of Hematology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
9
|
Blouin T, Saini N. Aldehyde-induced DNA-protein crosslinks- DNA damage, repair and mutagenesis. Front Oncol 2024; 14:1478373. [PMID: 39328207 PMCID: PMC11424613 DOI: 10.3389/fonc.2024.1478373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Aldehyde exposure has been shown to lead to the formation of DNA damage comprising of DNA-protein crosslinks (DPCs), base adducts and interstrand or intrastrand crosslinks. DPCs have recently drawn more attention because of recent advances in detection and quantification of these adducts. DPCs are highly deleterious to genome stability and have been shown to block replication forks, leading to wide-spread mutagenesis. Cellular mechanisms to prevent DPC-induced damage include excision repair pathways, homologous recombination, and specialized proteases involved in cleaving the covalently bound proteins from DNA. These pathways were first discovered in formaldehyde-treated cells, however, since then, various other aldehydes have been shown to induce formation of DPCs in cells. Defects in DPC repair or aldehyde clearance mechanisms lead to various diseases including Ruijs-Aalfs syndrome and AMeD syndrome in humans. Here, we discuss recent developments in understanding how aldehydes form DPCs, how they are repaired, and the consequences of defects in these repair pathways.
Collapse
Affiliation(s)
| | - Natalie Saini
- Department of Biochemistry and Molecular Biology, Medical University of South
Carolina, Charleston, SC, United States
| |
Collapse
|
10
|
Noireterre A, Soudet J, Bagdiul I, Stutz F. The cullin Rtt101 promotes ubiquitin-dependent DNA-protein crosslink repair across the cell cycle. Nucleic Acids Res 2024; 52:9654-9670. [PMID: 39077933 PMCID: PMC11381328 DOI: 10.1093/nar/gkae658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/28/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
DNA-protein crosslinks (DPCs) challenge faithful DNA replication and smooth passage of genomic information. Our study unveils the cullin E3 ubiquitin ligase Rtt101 as a DPC repair factor. Genetic analyses demonstrate that Rtt101 is essential for resistance to a wide range of DPC types including topoisomerase 1 crosslinks, in the same pathway as the ubiquitin-dependent aspartic protease Ddi1. Using an in vivo inducible Top1-mimicking DPC system, we reveal the significant impact of Rtt101 ubiquitination on DPC removal across different cell cycle phases. High-throughput methods coupled with next-generation sequencing specifically highlight the association of Rtt101 with replisomes as well as colocalization with DPCs. Our findings establish Rtt101 as a main contributor to DPC repair throughout the yeast cell cycle.
Collapse
Affiliation(s)
- Audrey Noireterre
- Department of Molecular and Cellular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Julien Soudet
- Department of Molecular and Cellular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Ivona Bagdiul
- Department of Molecular and Cellular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Françoise Stutz
- Department of Molecular and Cellular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| |
Collapse
|
11
|
Liu JCY, Ackermann L, Hoffmann S, Gál Z, Hendriks IA, Jain C, Morlot L, Tatham MH, McLelland GL, Hay RT, Nielsen ML, Brummelkamp T, Haahr P, Mailand N. Concerted SUMO-targeted ubiquitin ligase activities of TOPORS and RNF4 are essential for stress management and cell proliferation. Nat Struct Mol Biol 2024; 31:1355-1367. [PMID: 38649616 PMCID: PMC11402782 DOI: 10.1038/s41594-024-01294-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024]
Abstract
Protein SUMOylation provides a principal driving force for cellular stress responses, including DNA-protein crosslink (DPC) repair and arsenic-induced PML body degradation. In this study, using genome-scale screens, we identified the human E3 ligase TOPORS as a key effector of SUMO-dependent DPC resolution. We demonstrate that TOPORS promotes DPC repair by functioning as a SUMO-targeted ubiquitin ligase (STUbL), combining ubiquitin ligase activity through its RING domain with poly-SUMO binding via SUMO-interacting motifs, analogous to the STUbL RNF4. Mechanistically, TOPORS is a SUMO1-selective STUbL that complements RNF4 in generating complex ubiquitin landscapes on SUMOylated targets, including DPCs and PML, stimulating efficient p97/VCP unfoldase recruitment and proteasomal degradation. Combined loss of TOPORS and RNF4 is synthetic lethal even in unstressed cells, involving defective clearance of SUMOylated proteins from chromatin accompanied by cell cycle arrest and apoptosis. Our findings establish TOPORS as a STUbL whose parallel action with RNF4 defines a general mechanistic principle in crucial cellular processes governed by direct SUMO-ubiquitin crosstalk.
Collapse
Affiliation(s)
- Julio C Y Liu
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Leena Ackermann
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Saskia Hoffmann
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Zita Gál
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Ivo A Hendriks
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Charu Jain
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Louise Morlot
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Michael H Tatham
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Gian-Luca McLelland
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Michael Lund Nielsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Thijn Brummelkamp
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Peter Haahr
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Department of Cellular and Molecular Medicine, Center for Gene Expression, University of Copenhagen, Copenhagen, Denmark.
| | - Niels Mailand
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
12
|
Kaito S, Aoyama K, Oshima M, Tsuchiya A, Miyota M, Yamashita M, Koide S, Nakajima-Takagi Y, Kozuka-Hata H, Oyama M, Yogo T, Yabushita T, Ito R, Ueno M, Hirao A, Tohyama K, Li C, Kawabata KC, Yamaguchi K, Furukawa Y, Kosako H, Yoshimi A, Goyama S, Nannya Y, Ogawa S, Agger K, Helin K, Yamazaki S, Koseki H, Doki N, Harada Y, Harada H, Nishiyama A, Nakanishi M, Iwama A. Inhibition of TOPORS ubiquitin ligase augments the efficacy of DNA hypomethylating agents through DNMT1 stabilization. Nat Commun 2024; 15:7359. [PMID: 39198387 PMCID: PMC11358161 DOI: 10.1038/s41467-024-50498-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/02/2024] [Indexed: 09/01/2024] Open
Abstract
DNA hypomethylating agents (HMAs) are used for the treatment of myeloid malignancies, although their therapeutic effects have been unsatisfactory. Here we show that CRISPR-Cas9 screening reveals that knockout of topoisomerase 1-binding arginine/serine-rich protein (TOPORS), which encodes a ubiquitin/SUMO E3 ligase, augments the efficacy of HMAs on myeloid leukemic cells with little effect on normal hematopoiesis, suggesting that TOPORS is involved in resistance to HMAs. HMAs are incorporated into the DNA and trap DNA methyltransferase-1 (DNMT1) to form DNA-DNMT1 crosslinks, which undergo SUMOylation, followed by proteasomal degradation. Persistent crosslinking is cytotoxic. The TOPORS RING finger domain, which mediates ubiquitination, is responsible for HMA resistance. In TOPORS knockout cells, DNMT1 is stabilized by HMA treatment due to inefficient ubiquitination, resulting in the accumulation of unresolved SUMOylated DNMT1. This indicates that TOPORS ubiquitinates SUMOylated DNMT1, thereby promoting the resolution of DNA-DNMT1 crosslinks. Consistently, the ubiquitination inhibitor, TAK-243, and the SUMOylation inhibitor, TAK-981, show synergistic effects with HMAs through DNMT1 stabilization. Our study provides a novel HMA-based therapeutic strategy that interferes with the resolution of DNA-DNMT1 crosslinks.
Collapse
Affiliation(s)
- Satoshi Kaito
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Cancer RNA Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Kazumasa Aoyama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Motohiko Oshima
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akiho Tsuchiya
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Makiko Miyota
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masayuki Yamashita
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Experimental Hematology, Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shuhei Koide
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yaeko Nakajima-Takagi
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takao Yogo
- Division of Cell Regulation, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Yabushita
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ryoji Ito
- Central Institute for Experimental Animals, Yokohama, Kanagawa, Japan
| | - Masaya Ueno
- Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Atsushi Hirao
- Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Kaoru Tohyama
- Department of Laboratory Medicine, Kawasaki Medical School, Okayama, Japan
| | - Chao Li
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Kimihito Cojin Kawabata
- Division of Clinical Precision Research, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Akihide Yoshimi
- Division of Cancer RNA Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Susumu Goyama
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuhito Nannya
- Division of Hematopoietic Disease Control, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Karl Agger
- BRIC University of Copenhagen, Copenhagen, Denmark
| | - Kristian Helin
- BRIC University of Copenhagen, Copenhagen, Denmark
- The Institute of Cancer Research (ICR), London, UK
| | - Satoshi Yamazaki
- Division of Cell Regulation, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Cell Engineering, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Molecular and Cellular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Noriko Doki
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Yuka Harada
- Clinical Research Support Center, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Hironori Harada
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Atsuya Nishiyama
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Laboratory of Cellular and Molecular Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
13
|
Truong P, Shen S, Joshi S, Islam MI, Zhong L, Raftery MJ, Afrasiabi A, Alinejad-Rokny H, Nguyen M, Zou X, Bhuyan GS, Sarowar CH, Ghodousi ES, Stonehouse O, Mohamed S, Toscan CE, Connerty P, Kakadia PM, Bohlander SK, Michie KA, Larsson J, Lock RB, Walkley CR, Thoms JAI, Jolly CJ, Pimanda JE. TOPORS E3 ligase mediates resistance to hypomethylating agent cytotoxicity in acute myeloid leukemia cells. Nat Commun 2024; 15:7360. [PMID: 39198401 PMCID: PMC11358519 DOI: 10.1038/s41467-024-51646-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Hypomethylating agents (HMAs) are frontline therapies for Myelodysplastic Neoplasms (MDS) and Acute Myeloid Leukemia (AML). However, acquired resistance and treatment failure are commonplace. To address this, we perform a genome-wide CRISPR-Cas9 screen in a human MDS-derived cell line, MDS-L, and identify TOPORS as a loss-of-function target that synergizes with HMAs, reducing leukemic burden and improving survival in xenograft models. We demonstrate that depletion of TOPORS mediates sensitivity to HMAs by predisposing leukemic blasts to an impaired DNA damage response (DDR) accompanied by an accumulation of SUMOylated DNMT1 in HMA-treated TOPORS-depleted cells. The combination of HMAs with targeting of TOPORS does not impair healthy hematopoiesis. While inhibitors of TOPORS are unavailable, we show that inhibition of protein SUMOylation with TAK-981 partially phenocopies HMA-sensitivity and DDR impairment. Overall, our data suggest that the combination of HMAs with inhibition of SUMOylation or TOPORS is a rational treatment option for High-Risk MDS (HR-MDS) or AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Animals
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Cell Line, Tumor
- Mice
- Myelodysplastic Syndromes/drug therapy
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/pathology
- Myelodysplastic Syndromes/metabolism
- CRISPR-Cas Systems
- Sumoylation/drug effects
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitin-Protein Ligases/genetics
- DNA Damage/drug effects
- DNA Methylation/drug effects
- Xenograft Model Antitumor Assays
- DNA (Cytosine-5-)-Methyltransferase 1/metabolism
- DNA (Cytosine-5-)-Methyltransferase 1/genetics
- DNA (Cytosine-5-)-Methyltransferase 1/antagonists & inhibitors
- Female
Collapse
Affiliation(s)
- Peter Truong
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Sylvie Shen
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Swapna Joshi
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | | | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Mark J Raftery
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Ali Afrasiabi
- UNSW BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Hamid Alinejad-Rokny
- UNSW BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
- Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW, Australia
| | - Mary Nguyen
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Xiaoheng Zou
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | | | | | - Elaheh S Ghodousi
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | | | - Sara Mohamed
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Cara E Toscan
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Patrick Connerty
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Purvi M Kakadia
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Stefan K Bohlander
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Katharine A Michie
- Structural Biology Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Jonas Larsson
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, Lund, Sweden
| | - Richard B Lock
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Carl R Walkley
- St Vincent's Institute of Medical Research, University of Melbourne, Melbourne, VIC, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Julie A I Thoms
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | | | - John E Pimanda
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia.
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia.
- Haematology Department, Prince of Wales Hospital, Sydney, NSW, Australia.
| |
Collapse
|
14
|
Noireterre A, Stutz F. Cdc48/p97 segregase: Spotlight on DNA-protein crosslinks. DNA Repair (Amst) 2024; 139:103691. [PMID: 38744091 DOI: 10.1016/j.dnarep.2024.103691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
The ATP-dependent molecular chaperone Cdc48 (in yeast) and its human counterpart p97 (also known as VCP), are essential for a variety of cellular processes, including the removal of DNA-protein crosslinks (DPCs) from the DNA. Growing evidence demonstrates in the last years that Cdc48/p97 is pivotal in targeting ubiquitinated and SUMOylated substrates on chromatin, thereby supporting the DNA damage response. Along with its cofactors, notably Ufd1-Npl4, Cdc48/p97 has emerged as a central player in the unfolding and processing of DPCs. This review introduces the detailed structure, mechanism and cellular functions of Cdc48/p97 with an emphasis on the current knowledge of DNA-protein crosslink repair pathways across several organisms. The review concludes by discussing the potential therapeutic relevance of targeting p97 in DPC repair.
Collapse
Affiliation(s)
- Audrey Noireterre
- Department of Molecular and Cellular Biology, University of Geneva, Geneva 4 1211, Switzerland
| | - Françoise Stutz
- Department of Molecular and Cellular Biology, University of Geneva, Geneva 4 1211, Switzerland.
| |
Collapse
|
15
|
Carnie CJ, Götz MJ, Palma-Chaundler CS, Weickert P, Wanders A, Serrano-Benitez A, Li HY, Gupta V, Awwad SW, Blum CJ, Sczaniecka-Clift M, Cordes J, Zagnoli-Vieira G, D'Alessandro G, Richards SL, Gueorguieva N, Lam S, Beli P, Stingele J, Jackson SP. Decitabine cytotoxicity is promoted by dCMP deaminase DCTD and mitigated by SUMO-dependent E3 ligase TOPORS. EMBO J 2024; 43:2397-2423. [PMID: 38760575 PMCID: PMC11183266 DOI: 10.1038/s44318-024-00108-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/15/2024] [Accepted: 04/16/2024] [Indexed: 05/19/2024] Open
Abstract
The nucleoside analogue decitabine (or 5-aza-dC) is used to treat several haematological cancers. Upon its triphosphorylation and incorporation into DNA, 5-aza-dC induces covalent DNA methyltransferase 1 DNA-protein crosslinks (DNMT1-DPCs), leading to DNA hypomethylation. However, 5-aza-dC's clinical outcomes vary, and relapse is common. Using genome-scale CRISPR/Cas9 screens, we map factors determining 5-aza-dC sensitivity. Unexpectedly, we find that loss of the dCMP deaminase DCTD causes 5-aza-dC resistance, suggesting that 5-aza-dUMP generation is cytotoxic. Combining results from a subsequent genetic screen in DCTD-deficient cells with the identification of the DNMT1-DPC-proximal proteome, we uncover the ubiquitin and SUMO1 E3 ligase, TOPORS, as a new DPC repair factor. TOPORS is recruited to SUMOylated DNMT1-DPCs and promotes their degradation. Our study suggests that 5-aza-dC-induced DPCs cause cytotoxicity when DPC repair is compromised, while cytotoxicity in wild-type cells arises from perturbed nucleotide metabolism, potentially laying the foundations for future identification of predictive biomarkers for decitabine treatment.
Collapse
Affiliation(s)
- Christopher J Carnie
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | - Maximilian J Götz
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Pedro Weickert
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Amy Wanders
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Almudena Serrano-Benitez
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Hao-Yi Li
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Vipul Gupta
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Samah W Awwad
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | - Jacqueline Cordes
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Guido Zagnoli-Vieira
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Giuseppina D'Alessandro
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Sean L Richards
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Nadia Gueorguieva
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Simon Lam
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Petra Beli
- Institute of Molecular Biology (IMB), Mainz, Germany
- Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg-Universität, Mainz, Germany
| | - Julian Stingele
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Stephen P Jackson
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
16
|
Benedict B, Kristensen SM, Duxin JP. What are the DNA lesions underlying formaldehyde toxicity? DNA Repair (Amst) 2024; 138:103667. [PMID: 38554505 DOI: 10.1016/j.dnarep.2024.103667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 04/01/2024]
Abstract
Formaldehyde is a highly reactive organic compound. Humans can be exposed to exogenous sources of formaldehyde, but formaldehyde is also produced endogenously as a byproduct of cellular metabolism. Because formaldehyde can react with DNA, it is considered a major endogenous source of DNA damage. However, the nature of the lesions underlying formaldehyde toxicity in cells remains vastly unknown. Here, we review the current knowledge of the different types of nucleic acid lesions that are induced by formaldehyde and describe the repair pathways known to counteract formaldehyde toxicity. Taking this knowledge together, we discuss and speculate on the predominant lesions generated by formaldehyde, which underly its natural toxicity.
Collapse
Affiliation(s)
- Bente Benedict
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Stella Munkholm Kristensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Julien P Duxin
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark.
| |
Collapse
|
17
|
Carnie CJ, Acampora AC, Bader AS, Erdenebat C, Zhao S, Bitensky E, van den Heuvel D, Parnas A, Gupta V, D'Alessandro G, Sczaniecka-Clift M, Weickert P, Aygenli F, Götz MJ, Cordes J, Esain-Garcia I, Melidis L, Wondergem AP, Lam S, Robles MS, Balasubramanian S, Adar S, Luijsterburg MS, Jackson SP, Stingele J. Transcription-coupled repair of DNA-protein cross-links depends on CSA and CSB. Nat Cell Biol 2024; 26:797-810. [PMID: 38600235 PMCID: PMC11098753 DOI: 10.1038/s41556-024-01391-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 02/29/2024] [Indexed: 04/12/2024]
Abstract
Covalent DNA-protein cross-links (DPCs) are toxic DNA lesions that block replication and require repair by multiple pathways. Whether transcription blockage contributes to the toxicity of DPCs and how cells respond when RNA polymerases stall at DPCs is unknown. Here we find that DPC formation arrests transcription and induces ubiquitylation and degradation of RNA polymerase II. Using genetic screens and a method for the genome-wide mapping of DNA-protein adducts, DPC sequencing, we discover that Cockayne syndrome (CS) proteins CSB and CSA provide resistance to DPC-inducing agents by promoting DPC repair in actively transcribed genes. Consequently, CSB- or CSA-deficient cells fail to efficiently restart transcription after induction of DPCs. In contrast, nucleotide excision repair factors that act downstream of CSB and CSA at ultraviolet light-induced DNA lesions are dispensable. Our study describes a transcription-coupled DPC repair pathway and suggests that defects in this pathway may contribute to the unique neurological features of CS.
Collapse
Affiliation(s)
- Christopher J Carnie
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | - Aleida C Acampora
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Aldo S Bader
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Chimeg Erdenebat
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Shubo Zhao
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Elnatan Bitensky
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Diana van den Heuvel
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Avital Parnas
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vipul Gupta
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Giuseppina D'Alessandro
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Pedro Weickert
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Fatih Aygenli
- Institute of Medical Psychology and Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Maximilian J Götz
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jacqueline Cordes
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Isabel Esain-Garcia
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Larry Melidis
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Annelotte P Wondergem
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Simon Lam
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Maria S Robles
- Institute of Medical Psychology and Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Shankar Balasubramanian
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Sheera Adar
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Stephen P Jackson
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | - Julian Stingele
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
18
|
van Sluis M, Yu Q, van der Woude M, Gonzalo-Hansen C, Dealy SC, Janssens RC, Somsen HB, Ramadhin AR, Dekkers DHW, Wienecke HL, Demmers JJPG, Raams A, Davó-Martínez C, Llerena Schiffmacher DA, van Toorn M, Häckes D, Thijssen KL, Zhou D, Lammers JG, Pines A, Vermeulen W, Pothof J, Demmers JAA, van den Berg DLC, Lans H, Marteijn JA. Transcription-coupled DNA-protein crosslink repair by CSB and CRL4 CSA-mediated degradation. Nat Cell Biol 2024; 26:770-783. [PMID: 38600236 PMCID: PMC11098752 DOI: 10.1038/s41556-024-01394-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 03/01/2024] [Indexed: 04/12/2024]
Abstract
DNA-protein crosslinks (DPCs) arise from enzymatic intermediates, metabolism or chemicals like chemotherapeutics. DPCs are highly cytotoxic as they impede DNA-based processes such as replication, which is counteracted through proteolysis-mediated DPC removal by spartan (SPRTN) or the proteasome. However, whether DPCs affect transcription and how transcription-blocking DPCs are repaired remains largely unknown. Here we show that DPCs severely impede RNA polymerase II-mediated transcription and are preferentially repaired in active genes by transcription-coupled DPC (TC-DPC) repair. TC-DPC repair is initiated by recruiting the transcription-coupled nucleotide excision repair (TC-NER) factors CSB and CSA to DPC-stalled RNA polymerase II. CSA and CSB are indispensable for TC-DPC repair; however, the downstream TC-NER factors UVSSA and XPA are not, a result indicative of a non-canonical TC-NER mechanism. TC-DPC repair functions independently of SPRTN but is mediated by the ubiquitin ligase CRL4CSA and the proteasome. Thus, DPCs in genes are preferentially repaired in a transcription-coupled manner to facilitate unperturbed transcription.
Collapse
Affiliation(s)
- Marjolein van Sluis
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Qing Yu
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Melanie van der Woude
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Camila Gonzalo-Hansen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Shannon C Dealy
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Roel C Janssens
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Hedda B Somsen
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Anisha R Ramadhin
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dick H W Dekkers
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Hannah Lena Wienecke
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Joris J P G Demmers
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Anja Raams
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Carlota Davó-Martínez
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Diana A Llerena Schiffmacher
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marvin van Toorn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - David Häckes
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Karen L Thijssen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Di Zhou
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Judith G Lammers
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Alex Pines
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Joris Pothof
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jeroen A A Demmers
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Hannes Lans
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
19
|
Bhachoo JS, Garvin AJ. SUMO and the DNA damage response. Biochem Soc Trans 2024; 52:773-792. [PMID: 38629643 PMCID: PMC11088926 DOI: 10.1042/bst20230862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
The preservation of genome integrity requires specialised DNA damage repair (DDR) signalling pathways to respond to each type of DNA damage. A key feature of DDR is the integration of numerous post-translational modification signals with DNA repair factors. These modifications influence DDR factor recruitment to damaged DNA, activity, protein-protein interactions, and ultimately eviction to enable access for subsequent repair factors or termination of DDR signalling. SUMO1-3 (small ubiquitin-like modifier 1-3) conjugation has gained much recent attention. The SUMO-modified proteome is enriched with DNA repair factors. Here we provide a snapshot of our current understanding of how SUMO signalling impacts the major DNA repair pathways in mammalian cells. We highlight repeating themes of SUMO signalling used throughout DNA repair pathways including the assembly of protein complexes, competition with ubiquitin to promote DDR factor stability and ubiquitin-dependent degradation or extraction of SUMOylated DDR factors. As SUMO 'addiction' in cancer cells is protective to genomic integrity, targeting components of the SUMO machinery to potentiate DNA damaging therapy or exacerbate existing DNA repair defects is a promising area of study.
Collapse
Affiliation(s)
- Jai S. Bhachoo
- SUMO Biology Lab, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, U.K
| | - Alexander J. Garvin
- SUMO Biology Lab, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, U.K
| |
Collapse
|
20
|
Ma JY, Xia TJ, Li S, Yin S, Luo SM, Li G. Germline cell de novo mutations and potential effects of inflammation on germline cell genome stability. Semin Cell Dev Biol 2024; 154:316-327. [PMID: 36376195 DOI: 10.1016/j.semcdb.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Uncontrolled pathogenic genome mutations in germline cells might impair adult fertility, lead to birth defects or even affect the adaptability of a species. Understanding the sources of DNA damage, as well as the features of damage response in germline cells are the overarching tasks to reduce the mutations in germline cells. With the accumulation of human genome data and genetic reports, genome variants formed in germline cells are being extensively explored. However, the sources of DNA damage, the damage repair mechanisms, and the effects of DNA damage or mutations on the development of germline cells are still unclear. Besides exogenous triggers of DNA damage such as irradiation and genotoxic chemicals, endogenous exposure to inflammation may also contribute to the genome instability of germline cells. In this review, we summarized the features of de novo mutations and the specific DNA damage responses in germline cells and explored the possible roles of inflammation on the genome stability of germline cells.
Collapse
Affiliation(s)
- Jun-Yu Ma
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
| | - Tian-Jin Xia
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China; College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shuai Li
- Center for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shen Yin
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| | - Shi-Ming Luo
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
| | - Guowei Li
- Center for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China.
| |
Collapse
|
21
|
Torrecilla I, Ruggiano A, Kiianitsa K, Aljarbou F, Lascaux P, Hoslett G, Song W, Maizels N, Ramadan K. Isolation and detection of DNA-protein crosslinks in mammalian cells. Nucleic Acids Res 2024; 52:525-547. [PMID: 38084926 PMCID: PMC10810220 DOI: 10.1093/nar/gkad1178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 01/26/2024] Open
Abstract
DNA-protein crosslinks (DPCs) are toxic DNA lesions wherein a protein is covalently attached to DNA. If not rapidly repaired, DPCs create obstacles that disturb DNA replication, transcription and DNA damage repair, ultimately leading to genome instability. The persistence of DPCs is associated with premature ageing, cancer and neurodegeneration. In mammalian cells, the repair of DPCs mainly relies on the proteolytic activities of SPRTN and the 26S proteasome, complemented by other enzymes including TDP1/2 and the MRN complex, and many of the activities involved are essential, restricting genetic approaches. For many years, the study of DPC repair in mammalian cells was hindered by the lack of standardised assays, most notably assays that reliably quantified the proteins or proteolytic fragments covalently bound to DNA. Recent interest in the field has spurred the development of several biochemical methods for DPC analysis. Here, we critically analyse the latest techniques for DPC isolation and the benefits and drawbacks of each. We aim to assist researchers in selecting the most suitable isolation method for their experimental requirements and questions, and to facilitate the comparison of results across different laboratories using different approaches.
Collapse
Affiliation(s)
- Ignacio Torrecilla
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Annamaria Ruggiano
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Kostantin Kiianitsa
- Department of Immunology, University of Washington, Seattle, WA 98195-7350, USA
| | - Ftoon Aljarbou
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Pauline Lascaux
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Gwendoline Hoslett
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Wei Song
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Nancy Maizels
- Department of Immunology, University of Washington, Seattle, WA 98195-7350, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA
| | - Kristijan Ramadan
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| |
Collapse
|
22
|
Essawy MM, Campbell C. Enzymatic Processing of DNA-Protein Crosslinks. Genes (Basel) 2024; 15:85. [PMID: 38254974 PMCID: PMC10815813 DOI: 10.3390/genes15010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
DNA-protein crosslinks (DPCs) represent a unique and complex form of DNA damage formed by covalent attachment of proteins to DNA. DPCs are formed through a variety of mechanisms and can significantly impede essential cellular processes such as transcription and replication. For this reason, anti-cancer drugs that form DPCs have proven effective in cancer therapy. While cells rely on numerous different processes to remove DPCs, the molecular mechanisms responsible for orchestrating these processes remain obscure. Having this insight could potentially be harnessed therapeutically to improve clinical outcomes in the battle against cancer. In this review, we describe the ways cells enzymatically process DPCs. These processing events include direct reversal of the DPC via hydrolysis, nuclease digestion of the DNA backbone to delete the DPC and surrounding DNA, proteolytic processing of the crosslinked protein, as well as covalent modification of the DNA-crosslinked proteins with ubiquitin, SUMO, and Poly(ADP) Ribose (PAR).
Collapse
Affiliation(s)
| | - Colin Campbell
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
23
|
Gabellier L, De Toledo M, Chakraborty M, Akl D, Hallal R, Aqrouq M, Buonocore G, Recasens-Zorzo C, Cartron G, Delort A, Piechaczyk M, Tempé D, Bossis G. SUMOylation inhibitor TAK-981 (subasumstat) synergizes with 5-azacytidine in preclinical models of acute myeloid leukemia. Haematologica 2024; 109:98-114. [PMID: 37608777 PMCID: PMC10772526 DOI: 10.3324/haematol.2023.282704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023] Open
Abstract
Acute myeloid leukemias (AML) are severe hematomalignancies with dismal prognosis. The post-translational modification SUMOylation plays key roles in leukemogenesis and AML response to therapies. Here, we show that TAK-981 (subasumstat), a first-in-class SUMOylation inhibitor, is endowed with potent anti-leukemic activity in various preclinical models of AML. TAK-981 targets AML cell lines and patient blast cells in vitro and in vivo in xenografted mice with minimal toxicity on normal hematopoietic cells. Moreover, it synergizes with 5-azacytidine (AZA), a DNA-hypomethylating agent now used in combination with the BCL-2 inhibitor venetoclax to treat AML patients unfit for standard chemotherapies. Interestingly, TAK-981+AZA combination shows higher anti-leukemic activity than AZA+venetoclax combination both in vitro and in vivo, at least in the models tested. Mechanistically, TAK-981 potentiates the transcriptional reprogramming induced by AZA, promoting apoptosis, alteration of the cell cycle and differentiation of the leukemic cells. In addition, TAK-981+AZA treatment induces many genes linked to inflammation and immune response pathways. In particular, this leads to the secretion of type-I interferon by AML cells. Finally, TAK-981+AZA induces the expression of natural killer-activating ligands (MICA/B) and adhesion proteins (ICAM-1) at the surface of AML cells. Consistently, TAK-981+AZA-treated AML cells activate natural killer cells and increase their cytotoxic activity. Targeting SUMOylation with TAK-981 may thus be a promising strategy to both sensitize AML cells to AZA and reduce their immune-escape capacities.
Collapse
Affiliation(s)
- Ludovic Gabellier
- IGMM, Univ. Montpellier, CNRS, Montpellier, France; Service d'Hématologie Clinique, CHU de Montpellier, 80 avenue Augustin Fliche, 34091 Montpellier
| | | | | | - Dana Akl
- IGMM, Univ. Montpellier, CNRS, Montpellier
| | | | | | | | | | - Guillaume Cartron
- IGMM, Univ. Montpellier, CNRS, Montpellier, France; Service d'Hématologie Clinique, CHU de Montpellier, 80 avenue Augustin Fliche, 34091 Montpellier
| | | | | | | | | |
Collapse
|
24
|
Rua-Fernandez J, Lovejoy CA, Mehta KPM, Paulin KA, Toudji YT, Giansanti C, Eichman BF, Cortez D. Self-reversal facilitates the resolution of HMCES DNA-protein crosslinks in cells. Cell Rep 2023; 42:113427. [PMID: 37950866 PMCID: PMC10842721 DOI: 10.1016/j.celrep.2023.113427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/02/2023] [Accepted: 10/27/2023] [Indexed: 11/13/2023] Open
Abstract
Abasic sites are common DNA lesions stalling polymerases and threatening genome stability. When located in single-stranded DNA (ssDNA), they are shielded from aberrant processing by 5-hydroxymethyl cytosine, embryonic stem cell (ESC)-specific (HMCES) via a DNA-protein crosslink (DPC) that prevents double-strand breaks. Nevertheless, HMCES-DPCs must be removed to complete DNA repair. Here, we find that DNA polymerase α inhibition generates ssDNA abasic sites and HMCES-DPCs. These DPCs are resolved with a half-life of approximately 1.5 h. HMCES can catalyze its own DPC self-reversal reaction, which is dependent on glutamate 127 and is favored when the ssDNA is converted to duplex DNA. When the self-reversal mechanism is inactivated in cells, HMCES-DPC removal is delayed, cell proliferation is slowed, and cells become hypersensitive to DNA damage agents that increase AP (apurinic/apyrimidinic) site formation. In these circumstances, proteolysis may become an important mechanism of HMCES-DPC resolution. Thus, HMCES-DPC formation followed by self-reversal is an important mechanism for ssDNA AP site management.
Collapse
Affiliation(s)
- Jorge Rua-Fernandez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Courtney A Lovejoy
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kavi P M Mehta
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Katherine A Paulin
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Yasmine T Toudji
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Celeste Giansanti
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Brandt F Eichman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
25
|
Donsbach M, Dürauer S, Grünert F, Nguyen KT, Nigam R, Yaneva D, Weickert P, Bezalel‐Buch R, Semlow DR, Stingele J. A non-proteolytic release mechanism for HMCES-DNA-protein crosslinks. EMBO J 2023; 42:e113360. [PMID: 37519246 PMCID: PMC10505908 DOI: 10.15252/embj.2022113360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023] Open
Abstract
The conserved protein HMCES crosslinks to abasic (AP) sites in ssDNA to prevent strand scission and the formation of toxic dsDNA breaks during replication. Here, we report a non-proteolytic release mechanism for HMCES-DNA-protein crosslinks (DPCs), which is regulated by DNA context. In ssDNA and at ssDNA-dsDNA junctions, HMCES-DPCs are stable, which efficiently protects AP sites against spontaneous incisions or cleavage by APE1 endonuclease. In contrast, HMCES-DPCs are released in dsDNA, allowing APE1 to initiate downstream repair. Mechanistically, we show that release is governed by two components. First, a conserved glutamate residue, within HMCES' active site, catalyses reversal of the crosslink. Second, affinity to the underlying DNA structure determines whether HMCES re-crosslinks or dissociates. Our study reveals that the protective role of HMCES-DPCs involves their controlled release upon bypass by replication forks, which restricts DPC formation to a necessary minimum.
Collapse
Affiliation(s)
- Maximilian Donsbach
- Department of BiochemistryLudwig‐Maximilians‐University MunichMunichGermany
- Gene Center, Ludwig‐Maximilians‐University MunichMunichGermany
| | - Sophie Dürauer
- Department of BiochemistryLudwig‐Maximilians‐University MunichMunichGermany
- Gene Center, Ludwig‐Maximilians‐University MunichMunichGermany
| | - Florian Grünert
- Department of BiochemistryLudwig‐Maximilians‐University MunichMunichGermany
- Gene Center, Ludwig‐Maximilians‐University MunichMunichGermany
| | - Kha T Nguyen
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Richa Nigam
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Denitsa Yaneva
- Department of BiochemistryLudwig‐Maximilians‐University MunichMunichGermany
- Gene Center, Ludwig‐Maximilians‐University MunichMunichGermany
| | - Pedro Weickert
- Department of BiochemistryLudwig‐Maximilians‐University MunichMunichGermany
- Gene Center, Ludwig‐Maximilians‐University MunichMunichGermany
| | - Rachel Bezalel‐Buch
- Department of Biological Chemistry and Molecular BiophysicsWashington University School of MedicalSaint LouisMOUSA
| | - Daniel R Semlow
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Julian Stingele
- Department of BiochemistryLudwig‐Maximilians‐University MunichMunichGermany
- Gene Center, Ludwig‐Maximilians‐University MunichMunichGermany
| |
Collapse
|
26
|
Ribeiro J, Crossan GP. GCNA is a histone binding protein required for spermatogonial stem cell maintenance. Nucleic Acids Res 2023; 51:4791-4813. [PMID: 36919611 PMCID: PMC10250205 DOI: 10.1093/nar/gkad168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/01/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Recycling and de-novo deposition of histones during DNA replication is a critical challenge faced by eukaryotic cells and is coordinated by histone chaperones. Spermatogenesis is highly regulated sophisticated process necessitating not only histone modification but loading of testis specific histone variants. Here, we show that Germ Cell Nuclear Acidic protein (GCNA), a germ cell specific protein in adult mice, can bind histones and purified GCNA exhibits histone chaperone activity. GCNA associates with the DNA replication machinery and supports progression through S-phase in murine undifferentiated spermatogonia (USGs). Whilst GCNA is dispensable for embryonic germ cell development, it is required for the maintenance of the USG pool and for long-term production of sperm. Our work describes the role of a germ cell specific histone chaperone in USGs maintenance in mice. These findings provide a mechanistic basis for the male infertility observed in patients carrying GCNA mutations.
Collapse
|
27
|
Noireterre A, Serbyn N, Bagdiul I, Stutz F. Ubx5-Cdc48 assists the protease Wss1 at DNA-protein crosslink sites in yeast. EMBO J 2023:e113609. [PMID: 37144685 DOI: 10.15252/embj.2023113609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023] Open
Abstract
DNA-protein crosslinks (DPCs) pose a serious threat to genome stability. The yeast proteases Wss1, 26S proteasome, and Ddi1 are safeguards of genome integrity by acting on a plethora of DNA-bound proteins in different cellular contexts. The AAA ATPase Cdc48/p97 is known to assist Wss1/SPRTN in clearing DNA-bound complexes; however, its contribution to DPC proteolysis remains unclear. Here, we show that the Cdc48 adaptor Ubx5 is detrimental in yeast mutants defective in DPC processing. Using an inducible site-specific crosslink, we show that Ubx5 accumulates at persistent DPC lesions in the absence of Wss1, which prevents their efficient removal from the DNA. Abolishing Cdc48 binding or complete loss of Ubx5 suppresses sensitivity of wss1∆ cells to DPC-inducing agents by favoring alternate repair pathways. We provide evidence for cooperation of Ubx5-Cdc48 and Wss1 in the genotoxin-induced degradation of RNA polymerase II (RNAPII), a described candidate substrate of Wss1. We propose that Ubx5-Cdc48 assists Wss1 for proteolysis of a subset of DNA-bound proteins. Together, our findings reveal a central role for Ubx5 in DPC clearance and repair.
Collapse
Affiliation(s)
- Audrey Noireterre
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Nataliia Serbyn
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Ivona Bagdiul
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Françoise Stutz
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
28
|
Dvořák Tomaštíková E, Prochazkova K, Yang F, Jemelkova J, Finke A, Dorn A, Said M, Puchta H, Pecinka A. SMC5/6 complex-mediated SUMOylation stimulates DNA-protein cross-link repair in Arabidopsis. THE PLANT CELL 2023; 35:1532-1547. [PMID: 36705512 PMCID: PMC10118267 DOI: 10.1093/plcell/koad020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/23/2022] [Accepted: 01/23/2023] [Indexed: 05/10/2023]
Abstract
DNA-protein cross-links (DPCs) are highly toxic DNA lesions consisting of proteins covalently attached to chromosomal DNA. Unrepaired DPCs physically block DNA replication and transcription. Three DPC repair pathways have been identified in Arabidopsis (Arabidopsis thaliana) to date: the endonucleolytic cleavage of DNA by the structure-specific endonuclease MUS81; proteolytic degradation of the crosslinked protein by the metalloprotease WSS1A; and cleavage of the cross-link phosphodiester bonds by the tyrosyl phosphodiesterases TDP1 and TDP2. Here we describe the evolutionary conserved STRUCTURAL MAINTENANCE OF CHROMOSOMEs SMC5/6 complex as a crucial component involved in DPC repair. We identified multiple alleles of the SMC5/6 complex core subunit gene SMC6B via a forward-directed genetic screen designed to identify the factors involved in the repair of DPCs induced by the cytidine analog zebularine. We monitored plant growth and cell death in response to DPC-inducing chemicals, which revealed that the SMC5/6 complex is essential for the repair of several types of DPCs. Genetic interaction and sensitivity assays showed that the SMC5/6 complex works in parallel to the endonucleolytic and proteolytic pathways. The repair of zebularine-induced DPCs was associated with SMC5/6-dependent SUMOylation of the damage sites. Thus, we present the SMC5/6 complex as an important factor in plant DPC repair.
Collapse
Affiliation(s)
| | - Klara Prochazkova
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900 Olomouc, Czech Republic
| | - Fen Yang
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900 Olomouc, Czech Republic
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 77900 Olomouc, Czech Republic
| | - Jitka Jemelkova
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900 Olomouc, Czech Republic
- Functional Genomics and Proteomics, National Centre for Biomolecular Research (NCBR), Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | | | - Annika Dorn
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Mahmoud Said
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900 Olomouc, Czech Republic
- Field Crops Research Institute, Agricultural Research Centre, 9 Gamma Street, Giza, 12619, Cairo, Egypt
| | - Holger Puchta
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | | |
Collapse
|
29
|
Weickert P, Li HY, Götz MJ, Dürauer S, Yaneva D, Zhao S, Cordes J, Acampora AC, Forne I, Imhof A, Stingele J. SPRTN patient variants cause global-genome DNA-protein crosslink repair defects. Nat Commun 2023; 14:352. [PMID: 36681662 PMCID: PMC9867749 DOI: 10.1038/s41467-023-35988-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
DNA-protein crosslinks (DPCs) are pervasive DNA lesions that are induced by reactive metabolites and various chemotherapeutic agents. Here, we develop a technique for the Purification of x-linked Proteins (PxP), which allows identification and tracking of diverse DPCs in mammalian cells. Using PxP, we investigate DPC repair in cells genetically-engineered to express variants of the SPRTN protease that cause premature ageing and early-onset liver cancer in Ruijs-Aalfs syndrome patients. We find an unexpected role for SPRTN in global-genome DPC repair, that does not rely on replication-coupled detection of the lesion. Mechanistically, we demonstrate that replication-independent DPC cleavage by SPRTN requires SUMO-targeted ubiquitylation of the protein adduct and occurs in addition to proteasomal DPC degradation. Defective ubiquitin binding of SPRTN patient variants compromises global-genome DPC repair and causes synthetic lethality in combination with a reduction in proteasomal DPC repair capacity.
Collapse
Affiliation(s)
- Pedro Weickert
- Department of Biochemistry, Ludwig-Maximilians-University, 81377, Munich, Germany
- Gene Center, Ludwig-Maximilians-University, 81377, Munich, Germany
| | - Hao-Yi Li
- Department of Biochemistry, Ludwig-Maximilians-University, 81377, Munich, Germany
- Gene Center, Ludwig-Maximilians-University, 81377, Munich, Germany
| | - Maximilian J Götz
- Department of Biochemistry, Ludwig-Maximilians-University, 81377, Munich, Germany
- Gene Center, Ludwig-Maximilians-University, 81377, Munich, Germany
| | - Sophie Dürauer
- Department of Biochemistry, Ludwig-Maximilians-University, 81377, Munich, Germany
- Gene Center, Ludwig-Maximilians-University, 81377, Munich, Germany
| | - Denitsa Yaneva
- Department of Biochemistry, Ludwig-Maximilians-University, 81377, Munich, Germany
- Gene Center, Ludwig-Maximilians-University, 81377, Munich, Germany
| | - Shubo Zhao
- Department of Biochemistry, Ludwig-Maximilians-University, 81377, Munich, Germany
- Gene Center, Ludwig-Maximilians-University, 81377, Munich, Germany
| | - Jacqueline Cordes
- Department of Biochemistry, Ludwig-Maximilians-University, 81377, Munich, Germany
- Gene Center, Ludwig-Maximilians-University, 81377, Munich, Germany
| | - Aleida C Acampora
- Department of Biochemistry, Ludwig-Maximilians-University, 81377, Munich, Germany
- Gene Center, Ludwig-Maximilians-University, 81377, Munich, Germany
| | - Ignasi Forne
- Protein Analysis Unit (ZfP), BioMedical Center (BMC), Ludwig-Maximilians-University, 82152, Martinsried, Germany
| | - Axel Imhof
- Protein Analysis Unit (ZfP), BioMedical Center (BMC), Ludwig-Maximilians-University, 82152, Martinsried, Germany
| | - Julian Stingele
- Department of Biochemistry, Ludwig-Maximilians-University, 81377, Munich, Germany.
- Gene Center, Ludwig-Maximilians-University, 81377, Munich, Germany.
| |
Collapse
|
30
|
Sun Y, Nitiss JL, Pommier Y. Editorial: The repair of DNA-protein crosslinks. Front Mol Biosci 2023; 10:1203479. [PMID: 37187895 PMCID: PMC10175854 DOI: 10.3389/fmolb.2023.1203479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Affiliation(s)
- Yilun Sun
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Yilun Sun, ; John L. Nitiss, ; Yves Pommier,
| | - John L. Nitiss
- Pharmaceutical Sciences Department, University of Illinois College of Pharmacy, Rockford, IL, United States
- *Correspondence: Yilun Sun, ; John L. Nitiss, ; Yves Pommier,
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Yilun Sun, ; John L. Nitiss, ; Yves Pommier,
| |
Collapse
|
31
|
Ilic D, Magnussen HM, Tirard M. Stress - Regulation of SUMO conjugation and of other Ubiquitin-Like Modifiers. Semin Cell Dev Biol 2022; 132:38-50. [PMID: 34996712 DOI: 10.1016/j.semcdb.2021.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
Stress is unavoidable and essential to cellular and organismal evolution and failure to adapt or restore homeostasis can lead to severe diseases or even death. At the cellular level, stress drives a plethora of molecular changes, of which variations in the profile of protein post-translational modifications plays a key role in mediating the adaptative response of the genome and proteome to stress. In this context, post-translational modification of proteins by ubiquitin-like modifiers, (Ubl), notably SUMO, is an essential stress response mechanism. In this review, aiming to draw universal concepts of the Ubls stress response, we will decipher how stress alters the expression level, activity, specificity and/or localization of the proteins involved in the conjugation pathways of the various type-I Ubls, and how this result in the modification of particular Ubl targets that will translate an adaptive physiological stress response and allow cells to restore homeostasis.
Collapse
Affiliation(s)
- Dragana Ilic
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg; Faculty of Biology, University of Freiburg, D-79104 Freiburg; Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, D-37075 Göttingen
| | - Helge M Magnussen
- MRC Protein Phosphorylation and Ubiquitination Unit, Sir James Black Center, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Marilyn Tirard
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, D-37075 Göttingen.
| |
Collapse
|
32
|
Martín-Rufo R, de la Vega-Barranco G, Lecona E. Ubiquitin and SUMO as timers during DNA replication. Semin Cell Dev Biol 2022; 132:62-73. [PMID: 35210137 DOI: 10.1016/j.semcdb.2022.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 12/14/2022]
Abstract
Every time a cell copies its DNA the genetic material is exposed to the acquisition of mutations and genomic alterations that corrupt the information passed on to daughter cells. A tight temporal regulation of DNA replication is necessary to ensure the full copy of the DNA while preventing the appearance of genomic instability. Protein modification by ubiquitin and SUMO constitutes a very complex and versatile system that allows the coordinated control of protein stability, activity and interactome. In chromatin, their action is complemented by the AAA+ ATPase VCP/p97 that recognizes and removes ubiquitylated and SUMOylated factors from specific cellular compartments. The concerted action of the ubiquitin/SUMO system and VCP/p97 determines every step of DNA replication enforcing the ordered activation/inactivation, loading/unloading and stabilization/destabilization of replication factors. Here we analyze the mechanisms used by ubiquitin/SUMO and VCP/p97 to establish molecular timers throughout DNA replication and their relevance in maintaining genome stability. We propose that these PTMs are the main molecular watch of DNA replication from origin recognition to replisome disassembly.
Collapse
Affiliation(s)
- Rodrigo Martín-Rufo
- Chromatin, Cancer and the Ubiquitin System lab, Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), Department of Genome Dynamics and Function, Madrid 28049, Spain
| | - Guillermo de la Vega-Barranco
- Chromatin, Cancer and the Ubiquitin System lab, Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), Department of Genome Dynamics and Function, Madrid 28049, Spain
| | - Emilio Lecona
- Chromatin, Cancer and the Ubiquitin System lab, Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), Department of Genome Dynamics and Function, Madrid 28049, Spain.
| |
Collapse
|
33
|
Nakano T, Moriwaki T, Tsuda M, Miyakawa M, Hanaichi Y, Sasanuma H, Hirota K, Kawanishi M, Ide H, Tano K, Bessho T. SPRTN and TDP1/TDP2 Independently Suppress 5-Aza-2'-deoxycytidine-Induced Genomic Instability in Human TK6 Cell Line. Chem Res Toxicol 2022; 35:2059-2067. [PMID: 36282523 DOI: 10.1021/acs.chemrestox.2c00213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
DNA-protein cross-links (DPCs) are generated by internal factors such as cellular aldehydes that are generated during normal metabolism and external factors such as environmental mutagens. A nucleoside analog, 5-aza-2'-deoxycytidine (5-azadC), is randomly incorporated into the genome during DNA replication and binds DNA methyltransferase 1 (DNMT1) covalently to form DNMT1-DPCs without inducing DNA strand breaks. Despite the recent progress in understanding the mechanisms of DPCs repair, how DNMT1-DPCs are repaired is unclear. The metalloprotease SPRTN has been considered as the primary enzyme to degrade protein components of DPCs to initiate the repair of DPCs. In this study, we showed that SPRTN-deficient (SPRTN-/-) human TK6 cells displayed high sensitivity to 5-azadC, and the removal of 5-azadC-induced DNMT1-DPCs was significantly slower in SPRTN-/- cells than that in wild-type cells. We also showed that the ubiquitination-dependent proteasomal degradation, which was independent of the SPRTN-mediated processing, was also involved in the repair of DNMT1-DPCs. Unexpectedly, we found that cells that are double deficient in tyrosyl DNA phosphodiesterase 1 and 2 (TDP1-/-TDP2-/-) were also sensitive to 5-azadC, although the removal of 5-azadC-induced DNMT1-DPCs was not compromised significantly. Furthermore, the 5-azadC treatment induced a marked accumulation of chromosomal breaks in SPRTN-/- as well as TDP1-/-TDP2-/- cells compared to wild-type cells, strongly suggesting that the 5-azadC-induced cell death was attributed to chromosomal DNMT1-DPCs. We conclude that SPRTN protects cells from 5-azadC-induced DNMT1-DPCs, and SPRTN may play a direct proteolytic role against DNMT1-DPCs and TDP1/TDP2 also contributes to suppress genome instability caused by 5-azadC in TK6 cells.
Collapse
Affiliation(s)
- Toshiaki Nakano
- DNA Damage Chemistry Research Group, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - Takahito Moriwaki
- Department of Molecular and Genetic Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki-city, Okayama 701-0192, Japan
| | - Masataka Tsuda
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Misa Miyakawa
- Environmental Molecular Toxicology, Department of Biological Chemistry Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka 599-8570, Japan
| | - Yuto Hanaichi
- Environmental Molecular Toxicology, Department of Biological Chemistry Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka 599-8570, Japan
| | - Hiroyuki Sasanuma
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506 Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397 Japan
| | - Masanobu Kawanishi
- Environmental Molecular Toxicology, Department of Biological Chemistry Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka 599-8570, Japan
| | - Hiroshi Ide
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Keizo Tano
- Environmental Molecular Toxicology, Department of Biological Chemistry Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka 599-8570, Japan
| | - Tadayoshi Bessho
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, Nebraska 68198-6805, United States
| |
Collapse
|
34
|
Leng X, Duxin JP. Targeting DNA-Protein Crosslinks via Post-Translational Modifications. Front Mol Biosci 2022; 9:944775. [PMID: 35860355 PMCID: PMC9289515 DOI: 10.3389/fmolb.2022.944775] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
Covalent binding of proteins to DNA forms DNA-protein crosslinks (DPCs), which represent cytotoxic DNA lesions that interfere with essential processes such as DNA replication and transcription. Cells possess different enzymatic activities to counteract DPCs. These include enzymes that degrade the adducted proteins, resolve the crosslinks, or incise the DNA to remove the crosslinked proteins. An important question is how DPCs are sensed and targeted for removal via the most suited pathway. Recent advances have shown the inherent role of DNA replication in triggering DPC removal by proteolysis. However, DPCs are also efficiently sensed and removed in the absence of DNA replication. In either scenario, post-translational modifications (PTMs) on DPCs play essential and versatile roles in orchestrating the repair routes. In this review, we summarize the current knowledge of the mechanisms that trigger DPC removal via PTMs, focusing on ubiquitylation, small ubiquitin-related modifier (SUMO) conjugation (SUMOylation), and poly (ADP-ribosyl)ation (PARylation). We also briefly discuss the current knowledge gaps and emerging hypotheses in the field.
Collapse
|
35
|
Vertegaal ACO. Signalling mechanisms and cellular functions of SUMO. Nat Rev Mol Cell Biol 2022; 23:715-731. [PMID: 35750927 DOI: 10.1038/s41580-022-00500-y] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 12/22/2022]
Abstract
Sumoylation is an essential post-translational modification that is catalysed by a small number of modifying enzymes but regulates thousands of target proteins in a dynamic manner. Small ubiquitin-like modifiers (SUMOs) can be attached to target proteins as one or more monomers or in the form of polymers of different types. Non-covalent readers recognize SUMO-modified proteins via SUMO interaction motifs. SUMO simultaneously modifies groups of functionally related proteins to regulate predominantly nuclear processes, including gene expression, the DNA damage response, RNA processing, cell cycle progression and proteostasis. Recent progress has increased our understanding of the cellular and pathophysiological roles of SUMO modifications, extending their functions to the regulation of immunity, pluripotency and nuclear body assembly in response to oxidative stress, which partly occurs through the recently characterized mechanism of liquid-liquid phase separation. Such progress in understanding the roles and regulation of sumoylation opens new avenues for the targeting of SUMO to treat disease, and indeed the first drug blocking sumoylation is currently under investigation in clinical trials as a possible anticancer agent.
Collapse
Affiliation(s)
- Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
36
|
Perry M, Ghosal G. Mechanisms and Regulation of DNA-Protein Crosslink Repair During DNA Replication by SPRTN Protease. Front Mol Biosci 2022; 9:916697. [PMID: 35782873 PMCID: PMC9240642 DOI: 10.3389/fmolb.2022.916697] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/27/2022] [Indexed: 11/25/2022] Open
Abstract
DNA-protein crosslinks (DPCs) are deleterious DNA lesions that occur when proteins are covalently crosslinked to the DNA by the action of variety of agents like reactive oxygen species, aldehydes and metabolites, radiation, and chemotherapeutic drugs. Unrepaired DPCs are blockades to all DNA metabolic processes. Specifically, during DNA replication, replication forks stall at DPCs and are vulnerable to fork collapse, causing DNA breakage leading to genome instability and cancer. Replication-coupled DPC repair involves DPC degradation by proteases such as SPRTN or the proteasome and the subsequent removal of DNA-peptide adducts by nucleases and canonical DNA repair pathways. SPRTN is a DNA-dependent metalloprotease that cleaves DPC substrates in a sequence-independent manner and is also required for translesion DNA synthesis following DPC degradation. Biallelic mutations in SPRTN cause Ruijs-Aalfs (RJALS) syndrome, characterized by hepatocellular carcinoma and segmental progeria, indicating the critical role for SPRTN and DPC repair pathway in genome maintenance. In this review, we will discuss the mechanism of replication-coupled DPC repair, regulation of SPRTN function and its implications in human disease and cancer.
Collapse
Affiliation(s)
- Megan Perry
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Gargi Ghosal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States,Fred and Pamela Buffett Cancer Center, Omaha, NE, United States,*Correspondence: Gargi Ghosal,
| |
Collapse
|
37
|
McFadden WM, Yanowitz JL. idpr: A package for profiling and analyzing Intrinsically Disordered Proteins in R. PLoS One 2022; 17:e0266929. [PMID: 35436286 PMCID: PMC9015136 DOI: 10.1371/journal.pone.0266929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/29/2022] [Indexed: 12/23/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) are proteins or protein-domains that do not have a single native structure, rather, they are a class of flexible peptides that can rapidly adopt multiple conformations. IDPs are quite abundant, and their dynamic characteristics provide unique advantages for various biological processes. The field of “unstructured biology” has emerged, in part, because of numerous computational studies that had identified the unique characteristics of IDPs and IDRs. The package ‘idpr’, short for Intrinsically Disordered Proteins in R, implements several R functions that match the established characteristics of IDPs to protein sequences of interest. This includes calculations of residue composition, charge-hydropathy relationships, and predictions of intrinsic disorder. Additionally, idpr integrates several amino acid substitution matrices and calculators to supplement IDP-based workflows. Overall, idpr aims to integrate tools for the computational analysis of IDPs within R, facilitating the analysis of these important, yet under-characterized, proteins. The idpr package can be downloaded from Bioconductor (https://bioconductor.org/packages/idpr/).
Collapse
Affiliation(s)
| | - Judith L. Yanowitz
- Magee-Womens Research Institute, Pittsburgh, PA, United States of America
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- * E-mail:
| |
Collapse
|
38
|
Sun Y, Nitiss JL, Pommier Y. SUMO: A Swiss Army Knife for Eukaryotic Topoisomerases. Front Mol Biosci 2022; 9:871161. [PMID: 35463961 PMCID: PMC9019546 DOI: 10.3389/fmolb.2022.871161] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/11/2022] [Indexed: 01/03/2023] Open
Abstract
Topoisomerases play crucial roles in DNA metabolism that include replication, transcription, recombination, and chromatin structure by manipulating DNA structures arising in double-stranded DNA. These proteins play key enzymatic roles in a variety of cellular processes and are also likely to play structural roles. Topoisomerases allow topological transformations by introducing transient breaks in DNA by a transesterification reaction between a tyrosine residue of the enzyme and DNA. The cleavage reaction leads to a unique enzyme intermediate that allows cutting DNA while minimizing the potential for damage-induced genetic changes. Nonetheless, topoisomerase-mediated cleavage has the potential for inducing genome instability if the enzyme-mediated DNA resealing is impaired. Regulation of topoisomerase functions is accomplished by post-translational modifications including phosphorylation, polyADP-ribosylation, ubiquitylation, and SUMOylation. These modifications modulate enzyme activity and likely play key roles in determining sites of enzyme action and enzyme stability. Topoisomerase-mediated DNA cleavage and rejoining are affected by a variety of conditions including the action of small molecules, topoisomerase mutations, and DNA structural forms which permit the conversion of the short-lived cleavage intermediate to persistent topoisomerase DNA-protein crosslink (TOP-DPC). Recognition and processing of TOP-DPCs utilizes many of the same post-translational modifications that regulate enzyme activity. This review focuses on SUMOylation of topoisomerases, which has been demonstrated to be a key modification of both type I and type II topoisomerases. Special emphasis is placed on recent studies that indicate how SUMOylation regulates topoisomerase function in unperturbed cells and the unique roles that SUMOylation plays in repairing damage arising from topoisomerase malfunction.
Collapse
Affiliation(s)
- Yilun Sun
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - John L. Nitiss
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, Rockford, IL, United States
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| |
Collapse
|
39
|
Meyers LM, Krawic C, Luczak MW, Zhitkovich A. Vulnerability of HIF1α and HIF2α to damage by proteotoxic stressors. Toxicol Appl Pharmacol 2022; 445:116041. [DOI: 10.1016/j.taap.2022.116041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023]
|
40
|
Shearer RF, Typas D, Coscia F, Schovsbo S, Kruse T, Mund A, Mailand N. K27-linked ubiquitylation promotes p97 substrate processing and is essential for cell proliferation. EMBO J 2022; 41:e110145. [PMID: 35349166 PMCID: PMC9058539 DOI: 10.15252/embj.2021110145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023] Open
Abstract
Conjugation of ubiquitin (Ub) to numerous substrate proteins regulates virtually all cellular processes. Eight distinct ubiquitin polymer linkages specifying different functional outcomes are generated in cells. However, the roles of some atypical poly-ubiquitin topologies, in particular linkages via lysine 27 (K27), remain poorly understood due to a lack of tools for their specific detection and manipulation. Here, we adapted a cell-based ubiquitin replacement strategy to enable selective and conditional abrogation of K27-linked ubiquitylation, revealing that this ubiquitin linkage type is essential for proliferation of human cells. We demonstrate that K27-linked ubiquitylation is predominantly a nuclear modification whose ablation deregulates nuclear ubiquitylation dynamics and impairs cell cycle progression in an epistatic manner with inactivation of the ATPase p97/VCP. Moreover, we show that a p97-proteasome pathway model substrate (Ub(G76V)-GFP) is directly modified by K27-linked ubiquitylation, and that disabling the formation of K27-linked ubiquitin signals or blocking their decoding via overexpression of the K27 linkage-specific binder UCHL3 impedes Ub(G76V)-GFP turnover at the level of p97 function. Our findings suggest a critical role of K27-linked ubiquitylation in supporting cell fitness by facilitating p97-dependent processing of ubiquitylated nuclear proteins.
Collapse
Affiliation(s)
- Robert F Shearer
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Dimitris Typas
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Fabian Coscia
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Sofie Schovsbo
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Kruse
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Mund
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Niels Mailand
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.,Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
Abstract
Covalent DNA-protein crosslinks (DPCs) are pervasive DNA lesions that interfere with essential chromatin processes such as transcription or replication. This review strives to provide an overview of the sources and principles of cellular DPC formation. DPCs are caused by endogenous reactive metabolites and various chemotherapeutic agents. However, in certain conditions DPCs also arise physiologically in cells. We discuss the cellular mechanisms resolving these threats to genomic integrity. Detection and repair of DPCs require not only the action of canonical DNA repair pathways but also the activity of specialized proteolytic enzymes-including proteases of the SPRTN/Wss1 family-to degrade the crosslinked protein. Loss of DPC repair capacity has dramatic consequences, ranging from genome instability in yeast and worms to cancer predisposition and premature aging in mice and humans. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Pedro Weickert
- Department of Biochemistry, Ludwig Maximilians University, Munich, Germany; .,Gene Center, Ludwig Maximilians University, Munich, Germany
| | - Julian Stingele
- Department of Biochemistry, Ludwig Maximilians University, Munich, Germany; .,Gene Center, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
42
|
Ruggiano A, Vaz B, Kilgas S, Popović M, Rodriguez-Berriguete G, Singh AN, Higgins GS, Kiltie AE, Ramadan K. The protease SPRTN and SUMOylation coordinate DNA-protein crosslink repair to prevent genome instability. Cell Rep 2021; 37:110080. [PMID: 34879279 PMCID: PMC8674535 DOI: 10.1016/j.celrep.2021.110080] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 09/22/2021] [Accepted: 11/10/2021] [Indexed: 11/24/2022] Open
Abstract
DNA-protein crosslinks (DPCs) are a specific type of DNA lesion in which proteins are covalently attached to DNA. Unrepaired DPCs lead to genomic instability, cancer, neurodegeneration, and accelerated aging. DPC proteolysis was recently identified as a specialized pathway for DPC repair. The DNA-dependent protease SPRTN and the 26S proteasome emerged as two independent proteolytic systems. DPCs are also repaired by homologous recombination (HR), a canonical DNA repair pathway. While studying the cellular response to DPC formation, we identify ubiquitylation and SUMOylation as two major signaling events in DNA replication-coupled DPC repair. DPC ubiquitylation recruits SPRTN to repair sites, promoting DPC removal. DPC SUMOylation prevents DNA double-strand break formation, HR activation, and potentially deleterious genomic rearrangements. In this way, SUMOylation channels DPC repair toward SPRTN proteolysis, which is a safer pathway choice for DPC repair and prevention of genomic instability.
Collapse
Affiliation(s)
- Annamaria Ruggiano
- Medical Research Council (MRC) Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Bruno Vaz
- Medical Research Council (MRC) Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Susan Kilgas
- Medical Research Council (MRC) Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Marta Popović
- Medical Research Council (MRC) Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK; Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Gonzalo Rodriguez-Berriguete
- Medical Research Council (MRC) Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Abhay N Singh
- Medical Research Council (MRC) Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Geoff S Higgins
- Medical Research Council (MRC) Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Anne E Kiltie
- Medical Research Council (MRC) Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Kristijan Ramadan
- Medical Research Council (MRC) Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK.
| |
Collapse
|
43
|
Pathogenic variations in Germ Cell Nuclear Acidic Peptidase (GCNA) are associated with human male infertility. Eur J Hum Genet 2021; 29:1781-1788. [PMID: 34413498 PMCID: PMC8632907 DOI: 10.1038/s41431-021-00946-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/29/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Infertility affects one in six couples, half of which are caused by a male factor. Male infertility can be caused by both, qualitative and quantitative defects, leading to Oligo- astheno-terato-zoospermia (OAT; impairment in ejaculate sperm cell concentration, motility and morphology). Azoospermia defined as complete absence of sperm cells in the ejaculation. While hundreds of genes are involved in spermatogenesis the genetic etiology of men's infertility remains incomplete.We identified a hemizygous stop gain pathogenic variation (PV) in the X-linked Germ Cell Nuclear Acidic Peptidase (GCNA), in an Azoospermic patient by exome sequencing. Assessment of the prevalence of pathogenic variations in this gene in infertile males by exome sequence data of 11 additional unrelated patients identified a probable hemizygous causative missense PV in GCNA in a severe OAT patient. Expression of GCNA in the patients' testes biopsies and the stage of spermatogonial developmental arrest were determined by immunofluorescence and immunohistochemistry. The Azoospermic patient presented spermatogenic maturation arrest with an almost complete absence of early and late primary spermatocytes and thus the complete absence of sperm. GCNA is critical for genome integrity and its loss results in genomic instability and infertility in Drosophila, C. elegans, zebrafish, and mouse. PVs in GCNA appear to be incompatible with male fertility in humans as well: A stop-gain PV caused Azoospermia and a missense PV caused severe OAT with very low fertilization rates and no pregnancy in numerous IVF treatments.
Collapse
|
44
|
SUMO orchestrates multiple alternative DNA-protein crosslink repair pathways. Cell Rep 2021; 37:110034. [PMID: 34818558 PMCID: PMC10042627 DOI: 10.1016/j.celrep.2021.110034] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/27/2020] [Accepted: 11/01/2021] [Indexed: 02/05/2023] Open
Abstract
Endogenous metabolites, environmental agents, and therapeutic drugs promote formation of covalent DNA-protein crosslinks (DPCs). Persistent DPCs compromise genome integrity and are eliminated by multiple repair pathways. Aberrant Top1-DNA crosslinks, or Top1ccs, are processed by Tdp1 and Wss1 functioning in parallel pathways in Saccharomyces cerevisiae. It remains obscure how cells choose between diverse mechanisms of DPC repair. Here, we show that several SUMO biogenesis factors (Ulp1, Siz2, Slx5, and Slx8) control repair of Top1cc or an analogous DPC lesion. Genetic analysis reveals that SUMO promotes Top1cc processing in the absence of Tdp1 but has an inhibitory role if cells additionally lack Wss1. In the tdp1Δ wss1Δ mutant, the E3 SUMO ligase Siz2 stimulates sumoylation in the vicinity of the DPC, but not SUMO conjugation to Top1. This Siz2-dependent sumoylation inhibits alternative DPC repair mechanisms, including Ddi1. Our findings suggest that SUMO tunes available repair pathways to facilitate faithful DPC repair.
Collapse
|
45
|
Saha LK, Murai Y, Saha S, Jo U, Tsuda M, Takeda S, Pommier Y. Replication-dependent cytotoxicity and Spartan-mediated repair of trapped PARP1-DNA complexes. Nucleic Acids Res 2021; 49:10493-10506. [PMID: 34551432 DOI: 10.1093/nar/gkab777] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/28/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
The antitumor activity of poly(ADP-ribose) polymerase inhibitors (PARPis) has been ascribed to PARP trapping, which consists in tight DNA-protein complexes. Here we demonstrate that the cytotoxicity of talazoparib and olaparib results from DNA replication. To elucidate the repair of PARP1-DNA complexes associated with replication in human TK6 and chicken DT40 lymphoblastoid cells, we explored the role of Spartan (SPRTN), a metalloprotease associated with DNA replication, which removes proteins forming DPCs. We find that SPRTN-deficient cells are hypersensitive to talazoparib and olaparib, but not to veliparib, a weak PARP trapper. SPRTN-deficient cells exhibit delayed clearance of trapped PARP1 and increased replication fork stalling upon talazoparib and olaparib treatment. We also show that SPRTN interacts with PARP1 and forms nuclear foci that colocalize with the replicative cell division cycle 45 protein (CDC45) in response to talazoparib. Additionally, SPRTN is deubiquitinated and epistatic with translesion synthesis (TLS) in response to talazoparib. Our results demonstrate that SPRTN is recruited to trapped PARP1 in S-phase to assist in the excision and replication bypass of PARP1-DNA complexes.
Collapse
Affiliation(s)
- Liton Kumar Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yasuhisa Murai
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sourav Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Ukhyun Jo
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Masataka Tsuda
- Department of Radiation Genetics, Kyoto University, Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan.,Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Shunichi Takeda
- Department of Radiation Genetics, Kyoto University, Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
46
|
Ghodke PP, Guengerich FP. DNA polymerases η and κ bypass N 2-guanine-O 6-alkylguanine DNA alkyltransferase cross-linked DNA-peptides. J Biol Chem 2021; 297:101124. [PMID: 34461101 PMCID: PMC8463853 DOI: 10.1016/j.jbc.2021.101124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 11/27/2022] Open
Abstract
DNA-protein cross-links are formed when proteins become covalently trapped with DNA in the presence of exogenous or endogenous alkylating agents. If left unrepaired, they inhibit transcription as well as DNA unwinding during replication and may result in genome instability or even cell death. The DNA repair protein O6-alkylguanine DNA-alkyltransferase (AGT) is known to form DNA cross-links in the presence of the carcinogen 1,2-dibromoethane, resulting in G:C to T:A transversions and other mutations in both bacterial and mammalian cells. We hypothesized that AGT-DNA cross-links would be processed by nuclear proteases to yield peptides small enough to be bypassed by translesion (TLS) polymerases. Here, a 15-mer and a 36-mer peptide from the active site of AGT were cross-linked to the N2 position of guanine via conjugate addition of a thiol containing a peptide dehydroalanine moiety. Bypass studies with DNA polymerases (pols) η and κ indicated that both can accurately bypass the cross-linked DNA peptides. The specificity constant (kcat/Km) for steady-state incorporation of the correct nucleotide dCTP increased by 6-fold with human (h) pol κ and 3-fold with hpol η, with hpol η preferentially inserting nucleotides in the order dC > dG > dA > dT. LC-MS/MS analysis of the extension product also revealed error-free bypass of the cross-linked 15-mer peptide by hpol η. We conclude that a bulky 15-mer AGT peptide cross-linked to the N2 position of guanine can retard polymerization, but that overall fidelity is not compromised because only correct bases are inserted and extended.
Collapse
Affiliation(s)
- Pratibha P Ghodke
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
47
|
The Epstein-Barr virus deubiquitinating enzyme BPLF1 regulates the activity of topoisomerase II during productive infection. PLoS Pathog 2021; 17:e1009954. [PMID: 34543352 PMCID: PMC8483405 DOI: 10.1371/journal.ppat.1009954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/30/2021] [Accepted: 09/11/2021] [Indexed: 12/12/2022] Open
Abstract
Topoisomerases are essential for the replication of herpesviruses but the mechanisms by which the viruses hijack the cellular enzymes are largely unknown. We found that topoisomerase-II (TOP2) is a substrate of the Epstein-Barr virus (EBV) ubiquitin deconjugase BPLF1. BPLF1 co-immunoprecipitated and deubiquitinated TOP2, and stabilized SUMOylated TOP2 trapped in cleavage complexes (TOP2ccs), which halted the DNA damage response to TOP2-induced double strand DNA breaks and promoted cell survival. Induction of the productive virus cycle in epithelial and lymphoid cell lines carrying recombinant EBV encoding the active enzyme was accompanied by TOP2 deubiquitination, accumulation of TOP2ccs and resistance to Etoposide toxicity. The protective effect of BPLF1 was dependent on the expression of tyrosyl-DNA phosphodiesterase 2 (TDP2) that releases DNA-trapped TOP2 and promotes error-free DNA repair. These findings highlight a previously unrecognized function of BPLF1 in supporting a non-proteolytic pathway for TOP2ccs debulking that favors cell survival and virus production. The N-terminal domains of the herpesvirus large tegument proteins encode a conserved cysteine protease with ubiquitin- and NEDD8-specific deconjugase activity. Members of the viral enzyme family regulate different aspects of the virus life cycle including virus replication, the assembly of infectious virus particles and the host innate anti-viral response. However, only few substrates have been validated under physiological conditions of expression and very little is known on the mechanisms by which the enzymes contribute to the reprograming of cellular functions that are required for efficient infection and virus production. Cellular type I and type II topoisomerases (TOP1 and TOP2) resolve topological problems that arise during DNA replication and transcription and are therefore essential for herpesvirus replication. We report that the Epstein-Barr virus (EBV) ubiquitin deconjugase BPLF1 selectively regulates the activity of TOP2 in cells treated with the TOP2 poison Etoposide and during productive infection. Using transiently transfected and stable cell lines that express catalytically active or inactive BPLF1, we found that BPLF1 interacts with both TOP2α and TOP2β in co-immunoprecipitation and in vitro pull-down assays and the active enzyme stabilizes TOP2 trapped in TOP2ccs, promoting a shift towards TOP2 SUMOylation. This hinders the activation of DNA-damage responses and reduces the toxicity of Etoposide. The physiological relevance of this finding was validated using pairs of EBV carrying HEK-293T cells and EBV immortalized lymphoblastoid cell lines (LCLs) expressing the wild type or catalytic mutant enzyme. Using knockout LCLs we found that the capacity of BPLF1 to rescue of Etoposide toxicity is dependent on the expression of tyrosyl-DNA phosphodiesterase 2 (TDP2) that releases DNA-trapped TOP2 and promotes error-free DNA repair.
Collapse
|
48
|
Liu JCY, Kühbacher U, Larsen NB, Borgermann N, Garvanska DH, Hendriks IA, Ackermann L, Haahr P, Gallina I, Guérillon C, Branigan E, Hay RT, Azuma Y, Nielsen ML, Duxin JP, Mailand N. Mechanism and function of DNA replication-independent DNA-protein crosslink repair via the SUMO-RNF4 pathway. EMBO J 2021; 40:e107413. [PMID: 34346517 PMCID: PMC8441304 DOI: 10.15252/embj.2020107413] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 07/03/2021] [Accepted: 07/12/2021] [Indexed: 11/09/2022] Open
Abstract
DNA-protein crosslinks (DPCs) obstruct essential DNA transactions, posing a serious threat to genome stability and functionality. DPCs are proteolytically processed in a ubiquitin- and DNA replication-dependent manner by SPRTN and the proteasome but can also be resolved via targeted SUMOylation. However, the mechanistic basis of SUMO-mediated DPC resolution and its interplay with replication-coupled DPC repair remain unclear. Here, we show that the SUMO-targeted ubiquitin ligase RNF4 defines a major pathway for ubiquitylation and proteasomal clearance of SUMOylated DPCs in the absence of DNA replication. Importantly, SUMO modifications of DPCs neither stimulate nor inhibit their rapid DNA replication-coupled proteolysis. Instead, DPC SUMOylation provides a critical salvage mechanism to remove DPCs formed after DNA replication, as DPCs on duplex DNA do not activate interphase DNA damage checkpoints. Consequently, in the absence of the SUMO-RNF4 pathway cells are able to enter mitosis with a high load of unresolved DPCs, leading to defective chromosome segregation and cell death. Collectively, these findings provide mechanistic insights into SUMO-driven pathways underlying replication-independent DPC resolution and highlight their critical importance in maintaining chromosome stability and cellular fitness.
Collapse
Affiliation(s)
- Julio C Y Liu
- Protein Signaling ProgramNovo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Ulrike Kühbacher
- Protein Signaling ProgramNovo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Nicolai B Larsen
- Protein Signaling ProgramNovo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Nikoline Borgermann
- Protein Signaling ProgramNovo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Dimitriya H Garvanska
- Protein Signaling ProgramNovo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Ivo A Hendriks
- Protein Signaling ProgramNovo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Leena Ackermann
- Protein Signaling ProgramNovo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Peter Haahr
- Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Irene Gallina
- Protein Signaling ProgramNovo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Claire Guérillon
- Protein Signaling ProgramNovo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Emma Branigan
- Centre for Gene Regulation and ExpressionSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Ronald T Hay
- Centre for Gene Regulation and ExpressionSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Yoshiaki Azuma
- Department of Molecular BiosciencesUniversity of KansasLawrenceKSUSA
| | - Michael Lund Nielsen
- Protein Signaling ProgramNovo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Julien P Duxin
- Protein Signaling ProgramNovo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Niels Mailand
- Protein Signaling ProgramNovo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
- Center for Chromosome StabilityDepartment of Cellular and Molecular MedicineUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
49
|
Gao Y, Hong J, Guo Y, Chen M, Chang AK, Xie L, Ying X. Assessment spermatogenic cell apoptosis and the transcript levels of metallothionein and p53 in Meretrix meretrix induced by cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112230. [PMID: 33864984 DOI: 10.1016/j.ecoenv.2021.112230] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) has been widely used in industry and can accumulate in the water, soil, and food. Meretrix meretrix is one of the marine shellfishes cultivated for economic purpose in China. The increasing Cd levels in coastal marine water could adversely affect the economic benefits of shellfish cultivation. In the present study, M. meretrix were exposed to different Cd2+ concentrations (0, 1.5, 3, 6, and 12 mg L-1) for 5 d to evaluate the effects of Cd on spermatogenic cell. The Cd accumulation, survival rate and the indices of oxidative stress and apoptosis were determined in the spermatogenic cells of M. meretrix. The expression levels of p53 and metallothionein (MT) mRNA were also measured in the spermatogenic cells. Cd accumulation and the mortality rate of spermatogenic cells were found to increase in a dose-response manner with Cd2+ concentrations. Histopathology changes, especially the damage of membranous structure, were more severe as the Cd2+ levels in the testis became higher. The indexes of oxidative stress, including reactive oxygen species, malondialdehyde, protein carbonyl derivates and DNA-protein crosslinks all increased after exposure to Cd2+. However, the total antioxidant capacity gradually decreased with the increasing Cd2+ concentration. In addition, exposure to Cd2+ increased the apoptotic rate and caspase-3 and 9 activities but decreased the level of mitochondrial membrane potential and cytochrome C oxidase in the spermatogenic cells. MT mRNA expression increased in lower Cd2+ concentration treated groups whereas decreased in higher groups, while the p53 mRNA expression increased in a dose-response manner with Cd2+ and was positively correlated with the oxidative damage indices. These results indicated that Cd2+ caused oxidative stress and p53 induced apoptosis in the spermatogenic cells, and thus decreased the survival rate of sperm cells. This finding highlights that Cd can reduce the reproductive capacity of M. meretrix, thus threatening to wild shellfish populations and reducing the efficiency of shellfish farming.
Collapse
Affiliation(s)
- Yilu Gao
- College of Life and Environmental Science, Wenzhou University, 325035 Wenzhou, China
| | - Jiameng Hong
- College of Life and Environmental Science, Wenzhou University, 325035 Wenzhou, China
| | - Yuke Guo
- College of Life and Environmental Science, Wenzhou University, 325035 Wenzhou, China
| | - Mengxu Chen
- College of Life and Environmental Science, Wenzhou University, 325035 Wenzhou, China
| | - Alan K Chang
- College of Life and Environmental Science, Wenzhou University, 325035 Wenzhou, China
| | - Lei Xie
- College of Life and Environmental Science, Wenzhou University, 325035 Wenzhou, China.
| | - Xueping Ying
- College of Life and Environmental Science, Wenzhou University, 325035 Wenzhou, China.
| |
Collapse
|
50
|
van der Woude M, Lans H. C. elegans survival assays to discern global and transcription-coupled nucleotide excision repair. STAR Protoc 2021; 2:100586. [PMID: 34151304 PMCID: PMC8192855 DOI: 10.1016/j.xpro.2021.100586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Global genome nucleotide excision repair (GG-NER) and transcription-coupled nucleotide excision repair (TC-NER) protect cells against a variety of helix-distorting DNA lesions. In C. elegans, GG-NER primarily acts in proliferative germ cells and embryos, while TC-NER acts in post-mitotic somatic cells to maintain transcription. We leverage this difference to distinguish whether proteins function in GG-NER and/or TC-NER by straightforward UV survival assays. Here, we detail a protocol for these assays, using GG-NER factor xpc-1 and TC-NER factor csb-1 as examples. For complete details on the use and execution of this protocol, please refer to Sabatella et al. (2021).
Collapse
Affiliation(s)
- Melanie van der Woude
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| |
Collapse
|