1
|
Li S, Fernandez JJ, Ruehle MD, Howard-Till RA, Fabritius A, Pearson CG, Agard DA, Winey ME. The Structure of Cilium Inner Junctions Revealed by Electron Cryo-tomography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612100. [PMID: 39314311 PMCID: PMC11419100 DOI: 10.1101/2024.09.09.612100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The cilium is a microtubule-based organelle critical for many cellular functions. Its assembly initiates at a basal body and continues as an axoneme that projects out of the cell to form a functional cilium. This assembly process is tightly regulated. However, our knowledge of the molecular architecture and the mechanism of assembly is limited. By applying electron cryotomography and subtomogram averaging, we obtained subnanometer resolution structures of the inner junction in three distinct regions of the cilium: the proximal region of the basal body, the central core of the basal body, and the flagellar axoneme. The structures allowed us to identify several basal body and axoneme components. While a few proteins are distributed throughout the entire length of the organelle, many are restricted to particular regions of the cilium, forming intricate local interaction networks and bolstering local structural stability. Finally, by knocking out a critical basal body inner junction component Poc1, we found the triplet MT was destabilized, resulting in a defective structure. Surprisingly, several axoneme-specific components were found to "infiltrate" into the mutant basal body. Our findings provide molecular insight into cilium assembly at its inner Junctions, underscoring its precise spatial regulation.
Collapse
Affiliation(s)
- Sam Li
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jose-Jesus Fernandez
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - Marisa D. Ruehle
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rachel A. Howard-Till
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA
| | - Amy Fabritius
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA
| | - Chad G. Pearson
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David A. Agard
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
- Chan Zuckerberg Institute for Advanced Biological Imaging, Redwood Shores, CA, USA
| | - Mark E. Winey
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
2
|
Marshall WF. Chlamydomonas as a model system to study cilia and flagella using genetics, biochemistry, and microscopy. Front Cell Dev Biol 2024; 12:1412641. [PMID: 38872931 PMCID: PMC11169674 DOI: 10.3389/fcell.2024.1412641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
The unicellular green alga, Chlamydomonas reinhardtii, has played a central role in discovering much of what is currently known about the composition, assembly, and function of cilia and flagella. Chlamydomonas combines excellent genetics, such as the ability to grow cells as haploids or diploids and to perform tetrad analysis, with an unparalleled ability to detach and isolate flagella in a single step without cell lysis. The combination of genetics and biochemistry that is possible in Chlamydomonas has allowed many of the key components of the cilium to be identified by looking for proteins that are missing in a defined mutant. Few if any other model organisms allow such a seamless combination of genetic and biochemical approaches. Other major advantages of Chlamydomonas compared to other systems include the ability to induce flagella to regenerate in a highly synchronous manner, allowing the kinetics of flagellar growth to be measured, and the ability of Chlamydomonas flagella to adhere to glass coverslips allowing Intraflagellar Transport to be easily imaged inside the flagella of living cells, with quantitative precision and single-molecule resolution. These advantages continue to work in favor of Chlamydomonas as a model system going forward, and are now augmented by extensive genomic resources, a knockout strain collection, and efficient CRISPR gene editing. While Chlamydomonas has obvious limitations for studying ciliary functions related to animal development or organ physiology, when it comes to studying the fundamental biology of cilia and flagella, Chlamydomonas is simply unmatched in terms of speed, efficiency, cost, and the variety of approaches that can be brought to bear on a question.
Collapse
Affiliation(s)
- Wallace F. Marshall
- Department Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
3
|
Turner KA, Caswell DL, McGrady BM, Pietras-Allen A, Sedlak J, Nathan C, Parasuraman S, McGann AP, Fazili FM, Bell JR, El Smail KN, Pillai SB, Parry KR, Richardson KP, Ruble K, Jaiswal A, Shah TA, Sindhwani P, Avidor-Reiss T. CP110 and CEP135 localize near the proximal and distal centrioles of cattle and human spermatozoa. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000951. [PMID: 37822686 PMCID: PMC10562935 DOI: 10.17912/micropub.biology.000951] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/07/2023] [Accepted: 09/22/2023] [Indexed: 10/13/2023]
Abstract
Centrosomes play an important role in the microtubule organization of a cell. The sperm's specialized centrosome consists of the canonical barrel-shaped proximal centriole, the funnel-shaped distal centriole, and the pericentriolar material known as striated columns (or segmented columns). Here, we examined the localization of the centriole proteins CEP135 and CP110 in cattle and human spermatozoa. In canonical centrioles, CP110 is a centriole tip protein that controls cilia formation, while CEP135 is a structural protein essential for constructing the centriole. In contrast, we found antibodies recognizing CEP135 and CP110 label near the proximal and distal centrioles at the expected location of the striated columns and capitulum in cattle and humans in an antibody and species-specific way. These findings provide a pathway to understanding the unique functions of spermatozoan centrosome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kelsie Ruble
- University of Toledo, Toledo, Ohio, United States
| | | | | | | | | |
Collapse
|
4
|
Gomez Melo S, Wörthmüller D, Gönczy P, Banterle N, Schwarz US. Grand canonical Brownian dynamics simulations of adsorption and self-assembly of SAS-6 rings on a surface. J Chem Phys 2023; 158:085102. [PMID: 36859084 DOI: 10.1063/5.0135349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
The Spindle Assembly Abnormal Protein 6 (SAS-6) forms dimers, which then self-assemble into rings that are critical for the nine-fold symmetry of the centriole organelle. It has recently been shown experimentally that the self-assembly of SAS-6 rings is strongly facilitated on a surface, shifting the reaction equilibrium by four orders of magnitude compared to the bulk. Moreover, a fraction of non-canonical symmetries (i.e., different from nine) was observed. In order to understand which aspects of the system are relevant to ensure efficient self-assembly and selection of the nine-fold symmetry, we have performed Brownian dynamics computer simulation with patchy particles and then compared our results with the experimental ones. Adsorption onto the surface was simulated by a grand canonical Monte Carlo procedure and random sequential adsorption kinetics. Furthermore, self-assembly was described by Langevin equations with hydrodynamic mobility matrices. We find that as long as the interaction energies are weak, the assembly kinetics can be described well by coagulation-fragmentation equations in the reaction-limited approximation. By contrast, larger interaction energies lead to kinetic trapping and diffusion-limited assembly. We find that the selection of nine-fold symmetry requires a small value for the angular interaction range. These predictions are confirmed by the experimentally observed reaction constant and angle fluctuations. Overall, our simulations suggest that the SAS-6 system works at the crossover between a relatively weak binding energy that avoids kinetic trapping and a small angular range that favors the nine-fold symmetry.
Collapse
Affiliation(s)
- Santiago Gomez Melo
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg, Germany
| | - Dennis Wörthmüller
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg, Germany
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Niccolo Banterle
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Ulrich S Schwarz
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg, Germany
| |
Collapse
|
5
|
Ishikawa T. Mass-Spec, Cryo-EM and AI join forces for a close look at the transporter complex in cilia. EMBO J 2023; 42:e113010. [PMID: 36519407 PMCID: PMC9841323 DOI: 10.15252/embj.2022113010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
The intraflagellar transport (IFT) complex transports components between the cytoplasm and the ciliary tip. Two studies now report on the atomic structure of IFT-B, the core of IFT, using cutting-edge technology, such as cross-linking mass spectrometry (MS), cryo-electron tomography (cryo-ET) and Alphafold2-enabled AI-based folding prediction. The 3D structure of IFT-B reveals how the 15 component proteins are arranged to stabilize this gigantic complex and suggests a dynamic interplay between the proteins.
Collapse
Affiliation(s)
- Takashi Ishikawa
- Department of Biology and ChemistryPaul Scherrer InstituteVilligen PSISwitzerland
- Department of BiologyETH ZurichVilligen PSISwitzerland
| |
Collapse
|
6
|
Noga A, Horii M, Goto Y, Toyooka K, Ishikawa T, Hirono M. Bld10p/Cep135 determines the number of triplets in the centriole independently of the cartwheel. EMBO J 2022; 41:e104582. [PMID: 36093892 PMCID: PMC9574746 DOI: 10.15252/embj.2020104582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/06/2022] [Accepted: 08/22/2022] [Indexed: 09/14/2023] Open
Abstract
The conserved nine-fold structural symmetry of the centriole is thought to be generated by cooperation between two mechanisms, one dependent on and the other independent of the cartwheel, a sub-centriolar structure consisting of a hub and nine spokes. However, the molecular entity of the cartwheel-independent mechanism has not been elucidated. Here, using Chlamydomonas reinhardtii mutants, we show that Bld10p/Cep135, a conserved centriolar protein that connects cartwheel spokes and triplet microtubules, plays a central role in this mechanism. Using immunoelectron microscopy, we localized hemagglutinin epitopes attached to distinct regions of Bld10p along two lines that connect adjacent triplets. Consistently, conventional and cryo-electron microscopy identified crosslinking structures at the same positions. In centrioles formed in the absence of the cartwheel, truncated Bld10p was found to significantly reduce the inter-triplet distance and frequently form eight-microtubule centrioles. These results suggest that the newly identified crosslinks are comprised of part of Bld10p/Cep135. We propose that Bld10p determines the inter-triplet distance in the centriole and thereby regulates the number of triplets in a cartwheel-independent manner.
Collapse
Affiliation(s)
- Akira Noga
- Department of Frontier BioscienceHosei UniversityTokyoJapan
- Department of Biological SciencesUniversity of TokyoTokyoJapan
- Division of Biology and ChemistryPaul Scherrer InstituteVilligenSwitzerland
| | - Mao Horii
- Department of Biological SciencesUniversity of TokyoTokyoJapan
| | - Yumi Goto
- RIKEN Center for Sustainable Resource ScienceYokohamaJapan
| | | | - Takashi Ishikawa
- Division of Biology and ChemistryPaul Scherrer InstituteVilligenSwitzerland
- Department of BiologyETH ZurichZurichSwitzerland
| | | |
Collapse
|