1
|
Kotz J, Martz EJ, Nelson M, Savoie N, Schmitt L, States J, Holton N, Hansen K, Johnson AM. Novel interactions within the silent information regulator heterochromatin complex potentiate inter-subunit communication and gene repression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.23.630195. [PMID: 39763739 PMCID: PMC11703230 DOI: 10.1101/2024.12.23.630195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Organisms with smaller genomes often perform multiple functions using one multi-subunit protein complex. The S. cerevisiae Silent Information Regulator complex (SIRc) carries out all of the core functions of heterochromatin. SIR complexes first drive the initiation and spreading of histone deacetylation in an iterative manner. Subsequently, the same complexes are incorporated stably with nucleosomes, driving compaction and repression of the underlying chromatin domain. These two distinct functions of SIRc have each been characterized in much detail, but the mechanism by which the dynamic spreading state switches to stable compaction is not well-understood. This incomplete knowledge of intra-complex communication is partly due to a lack of structural information of the complex as a whole; only structures of fragments have been determined to date. Using cross-linking mass spectrometry in solution, we identified a novel inter-subunit interaction that physically connects the two states of SIRc. The Sir2 deacetylase makes direct interactions with the scaffolding subunit Sir4 through its coiled-coil domain, which also interacts with the Sir3 compaction/repression subunit. Within the hub of interactions are conserved residues in Sir2 that can sense deacetylation state, as well as amino acids that likely diverged and co-evolved to interact with Sir4, promoting species-specific functions. Mutation of this interaction hub disrupts heterochromatic repression, potentially by disrupting a conserved mechanism that communicates completion of deacetylation to switch to compaction. Our work highlights how a single multi-functional chromatin regulatory complex can stage a step-wise mechanism that requires a major transition in activities to achieve epigenetic gene repression.
Collapse
Affiliation(s)
- Jenna Kotz
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver – Anschutz Medical Campus
- Structural Biology, Biochemistry, and Biophysics Program, University of Colorado, Denver – Anschutz Medical Campus
- These authors contributed equally
| | - E. J. Martz
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver – Anschutz Medical Campus
- Structural Biology, Biochemistry, and Biophysics Program, University of Colorado, Denver – Anschutz Medical Campus
- These authors contributed equally
| | - Maya Nelson
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver – Anschutz Medical Campus
| | - Nicole Savoie
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver – Anschutz Medical Campus
| | - Lauren Schmitt
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver – Anschutz Medical Campus
- Structural Biology, Biochemistry, and Biophysics Program, University of Colorado, Denver – Anschutz Medical Campus
| | - Jordan States
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver – Anschutz Medical Campus
| | - Nathan Holton
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver – Anschutz Medical Campus
| | - Kirk Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver – Anschutz Medical Campus
- Structural Biology, Biochemistry, and Biophysics Program, University of Colorado, Denver – Anschutz Medical Campus
| | - Aaron M. Johnson
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver – Anschutz Medical Campus
- Structural Biology, Biochemistry, and Biophysics Program, University of Colorado, Denver – Anschutz Medical Campus
| |
Collapse
|
2
|
Dhillon N, Kamakaka RT. Transcriptional silencing in Saccharomyces cerevisiae: known unknowns. Epigenetics Chromatin 2024; 17:28. [PMID: 39272151 PMCID: PMC11401328 DOI: 10.1186/s13072-024-00553-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Transcriptional silencing in Saccharomyces cerevisiae is a persistent and highly stable form of gene repression. It involves DNA silencers and repressor proteins that bind nucleosomes. The silenced state is influenced by numerous factors including the concentration of repressors, nature of activators, architecture of regulatory elements, modifying enzymes and the dynamics of chromatin.Silencers function to increase the residence time of repressor Sir proteins at silenced domains while clustering of silenced domains enables increased concentrations of repressors and helps facilitate long-range interactions. The presence of an accessible NDR at the regulatory regions of silenced genes, the cycling of chromatin configurations at regulatory sites, the mobility of Sir proteins, and the non-uniform distribution of the Sir proteins across the silenced domain, all result in silenced chromatin that only stably silences weak promoters and enhancers via changes in transcription burst duration and frequency.These data collectively suggest that silencing is probabilistic and the robustness of silencing is achieved through sub-optimization of many different nodes of action such that a stable expression state is generated and maintained even though individual constituents are in constant flux.
Collapse
Affiliation(s)
- Namrita Dhillon
- Department of Biomolecular Engineering, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Rohinton T Kamakaka
- Department of MCD Biology, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
3
|
Schou KB, Mandacaru S, Tahir M, Tom N, Nilsson AS, Andersen JS, Tiberti M, Papaleo E, Bartek J. Exploring the structural landscape of DNA maintenance proteins. Nat Commun 2024; 15:7748. [PMID: 39237506 PMCID: PMC11377751 DOI: 10.1038/s41467-024-49983-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/25/2024] [Indexed: 09/07/2024] Open
Abstract
Evolutionary annotation of genome maintenance (GM) proteins has conventionally been established by remote relationships within protein sequence databases. However, often no significant relationship can be established. Highly sensitive approaches to attain remote homologies based on iterative profile-to-profile methods have been developed. Still, these methods have not been systematically applied in the evolutionary annotation of GM proteins. Here, by applying profile-to-profile models, we systematically survey the repertoire of GM proteins from bacteria to man. We identify multiple GM protein candidates and annotate domains in numerous established GM proteins, among other PARP, OB-fold, Macro, TUDOR, SAP, BRCT, KU, MYB (SANT), and nuclease domains. We experimentally validate OB-fold and MIS18 (Yippee) domains in SPIDR and FAM72 protein families, respectively. Our results indicate that, surprisingly, despite the immense interest and long-term research efforts, the repertoire of genome stability caretakers is still not fully appreciated.
Collapse
Affiliation(s)
- Kenneth Bødkter Schou
- Genome Integrity, Danish Cancer Institute, Danish Cancer Society, Strandboulevarden 49, 2100, Copenhagen, Denmark.
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Laboratory, Karolinska Institute, Solna, 171 77, Sweden.
| | - Samuel Mandacaru
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Muhammad Tahir
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Nikola Tom
- Lipidomics Core Facility, Danish Cancer Institute (DCI), DK-2100, Copenhagen, Denmark
| | - Ann-Sofie Nilsson
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Laboratory, Karolinska Institute, Solna, 171 77, Sweden
| | - Jens S Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Matteo Tiberti
- Cancer Structural Biology, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Elena Papaleo
- Cancer Structural Biology, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Jiri Bartek
- Genome Integrity, Danish Cancer Institute, Danish Cancer Society, Strandboulevarden 49, 2100, Copenhagen, Denmark.
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Laboratory, Karolinska Institute, Solna, 171 77, Sweden.
| |
Collapse
|
4
|
Rybchuk J, Xiao W. Dual activities of a silencing information regulator complex in yeast transcriptional regulation and DNA-damage response. MLIFE 2024; 3:207-218. [PMID: 38948145 PMCID: PMC11211678 DOI: 10.1002/mlf2.12108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/11/2024] [Accepted: 01/28/2024] [Indexed: 07/02/2024]
Abstract
The Saccharomyces cerevisiae silencing information regulator (SIR) complex contains up to four proteins, namely Sir1, Sir2, Sir3, and Sir4. While Sir2 encodes a NAD-dependent histone deacetylase, other SIR proteins mainly function as structural and scaffold components through physical interaction with various proteins. The SIR complex displays different conformation and composition, including Sir2 homotrimer, Sir1-4 heterotetramer, Sir2-4 heterotrimer, and their derivatives, which recycle and relocate to different chromosomal regions. Major activities of the SIR complex are transcriptional silencing through chromosomal remodeling and modulation of DNA double-strand-break repair pathways. These activities allow the SIR complex to be involved in mating-type maintenance and switching, telomere and subtelomere gene silencing, promotion of nonhomologous end joining, and inhibition of homologous recombination, as well as control of cell aging. This review explores the potential link between epigenetic regulation and DNA damage response conferred by the SIR complex under various conditions aiming at understanding its roles in balancing cell survival and genomic stability in response to internal and environmental stresses. As core activities of the SIR complex are highly conserved in eukaryotes from yeast to humans, knowledge obtained in the yeast may apply to mammalian Sirtuin homologs and related diseases.
Collapse
Affiliation(s)
- Josephine Rybchuk
- Department of Biochemistry, Microbiology and ImmunologyUniversity of SaskatchewanSaskatoonSaskatchewanCanada
- Toxicology ProgramUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Wei Xiao
- Department of Biochemistry, Microbiology and ImmunologyUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| |
Collapse
|
5
|
Razdaibiedina A, Brechalov A, Friesen H, Mattiazzi Usaj M, Masinas MPD, Garadi Suresh H, Wang K, Boone C, Ba J, Andrews B. PIFiA: self-supervised approach for protein functional annotation from single-cell imaging data. Mol Syst Biol 2024; 20:521-548. [PMID: 38472305 PMCID: PMC11066028 DOI: 10.1038/s44320-024-00029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Fluorescence microscopy data describe protein localization patterns at single-cell resolution and have the potential to reveal whole-proteome functional information with remarkable precision. Yet, extracting biologically meaningful representations from cell micrographs remains a major challenge. Existing approaches often fail to learn robust and noise-invariant features or rely on supervised labels for accurate annotations. We developed PIFiA (Protein Image-based Functional Annotation), a self-supervised approach for protein functional annotation from single-cell imaging data. We imaged the global yeast ORF-GFP collection and applied PIFiA to generate protein feature profiles from single-cell images of fluorescently tagged proteins. We show that PIFiA outperforms existing approaches for molecular representation learning and describe a range of downstream analysis tasks to explore the information content of the feature profiles. Specifically, we cluster extracted features into a hierarchy of functional organization, study cell population heterogeneity, and develop techniques to distinguish multi-localizing proteins and identify functional modules. Finally, we confirm new PIFiA predictions using a colocalization assay, suggesting previously unappreciated biological roles for several proteins. Paired with a fully interactive website ( https://thecellvision.org/pifia/ ), PIFiA is a resource for the quantitative analysis of protein organization within the cell.
Collapse
Affiliation(s)
- Anastasia Razdaibiedina
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada
| | - Alexander Brechalov
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Helena Friesen
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Mojca Mattiazzi Usaj
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, Canada
| | | | | | - Kyle Wang
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Charles Boone
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada.
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, Japan.
| | - Jimmy Ba
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada.
- Department of Computer Science, University of Toronto, Toronto, ON, Canada.
| | - Brenda Andrews
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Cheng J, Li N, Huo Y, Dang S, Tye BK, Gao N, Zhai Y. Structural Insight into the MCM double hexamer activation by Dbf4-Cdc7 kinase. Nat Commun 2022; 13:1396. [PMID: 35296675 PMCID: PMC8927117 DOI: 10.1038/s41467-022-29070-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/24/2022] [Indexed: 12/27/2022] Open
Abstract
The Dbf4-dependent kinase Cdc7 (DDK) regulates DNA replication initiation by phosphorylation of the MCM double hexamer (MCM-DH) to promote helicase activation. Here, we determine a series of cryo electron microscopy (cryo-EM) structures of yeast DDK bound to the MCM-DH. These structures, occupied by one or two DDKs, differ primarily in the conformations of the kinase core. The interactions of DDK with the MCM-DH are mediated exclusively by subunit Dbf4 straddling across the hexamer interface on the three N-terminal domains (NTDs) of subunits Mcm2, Mcm6, and Mcm4. This arrangement brings Cdc7 close to its only essential substrate, the N-terminal serine/threonine-rich domain (NSD) of Mcm4. Dbf4 further displaces the NSD from its binding site on Mcm4-NTD, facilitating an immediate targeting of this motif by Cdc7. Moreover, the active center of Cdc7 is occupied by a unique Dbf4 inhibitory loop, which is disengaged when the kinase core assumes wobbling conformations. This study elucidates the versatility of Dbf4 in regulating the ordered multisite phosphorylation of the MCM-DH by Cdc7 kinase during helicase activation.
Collapse
Affiliation(s)
- Jiaxuan Cheng
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China.,Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ningning Li
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yunjing Huo
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Shangyu Dang
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
| | - Bik-Kwoon Tye
- Institute for Advanced Study, The Hong Kong University of Science & Technology, Hong Kong, China. .,Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14853, USA.
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China. .,National Biomedical Imaging Center, Peking University, Beijing, 100871, China.
| | - Yuanliang Zhai
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
7
|
Carrasco-Navarro U, Aguirre J. H 2O 2 Induces Major Phosphorylation Changes in Critical Regulators of Signal Transduction, Gene Expression, Metabolism and Developmental Networks in Aspergillus nidulans. J Fungi (Basel) 2021; 7:624. [PMID: 34436163 PMCID: PMC8399174 DOI: 10.3390/jof7080624] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) regulate several aspects of cell physiology in filamentous fungi including the antioxidant response and development. However, little is known about the signaling pathways involved in these processes. Here, we report Aspergillus nidulans global phosphoproteome during mycelial growth and show that under these conditions, H2O2 induces major changes in protein phosphorylation. Among the 1964 phosphoproteins we identified, H2O2 induced the phosphorylation of 131 proteins at one or more sites as well as the dephosphorylation of a larger set of proteins. A detailed analysis of these phosphoproteins shows that H2O2 affected the phosphorylation of critical regulatory nodes of phosphoinositide, MAPK, and TOR signaling as well as the phosphorylation of multiple proteins involved in the regulation of gene expression, primary and secondary metabolism, and development. Our results provide a novel and extensive protein phosphorylation landscape in A. nidulans, indicating that H2O2 induces a shift in general metabolism from anabolic to catabolic, and the activation of multiple stress survival pathways. Our results expand the significance of H2O2 in eukaryotic cell signaling.
Collapse
Affiliation(s)
| | - Jesús Aguirre
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, Ciudad de México 04510, Mexico;
| |
Collapse
|
8
|
López-Berges MS, Scheven MT, Hortschansky P, Misslinger M, Baldin C, Gsaller F, Werner ER, Krüger T, Kniemeyer O, Weber J, Brakhage AA, Haas H. The bZIP Transcription Factor HapX Is Post-Translationally Regulated to Control Iron Homeostasis in Aspergillus fumigatus. Int J Mol Sci 2021; 22:ijms22147739. [PMID: 34299357 PMCID: PMC8307855 DOI: 10.3390/ijms22147739] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 11/21/2022] Open
Abstract
The airborne fungus Aspergillus fumigatus causes opportunistic infections in humans with high mortality rates in immunocompromised patients. Previous work established that the bZIP transcription factor HapX is essential for virulence via adaptation to iron limitation by repressing iron-consuming pathways and activating iron acquisition mechanisms. Moreover, HapX was shown to be essential for transcriptional activation of vacuolar iron storage and iron-dependent pathways in response to iron availability. Here, we demonstrate that HapX has a very short half-life during iron starvation, which is further decreased in response to iron, while siderophore biosynthetic enzymes are very stable. We identified Fbx22 and SumO as HapX interactors and, in agreement, HapX post-translational modifications including ubiquitination of lysine161, sumoylation of lysine242 and phosphorylation of threonine319. All three modifications were enriched in the immediate adaptation from iron-limiting to iron-replete conditions. Interfering with these post-translational modifications, either by point mutations or by inactivation, of Fbx22 or SumO, altered HapX degradation, heme biosynthesis and iron resistance to different extents. Consistent with the need to precisely regulate HapX protein levels, overexpression of hapX caused significant growth defects under iron sufficiency. Taken together, our results indicate that post-translational regulation of HapX is important to control iron homeostasis in A. fumigatus.
Collapse
Affiliation(s)
- Manuel Sánchez López-Berges
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.M.); (C.B.); (F.G.)
- Correspondence: (M.S.L.-B.); (A.A.B.); (H.H.)
| | - Mareike Thea Scheven
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany; (M.T.S.); (P.H.); (T.K.); (O.K.); (J.W.)
- Institute of Microbiology, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Peter Hortschansky
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany; (M.T.S.); (P.H.); (T.K.); (O.K.); (J.W.)
| | - Matthias Misslinger
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.M.); (C.B.); (F.G.)
| | - Clara Baldin
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.M.); (C.B.); (F.G.)
| | - Fabio Gsaller
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.M.); (C.B.); (F.G.)
| | - Ernst R. Werner
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, 6020 Innsbruck, Austria;
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany; (M.T.S.); (P.H.); (T.K.); (O.K.); (J.W.)
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany; (M.T.S.); (P.H.); (T.K.); (O.K.); (J.W.)
| | - Jakob Weber
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany; (M.T.S.); (P.H.); (T.K.); (O.K.); (J.W.)
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany; (M.T.S.); (P.H.); (T.K.); (O.K.); (J.W.)
- Institute of Microbiology, Friedrich Schiller University Jena, 07743 Jena, Germany
- Correspondence: (M.S.L.-B.); (A.A.B.); (H.H.)
| | - Hubertus Haas
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.M.); (C.B.); (F.G.)
- Correspondence: (M.S.L.-B.); (A.A.B.); (H.H.)
| |
Collapse
|
9
|
Mackenroth B, Alani E. Collaborations between chromatin and nuclear architecture to optimize DNA repair fidelity. DNA Repair (Amst) 2021; 97:103018. [PMID: 33285474 PMCID: PMC8486310 DOI: 10.1016/j.dnarep.2020.103018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/18/2020] [Accepted: 11/05/2020] [Indexed: 01/22/2023]
Abstract
Homologous recombination (HR), considered the highest fidelity DNA double-strand break (DSB) repair pathway that a cell possesses, is capable of repairing multiple DSBs without altering genetic information. However, in "last resort" scenarios, HR can be directed to low fidelity subpathways which often use non-allelic donor templates. Such repair mechanisms are often highly mutagenic and can also yield chromosomal rearrangements and/or deletions. While the choice between HR and its less precise counterpart, non-homologous end joining (NHEJ), has received much attention, less is known about how cells manage and prioritize HR subpathways. In this review, we describe work focused on how chromatin and nuclear architecture orchestrate subpathway choice and repair template usage to maintain genome integrity without sacrificing cell survival. Understanding the relationships between nuclear architecture and recombination mechanics will be critical to understand these cellular repair decisions.
Collapse
Affiliation(s)
- Beata Mackenroth
- Department of Molecular Biology and Genetics, Cornell University, 459 Biotechnology Building, Ithaca, NY, 14853-2703, United States
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, 459 Biotechnology Building, Ithaca, NY, 14853-2703, United States.
| |
Collapse
|