1
|
Zhao XY, Xu DE, Wu ML, Liu JC, Shi ZL, Ma QH. Regulation and function of endoplasmic reticulum autophagy in neurodegenerative diseases. Neural Regen Res 2025; 20:6-20. [PMID: 38767472 PMCID: PMC11246128 DOI: 10.4103/nrr.nrr-d-23-00995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/09/2023] [Accepted: 12/13/2023] [Indexed: 05/22/2024] Open
Abstract
The endoplasmic reticulum, a key cellular organelle, regulates a wide variety of cellular activities. Endoplasmic reticulum autophagy, one of the quality control systems of the endoplasmic reticulum, plays a pivotal role in maintaining endoplasmic reticulum homeostasis by controlling endoplasmic reticulum turnover, remodeling, and proteostasis. In this review, we briefly describe the endoplasmic reticulum quality control system, and subsequently focus on the role of endoplasmic reticulum autophagy, emphasizing the spatial and temporal mechanisms underlying the regulation of endoplasmic reticulum autophagy according to cellular requirements. We also summarize the evidence relating to how defective or abnormal endoplasmic reticulum autophagy contributes to the pathogenesis of neurodegenerative diseases. In summary, this review highlights the mechanisms associated with the regulation of endoplasmic reticulum autophagy and how they influence the pathophysiology of degenerative nerve disorders. This review would help researchers to understand the roles and regulatory mechanisms of endoplasmic reticulum-phagy in neurodegenerative disorders.
Collapse
Affiliation(s)
- Xiu-Yun Zhao
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu Province, China
| | - De-En Xu
- Department of Neurology, Jiangnan University Medical Center, Wuxi, Jiangsu Province, China
| | - Ming-Lei Wu
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu Province, China
| | - Ji-Chuan Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu Province, China
| | - Zi-Ling Shi
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu Province, China
| | - Quan-Hong Ma
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
2
|
Wilson A, McCormick C. Reticulophagy and viral infection. Autophagy 2025; 21:3-20. [PMID: 39394962 DOI: 10.1080/15548627.2024.2414424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024] Open
Abstract
All viruses are obligate intracellular parasites that use host machinery to synthesize viral proteins. In infected eukaryotes, viral secreted and transmembrane proteins are synthesized at the endoplasmic reticulum (ER). Many viruses refashion ER membranes into bespoke factories where viral products accumulate while evading host pattern recognition receptors. ER processes are tightly regulated to maintain cellular homeostasis, so viruses must either conform to ER regulatory mechanisms or subvert them to ensure efficient viral replication. Reticulophagy is a catabolic process that directs lysosomal degradation of ER components. There is accumulating evidence that reticulophagy serves as a form of antiviral defense; we call this defense "xERophagy" to acknowledge its relationship to xenophagy, the catabolic degradation of microorganisms by macroautophagy/autophagy. In turn, viruses can subvert reticulophagy to suppress host antiviral responses and support efficient viral replication. Here, we review the evidence for functional interplay between viruses and the host reticulophagy machinery.Abbreviations: AMFR: autocrine motility factor receptor; ARF4: ADP-ribosylation factor 4; ARL6IP1: ADP-ribosylation factor-like 6 interacting protein 1; ATL3: atlastin GTPase 3; ATF4: activating transcription factor 4; ATF6: activating transcription factor 6; BPIFB3: BPI fold containing family B, member 3; CALCOCO1: calcium binding and coiled coil domain 1; CAMK2B: calcium/calmodulin-dependent protein kinase II, beta; CANX: calnexin; CDV: canine distemper virus; CCPG1: cell cycle progression 1; CDK5RAP3/C53: CDK5 regulatory subunit associated protein 3; CIR: cargo-interacting region; CoV: coronavirus; CSNK2/CK2: casein kinase 2; CVB3: coxsackievirus B3; DAPK1: death associated protein kinase 1; DENV: dengue virus; DMV: double-membrane vesicles; EBOV: Ebola virus; EBV: Epstein-Barr Virus; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; EMCV: encephalomyocarditis virus; EMV: extracellular microvesicle; ER: endoplasmic reticulum; ERAD: ER-associated degradation; ERN1/IRE1: endoplasmic reticulum to nucleus signalling 1; EV: extracellular vesicle; EV71: enterovirus 71; FIR: RB1CC1/FIP200-interacting region; FMDV: foot-and-mouth disease virus; HCMV: human cytomegalovirus; HCV: hepatitis C virus; HMGB1: high mobility group box 1; HSPA5/BiP: heat shock protein 5; IFN: interferon; IFNG/IFN-γ: interferon gamma; KSHV: Kaposi's sarcoma-associated herpesvirus; LIR: MAP1LC3/LC3-interacting region; LNP: lunapark, ER junction formation factor; MAP1LC3: microtubule-associated protein 1 light chain 3; MAP3K5/ASK1: mitogen-activated protein kinase kinase kinase 5; MAPK/JNK: mitogen-activated protein kinase; MeV: measles virus; MHV: murine hepatitis virus; NS: non-structural; PDIA3: protein disulfide isomerase associated 3; PRR: pattern recognition receptor; PRRSV: porcine reproductive and respiratory syndrome virus; RB1CC1/FIP200: RB1-inducible coiled-coil 1; RETREG1/FAM134B: reticulophagy regulator 1; RHD: reticulon homology domain; RTN3: reticulon 3; RTN3L: reticulon 3 long; sAIMs: shuffled Atg8-interacting motifs; SARS-CoV: severe acute respiratory syndrome coronavirus; SINV: Sindbis virus; STING1: stimulator of interferon response cGAMP interactor 1; SVV: Seneca Valley virus; SV40: simian virus 40; TEX264: testis expressed gene 264 ER-phagy receptor; TFEB: transcription factor EB; TRAF2: TNF receptor-associated factor 2; UIM: ubiquitin-interacting motif; UFM1: ubiquitin-fold modifier 1; UPR: unfolded protein response; VAPA: vesicle-associated membrane protein, associated protein A; VAPB: vesicle-associated membrane protein, associated protein B and C; VZV: varicella zoster virus; WNV: West Nile virus; XBP1: X-box binding protein 1; XBP1s: XBP1 spliced; xERophagy: xenophagy involving reticulophagy; ZIKV: Zika virus.
Collapse
Affiliation(s)
- Alexa Wilson
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Craig McCormick
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
3
|
Mo J, Su C, Li P, Yang Z, Tao R, Liu Q, Yuan C, Xu L, Ge Q, Ning D, Liang H, Zhu H, Luo Y, Chen X, Chen J, Zhang B. CKAP4 in hepatocellular carcinoma: competitive RETREG1/FAM134B binding, reticulophagy regulation, and cancer progression. Autophagy 2024:1-20. [PMID: 39689859 DOI: 10.1080/15548627.2024.2435236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 11/12/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024] Open
Abstract
RETREG1/FAM134B is known for its role as a reticulophagy receptor. Our previous study established that RETREG1 is upregulated in hepatocellular carcinoma (HCC) and contributes to disease progression by activating the AKT signaling pathway. However, the specific mechanisms underlying the elevated expression of RETREG1 in HCC remain unclear. This study unveils the interaction of RETREG1 with CKAP4 and TRIM21. We demonstrated that TRIM21 ubiquitinates RETREG1 at K247 and K252, facilitating its proteasomal degradation. Conversely, CKAP4 shields RETREG1 from degradation by competitively binding to it, revealing a novel post-translational modification mechanism for RETREG1. By modulating RETREG1 expression, CKAP4, and TRIM21 intricately regulate reticulophagy. Additionally, we observed that stress-induced TRIM21 upregulation mitigates the function of RETREG1 to restore ER stress equilibrium. The oncogenic potential of CKAP4 in HCC was demonstrated using various animal models. Clinical sample analyses suggested that CKAP4 is a potential biomarker for HCC prognosis and diagnosis.Abbreviation: AKT: thymoma viral proto-oncogene; aa: amino acid; bp: base pair; CHX: cycloheximide; co-IP: co-Immunoprecipitation; CQ: chloroquine; CKAP4: cytoskeleton-associated protein 4; DKK1: dickkopf WNT signaling pathway inhibitor 1; DUBs: deubiquitinating enzymes; EBSS: Earle's balanced salt solution; EGFP: enhanced green fluorescent protein; ER: endoplasmic reticulum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; HCC: hepatocellular carcinoma; HFD: high-fat diet; HiTV: hyperdynamic tail vein injection; IF: immunofluorescence; IHC: immunohistochemistry; IP-MS: immunoprecipitation-mass spectrometry; LIR: LC3-interacting region; mAbs: monoclonal antibodies; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; mCherry: monomeric cherry; oe: overexpression; PDX: patient-derived tumor xenograft; reticulophagy: endoplasmic reticulum selective autophagy; RETREG1: reticulophagy regulator 1; RHD: reticulon-homology domain; Tg: thapsigargin; Tm: tunicamycin; TRIM21: tripartite motif-containing 21; UB: ubiquitin; WT: wild-type.
Collapse
Affiliation(s)
- Jie Mo
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Chen Su
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Pengcheng Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Zhenhua Yang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Ran Tao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Qiumeng Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Chaoyi Yuan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Lei Xu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Qianyun Ge
- Department of Pediatric Surgery, The Children's Hospital of Fudan University, Shanghai, P.R. China
| | - Deng Ning
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Haidan Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Yan Luo
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Jin Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| |
Collapse
|
4
|
Letko A, Quignon P, Quilleré M, Husson JC, de Citres CD, Donner J, Dréano S, Plassais J, André C. A RETREG1 variant is associated with hereditary sensory and autonomic neuropathy with acral self-mutilation in purebred German Spitz. Anim Genet 2024; 55:810-819. [PMID: 39377488 DOI: 10.1111/age.13482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/05/2024] [Accepted: 09/22/2024] [Indexed: 10/09/2024]
Abstract
Hereditary sensory and autonomic neuropathies (HSAN) represent a group of genetic diseases affecting the peripheral nervous system. In humans, at least 16 loci have been associated with the disorder but do not explain the disease origin of all patients. In dogs, similar conditions have been documented for decades in various breeds with a severe impact on life quality and are often referred to as acral mutilation syndrome (AMS). Causal variants in three genes have been identified to date, suggesting larger genetic heterogeneity in the dog population. Our aim was to explain the genetic etiology of an early-onset HSAN/AMS in a purebred German Spitz. The affected dog showed progressive loss of pain sensation in the distal extremities, which led to intense licking, biting, and self-mutilation of digits and paw pads. Whole-genome sequencing identified a single candidate causal variant on chromosome 4 in the RETREG1 gene (c.656C>T, p.Pro219Leu). This missense variant was previously recognized as deleterious in a mixed breed dog family with similar clinical signs. Haplotype analyses and targeted genotyping revealed a likely German Spitz ancestry of these mixed breed dogs. Further screening of an extensive cohort of ~900 000 dogs of various breeds hinted at the variant allele origin in the German Spitz breed. Disruption of RETREG1 inhibits endoplasmic reticulum turnover and leads to neuron degeneration. Our findings provide evidence that this variant underlies the recessive form of HSAN/AMS in the German Spitz and support the use of whole-genome sequencing-based veterinary precision medicine for early diagnosis and prevention via a genetic test.
Collapse
Affiliation(s)
- Anna Letko
- Institut de Génétique et Développement de Rennes (IGDR) - UMR6290, CNRS, Université de Rennes, Rennes, France
| | - Pascale Quignon
- Institut de Génétique et Développement de Rennes (IGDR) - UMR6290, CNRS, Université de Rennes, Rennes, France
| | - Maéva Quilleré
- Institut de Génétique et Développement de Rennes (IGDR) - UMR6290, CNRS, Université de Rennes, Rennes, France
| | | | | | - Jonas Donner
- Wisdom Panel, Mars Petcare Science & Diagnostics, Helsinki, Finland
| | - Stéphane Dréano
- Institut de Génétique et Développement de Rennes (IGDR) - UMR6290, CNRS, Université de Rennes, Rennes, France
| | - Jocelyn Plassais
- Institut de Génétique et Développement de Rennes (IGDR) - UMR6290, CNRS, Université de Rennes, Rennes, France
| | - Catherine André
- Institut de Génétique et Développement de Rennes (IGDR) - UMR6290, CNRS, Université de Rennes, Rennes, France
| |
Collapse
|
5
|
Palma A, Reggio A. Signaling Regulation of FAM134-Dependent ER-Phagy in Cells. J Cell Physiol 2024:e31492. [PMID: 39584582 DOI: 10.1002/jcp.31492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/26/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024]
Abstract
The endoplasmic reticulum (ER) is a pivotal organelle responsible for protein and lipid synthesis, calcium homeostasis, and protein quality control within eukaryotic cells. To maintain cellular health, damaged or excess portions of the ER must be selectively degraded via a process known as selective autophagy, or ER-phagy. This specificity is driven by a network of protein receptors and regulatory mechanisms. In this review, we explore the molecular mechanisms governing ER-phagy, with a focus on the FAM134 family of ER-resident ER-phagy receptors. We discuss the molecular pathways and Posttranslational modifications that regulate receptor activation and clustering, and how these modifications fine-tune ER-phagy in response to stress. This review provides a concise understanding of how ER-phagy contributes to cellular homeostasis and highlights the need for further studies in models where ER stress and autophagy are dysregulated.
Collapse
Affiliation(s)
- Alessandro Palma
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Alessio Reggio
- Saint Camillus International University of Health Sciences, Rome, Italy
| |
Collapse
|
6
|
Zhang L, Wang H, Han C, Dong Q, Yan J, Guo W, Shan C, Zhao W, Chen P, Huang R, Wu Y, Chen Y, Qin Y, Chen M. AMFR-mediated Flavivirus NS2A ubiquitination subverts ER-phagy to augment viral pathogenicity. Nat Commun 2024; 15:9578. [PMID: 39505910 PMCID: PMC11541587 DOI: 10.1038/s41467-024-54010-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024] Open
Abstract
Flaviviruses strategically utilize the endoplasmic reticulum (ER) in their replication cycles. However, the role of ER autophagy (ER-phagy) in viral replication process remains poorly understood. Here, we reveal that prolonged Zika virus (ZIKV) infection results from the degradation of ER-phagy receptor FAM134B, facilitated by viral NS2A protein. Mechanistically, ER-localized NS2A undergoes K48-linked polyubiquitination at lysine (K) 56 by E3 ligase AMFR. Ubiquitinated NS2A binds to FAM134B and AMFR orchestrates the degradation of NS2A-FAM134B complexes. AMFR-catalyzed NS2A ubiquitination not only targets FAM134B degradation but also hinders the FAM134B-AMFR axis. Notably, a recombinant ZIKV mutant (ZIKV-NS2AK56R), lacking ubiquitination and ER-phagy inhibition, exhibits attenuation in ZIKV-induced microcephalic phenotypes in human brain organoids and replicates less efficiently, resulting in weakened pathogenesis in mouse models. In this work, our mechanistic insights propose that flaviviruses manipulate ER-phagy to modulate ER turnover, driving viral infection. Furthermore, AMFR-mediated flavivirus NS2A ubiquitination emerges as a potential determinant of viral pathogenecity.
Collapse
Affiliation(s)
- Linliang Zhang
- School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Hongyun Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Chao Han
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Qi Dong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jie Yan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Weiwei Guo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Chao Shan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Wen Zhao
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, 430072, China
| | - Pu Chen
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, 430072, China
| | - Rui Huang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430072, China
| | - Ying Wu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430072, China
| | - Yu Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Yali Qin
- School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Mingzhou Chen
- School of Life Sciences, Hubei University, Wuhan, 430062, China.
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
7
|
Ma W, Lu Y, Jin X, Lin N, Zhang L, Song Y. Targeting selective autophagy and beyond: From underlying mechanisms to potential therapies. J Adv Res 2024; 65:297-327. [PMID: 38750694 PMCID: PMC11518956 DOI: 10.1016/j.jare.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Autophagy is an evolutionarily conserved turnover process for intracellular substances in eukaryotes, relying on lysosomal (in animals) or vacuolar (in yeast and plants) mechanisms. In the past two decades, emerging evidence suggests that, under specific conditions, autophagy can target particular macromolecules or organelles for degradation, a process termed selective autophagy. Recently, accumulating studies have demonstrated that the abnormality of selective autophagy is closely associated with the occurrence and progression of many human diseases, including neurodegenerative diseases, cancers, metabolic diseases, and cardiovascular diseases. AIM OF REVIEW This review aims at systematically and comprehensively introducing selective autophagy and its role in various diseases, while unravelling the molecular mechanisms of selective autophagy. By providing a theoretical basis for the development of related small-molecule drugs as well as treating related human diseases, this review seeks to contribute to the understanding of selective autophagy and its therapeutic potential. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, we systematically introduce and dissect the major categories of selective autophagy that have been discovered. We also focus on recent advances in understanding the molecular mechanisms underlying both classical and non-classical selective autophagy. Moreover, the current situation of small-molecule drugs targeting different types of selective autophagy is further summarized, providing valuable insights into the discovery of more candidate small-molecule drugs targeting selective autophagy in the future. On the other hand, we also reveal clinically relevant implementations that are potentially related to selective autophagy, such as predictive approaches and treatments tailored to individual patients.
Collapse
Affiliation(s)
- Wei Ma
- Department of Breast Surgery, Department of Ultrasound, Department of Hematology and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yingying Lu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xin Jin
- Department of Breast Surgery, Department of Ultrasound, Department of Hematology and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Na Lin
- Department of Breast Surgery, Department of Ultrasound, Department of Hematology and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yaowen Song
- Department of Breast Surgery, Department of Ultrasound, Department of Hematology and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
8
|
Wang H, Jiang Y, Zhu M, Li H, Chen H, Wang H, Zhang S, Guo Q, Hui H. LW-213, a derivative of wogonin, triggers reticulophagy-mediated cell death in NSCLC via lysosomal damage combined with NPC1 inhibition. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155958. [PMID: 39241385 DOI: 10.1016/j.phymed.2024.155958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/31/2024] [Accepted: 08/14/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Maintaining intracellular equilibrium is essential for the viability of tumor cells, which tend to be particularly vulnerable to environmental stressors. Consequently, targeting the disruption of this homeostasis offers a promising approach for oncological treatments. LW-213, a novel derivative of wogonin, effectively induces apoptosis in cancer cells by initiating endoplasmic reticulum (ER) stress, although the precise molecular pathways involved remain intricate and multifaceted. PURPOSE This research aimed to explore how LW-213 prompts apoptosis in non-small cell lung cancer (NSCLC) cells and to clarify the detailed mechanisms that govern this process. METHODS Various NSCLC cell lines were utilized to delineate the apoptotic effects induced by LW-213. Advanced methodologies, including RNA sequencing (RNA-seq), Western blotting (WB), immunofluorescence (IF), immunoprecipitation (IP), flow cytometry (Fc), real-time quantitative polymerase chain reaction (RT-qPCR), and electron microscopy, were employed to investigate the underlying molecular interactions. The efficacy and mechanistic action of LW-213 were also assessed in a xenograft model using nude mice. RESULTS We demonstrated that LW-213, a small molecule cationic amphiphilic drug (CAD), inhibited Niemann-Pick C1 (NPC1) function and induced lysosomal membrane damage, thereby activating the phosphoinositide-initiated membrane tethering and lipid transport (PITT) pathway. This activation promoted cholesterol transport from the ER to the lysosome, perpetuating a cholesterol-deficient state in the ER, including massive exocytosis of Ca2+ and activation of FAM134B-mediated reticulophagy. Ultimately, excessive reticulophagy induced lethal ER stress. CONCLUSIONS In summary, our study elucidates an organelle domino reaction initiated by lysosome damage and a series of self-rescue mechanisms that eventually lead to irreversible lethal effects, revealing a potential drug intervention strategy.
Collapse
Affiliation(s)
- Hongzheng Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Yuexin Jiang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Mengyuan Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Hui Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Hongyu Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Haidi Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Shuai Zhang
- The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 21009, PR China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| | - Hui Hui
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| |
Collapse
|
9
|
He X, He H, Hou Z, Wang Z, Shi Q, Zhou T, Wu Y, Qin Y, Wang J, Cai Z, Cui J, Jin S. ER-phagy restrains inflammatory responses through its receptor UBAC2. EMBO J 2024; 43:5057-5084. [PMID: 39284914 PMCID: PMC11535055 DOI: 10.1038/s44318-024-00232-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/11/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
ER-phagy, a selective form of autophagic degradation of endoplasmic reticulum (ER) fragments, plays an essential role in governing ER homeostasis. Dysregulation of ER-phagy is associated with the unfolded protein response (UPR), which is a major clue for evoking inflammatory diseases. However, the molecular mechanism underpinning the connection between ER-phagy and disease remains poorly defined. Here, we identified ubiquitin-associated domain-containing protein 2 (UBAC2) as a receptor for ER-phagy, while at the same time being a negative regulator of inflammatory responses. UBAC2 harbors a canonical LC3-interacting region (LIR) in its cytoplasmic domain, which binds to autophagosomal GABARAP. Upon ER-stress or autophagy activation, microtubule affinity-regulating kinase 2 (MARK2) phosphorylates UBAC2 at serine (S) 223, promoting its dimerization. Dimerized UBAC2 interacts more strongly with GABARAP, thus facilitating selective degradation of the ER. Moreover, by affecting ER-phagy, UBAC2 restrains inflammatory responses and acute ulcerative colitis (UC) in mice. Our findings indicate that ER-phagy directed by a MARK2-UBAC2 axis may provide targets for the treatment of inflammatory disease.
Collapse
Affiliation(s)
- Xing He
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Haowei He
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zitong Hou
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zheyu Wang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qinglin Shi
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tao Zhou
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yaoxing Wu
- Institute of Precision Medicine, Department of Critical Care Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yunfei Qin
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Wang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhe Cai
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jun Cui
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shouheng Jin
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
10
|
Wang J, Sun H, Li R, Xu S, Guo J, Xing G, Jia B, Qiao S, Chen XX, Zhang G. PRRSV non-structural protein 5 inhibits antiviral innate immunity by degrading multiple proteins of RLR signaling pathway through FAM134B-mediated ER-phagy. J Virol 2024; 98:e0081624. [PMID: 39264156 PMCID: PMC11495150 DOI: 10.1128/jvi.00816-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
Viruses employ various evasion strategies to establish prolonged infection, with evasion of innate immunity being particularly crucial. Porcine reproductive and respiratory syndrome virus (PRRSV) is a significant pathogen in swine industry, characterized by reproductive failures in sows and respiratory distress in pigs of all ages, leading to substantial economic losses globally. In this study, we found that the non-structural protein 5 (Nsp5) of PRRSV antagonizes innate immune responses via inhibiting the expression of type I interferon (IFN-I) and IFN-stimulated genes (ISGs), which is achieved by degrading multiple proteins of RIG-I-like receptor (RLR) signaling pathway (RIG-I, MDA5, MAVS, TBK1, IRF3, and IRF7). Furthermore, we showed that PRRSV Nsp5 is located in endoplasmic reticulum (ER), where it promotes accumulation of RLR signaling pathway proteins. Further data demonstrated that Nsp5 activates reticulophagy (ER-phagy), which is responsible for the degradation of RLR signaling pathway proteins and IFN-I production. Mechanistically, Nsp5 interacts with one of the ER-phagy receptor family with sequence similarity 134 member B (FAM134B), promoting the oligomerization of FAM134B. These findings elucidate a novel mechanism by which PRRSV utilizes FAM134B-mediated ER-phagy to elude host antiviral immunity.IMPORTANCEInnate immunity is the first line of host defense against viral infections. Therefore, viruses developed numerous mechanisms to evade the host innate immune responses for their own benefit. PRRSV, one of the most important endemic swine viruses, poses a significant threat to the swine industry worldwide. Here, we demonstrate for the first time that PRRSV utilizes its non-structural protein Nsp5 to degrade multiple proteins of RLR signaling pathways, which play important roles in IFN-I production. Moreover, FAM134B-mediated ER-phagy was further proved to be responsible for the protein's degradation. Our study highlights the critical role of ER-phagy in immune evasion of PRRSV to favor replication and provides new insights into the prevention and control of PRRSV.
Collapse
Affiliation(s)
- Jing Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
| | - Huiqin Sun
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
| | - Rui Li
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
| | - Shixuan Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
| | - Junqing Guo
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
| | - Guangxu Xing
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
| | - Bin Jia
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
| | - Songlin Qiao
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
| | - Xin-xin Chen
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
- Longhu Laboratory, Zhengzhou, China
| |
Collapse
|
11
|
Kajiho H, Sakisaka T. Degradation of STIM1 through FAM134B-mediated ER-phagy is potentially involved in cell proliferation. J Biol Chem 2024; 300:107674. [PMID: 39128711 PMCID: PMC11414581 DOI: 10.1016/j.jbc.2024.107674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024] Open
Abstract
Autophagy is classified as nonselective or selective depending on the types of degrading substrates. Endoplasmic reticulum (ER)-phagy is a form of selective autophagy for transporting the ER-resident proteins to autolysosomes. FAM134B, a member of the family with sequence similarity 134, is a well-known ER-phagy receptor. Dysfunction of FAM134B results in several diseases including viral infection, inflammation, neurodegenerative disorder, and cancer, indicating that FAM134B has crucial roles in various kinds of intracellular functions. However, how FAM134B-mediated ER-phagy regulates intracellular functions is not well understood. In this study, we found that FAM134B knockdown in mammalian cells accelerated cell proliferation. FAM134B knockdown increased the protein amount of stromal interaction molecule 1 (STIM1), an ER Ca2+ sensor protein mediating the store-operated Ca2+ entry involved in G1 to S phase transition. FAM134B bound to STIM1 through its C-terminal cytosolic region. FAM134B knockdown reduced transport of STIM1 from the ER to autolysosomes. Finally, FAM134B knockdown accelerated G1 to S phase transition. These results suggest that FAM134B is involved in cell proliferation possibly through degradation of STIM1 via ER-phagy.
Collapse
Affiliation(s)
- Hiroaki Kajiho
- Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan; Department of Biochemical Pathophysiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Toshiaki Sakisaka
- Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
12
|
De Leonibus C, Maddaluno M, Ferriero R, Besio R, Cinque L, Lim PJ, Palma A, De Cegli R, Gagliotta S, Montefusco S, Iavazzo M, Rohrbach M, Giunta C, Polishchuk E, Medina DL, Di Bernardo D, Forlino A, Piccolo P, Settembre C. Sestrin2 drives ER-phagy in response to protein misfolding. Dev Cell 2024; 59:2035-2052.e10. [PMID: 39094564 PMCID: PMC11338521 DOI: 10.1016/j.devcel.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/01/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Protein biogenesis within the endoplasmic reticulum (ER) is crucial for organismal function. Errors during protein folding necessitate the removal of faulty products. ER-associated protein degradation and ER-phagy target misfolded proteins for proteasomal and lysosomal degradation. The mechanisms initiating ER-phagy in response to ER proteostasis defects are not well understood. By studying mouse primary cells and patient samples as a model of ER storage disorders (ERSDs), we show that accumulation of faulty products within the ER triggers a response involving SESTRIN2, a nutrient sensor controlling mTORC1 signaling. SESTRIN2 induction by XBP1 inhibits mTORC1's phosphorylation of TFEB/TFE3, allowing these transcription factors to enter the nucleus and upregulate the ER-phagy receptor FAM134B along with lysosomal genes. This response promotes ER-phagy of misfolded proteins via FAM134B-Calnexin complex. Pharmacological induction of FAM134B improves clearance of misfolded proteins in ERSDs. Our study identifies the interplay between nutrient signaling and ER quality control, suggesting therapeutic strategies for ERSDs.
Collapse
Affiliation(s)
- Chiara De Leonibus
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Health Sciences, University of Basilicata, Potenza, Italy
| | - Marianna Maddaluno
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Rosa Ferriero
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Roberta Besio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Laura Cinque
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Pei Jin Lim
- Division of Metabolism and Children's Research Center, University Hospital of Zurich, Zurich, Switzerland
| | - Alessandro Palma
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Rossella De Cegli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | - Sandro Montefusco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Maria Iavazzo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Marianne Rohrbach
- Division of Metabolism and Children's Research Center, University Hospital of Zurich, Zurich, Switzerland
| | - Cecilia Giunta
- Division of Metabolism and Children's Research Center, University Hospital of Zurich, Zurich, Switzerland
| | - Elena Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Diego Louis Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Diego Di Bernardo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Chemical, Materials and Industrial Production Engineering, University of Naples "Federico II", Naples, Italy
| | | | - Pasquale Piccolo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy.
| |
Collapse
|
13
|
Zhang M, Wang Z, Zhao Q, Yang Q, Bai J, Yang C, Zhang ZR, Liu Y. USP20 deubiquitinates and stabilizes the reticulophagy receptor RETREG1/FAM134B to drive reticulophagy. Autophagy 2024; 20:1780-1797. [PMID: 38705724 PMCID: PMC11262213 DOI: 10.1080/15548627.2024.2347103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 04/19/2024] [Indexed: 05/07/2024] Open
Abstract
The endoplasmic reticulum (ER) serves as a hub for various cellular processes, and maintaining ER homeostasis is essential for cell function. Reticulophagy is a selective process that removes impaired ER subdomains through autophagy-mediatedlysosomal degradation. While the involvement of ubiquitination in autophagy regulation is well-established, its role in reticulophagy remains unclear. In this study, we screened deubiquitinating enzymes (DUBs) involved in reticulophagy and identified USP20 (ubiquitin specific peptidase 20) as a key regulator of reticulophagy under starvation conditions. USP20 specifically cleaves K48- and K63-linked ubiquitin chains on the reticulophagy receptor RETREG1/FAM134B (reticulophagy regulator 1), thereby stabilizing the substrate and promoting reticulophagy. Remarkably, despite lacking a transmembrane domain, USP20 is recruited to the ER through its interaction with VAPs (VAMP associated proteins). VAPs facilitate the recruitment of early autophagy proteins, including WIPI2 (WD repeat domain, phosphoinositide interacting 2), to specific ER subdomains, where USP20 and RETREG1 are enriched. The recruitment of WIPI2 and other proteins in this process plays a crucial role in facilitating RETREG1-mediated reticulophagy in response to nutrient deprivation. These findings highlight the critical role of USP20 in maintaining ER homeostasis by deubiquitinating and stabilizing RETREG1 at distinct ER subdomains, where USP20 further recruits VAPs and promotes efficient reticulophagy.Abbreviations: ACTB actin beta; ADRB2 adrenoceptor beta 2; AMFR/gp78 autocrine motility factor receptor; ATG autophagy related; ATL3 atlastin GTPase 3; BafA1 bafilomycin A1; BECN1 beclin 1; CALCOCO1 calcium binding and coiled-coil domain 1; CCPG1 cell cycle progression 1; DAPI 4',6-diamidino-2-phenylindole; DTT dithiothreitol; DUB deubiquitinating enzyme; EBSS Earle's Balanced Salt Solution; FFAT two phenylalanines (FF) in an acidic tract; GABARAP GABA type A receptor-associated protein; GFP green fluorescent protein; HMGCR 3-hydroxy-3-methylglutaryl-CoA reductase; IL1B interleukin 1 beta; LIR LC3-interacting region; MAP1LC3/LC3 microtubule associated protein 1 light chain 3; PIK3C3/Vps34 phosphatidylinositol 3-kinase catalytic subunit type 3; RB1CC1/FIP200 RB1 inducible coiled-coil 1; RETREG1/FAM134B reticulophagy regulator 1; RFP red fluorescent protein; RHD reticulon homology domain; RIPK1 receptor interacting serine/threonine kinase 1; RTN3L reticulon 3 long isoform; SEC61B SEC61 translocon subunit beta; SEC62 SEC62 homolog, preprotein translocation factor; SIM super-resolution structured illumination microscopy; SNAI2 snail family transcriptional repressor 2; SQSTM1/p62 sequestosome 1; STING1/MITA stimulator of interferon response cGAMP interactor 1; STX17 syntaxin 17; TEX264 testis expressed 264, ER-phagy receptor; TNF tumor necrosis factor; UB ubiquitin; ULK1 unc-51 like autophagy activating kinase 1; USP20 ubiquitin specific peptidase 20; USP33 ubiquitin specific peptidase 33; VAMP8 vesicle associated membrane protein 8; VAPs VAMP associated proteins; VMP1 vacuole membrane protein 1; WIPI2 WD repeat domain, phosphoinositide interacting 2; ZFYVE1/DFCP1 zinc finger FYVE-type containing 1.
Collapse
Affiliation(s)
- Man Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhangshun Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qing Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qian Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jieyun Bai
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Cuiwei Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zai-Rong Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, Beijing, China
| | - Yanfen Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
14
|
Wang J, Fan P, Shen P, Fan C, Zhao P, Yao Shen, Dong K, Ling R, Chen S, Zhang J. XBP1s activates METTL3/METTL14 for ER-phagy and paclitaxel sensitivity regulation in breast cancer. Cancer Lett 2024; 596:216846. [PMID: 38582397 DOI: 10.1016/j.canlet.2024.216846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/25/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Cancer cells employ the unfolded protein response (UPR) or induce autophagy, especially selective removal of certain ER domains via reticulophagy (termed ER-phagy), to mitigate endoplasmic reticulum (ER) stress for ER homeostasis when encountering microenvironmental stress. N6-methyladenosine (m6A) is one of the most abundant epitranscriptional modifications and plays important roles in various biological processes. However, the molecular mechanism of m6A modification in the ER stress response is poorly understood. In this study, we first found that ER stress could dramatically elevate m6A methylation levels through XBP1s-dependent transcriptional upregulation of METTL3/METTL14 in breast cancer (BC) cells. Further MeRIP sequencing and relevant validation results confirmed that ER stress caused m6A methylation enrichment on target genes for ER-phagy. Mechanistically, METTL3/METTL14 increased ER-phagy machinery formation by promoting m6A modification of the ER-phagy regulators CALCOCO1 and p62, thus enhancing their mRNA stability. Of note, we further confirmed that the chemotherapeutic drug paclitaxel (PTX) could induce ER stress and increase m6A methylation for ER-phagy. Furthermore, the combination of METTL3/METTL14 inhibitors with PTX demonstrated a significant synergistic therapeutic effect in both BC cells and xenograft mice. Thus, our data built a novel bridge on the crosstalk between ER stress, m6A methylation and ER-phagy. Most importantly, our work provides novel evidence of METTL3 and METTL14 as potential therapeutic targets for PTX sensitization in breast cancer.
Collapse
Affiliation(s)
- Jiajia Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Pengyu Fan
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Peng Shen
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Cong Fan
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Pan Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yao Shen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Kewei Dong
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Rui Ling
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Suning Chen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Jian Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
15
|
Zhao Z, Jin W, Wu M, Lin Q, Duan Y. A dual-labeling fluorescent probe to track lysosomal polarity and endoplasmic reticulum dynamics during ferroptosis. Chem Commun (Camb) 2024; 60:7773-7776. [PMID: 38976312 DOI: 10.1039/d4cc02161d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
A polarity-sensitive probe was developed to simultaneously label lysosomes and endoplasmic reticulum (ER) via its dansylamide and rhodamine fluorescence, respectively, enabling ratiometric polarity detection and stable dual-labeling. The fragmented ER network and increased lysosomal polarity during ferroptosis were revealed, which facilitates the understanding of ferroptotic mechanisms.
Collapse
Affiliation(s)
- Zhao Zhao
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Wendong Jin
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Mengfan Wu
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Qingyu Lin
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, Sichuan, China.
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| |
Collapse
|
16
|
Lo TH, Weng IC, Chen HL, Liu FT. The role of galectins in the regulation of autophagy and inflammasome in host immunity. Semin Immunopathol 2024; 46:6. [PMID: 39042263 DOI: 10.1007/s00281-024-01018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024]
Abstract
Galectins, a family of glycan-binding proteins have been shown to bind a wide range of glycans. In the cytoplasm, these glycans can be endogenous (or "self"), originating from damaged endocytic vesicles, or exogenous (or "non-self"), found on the surface of invading microbial pathogens. Galectins can detect these unusual cytosolic exposures to glycans and serve as critical regulators in orchestrating immune responses in innate and adaptive immunity. This review provides an overview of how galectins modulate host cellular responses, such as autophagy, xenophagy, and inflammasome-dependent cell death program, to infection.
Collapse
Affiliation(s)
- Tzu-Han Lo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - I-Chun Weng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Hung-Lin Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan.
- Department of Dermatology, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
17
|
Yasasilka XR, Lee M. Role of β-cell autophagy in β-cell physiology and the development of diabetes. J Diabetes Investig 2024; 15:656-668. [PMID: 38470018 PMCID: PMC11143416 DOI: 10.1111/jdi.14184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/14/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024] Open
Abstract
Elucidating the molecular mechanism of autophagy was a landmark in understanding not only the physiology of cells and tissues, but also the pathogenesis of diverse diseases, including diabetes and metabolic disorders. Autophagy of pancreatic β-cells plays a pivotal role in the maintenance of the mass, structure and function of β-cells, whose dysregulation can lead to abnormal metabolic profiles or diabetes. Modulators of autophagy are being developed to improve metabolic profile and β-cell function through the removal of harmful materials and rejuvenation of organelles, such as mitochondria and endoplasmic reticulum. Among the known antidiabetic drugs, glucagon-like peptide-1 receptor agonists enhance the autophagic activity of β-cells, which might contribute to the profound effects of glucagon-like peptide-1 receptor agonists on systemic metabolism. In this review, the results from studies on the role of autophagy in β-cells and their implication in the development of diabetes are discussed. In addition to non-selective (macro)autophagy, the role and mechanisms of selective autophagy and other minor forms of autophagy that might occur in β-cells are discussed. As β-cell failure is the ultimate cause of diabetes and unresponsiveness to conventional therapy, modulation of β-cell autophagy might represent a future antidiabetic treatment approach, particularly in patients who are not well managed with current antidiabetic therapy.
Collapse
Affiliation(s)
- Xaviera Riani Yasasilka
- Soonchunhyang Institute of Medi‐bio Science and Division of Endocrinology, Department of Internal MedicineSoonchunhyang University College of MedicineCheonanKorea
| | - Myung‐Shik Lee
- Soonchunhyang Institute of Medi‐bio Science and Division of Endocrinology, Department of Internal MedicineSoonchunhyang University College of MedicineCheonanKorea
| |
Collapse
|
18
|
Duan Y, Yao RQ, Ling H, Zheng LY, Fan Q, Li Q, Wang L, Zhou QY, Wu LM, Dai XG, Yao YM. Organellophagy regulates cell death:A potential therapeutic target for inflammatory diseases. J Adv Res 2024:S2090-1232(24)00203-0. [PMID: 38740259 DOI: 10.1016/j.jare.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Dysregulated alterations in organelle structure and function have a significant connection with cell death, as well as the occurrence and development of inflammatory diseases. Maintaining cell viability and inhibiting the release of inflammatory cytokines are essential measures to treat inflammatory diseases. Recently, many studies have showed that autophagy selectively targets dysfunctional organelles, thereby sustaining the functional stability of organelles, alleviating the release of multiple cytokines, and maintaining organismal homeostasis. Organellophagy dysfunction is critically engaged in different kinds of cell death and inflammatory diseases. AIM OF REVIEW We summarized the current knowledge of organellophagy (e.g., mitophagy, reticulophagy, golgiphagy, lysophagy, pexophagy, nucleophagy, and ribophagy) and the underlying mechanisms by which organellophagy regulates cell death. KEY SCIENTIFIC CONCEPTS OF REVIEW We outlined the potential role of organellophagy in the modulation of cell fate during the inflammatory response to develop an intervention strategy for the organelle quality control in inflammatory diseases.
Collapse
Affiliation(s)
- Yu Duan
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou 423000, China; Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Ren-Qi Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; Department of General Surgery, the First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China.
| | - Hua Ling
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou 423000, China
| | - Li-Yu Zheng
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Qi Fan
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Qiong Li
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou 423000, China
| | - Lu Wang
- Department of Critical Care Medicine, the First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Qi-Yuan Zhou
- Department of Emergency, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Le-Min Wu
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou 423000, China
| | - Xin-Gui Dai
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou 423000, China.
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
19
|
Jiang M, Wu W, Xiong Z, Yu X, Ye Z, Wu Z. Targeting autophagy drug discovery: Targets, indications and development trends. Eur J Med Chem 2024; 267:116117. [PMID: 38295689 DOI: 10.1016/j.ejmech.2023.116117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 02/25/2024]
Abstract
Autophagy plays a vital role in sustaining cellular homeostasis and its alterations have been implicated in the etiology of many diseases. Drugs development targeting autophagy began decades ago and hundreds of agents were developed, some of which are licensed for the clinical usage. However, no existing intervention specifically aimed at modulating autophagy is available. The obstacles that prevent drug developments come from the complexity of the actual impact of autophagy regulators in disease scenarios. With the development and application of new technologies, several promising categories of compounds for autophagy-based therapy have emerged in recent years. In this paper, the autophagy-targeted drugs based on their targets at various hierarchical sites of the autophagic signaling network, e.g., the upstream and downstream of the autophagosome and the autophagic components with enzyme activities are reviewed and analyzed respectively, with special attention paid to those at preclinical or clinical trials. The drugs tailored to specific autophagy alone and combination with drugs/adjuvant therapies widely used in clinical for various diseases treatments are also emphasized. The emerging drug design and development targeting selective autophagy receptors (SARs) and their related proteins, which would be expected to arrest or reverse the progression of disease in various cancers, inflammation, neurodegeneration, and metabolic disorders, are critically reviewed. And the challenges and perspective in clinically developing autophagy-targeted drugs and possible combinations with other medicine are considered in the review.
Collapse
Affiliation(s)
- Mengjia Jiang
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Wayne Wu
- College of Osteopathic Medicine, New York Institute of Technology, USA
| | - Zijie Xiong
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Xiaoping Yu
- Department of Biology, China Jiliang University, China
| | - Zihong Ye
- Department of Biology, China Jiliang University, China
| | - Zhiping Wu
- Department of Pharmacology and Pharmacy, China Jiliang University, China.
| |
Collapse
|
20
|
Wang H, Liu L, Gong H, Li H. Upregulation of FAM134B inhibits endoplasmic reticulum stress-related degradation protein expression and promotes hepatocellular carcinogenesis. J Cell Mol Med 2024; 28:e17964. [PMID: 37728036 PMCID: PMC10902567 DOI: 10.1111/jcmm.17964] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
Endoplasmic reticulum (ER) stress can stimulate the proliferation and metastasis of hepatocellular carcinoma (HCC) cells while hindering apoptosis and immune system function, but the molecular mechanism of ER stress in HCC has yet to be fully studied. We aim to investigate the molecular mechanism by which FAM134B inhibits autophagy of HCC cells by reducing the expression of ER stress-related degradation proteins. Clinical samples were collected for this study. Normal liver cell lines HL7702 and Hep3B and Huh7 HCC cell lines were cultured. Construction of FAM134B knockdown cell line. Cell proliferation was measured using the CCK-8 assay, while cell migration and invasion capabilities were detected using the plate colony formation assay. Flow cytometry was used to detect the apoptosis rate. Transmission electron microscopy was used to observe the formation of autophagosomes. qRT-PCR and WB detective expression changes related to autophagy proteins. Finally, the expression of the relevant proteins was observed by immunohistochemistry. The expression of FAM134B was significantly increased in human liver cancer tissue and HCC cell lines Hep3B and Huh7. After the lentiviral vector was transfected into Hep3B cells with sh-FAM134B, results showed that sh-FAM134B could effectively inhibit Hep3B cell proliferation and promote HCC cell apoptosis. Meanwhile, sh-FAM134B could effectively induce the autophagy of Hep3B liver cancer cells. Immunohistochemistry results showed that sh-FAM134B could effectively induce ER stress. FAM134B inhibits HCC cell autophagy and promotes the progression of liver cancer by inhibiting the expression of ER stress-related degradation factors such as DERL2, EDEM1, SEL1L and HRD1.
Collapse
Affiliation(s)
- Houhong Wang
- Department of General SurgeryThe Affiliated Bozhou Hospital of Anhui Medical UniversityBozhouChina
| | - Lu Liu
- Department of Endocrine DepartmentThe Affiliated Nantong Hospital of Shanghai Jiao Tong UniversityNantongChina
| | - Huihui Gong
- Faculty of Health and Life SciencesOxford Brookes UniversityOxfordEnglandUK
| | - Heng Li
- Department of Comprehensive Surgery, Anhui Provincial Cancer HospitalWest District of The First Affiliated Hospital of USTCHefeiChina
| |
Collapse
|
21
|
Shao Y, Sun J, Zheng H. Eat at the right time: Regulation of ER-phagy receptors in plant response to environmental stresses. MOLECULAR PLANT 2024; 17:236-239. [PMID: 38178575 DOI: 10.1016/j.molp.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/17/2023] [Accepted: 01/02/2024] [Indexed: 01/06/2024]
Affiliation(s)
- Yang Shao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Jiaqi Sun
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China.
| | - Huanquan Zheng
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada.
| |
Collapse
|
22
|
Liang Y, Meng F, Zhao X, He X, Liu J. OsHLP1 is an endoplasmic-reticulum-phagy receptor in rice plants. Cell Rep 2023; 42:113480. [PMID: 38019652 DOI: 10.1016/j.celrep.2023.113480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/21/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
The endoplasmic reticulum (ER) is the largest intracellular endomembrane system; it shows dynamic changes upon environmental stress. To maintain ER morphology and homeostasis under stress, the excessive ER membrane and the associated unwanted proteins can be removed via ER-phagy. Although a few ER-phagy receptors have been reported in mammals and yeast, their functional counterparts in plants remain largely unexplored. Here, we report that the HVA22 family protein OsHLP1 is an uncharacterized ER-phagy receptor in rice (Oryza sativa L.). OsHLP1 interacts with OsATG8b and recruits ER subdomains and the cargo protein OsNTL6, a negative immune regulator, to autophagosomes upon infection with the fungus Magnaporthe oryzae, which substantially activates disease resistance in rice. AtHVA22J, an Arabidopsis thaliana OsHLP1 ortholog, induced similar ER-phagy in plants. Altogether, we unraveled a conservative protein family that may act as ER-phagy receptors in higher plants, and in particular, we highlighted their roles in rice immune responses.
Collapse
Affiliation(s)
- Yingbo Liang
- College of Plant Protection, China Agricultural University, Beijing 100193, China; State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Fanwei Meng
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xia Zhao
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xinyi He
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jun Liu
- College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
23
|
Berkane R, Ho-Xuan H, Glogger M, Sanz-Martinez P, Brunello L, Glaesner T, Kuncha SK, Holzhüter K, Cano-Franco S, Buonomo V, Cabrerizo-Poveda P, Balakrishnan A, Tascher G, Husnjak K, Juretschke T, Misra M, González A, Dötsch V, Grumati P, Heilemann M, Stolz A. The function of ER-phagy receptors is regulated through phosphorylation-dependent ubiquitination pathways. Nat Commun 2023; 14:8364. [PMID: 38102139 PMCID: PMC10724265 DOI: 10.1038/s41467-023-44101-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Selective autophagy of the endoplasmic reticulum (ER), known as ER-phagy, is an important regulator of ER remodeling and essential to maintain cellular homeostasis during environmental changes. We recently showed that members of the FAM134 family play a critical role during stress-induced ER-phagy. However, the mechanisms on how they are activated remain largely unknown. In this study, we analyze phosphorylation of FAM134 as a trigger of FAM134-driven ER-phagy upon mTOR (mechanistic target of rapamycin) inhibition. An unbiased screen of kinase inhibitors reveals CK2 to be essential for FAM134B- and FAM134C-driven ER-phagy after mTOR inhibition. Furthermore, we provide evidence that ER-phagy receptors are regulated by ubiquitination events and that treatment with E1 inhibitor suppresses Torin1-induced ER-phagy flux. Using super-resolution microscopy, we show that CK2 activity is essential for the formation of high-density FAM134B and FAM134C clusters. In addition, dense clustering of FAM134B and FAM134C requires phosphorylation-dependent ubiquitination of FAM134B and FAM134C. Treatment with the CK2 inhibitor SGC-CK2-1 or mutation of FAM134B and FAM134C phosphosites prevents ubiquitination of FAM134 proteins, formation of high-density clusters, as well as Torin1-induced ER-phagy flux. Therefore, we propose that CK2-dependent phosphorylation of ER-phagy receptors precedes ubiquitin-dependent activation of ER-phagy flux.
Collapse
Affiliation(s)
- Rayene Berkane
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Hung Ho-Xuan
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Marius Glogger
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Pablo Sanz-Martinez
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Lorène Brunello
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Tristan Glaesner
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Santosh Kumar Kuncha
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Katharina Holzhüter
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main, Germany
| | - Sara Cano-Franco
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Viviana Buonomo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Paloma Cabrerizo-Poveda
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Ashwin Balakrishnan
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Georg Tascher
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Koraljka Husnjak
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | | | - Mohit Misra
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Alexis González
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main, Germany
| | - Paolo Grumati
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Alexandra Stolz
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany.
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
24
|
Zhai H, Wang T, Liu D, Pan L, Sun Y, Qiu HJ. Autophagy as a dual-faced host response to viral infections. Front Cell Infect Microbiol 2023; 13:1289170. [PMID: 38125906 PMCID: PMC10731275 DOI: 10.3389/fcimb.2023.1289170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023] Open
Abstract
Autophagy selectively degrades viral particles or cellular components, either facilitating or inhibiting viral replication. Conversely, most viruses have evolved strategies to escape or exploit autophagy. Moreover, autophagy collaborates with the pattern recognition receptor signaling, influencing the expression of adaptor molecules involved in the innate immune response and regulating the expression of interferons (IFNs). The intricate relationship between autophagy and IFNs plays a critical role in the host cell defense against microbial invasion. Therefore, it is important to summarize the interactions between viral infections, autophagy, and the host defense mechanisms against viruses. This review specifically focuses on the interactions between autophagy and IFN pathways during viral infections, providing a comprehensive summary of the molecular mechanisms utilized or evaded by different viruses.
Collapse
Affiliation(s)
| | | | | | | | - Yuan Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
25
|
Sun Y, Wang X, Yang X, Wang L, Ding J, Wang CC, Zhang H, Wang X. V-ATPase recruitment to ER exit sites switches COPII-mediated transport to lysosomal degradation. Dev Cell 2023; 58:2761-2775.e5. [PMID: 37922908 DOI: 10.1016/j.devcel.2023.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 08/23/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
Endoplasmic reticulum (ER)-phagy is crucial to regulate the function and homeostasis of the ER via lysosomal degradation, but how it is initiated is unclear. Here we discover that Z-AAT, a disease-causing mutant of α1-antitrypsin, induces noncanonical ER-phagy at ER exit sites (ERESs). Accumulation of misfolded Z-AAT at the ERESs impairs coat protein complex II (COPII)-mediated ER-to-Golgi transport and retains V0 subunits that further assemble V-ATPase at the arrested ERESs. V-ATPase subsequently recruits ATG16L1 onto ERESs to mediate in situ lipidation of LC3C. FAM134B-II is then recruited by LC3C via its LIR motif and elicits ER-phagy leading to efficient lysosomal degradation of Z-AAT. Activation of this ER-phagy mediated by the V-ATPase-ATG16L1-LC3C axis (EVAC) is also triggered by blocking ER export. Our findings identify a pathway which switches COPII-mediated transport to lysosomal degradation for ER quality control.
Collapse
Affiliation(s)
- Yiwei Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi'e Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaotong Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingjin Ding
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chih-Chen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
26
|
Knupp J, Pletan ML, Arvan P, Tsai B. Autophagy of the ER: the secretome finds the lysosome. FEBS J 2023; 290:5656-5673. [PMID: 37920925 PMCID: PMC11044768 DOI: 10.1111/febs.16986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/20/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Lysosomal degradation of the endoplasmic reticulum (ER) and its components through the autophagy pathway has emerged as a major regulator of ER proteostasis. Commonly referred to as ER-phagy and ER-to-lysosome-associated degradation (ERLAD), how the ER is targeted to the lysosome has been recently clarified by a growing number of studies. Here, we summarize the discoveries of the molecular components required for lysosomal degradation of the ER and their proposed mechanisms of action. Additionally, we discuss how cells employ these machineries to create the different routes of ER-lysosome-associated degradation. Further, we review the role of ER-phagy in viral infection pathways, as well as the implication of ER-phagy in human disease. In sum, we provide a comprehensive overview of the current field of ER-phagy.
Collapse
Affiliation(s)
- Jeffrey Knupp
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Madison L Pletan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
27
|
Qian X, He L, Yang J, Sun J, Peng X, Zhang Y, Mao Y, Zhang Y, Cui Y. UVRAG cooperates with cargo receptors to assemble the ER-phagy site. EMBO J 2023; 42:e113625. [PMID: 37902287 PMCID: PMC10690450 DOI: 10.15252/embj.2023113625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/31/2023] Open
Abstract
ER-phagy is a selective autophagy process that targets specific regions of the endoplasmic reticulum (ER) for removal via lysosomal degradation. During cellular stress induced by starvation, cargo receptors concentrate at distinct ER-phagy sites (ERPHS) to recruit core autophagy proteins and initiate ER-phagy. However, the molecular mechanism responsible for ERPHS formation remains unclear. In our study, we discovered that the autophagy regulator UV radiation Resistance-Associated Gene (UVRAG) plays a crucial role in orchestrating the assembly of ERPHS. Upon starvation, UVRAG localizes to ERPHS and interacts with specific ER-phagy cargo receptors, such as FAM134B, ATL3, and RTN3L. UVRAG regulates the oligomerization of cargo receptors and facilitates the recruitment of Atg8 family proteins. Consequently, UVRAG promotes efficient ERPHS assembly and turnover of both ER sheets and tubules. Importantly, UVRAG-mediated ER-phagy contributes to the clearance of pathogenic proinsulin aggregates. Remarkably, the involvement of UVRAG in ER-phagy initiation is independent of its canonical function as a subunit of class III phosphatidylinositol 3-kinase complex II.
Collapse
Affiliation(s)
- Xuehong Qian
- Department of Neurosurgery, Medical Research Institute, Frontier Science Center for Immunology and MetabolismZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| | - Lingang He
- Department of Neurosurgery, Medical Research Institute, Frontier Science Center for Immunology and MetabolismZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| | - Jiejie Yang
- Department of Neurosurgery, Medical Research Institute, Frontier Science Center for Immunology and MetabolismZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| | - Jiajia Sun
- Department of Neurosurgery, Medical Research Institute, Frontier Science Center for Immunology and MetabolismZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| | - Xueying Peng
- Department of Neurosurgery, Medical Research Institute, Frontier Science Center for Immunology and MetabolismZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| | - Yuting Zhang
- Department of Neurosurgery, Medical Research Institute, Frontier Science Center for Immunology and MetabolismZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| | - Yizhou Mao
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and MetabolismZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| | - Ying Zhang
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and MetabolismZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| | - Yixian Cui
- Department of Neurosurgery, Medical Research Institute, Frontier Science Center for Immunology and MetabolismZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| |
Collapse
|
28
|
Zou CX, Ma ZH, Jiang ZD, Pan ZQ, Xu DD, Suo F, Shao GC, Dong MQ, Du LL. The ortholog of human REEP1-4 is required for autophagosomal enclosure of ER-phagy/nucleophagy cargos in fission yeast. PLoS Biol 2023; 21:e3002372. [PMID: 37939137 PMCID: PMC10659188 DOI: 10.1371/journal.pbio.3002372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 11/20/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023] Open
Abstract
Selective macroautophagy of the endoplasmic reticulum (ER) and the nucleus, known as ER-phagy and nucleophagy, respectively, are processes whose mechanisms remain inadequately understood. Through an imaging-based screen, we find that in the fission yeast Schizosaccharomyces pombe, Yep1 (also known as Hva22 or Rop1), the ortholog of human REEP1-4, is essential for ER-phagy and nucleophagy but not for bulk autophagy. In the absence of Yep1, the initial phase of ER-phagy and nucleophagy proceeds normally, with the ER-phagy/nucleophagy receptor Epr1 coassembling with Atg8. However, ER-phagy/nucleophagy cargos fail to reach the vacuole. Instead, nucleus- and cortical-ER-derived membrane structures not enclosed within autophagosomes accumulate in the cytoplasm. Intriguingly, the outer membranes of nucleus-derived structures remain continuous with the nuclear envelope-ER network, suggesting a possible outer membrane fission defect during cargo separation from source compartments. We find that the ER-phagy role of Yep1 relies on its abilities to self-interact and shape membranes and requires its C-terminal amphipathic helices. Moreover, we show that human REEP1-4 and budding yeast Atg40 can functionally substitute for Yep1 in ER-phagy, and Atg40 is a divergent ortholog of Yep1 and REEP1-4. Our findings uncover an unexpected mechanism governing the autophagosomal enclosure of ER-phagy/nucleophagy cargos and shed new light on the functions and evolution of REEP family proteins.
Collapse
Affiliation(s)
- Chen-Xi Zou
- National Institute of Biological Sciences, Beijing, China
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Zhu-Hui Ma
- National Institute of Biological Sciences, Beijing, China
| | - Zhao-Di Jiang
- National Institute of Biological Sciences, Beijing, China
| | - Zhao-Qian Pan
- National Institute of Biological Sciences, Beijing, China
| | - Dan-Dan Xu
- National Institute of Biological Sciences, Beijing, China
| | - Fang Suo
- National Institute of Biological Sciences, Beijing, China
| | - Guang-Can Shao
- National Institute of Biological Sciences, Beijing, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
29
|
Huang X, Yao J, Liu L, Chen J, Mei L, Huangfu J, Luo D, Wang X, Lin C, Chen X, Yang Y, Ouyang S, Wei F, Wang Z, Zhang S, Xiang T, Neculai D, Sun Q, Kong E, Tate EW, Yang A. S-acylation of p62 promotes p62 droplet recruitment into autophagosomes in mammalian autophagy. Mol Cell 2023; 83:3485-3501.e11. [PMID: 37802024 PMCID: PMC10552648 DOI: 10.1016/j.molcel.2023.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/22/2023] [Accepted: 09/07/2023] [Indexed: 10/08/2023]
Abstract
p62 is a well-characterized autophagy receptor that recognizes and sequesters specific cargoes into autophagosomes for degradation. p62 promotes the assembly and removal of ubiquitinated proteins by forming p62-liquid droplets. However, it remains unclear how autophagosomes efficiently sequester p62 droplets. Herein, we report that p62 undergoes reversible S-acylation in multiple human-, rat-, and mouse-derived cell lines, catalyzed by zinc-finger Asp-His-His-Cys S-acyltransferase 19 (ZDHHC19) and deacylated by acyl protein thioesterase 1 (APT1). S-acylation of p62 enhances the affinity of p62 for microtubule-associated protein 1 light chain 3 (LC3)-positive membranes and promotes autophagic membrane localization of p62 droplets, thereby leading to the production of small LC3-positive p62 droplets and efficient autophagic degradation of p62-cargo complexes. Specifically, increasing p62 acylation by upregulating ZDHHC19 or by genetic knockout of APT1 accelerates p62 degradation and p62-mediated autophagic clearance of ubiquitinated proteins. Thus, the protein S-acylation-deacylation cycle regulates p62 droplet recruitment to the autophagic membrane and selective autophagic flux, thereby contributing to the control of selective autophagic clearance of ubiquitinated proteins.
Collapse
Affiliation(s)
- Xue Huang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Jia Yao
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Lu Liu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Jing Chen
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Ligang Mei
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Jingjing Huangfu
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
| | - Dong Luo
- School of Pharmacy, Chongqing University, Chongqing 401331, China
| | - Xinyi Wang
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China; Department of Biochemistry and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Changhai Lin
- School of Life Sciences, Chongqing University, Chongqing 401331, China; Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Xiaorong Chen
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yi Yang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Sheng Ouyang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Fujing Wei
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Zhuolin Wang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Shaolin Zhang
- School of Pharmacy, Chongqing University, Chongqing 401331, China
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Dante Neculai
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Qiming Sun
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China; Department of Biochemistry and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Eryan Kong
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
| | - Edward W Tate
- Department of Chemistry, Imperial College London, 82 Wood Lane, London W12 0BZ, UK
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
30
|
Yang J, Li L, Li C, Chen W, Liu Y, Luo S, Zhao C, Han Y, Yang M, Zhao H, Jiang N, Xi Y, Tang C, Cai J, Xiao L, Liu H, Sun L. PACS-2 deficiency aggravates tubular injury in diabetic kidney disease by inhibiting ER-phagy. Cell Death Dis 2023; 14:649. [PMID: 37794057 PMCID: PMC10550977 DOI: 10.1038/s41419-023-06175-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Autophagy of endoplasmic reticulum (ER-phagy) selectively removes damaged ER through autophagy-lysosome pathway, acting as an adaptive mechanism to alleviate ER stress and restore ER homeostasis. However, the role and precise mechanism of ER-phagy in tubular injury of diabetic kidney disease (DKD) remain obscure. In the present study, we demonstrated that ER-phagy of renal tubular cells was severely impaired in streptozocin (STZ)-induced diabetic mice, with a decreased expression of phosphofurin acidic cluster sorting protein 2 (PACS-2), a membrane trafficking protein which was involved in autophagy, and a reduction of family with sequence similarity 134 member B (FAM134B), one ER-phagy receptor. These changes were further aggravated in mice with proximal tubule specific knockout of Pacs-2 gene. In vitro, transfection of HK-2 cells with PACS-2 overexpression plasmid partially improved the impairment of ER-phagy and the reduction of FAM134B, both of which were induced in high glucose ambience; while the effect was blocked by FAM134B siRNA. Mechanistically, PACS-2 interacted with and promoted the nuclear translocation of transcription factor EB (TFEB), which was reported to activate the expression of FAM134B. Collectively, these data unveiled that PACS-2 deficiency aggravates renal tubular injury in DKD via inhibiting ER-phagy through TFEB/FAM134B pathway.
Collapse
Affiliation(s)
- Jinfei Yang
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Li
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chenrui Li
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Wei Chen
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chanyue Zhao
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Ming Yang
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Hao Zhao
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Na Jiang
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yiyun Xi
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chengyuan Tang
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Juan Cai
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Xiao
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Huafeng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Lin Sun
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China.
| |
Collapse
|
31
|
Hill MA, Sykes AM, Mellick GD. ER-phagy in neurodegeneration. J Neurosci Res 2023; 101:1611-1623. [PMID: 37334842 DOI: 10.1002/jnr.25225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/11/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023]
Abstract
There are many cellular mechanisms implicated in the initiation and progression of neurodegenerative disorders. However, age and the accumulation of unwanted cellular products are a common theme underlying many neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and Niemann-Pick type C. Autophagy has been studied extensively in these diseases and various genetic risk factors have implicated disruption in autophagy homoeostasis as a major pathogenic mechanism. Autophagy is essential in the maintenance of neuronal homeostasis, as their postmitotic nature makes them particularly susceptible to the damage caused by accumulation of defective or misfolded proteins, disease-prone aggregates, and damaged organelles. Recently, autophagy of the endoplasmic reticulum (ER-phagy) has been identified as a novel cellular mechanism for regulating ER morphology and response to cellular stress. As neurodegenerative diseases are generally precipitated by cellular stressors such as protein accumulation and environmental toxin exposure the role of ER-phagy has begun to be investigated. In this review we discuss the current research in ER-phagy and its involvement in neurodegenerative diseases.
Collapse
Affiliation(s)
- Melissa A Hill
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Alex M Sykes
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - George D Mellick
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
32
|
Li JY, Tian T, Han B, Yang T, Guo YX, Wu JY, Chen YS, Yang Q, Xie RJ. Suberoylanilide hydroxamic acid upregulates reticulophagy receptor expression and promotes cell death in hepatocellular carcinoma cells. World J Gastroenterol 2023; 29:5038-5053. [PMID: 37753370 PMCID: PMC10518741 DOI: 10.3748/wjg.v29.i34.5038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/15/2023] [Accepted: 08/15/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common clinical condition with a poor prognosis and few effective treatment options. Potent anticancer agents for treating HCC must be identified. Epigenetics plays an essential role in HCC tumorigenesis. Suberoylanilide hydroxamic acid (SAHA), the most common histone deacetylase inhibitor agent, triggers many forms of cell death in HCC. However, the underlying mechanism of action remains unclear. Family with sequence similarity 134 member B (FAM134B)-induced reticulophagy, a selective autophagic pathway, participates in the decision of cell fate and exhibits anticancer activity. This study focused on the relationship between FAM134B-induced reticulophagy and SAHA-mediated cell death. AIM To elucidate potential roles and underlying molecular mechanisms of reticulophagy in SAHA-induced HCC cell death. METHODS The viability, apoptosis, cell cycle, migration, and invasion of SAHA-treated Huh7 and MHCC97L cells were measured. Proteins related to the reticulophagy pathway, mitochondria-endoplasmic reticulum (ER) contact sites, intrinsic mitochondrial apoptosis, and histone acetylation were quantified using western blotting. ER and lysosome colocalization, and mitochondrial Ca2+ levels were characterized via confocal microscopy. The level of cell death was evaluated through Hoechst 33342 staining and propidium iodide colocalization. Chromatin immunoprecipitation was used to verify histone H4 lysine-16 acetylation in the FAM134B promoter region. RESULTS After SAHA treatment, the proliferation of Huh7 and MHCC97L cells was significantly inhibited, and the migration and invasion abilities were greatly blocked in vitro. This promoted apoptosis and caused G1 phase cells to increase in a concentration-dependent manner. Following treatment with SAHA, ER-phagy was activated, thereby triggering autophagy-mediated cell death of HCC cells in vitro. Western blotting and chromatin immunoprecipitation assays confirmed that SAHA regulated FAM134B expression by enhancing the histone H4 lysine-16 acetylation in the FAM134B promoter region. Further, SAHA disturbed the Ca2+ homeostasis and upregulated the level of autocrine motility factor receptor and proteins related to mitochondria-endoplasmic reticulum contact sites in HCC cells. Additionally, SAHA decreased the mitochondrial membrane potential levels, thereby accelerating the activation of the reticulophagy-mediated mitochondrial apoptosis pathway and promoting HCC cell death in vitro. CONCLUSION SAHA stimulates FAM134B-mediated ER-phagy to synergistically enhance the mitochondrial apoptotic pathway, thereby enhancing HCC cell death.
Collapse
Affiliation(s)
- Jia-Yao Li
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Tian Tian
- Department of Eugenic Genetics, Guiyang Maternal and Child Health Care Hospital, Guiyang 550003, Guizhou Province, China
| | - Bing Han
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Ting Yang
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Yi-Xin Guo
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Jia-Yu Wu
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Yu-Si Chen
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Qin Yang
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Ru-Jia Xie
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| |
Collapse
|
33
|
Çakar A, Bagırova G, Durmuş H, Uyguner O, Parman Y. Phenotypic features of RETREG1-related hereditary sensory autonomic neuropathy. J Peripher Nerv Syst 2023; 28:351-358. [PMID: 37448294 DOI: 10.1111/jns.12581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND AND AIMS Homozygous loss-of-function mutations in the RETREG1 gene result in Hereditary Sensory Autonomic Neuropathy Type 2B. Clinical features include pain loss, autonomic disturbances, and upper motor neuron features. METHODS We evaluated the clinical and genetic features of seven patients from four families with RETREG1 variants. RESULTS Five patients were male. The median age of disease onset was 7.00 ± 2.81 (between 2 and 10 years). A combination of painless wounds, trophic changes, and foot ulcerations was the presenting symptom in five patients and walking difficulties in two. Motor symptoms were present in five patients. In a median disease duration of 30.00 ± 12.88 years, five patients had osteomyelitis, and three had toe amputations. A history of renal disease was present in one family. In another family, three affected siblings had short stature and a history of delayed puberty. Although sensory signs predominated the clinical findings, various degrees of motor signs such as muscle weakness, spasticity, and brisk tendon reflexes were noted in all patients. Nerve conduction studies showed axonal sensory-motor neuropathy in five patients and sensory neuropathy in two. Three pathogenic variants were identified in the RETREG1 gene. Two unrelated patients had a homozygous c.433C > T/p.(Gln145*), one a homozygous c.826delA/p.(Ser276Valfs*8), and the last had a novel homozygous c.102delC/p.(Ala35Glnfs*349) variants. INTERPRETATION In our study, all patients showed signs and symptoms consistent with pain insensitivity. Although shadowed by sensory symptoms, motor signs were noted in our patients. Further studies are necessary to clarify the causal relationship between extra-neurological features and RETREG1 mutations.
Collapse
Affiliation(s)
- Arman Çakar
- Neuromuscular Unit, Neurology Department, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Gulandam Bagırova
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Hacer Durmuş
- Neuromuscular Unit, Neurology Department, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Oya Uyguner
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Yeşim Parman
- Neuromuscular Unit, Neurology Department, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
34
|
Borghi R, Trivisano M, Specchio N, Tartaglia M, Compagnucci C. Understanding the pathogenetic mechanisms underlying altered neuronal function associated with CAMK2B mutations. Neurosci Biobehav Rev 2023; 152:105299. [PMID: 37391113 DOI: 10.1016/j.neubiorev.2023.105299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/26/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
'Dominant mutations in CAMK2B, encoding a subunit of the calcium/calmodulin-dependent protein kinase II (CAMK2), a serine/threonine kinase playing a key role in synaptic plasticity, learning and memory, underlie a recently characterized neurodevelopmental disorder (MRD54) characterized by delayed psychomotor development, mild to severe intellectual disability, hypotonia, and behavioral abnormalities. Targeted therapies to treat MRD54 are currently unavailable. In this review, we revise current knowledge on the molecular and cellular mechanisms underlying the altered neuronal function associated with defective CAMKIIβ function. We also summarize the identified genotype-phenotype correlations and discuss the disease models that have been generated to profile the altered neuronal phenotype and understand the pathophysiology of this disease.
Collapse
Affiliation(s)
- Rossella Borghi
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marina Trivisano
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesu' Children's Hospital, IRCCS, Rome, Italy
| | - Nicola Specchio
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesu' Children's Hospital, IRCCS, Rome, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Claudia Compagnucci
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
35
|
Koutras N, Morfos V, Konnaris K, Kouvela A, Shaukat AN, Stathopoulos C, Stamatopoulou V, Nika K. Integrated signaling and transcriptome analysis reveals Src family kinase individualities and novel pathways controlled by their constitutive activity. Front Immunol 2023; 14:1224520. [PMID: 37680627 PMCID: PMC10482094 DOI: 10.3389/fimmu.2023.1224520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
The Src family kinases (SFKs) Lck and Lyn are crucial for lymphocyte development and function. Albeit tissue-restricted expression patterns the two kinases share common functions; the most pronounced one being the phosphorylation of ITAM motifs in the cytoplasmic tails of antigenic receptors. Lck is predominantly expressed in T lymphocytes; however, it can be ectopically found in B-1 cell subsets and numerous pathologies including acute and chronic B-cell leukemias. The exact impact of Lck on the B-cell signaling apparatus remains enigmatic and is followed by the long-lasting question of mechanisms granting selectivity among SFK members. In this work we sought to investigate the mechanistic basis of ectopic Lck function in B-cells and compare it to events elicited by the predominant B-cell SFK, Lyn. Our results reveal substrate promiscuity displayed by the two SFKs, which however, is buffered by their differential susceptibility toward regulatory mechanisms, revealing a so far unappreciated aspect of SFK member-specific fine-tuning. Furthermore, we show that Lck- and Lyn-generated signals suffice to induce transcriptome alterations, reminiscent of B-cell activation, in the absence of receptor/co-receptor engagement. Finally, our analyses revealed a yet unrecognized role of SFKs in tipping the balance of cellular stress responses, by promoting the onset of ER-phagy, an as yet completely uncharacterized process in B lymphocytes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Konstantina Nika
- Department of Biochemistry, School of Medicine, University of Patras, Patras, Greece
| |
Collapse
|
36
|
Li B, Sun Q. Deciphering the ER remodeling dynamics: ubiquitination of reticulon homology domain proteins fuels ER-phagy and impacts neurodegeneration. Sci Bull (Beijing) 2023; 68:1600-1602. [PMID: 37455166 DOI: 10.1016/j.scib.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Affiliation(s)
- Boran Li
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China; Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qiming Sun
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China; Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
37
|
Kanamori A, Hinaga S, Hirata Y, Amaya F, Oh-Hashi K. Molecular characterization of wild-type and HSAN2B-linked FAM134B. Mol Biol Rep 2023:10.1007/s11033-023-08517-y. [PMID: 37273064 DOI: 10.1007/s11033-023-08517-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/11/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Family with sequence similarity 134, member B (FAM134B), also known as Reticulophagy regulator 1 (RETREG1), is an ER-phagy receptor involved in ER homeostasis. Congenital mutations in the FAM134B gene have been reported to be associated with hereditary sensory and autonomic neuropathy type 2B (HSAN2B); however, the molecular differences between wild-type and HSAN2B-linked FAM134B are not fully understood. METHODS AND RESULTS We prepared several human FAM134B constructs, such as the HSAN2B-linked mutant, and compared their features with those of wild-type FAM134B by transfecting these constructs into FAM134B-deficient Neuro2a cells. Although intrinsic FAM134B protein expression in wild-type Neuro2a cells was affected by the supply of amino acids in the culture medium, the expression of each HSAN2B-linked mutant FAM134B protein was hardly affected by serum and amino acid deprivation. On the other hand, the intracellular localization of GFP-tagged HSAN2B-linked mutants, except for P7Gfs133X, overlapped well with ER-localized SP-RFPKDEL and did not differ from that of GFP-tagged wild-type FAM134B. However, analysis of protein‒protein interactions using the NanoBiT reporter assay revealed the difference between wild-type and C-terminal truncated mutant FAM134B. Furthermore, this NanoBiT assay demonstrated that both wild-type and G216R FAM134B interacted with LC3/GABARAPL1 to the same extent, but the FAM134B construct with mutations near the LC3-interacting region (LIR) did not. Similar to the NanoBiT assay, the C-terminal-truncated FAM134B showed lower ER-phagy activities, as assessed by the cotransfection of GFP-tagged reporters. CONCLUSIONS We showed that wild-type and HSAN2B-linked FAM134B have different molecular characteristics by transfecting cells with various types of constructs. Thus, this study provides new insights into the molecular mechanisms underlying HSAN2B as well as the regulation of ER-phagy.
Collapse
Affiliation(s)
- Akane Kanamori
- Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Shohei Hinaga
- Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yoko Hirata
- Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Fumimasa Amaya
- Department of Pain Management and Palliative Care Medicine, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-Ku, Kyoto, 602-0841, Japan
| | - Kentaro Oh-Hashi
- Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| |
Collapse
|
38
|
González A, Covarrubias-Pinto A, Bhaskara RM, Glogger M, Kuncha SK, Xavier A, Seemann E, Misra M, Hoffmann ME, Bräuning B, Balakrishnan A, Qualmann B, Dötsch V, Schulman BA, Kessels MM, Hübner CA, Heilemann M, Hummer G, Dikić I. Ubiquitination regulates ER-phagy and remodelling of endoplasmic reticulum. Nature 2023:10.1038/s41586-023-06089-2. [PMID: 37225996 DOI: 10.1038/s41586-023-06089-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/14/2023] [Indexed: 05/26/2023]
Abstract
The endoplasmic reticulum (ER) undergoes continuous remodelling via a selective autophagy pathway, known as ER-phagy1. ER-phagy receptors have a central role in this process2, but the regulatory mechanism remains largely unknown. Here we report that ubiquitination of the ER-phagy receptor FAM134B within its reticulon homology domain (RHD) promotes receptor clustering and binding to lipidated LC3B, thereby stimulating ER-phagy. Molecular dynamics (MD) simulations showed how ubiquitination perturbs the RHD structure in model bilayers and enhances membrane curvature induction. Ubiquitin molecules on RHDs mediate interactions between neighbouring RHDs to form dense receptor clusters that facilitate the large-scale remodelling of lipid bilayers. Membrane remodelling was reconstituted in vitro with liposomes and ubiquitinated FAM134B. Using super-resolution microscopy, we discovered FAM134B nanoclusters and microclusters in cells. Quantitative image analysis revealed a ubiquitin-mediated increase in FAM134B oligomerization and cluster size. We found that the E3 ligase AMFR, within multimeric ER-phagy receptor clusters, catalyses FAM134B ubiquitination and regulates the dynamic flux of ER-phagy. Our results show that ubiquitination enhances RHD functions via receptor clustering, facilitates ER-phagy and controls ER remodelling in response to cellular demands.
Collapse
Affiliation(s)
- Alexis González
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Adriana Covarrubias-Pinto
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ramachandra M Bhaskara
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Marius Glogger
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| | - Santosh K Kuncha
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Audrey Xavier
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Eric Seemann
- Institute of Biochemistry I, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Mohit Misra
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marina E Hoffmann
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Bastian Bräuning
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ashwin Balakrishnan
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt, Germany
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Michael M Kessels
- Institute of Biochemistry I, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Christian A Hübner
- Institute of Human Genetics, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Institute of Biophysics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ivan Dikić
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany.
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.
- Fraunhofer Institute of Translational Medicine and Pharmacology, Frankfurt am Main, Germany.
| |
Collapse
|
39
|
Foronda H, Fu Y, Covarrubias-Pinto A, Bocker HT, González A, Seemann E, Franzka P, Bock A, Bhaskara RM, Liebmann L, Hoffmann ME, Katona I, Koch N, Weis J, Kurth I, Gleeson JG, Reggiori F, Hummer G, Kessels MM, Qualmann B, Mari M, Dikić I, Hübner CA. Heteromeric clusters of ubiquitinated ER-shaping proteins drive ER-phagy. Nature 2023:10.1038/s41586-023-06090-9. [PMID: 37225994 DOI: 10.1038/s41586-023-06090-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/17/2023] [Indexed: 05/26/2023]
Abstract
Membrane-shaping proteins characterized by reticulon homology domains play an important part in the dynamic remodelling of the endoplasmic reticulum (ER). An example of such a protein is FAM134B, which can bind LC3 proteins and mediate the degradation of ER sheets through selective autophagy (ER-phagy)1. Mutations in FAM134B result in a neurodegenerative disorder in humans that mainly affects sensory and autonomic neurons2. Here we report that ARL6IP1, another ER-shaping protein that contains a reticulon homology domain and is associated with sensory loss3, interacts with FAM134B and participates in the formation of heteromeric multi-protein clusters required for ER-phagy. Moreover, ubiquitination of ARL6IP1 promotes this process. Accordingly, disruption of Arl6ip1 in mice causes an expansion of ER sheets in sensory neurons that degenerate over time. Primary cells obtained from Arl6ip1-deficient mice or from patients display incomplete budding of ER membranes and severe impairment of ER-phagy flux. Therefore, we propose that the clustering of ubiquitinated ER-shaping proteins facilitates the dynamic remodelling of the ER during ER-phagy and is important for neuronal maintenance.
Collapse
Affiliation(s)
- Hector Foronda
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Yangxue Fu
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt am Main, Germany
| | | | - Hartmut T Bocker
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Blink AG, Jena, Germany
| | - Alexis González
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt am Main, Germany
| | - Eric Seemann
- Institute for Biochemistry I, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Patricia Franzka
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Andrea Bock
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Ramachandra M Bhaskara
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Lutz Liebmann
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Marina E Hoffmann
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt am Main, Germany
| | - Istvan Katona
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Nicole Koch
- Institute for Biochemistry I, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Ingo Kurth
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Joseph G Gleeson
- Department of Neurosciences, Rady Children's Institute for Genomic Medicine Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, USA
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus C, Denmark
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Institute of Biophysics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Michael M Kessels
- Institute for Biochemistry I, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Britta Qualmann
- Institute for Biochemistry I, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Muriel Mari
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Ivan Dikić
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt am Main, Germany.
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.
| | - Christian A Hübner
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany.
- Center for Rare Diseases, Jena University Hospital, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
40
|
Wang X, Jiang X, Li B, Zheng J, Guo J, Gao L, Du M, Weng X, Li L, Chen S, Zhang J, Fang L, Liu T, Wang L, Liu W, Neculai D, Sun Q. A regulatory circuit comprising the CBP and SIRT7 regulates FAM134B-mediated ER-phagy. J Cell Biol 2023; 222:e202201068. [PMID: 37043189 PMCID: PMC10103787 DOI: 10.1083/jcb.202201068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 11/14/2022] [Accepted: 02/21/2023] [Indexed: 04/13/2023] Open
Abstract
Macroautophagy (autophagy) utilizes a serial of receptors to specifically recognize and degrade autophagy cargoes, including damaged organelles, to maintain cellular homeostasis. Upstream signals spatiotemporally regulate the biological functions of selective autophagy receptors through protein post-translational modifications (PTM) such as phosphorylation. However, it is unclear how acetylation directly controls autophagy receptors in selective autophagy. Here, we report that an ER-phagy receptor FAM134B is acetylated by CBP acetyltransferase, eliciting intense ER-phagy. Furthermore, FAM134B acetylation promoted CAMKII-mediated phosphorylation to sustain a mode of milder ER-phagy. Conversely, SIRT7 deacetylated FAM134B to temper its activities in ER-phagy to avoid excessive ER degradation. Together, this work provides further mechanistic insights into how ER-phagy receptor perceives environmental signals for fine-tuning of ER homeostasis and demonstrates how nucleus-derived factors are programmed to control ER stress by modulating ER-phagy.
Collapse
Affiliation(s)
- Xinyi Wang
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang UniversitySchool of Medicine, Hangzhou, China
| | - Xiao Jiang
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang UniversitySchool of Medicine, Hangzhou, China
| | - Boran Li
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang UniversitySchool of Medicine, Hangzhou, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang UniversitySchool of Medicine, Yiwu, China
| | - Jiahua Zheng
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang UniversitySchool of Medicine, Hangzhou, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang UniversitySchool of Medicine, Yiwu, China
| | - Jiansheng Guo
- Center of Cryo-Electron Microscopy, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lei Gao
- Microscopy Core Facility, Westlake University, Hangzhou, China
| | - Mengjie Du
- Department of Neurology of Second Affiliated Hospital, Institute of Neuroscience, Mental Health Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang UniversitySchool of Medicine, Hangzhou, China
| | - Xialian Weng
- Department of Cell Biology, Department of General Surgery of Sir Run Run Shaw Hospital, Zhejiang UniversitySchool of Medicine, Hangzhou, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, Beijing, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, Beijing, China
| | - Jingzi Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, China
| | - Lei Fang
- Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, China
| | - Ting Liu
- Department of Cell Biology, Department of General Surgery of Sir Run Run Shaw Hospital, Zhejiang UniversitySchool of Medicine, Hangzhou, China
| | - Liang Wang
- Department of Neurology of Second Affiliated Hospital, Institute of Neuroscience, Mental Health Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang UniversitySchool of Medicine, Hangzhou, China
| | - Wei Liu
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang UniversitySchool of Medicine, Hangzhou, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang UniversitySchool of Medicine, Yiwu, China
| | - Dante Neculai
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang UniversitySchool of Medicine, Yiwu, China
- Department of Cell Biology, Department of General Surgery of Sir Run Run Shaw Hospital, Zhejiang UniversitySchool of Medicine, Hangzhou, China
| | - Qiming Sun
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang UniversitySchool of Medicine, Hangzhou, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang UniversitySchool of Medicine, Yiwu, China
| |
Collapse
|
41
|
Tan X, Cai K, Li J, Yuan Z, Chen R, Xiao H, Xu C, Hu B, Qin Y, Ding B. Coronavirus subverts ER-phagy by hijacking FAM134B and ATL3 into p62 condensates to facilitate viral replication. Cell Rep 2023; 42:112286. [PMID: 36952345 PMCID: PMC9998290 DOI: 10.1016/j.celrep.2023.112286] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 02/07/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
ER-phagy is a form of autophagy that is mediated by ER-phagy receptors and selectively degrades endoplasmic reticulum (ER). Coronaviruses have been shown to use the ER as a membrane source to establish their double-membrane vesicles (DMVs). However, whether viruses modulate ER-phagy to drive viral DMV formation and its underlying molecular mechanisms remains largely unknown. Here, we demonstrate that coronavirus subverts ER-phagy by hijacking the ER-phagy receptors FAM134B and ATL3 into p62 condensates, resulting in increased viral replication. Mechanistically, we show that viral protein ORF8 binds to and undergoes condensation with p62. FAM134B and ATL3 interact with homodimer of ORF8 and are aggregated into ORF8/p62 liquid droplets, leading to ER-phagy inhibition. ORF8/p62 condensates disrupt ER-phagy to facilitate viral DMV formation and activate ER stress. Together, our data highlight how coronavirus modulates ER-phagy to drive viral replication by hijacking ER-phagy receptors.
Collapse
Affiliation(s)
- Xuan Tan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Kun Cai
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei 430079, China
| | - Jiajia Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhen Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ruifeng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hurong Xiao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chuanrui Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bing Hu
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei 430079, China
| | - Yali Qin
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China.
| | - Binbin Ding
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
42
|
Liang T, Smith CE, Hu Y, Zhang H, Zhang C, Xu Q, Lu Y, Qi L, Hu JCC, Simmer JP. Dentin defects caused by a Dspp -1 frameshift mutation are associated with the activation of autophagy. Sci Rep 2023; 13:6393. [PMID: 37076504 PMCID: PMC10115861 DOI: 10.1038/s41598-023-33362-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023] Open
Abstract
Dentin sialophosphoprotein (DSPP) is primarily expressed by differentiated odontoblasts (dentin-forming cells), and transiently expressed by presecretory ameloblasts (enamel-forming cells). Disease-causing DSPP mutations predominantly fall into two categories: 5' mutations affecting targeting and trafficking, and 3' - 1 frameshift mutations converting the repetitive, hydrophilic, acidic C-terminal domain into a hydrophobic one. We characterized the dental phenotypes and investigated the pathological mechanisms of DsppP19L and Dspp-1fs mice that replicate the two categories of human DSPP mutations. In DsppP19L mice, dentin is less mineralized but contains dentinal tubules. Enamel mineral density is reduced. Intracellular accumulation and ER retention of DSPP is observed in odontoblasts and ameloblasts. In Dspp-1fs mice, a thin layer of reparative dentin lacking dentinal tubules is deposited. Odontoblasts show severe pathosis, including intracellular accumulation and ER retention of DSPP, strong ubiquitin and autophagy activity, ER-phagy, and sporadic apoptosis. Ultrastructurally, odontoblasts show extensive autophagic vacuoles, some of which contain fragmented ER. Enamel formation is comparable to wild type. These findings distinguish molecular mechanisms underlying the dental phenotypes of DsppP19L and Dspp-1fs mice and support the recently revised Shields classification of dentinogenesis imperfecta caused by DSPP mutations in humans. The Dspp-1fs mice may be valuable for the study of autophagy and ER-phagy.
Collapse
Affiliation(s)
- Tian Liang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA.
| | - Charles E Smith
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA
- Department of Anatomy & Cell Biology, Faculty of Medicine & Health Sciences, McGill University, Montreal, QC, Canada
| | - Yuanyuan Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA
| | - Hong Zhang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA
| | - Chuhua Zhang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA
| | - Qian Xu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, 3302 Gaston Ave., Dallas, TX, 75246, USA
| | - Yongbo Lu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, 3302 Gaston Ave., Dallas, TX, 75246, USA
| | - Ling Qi
- Department of Molecular & Integrative Physiology, Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, 1000 Wall St., Ann Arbor, MI, 48105, USA
| | - Jan C-C Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA
| | - James P Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA
| |
Collapse
|
43
|
Divya S, Ravanan P. Cellular battle against endoplasmic reticulum stress and its adverse effect on health. Life Sci 2023; 323:121705. [PMID: 37075943 DOI: 10.1016/j.lfs.2023.121705] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
The endoplasmic reticulum (ER) is a dynamic organelle and a reliable performer for precisely folded proteins. To maintain its function and integrity, arrays of sensory and quality control systems enhance protein folding fidelity and resolve the highest error-prone areas. Yet numerous internal and external factors disrupt its homeostasis and trigger ER stress responses. Cells try to reduce the number of misfolded proteins via the UPR mechanism, and ER-related garbage disposals systems like ER-associated degradation (ERAD), ER-lysosome-associated degradation (ERLAD), ER-Associated RNA Silencing (ERAS), extracellular chaperoning, and autophagy systems, which activates and increase the cell survival rate by degrading misfolded proteins, prevent the aggregated proteins and remove the dysfunctional organelles. Throughout life, organisms must confront environmental stress to survive and develop. Communication between the ER & other organelles, signaling events mediated by calcium, reactive oxygen species, and inflammation are linked to diverse stress signaling pathways and regulate cell survival or cell death mechanisms. Unresolved cellular damages can cross the threshold limit of their survival, resulting in cell death or driving for various diseases. The multifaceted ability of unfolded protein response facilitates the therapeutic target and a biomarker for various diseases, helping with early diagnosis and detecting the severity of diseases.
Collapse
Affiliation(s)
- Subramaniyan Divya
- Functional Genomics Laboratory, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610005, Tamil Nadu, India
| | - Palaniyandi Ravanan
- Functional Genomics Laboratory, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610005, Tamil Nadu, India.
| |
Collapse
|
44
|
Ishii S, Chino H, Ode KL, Kurikawa Y, Ueda HR, Matsuura A, Mizushima N, Itakura E. CCPG1 recognizes endoplasmic reticulum luminal proteins for selective ER-phagy. Mol Biol Cell 2023; 34:ar29. [PMID: 36735498 PMCID: PMC10092646 DOI: 10.1091/mbc.e22-09-0432] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The endoplasmic reticulum (ER) is a major cell compartment where protein synthesis, folding, and posttranslational modifications occur with assistance from a wide variety of chaperones and enzymes. Quality control systems selectively eliminate abnormal proteins that accumulate inside the ER due to cellular stresses. ER-phagy, that is, selective autophagy of the ER, is a mechanism that maintains or reestablishes cellular and ER-specific homeostasis through removal of abnormal proteins. However, how ER luminal proteins are recognized by the ER-phagy machinery remains unclear. Here, we applied the aggregation-prone protein, six-repeated islet amyloid polypeptide (6xIAPP), as a model ER-phagy substrate and found that cell cycle progression 1 (CCPG1), which is an ER-phagy receptor, efficiently mediates its degradation via ER-phagy. We also identified prolyl 3-hydroxylase family member 4 (P3H4) as an endogenous cargo of CCPG1-dependent ER-phagy. The ER luminal region of CCPG1 contains several highly conserved regions that we refer to as cargo-interacting regions (CIRs); these interact directly with specific luminal cargos for ER-phagy. Notably, 6xIAPP and P3H4 interact directly with different CIRs. These findings indicate that CCPG1 is a bispecific ER-phagy receptor for ER luminal proteins and the autophagosomal membrane that contributes to the efficient removal of aberrant ER-resident proteins through ER-phagy.
Collapse
Affiliation(s)
- Shunsuke Ishii
- Department of Biology, Graduate School of Science and Engineering, Chiba University, Chiba 263-8522, Japan
| | - Haruka Chino
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Tokyo 113-0033, Japan
| | - Koji L Ode
- Department of Systems Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Yoshitaka Kurikawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Tokyo 113-0033, Japan
| | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan.,Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka 565-0871, Japan
| | - Akira Matsuura
- Department of Biology, Graduate School of Science, Chiba University, Chiba, 263-8522, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Tokyo 113-0033, Japan
| | - Eisuke Itakura
- Department of Biology, Graduate School of Science, Chiba University, Chiba, 263-8522, Japan
| |
Collapse
|
45
|
Li X, Chen Y, Gong S, Chen H, Liu H, Li X, Hao J. Emerging roles of TFE3 in metabolic regulation. Cell Death Discov 2023; 9:93. [PMID: 36906611 PMCID: PMC10008649 DOI: 10.1038/s41420-023-01395-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/13/2023] Open
Abstract
TFE3 is a member of the MiT family of the bHLH-leucine zipper transcription factor. We previously focused on the role of TFE3 in autophagy and cancer. Recently, an increasing number of studies have revealed that TFE3 plays an important role in metabolic regulation. TFE3 participates in the metabolism of energy in the body by regulating pathways such as glucose and lipid metabolism, mitochondrial metabolism, and autophagy. This review summarizes and discusses the specific regulatory mechanisms of TFE3 in metabolism. We determined both the direct regulation of TFE3 on metabolically active cells, such as hepatocytes and skeletal muscle cells, and the indirect regulation of TFE3 through mitochondrial quality control and the autophagy-lysosome pathway. The role of TFE3 in tumor cell metabolism is also summarized in this review. Understanding the diverse roles of TFE3 in metabolic processes can provide new avenues for the treatment of some metabolism-related disorders.
Collapse
Affiliation(s)
- Xingyu Li
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yongming Chen
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Siqiao Gong
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Huixia Chen
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Huafeng Liu
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Xiaoyu Li
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Junfeng Hao
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
46
|
Chen T, Tu S, Ding L, Jin M, Chen H, Zhou H. The role of autophagy in viral infections. J Biomed Sci 2023; 30:5. [PMID: 36653801 PMCID: PMC9846652 DOI: 10.1186/s12929-023-00899-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Autophagy is an evolutionarily conserved catabolic cellular process that exerts antiviral functions during a viral invasion. However, co-evolution and co-adaptation between viruses and autophagy have armed viruses with multiple strategies to subvert the autophagic machinery and counteract cellular antiviral responses. Specifically, the host cell quickly initiates the autophagy to degrade virus particles or virus components upon a viral infection, while cooperating with anti-viral interferon response to inhibit the virus replication. Degraded virus-derived antigens can be presented to T lymphocytes to orchestrate the adaptive immune response. Nevertheless, some viruses have evolved the ability to inhibit autophagy in order to evade degradation and immune responses. Others induce autophagy, but then hijack autophagosomes as a replication site, or hijack the secretion autophagy pathway to promote maturation and egress of virus particles, thereby increasing replication and transmission efficiency. Interestingly, different viruses have unique strategies to counteract different types of selective autophagy, such as exploiting autophagy to regulate organelle degradation, metabolic processes, and immune responses. In short, this review focuses on the interaction between autophagy and viruses, explaining how autophagy serves multiple roles in viral infection, with either proviral or antiviral functions.
Collapse
Affiliation(s)
- Tong Chen
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430030 China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430030 China
| | - Shaoyu Tu
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430030 China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430030 China
| | - Ling Ding
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430030 China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430030 China
| | - Meilin Jin
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430030 China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430030 China
| | - Huanchun Chen
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430030 China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430030 China
| | - Hongbo Zhou
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430030 China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430030 China
| |
Collapse
|
47
|
Chino H, Mizushima N. ER-Phagy: Quality and Quantity Control of the Endoplasmic Reticulum by Autophagy. Cold Spring Harb Perspect Biol 2023; 15:a041256. [PMID: 35940904 PMCID: PMC9808580 DOI: 10.1101/cshperspect.a041256] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The endoplasmic reticulum (ER) is the largest organelle and has multiple roles in various cellular processes such as protein secretion, lipid synthesis, calcium storage, and organelle biogenesis. The quantity and quality of this organelle are controlled by the ubiquitin-proteasome system and autophagy (termed "ER-phagy"). ER-phagy is defined as the degradation of part of the ER by the vacuole or lysosomes, and there are at least two types of ER-phagy: macro-ER-phagy and micro-ER-phagy. In macro-ER-phagy, ER fragments are enclosed by autophagosomes, which is mediated by ER-phagy receptors. In micro-ER-phagy, a portion of the ER is engulfed directly by the vacuole or lysosomes. In these two pathways, some proteins in the ER lumen can be recognized selectively and subjected to ER-phagy. This review summarizes our current knowledge of ER-phagy, focusing on its membrane dynamics, molecular mechanisms, substrate specificity, and physiological significance.
Collapse
Affiliation(s)
- Haruka Chino
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
48
|
Sanz-Martinez P, Stolz A. Mechanisms and physiological functions of ER-phagy. CURRENT OPINION IN PHYSIOLOGY 2022. [DOI: 10.1016/j.cophys.2022.100613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
Liu X, Hussain R, Mehmood K, Tang Z, Zhang H, Li Y. Mitochondrial-Endoplasmic Reticulum Communication-Mediated Oxidative Stress and Autophagy. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6459585. [PMID: 36164446 PMCID: PMC9509228 DOI: 10.1155/2022/6459585] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/18/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022]
Abstract
Oxidative stress is an imbalance between free radicals and the antioxidant system causing overgeneration of free radicals (oxygen-containing molecules) ultimately leading to oxidative damage in terms of lipid peroxidation, protein denaturation, and DNA mutation. Oxidative stress can activate autophagy to alleviate oxidative damage and maintain normal physiological activities of cells by degrading damaged organelles or local cytoplasm. When oxidative stress is not eliminated by autophagy, it activates the apoptosis cascade. This review provides a brief summary of mitochondrial-endoplasmic reticulum communication-mediated oxidative stress and autophagy. Mitochondria and endoplasmic reticulum being important organelles in cells are directly or indirectly connected to each other through mitochondria-associated endoplasmic reticulum membranes and jointly regulate oxidative stress and autophagy. The reactive oxygen species (ROS) produced by the mitochondrial respiratory chain are the main inducers of oxidative stress. Damaged mitochondria can be effectively cleared by the process of mitophagy mediated by PINK1/parkin pathway, Nix/BNIP3 pathways, and FUNDC1 pathway, avoiding excessive ROS production. However, the mechanism of mitochondrial-endoplasmic reticulum communication in the regulation of oxidative stress and autophagy is rarely known. For this reason, this review explores the mutual connection of mitochondria and endoplasmic reticulum in mediating oxidative stress and autophagy through ROS and Ca2+ and aims to provide part of the theoretical basis for alleviating oxidative stress through autophagy mediated by mitochondrial-endoplasmic reticulum communication.
Collapse
Affiliation(s)
- Xiaoqing Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Riaz Hussain
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
50
|
Di Lorenzo G, Iavarone F, Maddaluno M, Plata-Gómez AB, Aureli S, Quezada Meza CP, Cinque L, Palma A, Reggio A, Cirillo C, Sacco F, Stolz A, Napolitano G, Marin O, Pinna LA, Ruzzene M, Limongelli V, Efeyan A, Grumati P, Settembre C. Phosphorylation of FAM134C by CK2 controls starvation-induced ER-phagy. SCIENCE ADVANCES 2022; 8:eabo1215. [PMID: 36044577 PMCID: PMC9432840 DOI: 10.1126/sciadv.abo1215] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/20/2022] [Indexed: 05/28/2023]
Abstract
Selective degradation of the endoplasmic reticulum (ER) via autophagy (ER-phagy) is initiated by ER-phagy receptors, which facilitate the incorporation of ER fragments into autophagosomes. FAM134 reticulon family proteins (FAM134A, FAM134B, and FAM134C) are ER-phagy receptors with structural similarities and nonredundant functions. Whether they respond differentially to the stimulation of ER-phagy is unknown. Here, we describe an activation mechanism unique to FAM134C during starvation. In fed conditions, FAM134C is phosphorylated by casein kinase 2 (CK2) at critical residues flanking the LIR domain. Phosphorylation of these residues negatively affects binding affinity to the autophagy proteins LC3. During starvation, mTORC1 inhibition limits FAM134C phosphorylation by CK2, hence promoting receptor activation and ER-phagy. Using a novel tool to study ER-phagy in vivo and FAM134C knockout mice, we demonstrated the physiological relevance of FAM134C phosphorylation during starvation-induced ER-phagy in liver lipid metabolism. These data provide a mechanistic insight into ER-phagy regulation and an example of autophagy selectivity during starvation.
Collapse
Affiliation(s)
| | | | | | - Ana Belén Plata-Gómez
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Simone Aureli
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Euler Institute, Lugano, Switzerland
| | | | - Laura Cinque
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Alessandro Palma
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Alessio Reggio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Carmine Cirillo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Francesca Sacco
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Alexandra Stolz
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Gennaro Napolitano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Translational Medicine, Federico II University, Naples, Italy
| | - Oriano Marin
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lorenzo A. Pinna
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- CNR Neuroscience Institute, Padova, Italy
| | - Maria Ruzzene
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- CNR Neuroscience Institute, Padova, Italy
| | - Vittorio Limongelli
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Euler Institute, Lugano, Switzerland
- Department of Pharmacy, Federico II University, Naples, Italy
| | - Alejo Efeyan
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Paolo Grumati
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| |
Collapse
|