1
|
Patel DT, Stogios PJ, Jaroszewski L, Urbanus ML, Sedova M, Semper C, Le C, Takkouche A, Ichii K, Innabi J, Patel DH, Ensminger AW, Godzik A, Savchenko A. Global atlas of predicted functional domains in Legionella pneumophila Dot/Icm translocated effectors. Mol Syst Biol 2025; 21:59-89. [PMID: 39562741 PMCID: PMC11696984 DOI: 10.1038/s44320-024-00076-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024] Open
Abstract
Legionella pneumophila utilizes the Dot/Icm type IVB secretion system to deliver hundreds of effector proteins inside eukaryotic cells to ensure intracellular replication. Our understanding of the molecular functions of the largest pathogenic arsenal known to the bacterial world remains incomplete. By leveraging advancements in 3D protein structure prediction, we provide a comprehensive structural analysis of 368 L. pneumophila effectors, representing a global atlas of predicted functional domains summarized in a database ( https://pathogens3d.org/legionella-pneumophila ). Our analysis identified 157 types of diverse functional domains in 287 effectors, including 159 effectors with no prior functional annotations. Furthermore, we identified 35 cryptic domains in 30 effector models that have no similarity with experimentally structurally characterized proteins, thus, hinting at novel functionalities. Using this analysis, we demonstrate the activity of thirteen functional domains, including three cryptic domains, predicted in L. pneumophila effectors to cause growth defects in the Saccharomyces cerevisiae model system. This illustrates an emerging strategy of exploring synergies between predictions and targeted experimental approaches in elucidating novel effector activities involved in infection.
Collapse
Affiliation(s)
- Deepak T Patel
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Peter J Stogios
- BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Lukasz Jaroszewski
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA
| | - Malene L Urbanus
- Department of Biochemistry, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Mayya Sedova
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA
| | - Cameron Semper
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Cathy Le
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Abraham Takkouche
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA
| | - Keita Ichii
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA
| | - Julie Innabi
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA
| | - Dhruvin H Patel
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Alexander W Ensminger
- Department of Biochemistry, University of Toronto, Toronto, ON, M5G 1M1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada.
| | - Adam Godzik
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA.
| | - Alexei Savchenko
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 1A4, Canada.
| |
Collapse
|
2
|
Roberts CG, Kaur S, Ogden AJ, Divine ME, Warren GD, Kang D, Kirienko NV, Geurink PP, Mulder MP, Nakayasu ES, McDermott JE, Adkins JN, Aballay A, Pruneda JN. A functional screen for ubiquitin regulation identifies an E3 ligase secreted by Pseudomonas aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613774. [PMID: 39345563 PMCID: PMC11430079 DOI: 10.1101/2024.09.18.613774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Ubiquitin signaling controls many aspects of eukaryotic biology, including targeted protein degradation and immune defense. Remarkably, invading bacterial pathogens have adapted secreted effector proteins that hijack host ubiquitination to gain control over host responses. These ubiquitin-targeted effectors can exhibit, for example, E3 ligase or deubiquitinase activities, often without any sequence or structural homology to eukaryotic ubiquitin regulators. Such convergence in function poses a challenge to the discovery of additional bacterial virulence factors that target ubiquitin. To overcome this, we have developed a workflow to harvest natively secreted bacterial effectors and functionally screen them for ubiquitin regulatory activities. After benchmarking this approach on diverse ligase and deubiquitinase activities from Salmonella Typhimurium, Enteropathogenic Escherichia coli, and Shigella flexneri, we applied it to the identification of a cryptic E3 ligase activity secreted by Pseudomonas aeruginosa. We identified an unreported P. aeruginosa E3 ligase, which we have termed Pseudomonas Ub ligase 1 (PUL-1), that resembles none of the other E3 ligases previously established in or outside of the eukaryotic system. Importantly, in an animal model of P. aeruginosa infection, PUL-1 ligase activity plays an important role in regulating virulence. Thus, our workflow for the functional identification of ubiquitin-targeted effector proteins carries promise for expanding our appreciation of how host ubiquitin regulation contributes to bacterial pathogenesis.
Collapse
Affiliation(s)
- Cameron G. Roberts
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Supender Kaur
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Aaron J. Ogden
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Michael E. Divine
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Gus D. Warren
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Donghoon Kang
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | | | - Paul P. Geurink
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Monique P.C. Mulder
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Jason E. McDermott
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Joshua N. Adkins
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alejandro Aballay
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jonathan N. Pruneda
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
3
|
Pruneda JN, Nguyen JV, Nagai H, Kubori T. Bacterial usurpation of the OTU deubiquitinase fold. FEBS J 2024; 291:3303-3316. [PMID: 36636866 PMCID: PMC10338644 DOI: 10.1111/febs.16725] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/10/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023]
Abstract
The extensive cellular signalling events controlled by posttranslational ubiquitination are tightly regulated through the action of specialized proteases termed deubiquitinases. Among them, the OTU family of deubiquitinases can play very specialized roles in the regulation of discrete subtypes of ubiquitin signals that control specific cellular functions. To exert control over host cellular functions, some pathogenic bacteria have usurped the OTU deubiquitinase fold as a secreted virulence factor that interferes with ubiquitination inside infected cells. Herein, we provide a review of the function of bacterial OTU deubiquitinases during infection, the structural basis for their deubiquitinase activities and the bioinformatic approaches leading to their identification. Understanding bacterial OTU deubiquitinases holds the potential for discoveries not only in bacterial pathogenesis but in eukaryotic biology as well.
Collapse
Affiliation(s)
- Jonathan N. Pruneda
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Justine V. Nguyen
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Hiroki Nagai
- Department of Microbiology, Graduate School of Medicine, Gifu University, Gifu, Gifu 501-1194, Japan
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Gifu 501-1194, Japan
| | - Tomoko Kubori
- Department of Microbiology, Graduate School of Medicine, Gifu University, Gifu, Gifu 501-1194, Japan
| |
Collapse
|
4
|
Zhu W, Zhang Q, Jin L, Lou S, Ye J, Cui Y, Xiong Y, Lin M, Liang G, Luo W, Zhuang Z. OTUD1 Deficiency Alleviates LPS-Induced Acute Lung Injury in Mice by Reducing Inflammatory Response. Inflammation 2024:10.1007/s10753-024-02074-7. [PMID: 39037666 DOI: 10.1007/s10753-024-02074-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/05/2024] [Accepted: 06/03/2024] [Indexed: 07/23/2024]
Abstract
The ovarian tumor (OTU) family consists of deubiquitinating enzymes thought to play a crucial role in immunity. Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) pose substantial clinical challenges due to severe respiratory complications and high mortality resulting from uncontrolled inflammation. Despite this, no study has explored the potential link between the OTU family and ALI/ARDS. Using publicly available high-throughput data, 14 OTUs were screened in a simulating bacteria- or LPS-induced ALI model. Subsequently, gene knockout mice and transcriptome sequencing were employed to explore the roles and mechanisms of the selected OTUs in ALI. Our screen identified OTUD1 in the OTU family as a deubiquitinase highly related to ALI. In the LPS-induced ALI model, deficiency of OTUD1 significantly ameliorated pulmonary edema, reduced permeability damage, and decreased lung immunocyte infiltration. Furthermore, RNA-seq analysis revealed that OTUD1 deficiency inhibited key pathways, including the IFN-γ/STAT1 and TNF-α/NF-κB axes, ultimately mitigating the severity of immune responses in ALI. In summary, our study highlights OTUD1 as a critical immunomodulatory factor in acute inflammation. These findings suggest that targeting OTUD1 could hold promise for the development of novel treatments against ALI/ARDS.
Collapse
Affiliation(s)
- Weiwei Zhu
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China
- Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Qianhui Zhang
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China
| | - Leiming Jin
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China
| | - Shuaijie Lou
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China
| | - Jiaxi Ye
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yaqian Cui
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yongqiang Xiong
- Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Mengsha Lin
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China
| | - Guang Liang
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China.
- Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China.
| | - Wu Luo
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China.
- Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Zaishou Zhuang
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
5
|
Xu F, Chen H, Zhou C, Zang T, Wang R, Shen S, Li C, Yu Y, Pei Z, Shen L, Qian J, Ge J. Targeting deubiquitinase OTUB1 protects vascular smooth muscle cells in atherosclerosis by modulating PDGFRβ. Front Med 2024; 18:465-483. [PMID: 38644399 DOI: 10.1007/s11684-024-1056-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/04/2023] [Indexed: 04/23/2024]
Abstract
Atherosclerosis is a chronic artery disease that causes various types of cardiovascular dysfunction. Vascular smooth muscle cells (VSMCs), the main components of atherosclerotic plaque, switch from contractile to synthetic phenotypes during atherogenesis. Ubiquitylation is crucial in regulating VSMC phenotypes in atherosclerosis, and it can be reversely regulated by deubiquitinases. However, the specific effects of deubiquitinases on atherosclerosis have not been thoroughly elucidated. In this study, RNAi screening in human aortic smooth muscle cells was performed to explore the effects of OTU family deubiquitinases, which revealed that silencing OTUB1 inhibited PDGF-BB-stimulated VSMC phenotype switch. Further in vivo studies using Apoe-/- mice revealed that knockdown of OTUB1 in VSMCs alleviated atherosclerosis plaque burden in the advanced stage and led to a stable plaque phenotype. Moreover, VSMC proliferation and migration upon PDGF-BB stimulation could be inhibited by silencing OTUB1 in vitro. Unbiased RNA-sequencing data indicated that knocking down OTUB1 influenced VSMC differentiation, adhesion, and proliferation. Mass spectrometry of ubiquitinated protein confirmed that proteins related to cell growth and migration were differentially ubiquitylated. Mechanistically, we found that OTUB1 recognized the K707 residue ubiquitylation of PDGFRβ with its catalytic triad, thereby reducing the K48-linked ubiquitylation of PDGFRβ. Inhibiting OTUB1 in VSMCs could promote PDGFRβ degradation via the ubiquitin-proteasome pathway, so it was beneficial in preventing VSMCs' phenotype switch. These findings revealed that knocking down OTUB1 ameliorated VSMCs' phenotype switch and atherosclerosis progression, indicating that OTUB1 could be a valuable translational therapeutic target in the future.
Collapse
Affiliation(s)
- Fei Xu
- Department of Cardiology and Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China
| | - Han Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China
| | - Changyi Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China
| | - Tongtong Zang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China
| | - Rui Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China
| | - Shutong Shen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China
| | - Chaofu Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China
| | - Yue Yu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China
| | - Zhiqiang Pei
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China
| | - Li Shen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China.
| | - Juying Qian
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China.
| |
Collapse
|
6
|
Hollender M, Sałek M, Karlicki M, Karnkowska A. Single-cell genomics revealed Candidatus Grellia alia sp. nov. as an endosymbiont of Eutreptiella sp. (Euglenophyceae). Protist 2024; 175:126018. [PMID: 38325049 DOI: 10.1016/j.protis.2024.126018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
Though endosymbioses between protists and prokaryotes are widespread, certain host lineages have received disproportionate attention what may indicate either a predisposition to such interactions or limited studies on certain protist groups due to lack of cultures. The euglenids represent one such group in spite of microscopic observations showing intracellular bacteria in some strains. Here, we perform a comprehensive molecular analysis of a previously identified endosymbiont in the Eutreptiella sp. CCMP3347 using a single cell approach and bulk culture sequencing. The genome reconstruction of this endosymbiont allowed the description of a new endosymbiont Candidatus Grellia alia sp. nov. from the family Midichloriaceae. Comparative genomics revealed a remarkably complete conjugative type IV secretion system present in three copies on the plasmid sequences of the studied endosymbiont, a feature missing in the closely related Grellia incantans. This study addresses the challenge of limited host cultures with endosymbionts by showing that the genomes of endosymbionts reconstructed from single host cells have the completeness and contiguity that matches or exceeds those coming from bulk cultures. This paves the way for further studies of endosymbionts in euglenids and other protist groups. The research also provides the opportunity to study the diversity of endosymbionts in natural populations.
Collapse
Affiliation(s)
- Metody Hollender
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Marta Sałek
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Michał Karlicki
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland.
| |
Collapse
|
7
|
Bastidas RJ, Kędzior M, Davidson RK, Walsh SC, Dolat L, Sixt BS, Pruneda JN, Coers J, Valdivia RH. The acetylase activity of Cdu1 regulates bacterial exit from infected cells by protecting Chlamydia effectors from degradation. eLife 2024; 12:RP87386. [PMID: 38358795 PMCID: PMC10942603 DOI: 10.7554/elife.87386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Many cellular processes are regulated by ubiquitin-mediated proteasomal degradation. Pathogens can regulate eukaryotic proteolysis through the delivery of proteins with de-ubiquitinating (DUB) activities. The obligate intracellular pathogen Chlamydia trachomatis secretes Cdu1 (ChlaDUB1), a dual deubiquitinase and Lys-acetyltransferase, that promotes Golgi remodeling and survival of infected host cells presumably by regulating the ubiquitination of host and bacterial proteins. Here, we determined that Cdu1's acetylase but not its DUB activity is important to protect Cdu1 from ubiquitin-mediated degradation. We further identified three C. trachomatis proteins on the pathogen-containing vacuole (InaC, IpaM, and CTL0480) that required Cdu1's acetylase activity for protection from degradation and determined that Cdu1 and these Cdu1-protected proteins are required for optimal egress of Chlamydia from host cells. These findings highlight a non-canonical mechanism of pathogen-mediated protection of virulence factors from degradation after their delivery into host cells and the coordinated regulation of secreted effector proteins.
Collapse
Affiliation(s)
- Robert J Bastidas
- Department of Integrative Immunobiology, Duke UniversityDurhamUnited States
| | - Mateusz Kędzior
- Department of Integrative Immunobiology, Duke UniversityDurhamUnited States
| | - Robert K Davidson
- Department of Molecular Genetics and Microbiology, Duke UniversityDukeUnited States
| | - Stephen C Walsh
- Department of Molecular Genetics and Microbiology, Duke UniversityDukeUnited States
| | - Lee Dolat
- Department of Integrative Immunobiology, Duke UniversityDurhamUnited States
| | - Barbara S Sixt
- Deparment of Molecular Biology, Umeå UniversityUmeåSweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå UniversityUmeåSweden
- Umeå Centre for Microbial Research (UCMR), Umeå UniversityUmeåSweden
| | - Jonathan N Pruneda
- Department of Molecular Microbiology & Immunology, Oregon Health & Science UniversityPortlandUnited States
| | - Jorn Coers
- Department of Integrative Immunobiology, Duke UniversityDurhamUnited States
- Department of Molecular Genetics and Microbiology, Duke UniversityDukeUnited States
| | - Raphael H Valdivia
- Department of Integrative Immunobiology, Duke UniversityDurhamUnited States
- Department of Molecular Genetics and Microbiology, Duke UniversityDukeUnited States
| |
Collapse
|
8
|
Hermanns T, Uthoff M, Baumann U, Hofmann K. The structural basis for deubiquitination by the fingerless USP-type effector TssM. Life Sci Alliance 2024; 7:e202302422. [PMID: 38170641 PMCID: PMC10719079 DOI: 10.26508/lsa.202302422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Intracellular bacteria are threatened by ubiquitin-mediated autophagy, whenever the bacterial surface or enclosing membrane structures become targets of host ubiquitin ligases. As a countermeasure, many intracellular pathogens encode deubiquitinase (DUB) effectors to keep their surfaces free of ubiquitin. Most bacterial DUBs belong to the OTU or CE-clan families. The betaproteobacteria Burkholderia pseudomallei and Burkholderia mallei, causative agents of melioidosis and glanders, respectively, encode the TssM effector, the only known bacterial DUB belonging to the USP class. TssM is much shorter than typical eukaryotic USP enzymes and lacks the canonical ubiquitin-recognition region. By solving the crystal structures of isolated TssM and its complex with ubiquitin, we found that TssM lacks the entire "Fingers" subdomain of the USP fold. Instead, the TssM family has evolved the functionally analog "Littlefinger" loop, which is located towards the end of the USP domain and recognizes different ubiquitin interfaces than those used by USPs. The structures revealed the presence of an N-terminal immunoglobulin-fold domain, which is able to form a strand-exchange dimer and might mediate TssM localization to the bacterial surface.
Collapse
Affiliation(s)
- Thomas Hermanns
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Matthias Uthoff
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Ulrich Baumann
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Cologne, Germany
| |
Collapse
|
9
|
Spano D, Catara G. Targeting the Ubiquitin-Proteasome System and Recent Advances in Cancer Therapy. Cells 2023; 13:29. [PMID: 38201233 PMCID: PMC10778545 DOI: 10.3390/cells13010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Ubiquitination is a reversible post-translational modification based on the chemical addition of ubiquitin to proteins with regulatory effects on various signaling pathways. Ubiquitination can alter the molecular functions of tagged substrates with respect to protein turnover, biological activity, subcellular localization or protein-protein interaction. As a result, a wide variety of cellular processes are under ubiquitination-mediated control, contributing to the maintenance of cellular homeostasis. It follows that the dysregulation of ubiquitination reactions plays a relevant role in the pathogenic states of human diseases such as neurodegenerative diseases, immune-related pathologies and cancer. In recent decades, the enzymes of the ubiquitin-proteasome system (UPS), including E3 ubiquitin ligases and deubiquitinases (DUBs), have attracted attention as novel druggable targets for the development of new anticancer therapeutic approaches. This perspective article summarizes the peculiarities shared by the enzymes involved in the ubiquitination reaction which, when deregulated, can lead to tumorigenesis. Accordingly, an overview of the main pharmacological interventions based on targeting the UPS that are in clinical use or still in clinical trials is provided, also highlighting the limitations of the therapeutic efficacy of these approaches. Therefore, various attempts to circumvent drug resistance and side effects as well as UPS-related emerging technologies in anticancer therapeutics are discussed.
Collapse
Affiliation(s)
- Daniela Spano
- Institute for Endocrinology and Experimental Oncology “G. Salvatore”, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Giuliana Catara
- Institute of Biochemistry and Cell Biology, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
10
|
Franklin TG, Brzovic PS, Pruneda JN. Bacterial ligases reveal fundamental principles of polyubiquitin specificity. Mol Cell 2023; 83:4538-4554.e4. [PMID: 38091999 PMCID: PMC10872931 DOI: 10.1016/j.molcel.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/28/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023]
Abstract
Homologous to E6AP C terminus (HECT) E3 ubiquitin (Ub) ligases direct substrates toward distinct cellular fates dictated by the specific form of monomeric or polymeric Ub (polyUb) signal attached. How polyUb specificity is achieved has been a long-standing mystery, despite extensive study in various hosts, ranging from yeast to human. The bacterial pathogens enterohemorrhagic Escherichia coli and Salmonella Typhimurium encode outlying examples of "HECT-like" (bHECT) E3 ligases, but commonalities to eukaryotic HECT (eHECT) mechanism and specificity had not been explored. We expanded the bHECT family with examples in human and plant pathogens. Three bHECT structures in primed, Ub-loaded states resolved key details of the entire Ub ligation process. One structure provided a rare glimpse into the act of ligating polyUb, yielding a means to rewire polyUb specificity of both bHECT and eHECT ligases. Studying this evolutionarily distinct bHECT family has revealed insight into the function of key bacterial virulence factors as well as fundamental principles underlying HECT-type Ub ligation.
Collapse
Affiliation(s)
- Tyler G Franklin
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Peter S Brzovic
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jonathan N Pruneda
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
11
|
Yang Y, Mei L, Chen J, Chen X, Wang Z, Liu L, Yang A. Legionella pneumophila-mediated host posttranslational modifications. J Mol Cell Biol 2023; 15:mjad032. [PMID: 37156500 PMCID: PMC10720952 DOI: 10.1093/jmcb/mjad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/17/2023] [Accepted: 05/06/2023] [Indexed: 05/10/2023] Open
Abstract
Legionella pneumophila is a Gram-negative bacterium ubiquitously present in freshwater environments and causes a serious type of pneumonia called Legionnaires' disease. During infections, L. pneumophila releases over 300 effector proteins into host cells through an Icm/Dot type IV secretion system to manipulate the host defense system for survival within the host. Notably, certain effector proteins mediate posttranslational modifications (PTMs), serving as useful approaches exploited by L. pneumophila to modify host proteins. Some effectors catalyze the addition of host protein PTMs, while others mediate the removal of PTMs from host proteins. In this review, we summarize L. pneumophila effector-mediated PTMs of host proteins, including phosphorylation, ubiquitination, glycosylation, AMPylation, phosphocholination, methylation, and ADP-ribosylation, as well as dephosphorylation, deubiquitination, deAMPylation, deADP-ribosylation, dephosphocholination, and delipidation. We describe their molecular mechanisms and biological functions in the regulation of bacterial growth and Legionella-containing vacuole biosynthesis and in the disruption of host immune and defense machinery.
Collapse
Affiliation(s)
- Yi Yang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Ligang Mei
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Jing Chen
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaorong Chen
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Zhuolin Wang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Lu Liu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
12
|
Boll V, Hermanns T, Uthoff M, Erven I, Hörner EM, Kozjak-Pavlovic V, Baumann U, Hofmann K. Functional and structural diversity in deubiquitinases of the Chlamydia-like bacterium Simkania negevensis. Nat Commun 2023; 14:7335. [PMID: 37957213 PMCID: PMC10643670 DOI: 10.1038/s41467-023-43144-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Besides the regulation of many cellular pathways, ubiquitination is important for defense against invading pathogens. Some intracellular bacteria have evolved deubiquitinase (DUB) effector proteins, which interfere with the host ubiquitin system and help the pathogen to evade xenophagy and lysosomal degradation. Most intracellular bacteria encode one or two DUBs, which are often linkage-promiscuous or preferentially cleave K63-linked chains attached to bacteria or bacteria-containing vacuoles. By contrast, the respiratory pathogen Legionella pneumophila possesses a much larger number of DUB effectors, including a K6-specific enzyme belonging to the OTU family and an M1-specific DUB uniquely found in this bacterium. Here, we report that the opportunistic pathogen Simkania negevensis, which is unrelated to Legionella but has a similar lifestyle, encodes a similarly large number of DUBs, including M1- and K6-specific enzymes. Simkania DUBs are highly diverse and include DUB classes never before seen in bacteria. Interestingly, the M1- and K6-specific DUBs of Legionella and Simkania are unrelated, suggesting that their acquisition occurred independently. We characterize the DUB activity of eight Simkania-encoded enzymes belonging to five different DUB classes. We also provide a structural basis for the M1-specificity of a Simkania DUB, which most likely evolved from a eukaryotic otubain-like precursor.
Collapse
Affiliation(s)
- Vanessa Boll
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Thomas Hermanns
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Matthias Uthoff
- Institute of Biochemistry, University of Cologne, Cologne, Germany
- Bayer AG, Research & Development, Pharmaceuticals, Biologics Research, Wuppertal, Germany
| | - Ilka Erven
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Eva-Maria Hörner
- Chair of Microbiology, Biocenter, Julius Maximilian University, Würzburg, Würzburg, Germany
| | - Vera Kozjak-Pavlovic
- Chair of Microbiology, Biocenter, Julius Maximilian University, Würzburg, Würzburg, Germany
| | - Ulrich Baumann
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Cologne, Germany.
| |
Collapse
|
13
|
Bastidas RJ, Kędzior M, Davidson RK, Walsh SC, Dolat L, Sixt BS, Pruneda JN, Coers J, Valdivia RH. The acetylase activity of Cdu1 regulates bacterial exit from infected cells by protecting Chlamydia effectors from degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530337. [PMID: 36909574 PMCID: PMC10002621 DOI: 10.1101/2023.02.28.530337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Many cellular processes are regulated by ubiquitin-mediated proteasomal degradation. Pathogens can regulate eukaryotic proteolysis through the delivery of proteins with de-ubiquitinating (DUB) activities. The obligate intracellular pathogen Chlamydia trachomatis secretes Cdu1 (ChlaDUB1), a dual deubiquitinase and Lys-acetyltransferase, that promotes Golgi remodeling and survival of infected host cells presumably by regulating the ubiquitination of host and bacterial proteins. Here we determined that Cdu1's acetylase but not its DUB activity is important to protect Cdu1 from ubiquitin-mediated degradation. We further identified three C. trachomatis proteins on the pathogen-containing vacuole (InaC, IpaM, and CTL0480) that required Cdu1's acetylase activity for protection from degradation and determined that Cdu1 and these Cdu1-protected proteins are required for optimal egress of Chlamydia from host cells. These findings highlight a non-canonical mechanism of pathogen-mediated protection of virulence factors from degradation after their delivery into host cells and the coordinated regulation of secreted effector proteins.
Collapse
Affiliation(s)
- Robert J. Bastidas
- Department of Integrative Immunobiology, Duke University, Durham, N.C 27708, USA
| | - Mateusz Kędzior
- Department of Integrative Immunobiology, Duke University, Durham, N.C 27708, USA
| | - Robert K. Davidson
- Department of Molecular Genetics and Microbiology, Duke University, Durham, N.C 27708, USA
| | - Stephen C. Walsh
- Department of Molecular Genetics and Microbiology, Duke University, Durham, N.C 27708, USA
| | - Lee Dolat
- Department of Integrative Immunobiology, Duke University, Durham, N.C 27708, USA
| | - Barbara S. Sixt
- Deparment of Molecular Biology, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Jonathan N. Pruneda
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jörn Coers
- Department of Integrative Immunobiology, Duke University, Durham, N.C 27708, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, N.C 27708, USA
| | - Raphael H. Valdivia
- Department of Integrative Immunobiology, Duke University, Durham, N.C 27708, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, N.C 27708, USA
| |
Collapse
|
14
|
Harumoto T. Self-stabilization mechanism encoded by a bacterial toxin facilitates reproductive parasitism. Curr Biol 2023; 33:4021-4029.e6. [PMID: 37673069 DOI: 10.1016/j.cub.2023.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/30/2023] [Accepted: 08/10/2023] [Indexed: 09/08/2023]
Abstract
A wide variety of maternally transmitted endosymbionts in insects are associated with reproductive parasitism, whereby they interfere with host reproduction to increase the ratio of infected females and spread within populations.1,2 Recent successes in identifying bacterial factors responsible for reproductive parasitism3,4,5,6,7 as well as further omics approaches8,9,10,11,12 have highlighted the common appearance of deubiquitinase domains, although their biological roles-in particular, how they link to distinct manipulative phenotypes-remain poorly defined. Spiroplasma poulsonii is a helical and motile bacterial endosymbiont of Drosophila,13,14 which selectively kills male progeny with a male-killing toxin Spaid (S. poulsonii androcidin), which encodes an ovarian tumor (OTU) deubiquitinase domain.6 Artificial expression of Spaid in flies reproduces male-killing-associated pathologies that include abnormal apoptosis and neural defects during embryogenesis6,15,16,17,18,19; moreover, it highly accumulates on the dosage-compensated male X chromosome,20 congruent with cellular defects such as the DNA damage/chromatin bridge breakage specifically induced upon that chromosome.6,21,22,23 Here, I show that without the function of OTU, Spaid is polyubiquitinated and degraded through the host ubiquitin-proteasome pathway, leading to the attenuation of male-killing activity as shown previously.6 Furthermore, I find that Spaid utilizes its OTU domain to deubiquitinate itself in an intermolecular manner. Collectively, the deubiquitinase domain of Spaid serves as a self-stabilization mechanism to facilitate male killing in flies, optimizing a molecular strategy of endosymbionts that enables the efficient manipulation of the host at a low energetic cost.
Collapse
Affiliation(s)
- Toshiyuki Harumoto
- Hakubi Center for Advanced Research, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan; Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
15
|
Roberts CG, Franklin TG, Pruneda JN. Ubiquitin-targeted bacterial effectors: rule breakers of the ubiquitin system. EMBO J 2023; 42:e114318. [PMID: 37555693 PMCID: PMC10505922 DOI: 10.15252/embj.2023114318] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023] Open
Abstract
Regulation through post-translational ubiquitin signaling underlies a large portion of eukaryotic biology. This has not gone unnoticed by invading pathogens, many of which have evolved mechanisms to manipulate or subvert the host ubiquitin system. Bacteria are particularly adept at this and rely heavily upon ubiquitin-targeted virulence factors for invasion and replication. Despite lacking a conventional ubiquitin system of their own, many bacterial ubiquitin regulators loosely follow the structural and mechanistic rules established by eukaryotic ubiquitin machinery. Others completely break these rules and have evolved novel structural folds, exhibit distinct mechanisms of regulation, or catalyze foreign ubiquitin modifications. Studying these interactions can not only reveal important aspects of bacterial pathogenesis but also shed light on unexplored areas of ubiquitin signaling and regulation. In this review, we discuss the methods by which bacteria manipulate host ubiquitin and highlight aspects that follow or break the rules of ubiquitination.
Collapse
Affiliation(s)
- Cameron G Roberts
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Tyler G Franklin
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Jonathan N Pruneda
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| |
Collapse
|
16
|
Kang S, Kim G, Choi M, Jeong M, van der Heden van Noort GJ, Roh SH, Shin D. Structural insights into ubiquitin chain cleavage by Legionella ovarian tumor deubiquitinases. Life Sci Alliance 2023; 6:e202201876. [PMID: 37100438 PMCID: PMC10133868 DOI: 10.26508/lsa.202201876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
Although ubiquitin is found only in eukaryotes, several pathogenic bacteria and viruses possess proteins that hinder the host ubiquitin system. Legionella, a gram-negative intracellular bacterium, possesses an ovarian tumor (OTU) family of deubiquitinases (Lot DUBs). Herein, we describe the molecular characteristics of Lot DUBs. We elucidated the structure of the LotA OTU1 domain and revealed that entire Lot DUBs possess a characteristic extended helical lobe that is not found in other OTU-DUBs. The structural topology of an extended helical lobe is the same throughout the Lot family, and it provides an S1' ubiquitin-binding site. Moreover, the catalytic triads of Lot DUBs resemble those of the A20-type OTU-DUBs. Furthermore, we revealed a unique mechanism by which LotA OTU domains cooperate together to distinguish the length of the chain and preferentially cleave longer K48-linked polyubiquitin chains. The LotA OTU1 domain itself cleaves K6-linked ubiquitin chains, whereas it is also essential for assisting the cleavage of longer K48-linked polyubiquitin chains by the OTU2 domain. Thus, this study provides novel insights into the structure and mechanism of action of Lot DUBs.
Collapse
Affiliation(s)
- Sangwoo Kang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Gyuhee Kim
- School of Biological Science, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Minhyeong Choi
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Minwoo Jeong
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | | | - Soung-Hun Roh
- School of Biological Science, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Donghyuk Shin
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
17
|
Franklin TG, Brzovic PS, Pruneda JN. Bacterial mimicry of eukaryotic HECT ubiquitin ligation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543783. [PMID: 37333152 PMCID: PMC10274628 DOI: 10.1101/2023.06.05.543783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
HECT E3 ubiquitin (Ub) ligases direct their modified substrates toward a range of cellular fates dictated by the specific form of monomeric or polymeric Ub (polyUb) signal that is attached. How polyUb specificity is achieved has been a longstanding mystery, despite extensive study ranging from yeast to human. Two outlying examples of bacterial "HECT-like" (bHECT) E3 ligases have been reported in the human pathogens Enterohemorrhagic Escherichia coli and Salmonella Typhimurium, but what parallels can be drawn to eukaryotic HECT (eHECT) mechanism and specificity had not been explored. Here, we expanded the bHECT family and identified catalytically active, bona fide examples in both human and plant pathogens. By determining structures for three bHECT complexes in their primed, Ub-loaded states, we resolved key details of the full bHECT Ub ligation mechanism. One structure provided the first glimpse of a HECT E3 ligase in the act of ligating polyUb, yielding a means to rewire the polyUb specificity of both bHECT and eHECT ligases. Through studying this evolutionarily distinct bHECT family, we have not only gained insight into the function of key bacterial virulence factors but also revealed fundamental principles underlying HECT-type Ub ligation.
Collapse
Affiliation(s)
- Tyler G. Franklin
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Peter S. Brzovic
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jonathan N. Pruneda
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
18
|
Wilde ML, Ruparel U, Klemm T, Lee VV, Calleja DJ, Komander D, Tonkin CJ. Characterisation of the OTU domain deubiquitinase complement of Toxoplasma gondii. Life Sci Alliance 2023; 6:e202201710. [PMID: 36958824 PMCID: PMC10038098 DOI: 10.26508/lsa.202201710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023] Open
Abstract
The phylum Apicomplexa contains several parasitic species of medical and agricultural importance. The ubiquitination machinery remains, for the most part, uncharacterised in apicomplexan parasites, despite the important roles that it plays in eukaryotic biology. Bioinformatic analysis of the ubiquitination machinery in apicomplexan parasites revealed an expanded ovarian tumour domain-containing (OTU) deubiquitinase (DUB) family in Toxoplasma, potentially reflecting functional importance in apicomplexan parasites. This study presents comprehensive characterisation of Toxoplasma OTU DUBs. AlphaFold-guided structural analysis not only confirmed functional orthologues found across eukaryotes, but also identified apicomplexan-specific enzymes, subsequently enabling discovery of a cryptic OTU DUB in Plasmodium species. Comprehensive biochemical characterisation of 11 Toxoplasma OTU DUBs revealed activity against ubiquitin- and NEDD8-based substrates and revealed ubiquitin linkage preferences for Lys6-, Lys11-, Lys48-, and Lys63-linked chain types. We show that accessory domains in Toxoplasma OTU DUBs impose linkage preferences, and in case of apicomplexan-specific TgOTU9, we discover a cryptic ubiquitin-binding domain that is essential for TgOTU9 activity. Using the auxin-inducible degron (AID) to generate knockdown parasite lines, TgOTUD6B was found to be important for Toxoplasma growth.
Collapse
Affiliation(s)
- Mary-Louise Wilde
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; and Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Ushma Ruparel
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; and Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Theresa Klemm
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; and Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - V Vern Lee
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; and Department of Medical Biology, University of Melbourne, Melbourne, Australia
- Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia; and Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, Australia
| | - Dale J Calleja
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; and Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - David Komander
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; and Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Christopher J Tonkin
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; and Department of Medical Biology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
19
|
OTU7B Modulates the Mosquito Immune Response to Beauveria bassiana Infection via Deubiquitination of the Toll Adaptor TRAF4. Microbiol Spectr 2023; 11:e0312322. [PMID: 36537797 PMCID: PMC9927300 DOI: 10.1128/spectrum.03123-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Aedes aegypti mosquito transmits devastating flaviviruses, such as Zika, dengue, and yellow fever viruses. For more effective control of the vector, the pathogenicity of Beauveria bassiana, a fungus commonly used for biological control of pest insects, may be enhanced based on in-depth knowledge of molecular interactions between the pathogen and its host. Here, we identified a mechanism employed by B. bassiana, which efficiently blocks the Ae. aegypti antifungal immune response by a protease that contains an ovarian tumor (OTU) domain. RNA-sequencing analysis showed that the depletion of OTU7B significantly upregulates the mRNA level of immunity-related genes after a challenge of the fungus. CRISPR-Cas9 knockout of OTU7B conferred a higher resistance of mosquitoes to the fungus B. bassiana. OTU7B suppressed activation of the immune response by preventing nuclear translocation of the NF-κB transcription factor Rel1, a mosquito orthologue of Drosophila Dorsal. Further studies identified tumor necrosis factor receptor-associated factor 4 (TRAF4) as an interacting protein of OTU7B. TRAF4-deficient mosquitoes were more sensitive to fungal infection, indicating TRAF4 to be the adaptor protein that activates the Toll pathway. TRAF4 is K63-link polyubiquitinated at K338 residue upon immune challenge. However, OTU7B inhibited the immune signaling by enzymatically removing the polyubiquitin chains of mosquito TRAF4. Thus, this study has uncovered a novel mechanism of fungal action against the host innate immunity, providing a platform for further improvement of fungal pathogen effectiveness. IMPORTANCE Insects use innate immunity to defend against microbial infection. The Toll pathway is a major immune signaling pathway that is associated with the antifungal immune response in mosquitoes. Our study identified a fungal-induced deubiquitinase, OTU7B, which, when knocked out, promotes the translocation of the NF-κB factor Rel1 into the nucleus and confers enhanced resistance to fungal infection. We further found the counterpart of OTU7B, TRAF4, which is a component of the Toll pathway and acts as an adaptor protein. OTU7B enzymatically removes K63-linked polyubiquitin chains from TRAF4. The immune response is suppressed, and mosquitoes become much more sensitive to the Beauveria bassiana infection. Our findings reveal a novel mechanism of fungal action against the host innate immunity.
Collapse
|
20
|
Warren GD, Kitao T, Franklin TG, Nguyen JV, Geurink PP, Kubori T, Nagai H, Pruneda JN. Mechanism of Lys6 poly-ubiquitin specificity by the L. pneumophila deubiquitinase LotA. Mol Cell 2023; 83:105-120.e5. [PMID: 36538933 PMCID: PMC9825671 DOI: 10.1016/j.molcel.2022.11.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/13/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
The versatility of ubiquitination to control vast domains of eukaryotic biology is due, in part, to diversification through differently linked poly-ubiquitin chains. Deciphering signaling roles for some chain types, including those linked via K6, has been stymied by a lack of specificity among the implicated regulatory proteins. Forged through strong evolutionary pressures, pathogenic bacteria have evolved intricate mechanisms to regulate host ubiquitin during infection. Herein, we identify and characterize a deubiquitinase domain of the secreted effector LotA from Legionella pneumophila that specifically regulates K6-linked poly-ubiquitin. We demonstrate the utility of LotA for studying K6 poly-ubiquitin signals. We identify the structural basis of LotA activation and poly-ubiquitin specificity and describe an essential "adaptive" ubiquitin-binding domain. Without LotA activity during infection, the Legionella-containing vacuole becomes decorated with K6 poly-ubiquitin as well as the AAA ATPase VCP/p97/Cdc48. We propose that LotA's deubiquitinase activity guards Legionella-containing vacuole components from ubiquitin-dependent extraction.
Collapse
Affiliation(s)
- Gus D Warren
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Tomoe Kitao
- Department of Microbiology, Graduate School of Medicine, Gifu University, Gifu, Gifu 501-1194, Japan
| | - Tyler G Franklin
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Justine V Nguyen
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Paul P Geurink
- Oncode Institute, Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Tomoko Kubori
- Department of Microbiology, Graduate School of Medicine, Gifu University, Gifu, Gifu 501-1194, Japan; G-CHAIN, Gifu University, Gifu, Gifu 501-1194, Japan
| | - Hiroki Nagai
- Department of Microbiology, Graduate School of Medicine, Gifu University, Gifu, Gifu 501-1194, Japan; G-CHAIN, Gifu University, Gifu, Gifu 501-1194, Japan
| | - Jonathan N Pruneda
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
21
|
Hermanns T, Hofmann K. Bioinformatical Approaches to the Discovery and Classification of Novel Deubiquitinases. Methods Mol Biol 2023; 2591:135-149. [PMID: 36350547 DOI: 10.1007/978-1-0716-2803-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Deubiquitinating enzymes (DUBs) are active at multiple levels of the eukaryotic ubiquitin system. DUBs are important for ubiquitin activation and maintaining cellular ubiquitin levels but can also edit or dissolve ubiquitin chains or deconjugate ubiquitin from substrates. Eukaryotic DUBs can be grouped into seven molecular classes, most of which enzymes are cysteine proteases assuming the papain fold. In recent years, an ever-increasing number of pathogen-encoded DUBs have been characterized, which are active inside the host cell and help the pathogens to evade the defense response. At first sight, bacterial and viral DUBs appear to be very different from their eukaryotic counterparts, making them hard to identify by bioinformatic methods. However, apart from very few exceptions, bacterial and viral DUBs are distantly related to eukaryotic DUB classes and possess several hallmarks that can be used to identify high-confidence DUB candidates from pathogen genomes - even in the complete absence of biochemical or functional annotation. This chapter addresses bioinformatical DUB discovery approaches based on a previously published analysis of DUB evolution. The core set of bioinformatical tools required for this endeavor are freely accessible and do not require a particular bioinformatics infrastructure.
Collapse
Affiliation(s)
- Thomas Hermanns
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Cologne, Germany.
| |
Collapse
|
22
|
Gorka M, Magnussen HM, Kulathu Y. Chemical biology tools to study Deubiquitinases and Ubl proteases. Semin Cell Dev Biol 2022; 132:86-96. [PMID: 35216867 DOI: 10.1016/j.semcdb.2022.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 12/15/2022]
Abstract
The reversible attachment of ubiquitin (Ub) and ubiquitin like modifiers (Ubls) to proteins are crucial post-translational modifications (PTMs) for many cellular processes. Not only do cells possess hundreds of ligases to mediate substrate specific modification with Ub and Ubls, but they also have a repertoire of more than 100 dedicated enzymes for the specific removal of ubiquitin (Deubiquitinases or DUBs) and Ubl modifications (Ubl-specific proteases or ULPs). Over the past two decades, there has been significant progress in our understanding of how DUBs and ULPs function at a molecular level and many novel DUBs and ULPs, including several new DUB classes, have been identified. Here, the development of chemical tools that can bind and trap active DUBs has played a key role. Since the introduction of the first activity-based probe for DUBs in 1986, several innovations have led to the development of more sophisticated tools to study DUBs and ULPs. In this review we discuss how chemical biology has led to the development of activity-based probes and substrates that have been invaluable to the study of DUBs and ULPs. We summarise our currently available toolbox, highlight the main achievements and give an outlook of how these tools may be applied to gain a better understanding of the regulatory mechanisms of DUBs and ULPs.
Collapse
Affiliation(s)
- Magdalena Gorka
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Helge Magnus Magnussen
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Yogesh Kulathu
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
23
|
Tomaskovic I, Gonzalez A, Dikic I. Ubiquitin and Legionella: From bench to bedside. Semin Cell Dev Biol 2022; 132:230-241. [PMID: 35177348 DOI: 10.1016/j.semcdb.2022.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 12/15/2022]
Abstract
Legionella pneumophila, a Gram-negative intracellular bacterium, is one of the major causes of Legionnaires' disease, a specific type of atypical pneumonia. Despite intensive research efforts that elucidated many relevant structural, molecular and medical insights into Legionella's pathogenicity, Legionnaires' disease continues to present an ongoing public health concern. Legionella's virulence is based on its ability to simultaneously hijack multiple molecular pathways of the host cell to ensure its fast replication and dissemination. Legionella usurps the host ubiquitin system through multiple effector proteins, using the advantage of both conventional and unconventional (phosphoribosyl-linked) ubiquitination, thus providing optimal conditions for its replication. In this review, we summarize the current understanding of L. pneumophila from medical, biochemical and molecular perspectives. We describe the clinical disease presentation, its diagnostics and treatment, as well as host-pathogen interactions, with the emphasis on the ability of Legionella to target the host ubiquitin system upon infection. Furthermore, the interdisciplinary use of innovative technologies enables better insights into the pathogenesis of Legionnaires' disease and provides new opportunities for its treatment and prevention.
Collapse
Affiliation(s)
- Ines Tomaskovic
- Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Alexis Gonzalez
- Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Riedberg Campus, Max-von-Laue Straße 15, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
24
|
Luo J, Ruan X, Huang Z, Li Z, Ye L, Wu Y, Zhen X, Ouyang S. Structural basis for the dual catalytic activity of the Legionella pneumophila ovarian-tumor (OTU) domain deubiquitinase LotA. J Biol Chem 2022; 298:102414. [PMID: 36007613 PMCID: PMC9486567 DOI: 10.1016/j.jbc.2022.102414] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022] Open
Abstract
Legionella pneumophila, a bacterial pathogen that causes a severe pneumonia known as Legionnaires’ disease, extensively exploits the ubiquitin (Ub) pathway in the infected host cells through certain virulence effectors excreted by the Dot/Icm system. To date, several Dot/Icm effectors have been found to act as Ub ligases, and four effectors, including LotA, LotB, LotC, and Ceg7, have been identified as deubiquitinases (DUBs) from the ovarian tumor (OTU) domain family. LotA is unique among other OTU DUBs because it possesses two distinct DUB domains and exclusively exhibits catalytic activity against K6-linked diUb and polyUb chains. However, the structure of LotA and the molecular mechanism for the dual DUB activity remains elusive. In this study, we solved the structure of LotA in complex with proximally bound Ub and distal covalently bound Ub. Both Ub molecules are bound to the DUB1 domain and mimic a K6-linked diUb. Structural analysis reveals that the DUB1 domain utilizes a distinct mechanism for recognition of the K6-linked diUb within a large S1′ binding site that is uncommon to OTU DUBs. Structural fold of the LotA DUB2 domain closely resembles LotB and LotC, similarly containing an extra α-helix lobe that has been demonstrated to play an important role in Ub binding. Collectively, our study uncovers the structural basis for the dual catalytic activity of the unique OTU family DUB LotA.
Collapse
Affiliation(s)
- Jiwei Luo
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Xinglin Ruan
- Department of Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road Gulou District, Fuzhou 350001, China
| | - Zhijie Huang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Zekai Li
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Le Ye
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Yongyu Wu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Xiangkai Zhen
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China.
| | - Songying Ouyang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China.
| |
Collapse
|
25
|
Jeong M, Jeon H, Shin D. Ubiquitin-regulating effector proteins from Legionella. BMB Rep 2022. [PMID: 35651329 PMCID: PMC9340081 DOI: 10.5483/bmbrep.2022.55.7.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Ubiquitin is relatively modest in size but involves almost entire cellular signaling pathways. The primary role of ubiquitin is maintaining cellular protein homeostasis. Ubiquitination regulates the fate of target proteins using the proteasome- or autophagy-mediated degradation of ubiquitinated substrates, which can be either intracellular or foreign proteins from invading pathogens. Legionella, a gram-negative intracellular pathogen, hinders the host-ubiquitin system by translocating hundreds of effector proteins into the host cell’s cytoplasm. In this review, we describe the current understanding of ubiquitin machinery from Legionella. We summarize structural and biochemical differences between the host-ubiquitin system and ubiquitin-related effectors of Legionella. Some of these effectors act much like canonical host-ubiquitin machinery, whereas others have distinctive structures and accomplish non-canonical ubiquitination via novel biochemical mechanisms.
Collapse
Affiliation(s)
- Minwoo Jeong
- Department of System Biology, College of Life Sciences and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Hayoung Jeon
- Department of System Biology, College of Life Sciences and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Donghyuk Shin
- Department of System Biology, College of Life Sciences and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
26
|
Estavoyer B, Messmer C, Echbicheb M, Rudd CE, Milot E, Affar EB. Mechanisms orchestrating the enzymatic activity and cellular functions of deubiquitinases. J Biol Chem 2022; 298:102198. [PMID: 35764170 PMCID: PMC9356280 DOI: 10.1016/j.jbc.2022.102198] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/13/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022] Open
Abstract
Deubiquitinases (DUBs) are required for the reverse reaction of ubiquitination and act as major regulators of ubiquitin signaling processes. Emerging evidence suggests that these enzymes are regulated at multiple levels in order to ensure proper and timely substrate targeting and to prevent the adverse consequences of promiscuous deubiquitination. The importance of DUB regulation is highlighted by disease-associated mutations that inhibit or activate DUBs, deregulating their ability to coordinate cellular processes. Here, we describe the diverse mechanisms governing protein stability, enzymatic activity, and function of DUBs. In particular, we outline how DUBs are regulated by their protein domains and interacting partners. Intramolecular interactions can promote protein stability of DUBs, influence their subcellular localization, and/or modulate their enzymatic activity. Remarkably, these intramolecular interactions can induce self-deubiquitination to counteract DUB ubiquitination by cognate E3 ubiquitin ligases. In addition to intramolecular interactions, DUBs can also oligomerize and interact with a wide variety of cellular proteins, thereby forming obligate or facultative complexes that regulate their enzymatic activity and function. The importance of signaling and post-translational modifications in the integrated control of DUB function will also be discussed. While several DUBs are described with respect to the multiple layers of their regulation, the tumor suppressor BAP1 will be outlined as a model enzyme whose localization, stability, enzymatic activity, and substrate recognition are highly orchestrated by interacting partners and post-translational modifications.
Collapse
Affiliation(s)
- Benjamin Estavoyer
- Laboratory for Cell Signaling and Cancer, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada
| | - Clémence Messmer
- Laboratory for Cell Signaling and Cancer, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada
| | - Mohamed Echbicheb
- Laboratory for Cell Signaling and Cancer, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada
| | - Christopher E Rudd
- Laboratory for Cell Signaling in Immunotherapy, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada; Department of Medicine, University of Montréal, Montréal H3C 3J7, Québec, Canada
| | - Eric Milot
- Laboratory for Malignant Hematopoiesis and Epigenetic Regulation of Gene Expression, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada; Department of Medicine, University of Montréal, Montréal H3C 3J7, Québec, Canada
| | - El Bachir Affar
- Laboratory for Cell Signaling and Cancer, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada; Department of Medicine, University of Montréal, Montréal H3C 3J7, Québec, Canada.
| |
Collapse
|
27
|
Lockwood DC, Amin H, Costa TRD, Schroeder GN. The Legionella pneumophila Dot/Icm type IV secretion system and its effectors. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35639581 DOI: 10.1099/mic.0.001187] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To prevail in the interaction with eukaryotic hosts, many bacterial pathogens use protein secretion systems to release virulence factors at the host–pathogen interface and/or deliver them directly into host cells. An outstanding example of the complexity and sophistication of secretion systems and the diversity of their protein substrates, effectors, is the Defective in organelle trafficking/Intracellular multiplication (Dot/Icm) Type IVB secretion system (T4BSS) of
Legionella pneumophila
and related species.
Legionella
species are facultative intracellular pathogens of environmental protozoa and opportunistic human respiratory pathogens. The Dot/Icm T4BSS translocates an exceptionally large number of effectors, more than 300 per
L. pneumophila
strain, and is essential for evasion of phagolysosomal degradation and exploitation of protozoa and human macrophages as replicative niches. Recent technological advancements in the imaging of large protein complexes have provided new insight into the architecture of the T4BSS and allowed us to propose models for the transport mechanism. At the same time, significant progress has been made in assigning functions to about a third of
L. pneumophila
effectors, discovering unprecedented new enzymatic activities and concepts of host subversion. In this review, we describe the current knowledge of the workings of the Dot/Icm T4BSS machinery and provide an overview of the activities and functions of the to-date characterized effectors in the interaction of
L. pneumophila
with host cells.
Collapse
Affiliation(s)
- Daniel C Lockwood
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, BT9 7BL, Northern Ireland, UK
| | - Himani Amin
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Tiago R D Costa
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Gunnar N Schroeder
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, BT9 7BL, Northern Ireland, UK
| |
Collapse
|
28
|
Ugbe FA, Shallangwa GA, Uzairu A, Abdulkadir I. Theoretical modeling and design of some pyrazolopyrimidine derivatives as Wolbachia inhibitors, targeting lymphatic filariasis and onchocerciasis. In Silico Pharmacol 2022; 10:8. [PMID: 35539006 PMCID: PMC9079205 DOI: 10.1007/s40203-022-00123-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/10/2022] [Indexed: 11/28/2022] Open
Abstract
Lymphatic filariasis and onchocerciasis are two common filarial diseases caused by a group of parasitic nematodes called filarial worms, which play host to the bacteria organism Wolbachia. One good treatment approach seeks Wolbachia as drug target. Here, a QSAR study was conducted to investigate the anti-wolbachia activities (pEC50) of 52 pyrazolopyrimidine analogues, while using the built model to predict the pEC50 values of the newly designed analogues. Density Functional Theory was used for the structural optimization, while the model building was based on Genetic Function Algorithm approach. The built QSAR model was validated thus: R2 = 0.8104, R2 adj = 0.7629, Q2 cv = 0.6981, R2 test = 0.7501 and cRp2 = 0.7476. The predicted pEC50 of all newly designed compounds were higher than that of the template (43). The new compounds were; observed to pass the drug-likeness criteria, uniformly distributed to the brain, and found to be non-mutagenic. Also, the new compounds and the reference drug (doxycycline), were docked onto Ovarian Tumor (OTU) deubiquitinase receptor (PDB ID: 6W9O) using iGEMDOCK tool. This protein is known to help Wolbachia subvert host ubiquitin signaling. The resulting binding scores of the newly designed compounds except A5 were higher than that of doxycycline, while the protein-ligand interactions were majorly characterized by Hydrogen-bonding and hydrophobic interaction types. Therefore, the newly designed molecules could be developed as potential drug candidates for the treatment of lymphatic filariasis and onchocerciasis.
Collapse
Affiliation(s)
- Fabian Audu Ugbe
- Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State Nigeria
| | - Gideon Adamu Shallangwa
- Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State Nigeria
| | - Adamu Uzairu
- Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State Nigeria
| | - Ibrahim Abdulkadir
- Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State Nigeria
| |
Collapse
|
29
|
Carroll EC, Marqusee S. Site-specific ubiquitination: Deconstructing the degradation tag. Curr Opin Struct Biol 2022; 73:102345. [PMID: 35247748 DOI: 10.1016/j.sbi.2022.102345] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/28/2021] [Accepted: 01/17/2022] [Indexed: 02/04/2023]
Abstract
Ubiquitin is a small eukaryotic protein so named for its cellular abundance and originally recognized for its role as the posttranslational modification (PTM) "tag" condemning substrates to degradation by the 26S proteasome. Since its discovery in the 1970s, protein ubiquitination has also been identified as a key regulatory feature in dozens of non-degradative cellular processes. This myriad of roles illustrates the versatility of ubiquitin as a PTM; however, understanding the cellular and molecular factors that enable discrimination between degradative versus non-degradative ubiquitination events has been a persistent challenge. Here, we discuss recent advances in uncovering how site-specificity - the exact residue that gets modified - modulates distinct protein fates and cellular outcomes with an emphasis on how ubiquitination site specificity regulates proteasomal degradation. We explore recent advances in structural biology, biophysics, and cell biology that have enabled a broader understanding of the role of ubiquitination in altering the dynamics of the target protein, including implications for the design of targeted protein degradation therapeutics.
Collapse
Affiliation(s)
- Emma C Carroll
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, 94038, USA.
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA; QB3 Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA, 94720, USA; Department of Chemistry, University of California Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
30
|
Liu Q, Yan T, Tan X, Wei Z, Li Y, Sun Z, Zhang H, Chen J. Genome-Wide Identification and Gene Expression Analysis of the OTU DUB Family in Oryza sativa. Viruses 2022; 14:v14020392. [PMID: 35215984 PMCID: PMC8878984 DOI: 10.3390/v14020392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/03/2022] [Accepted: 02/11/2022] [Indexed: 12/10/2022] Open
Abstract
Ovarian tumor domain (OTU)-containing deubiquitinating enzymes (DUBs) are an essential DUB to maintain protein stability in plants and play important roles in plant growth development and stress response. However, there is little genome-wide identification and analysis of the OTU gene family in rice. In this study, we identified 20 genes of the OTU family in rice genome, which were classified into four groups based on the phylogenetic analysis. Their gene structures, conserved motifs and domains, chromosomal distribution, and cis elements in promoters were further studied. In addition, OTU gene expression patterns in response to plant hormone treatments, including SA, MeJA, NAA, BL, and ABA, were investigated by RT-qPCR analysis. The results showed that the expression profile of OsOTU genes exhibited plant hormone-specific expression. Expression levels of most of the rice OTU genes were significantly changed in response to rice stripe virus (RSV), rice black-streaked dwarf virus (RBSDV), Southern rice black-streaked dwarf virus (SRBSDV), and Rice stripe mosaic virus (RSMV). These results suggest that the rice OTU genes are involved in diverse hormone signaling pathways and in varied responses to virus infection, providing new insights for further functional study of OsOTU genes.
Collapse
Affiliation(s)
- Qiannan Liu
- College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China; (Q.L.); (T.Y.); (X.T.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (Z.W.); (Y.L.); (Z.S.)
| | - Tingyun Yan
- College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China; (Q.L.); (T.Y.); (X.T.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (Z.W.); (Y.L.); (Z.S.)
| | - Xiaoxiang Tan
- College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China; (Q.L.); (T.Y.); (X.T.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (Z.W.); (Y.L.); (Z.S.)
| | - Zhongyan Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (Z.W.); (Y.L.); (Z.S.)
| | - Yanjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (Z.W.); (Y.L.); (Z.S.)
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (Z.W.); (Y.L.); (Z.S.)
| | - Hehong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (Z.W.); (Y.L.); (Z.S.)
- Correspondence: (H.Z.); (J.C.)
| | - Jianping Chen
- College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China; (Q.L.); (T.Y.); (X.T.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (Z.W.); (Y.L.); (Z.S.)
- Correspondence: (H.Z.); (J.C.)
| |
Collapse
|
31
|
Massey JH, Newton ILG. Diversity and function of arthropod endosymbiont toxins. Trends Microbiol 2022; 30:185-198. [PMID: 34253453 PMCID: PMC8742837 DOI: 10.1016/j.tim.2021.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 02/03/2023]
Abstract
Bacterial endosymbionts induce dramatic phenotypes in their arthropod hosts, including cytoplasmic incompatibility, feminization, parthenogenesis, male killing, parasitoid defense, and pathogen blocking. The molecular mechanisms underlying these effects remain largely unknown but recent evidence suggests that protein toxins secreted by the endosymbionts play a role. Here, we describe the diversity and function of endosymbiont proteins with homology to known bacterial toxins. We focus on maternally transmitted endosymbionts belonging to the Wolbachia, Rickettsia, Arsenophonus, Hamiltonella, Spiroplasma, and Cardinium genera because of their ability to induce the above phenotypes. We identify at least 16 distinct toxin families with diverse enzymatic activities, including AMPylases, nucleases, proteases, and glycosyltransferases. Notably, several annotated toxins contain domains with homology to eukaryotic proteins, suggesting that arthropod endosymbionts mimic host biochemistry to manipulate host physiology, similar to bacterial pathogens.
Collapse
Affiliation(s)
| | - Irene L. G. Newton
- Department of Biology, Indiana University, Bloomington, Indiana, USA,Corresponding author,
| |
Collapse
|
32
|
Luo J, Wang L, Song L, Luo ZQ. Exploitation of the Host Ubiquitin System: Means by Legionella pneumophila. Front Microbiol 2022; 12:790442. [PMID: 35003021 PMCID: PMC8727461 DOI: 10.3389/fmicb.2021.790442] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/30/2021] [Indexed: 01/12/2023] Open
Abstract
Ubiquitination is a commonly used post-translational modification (PTM) in eukaryotic cells, which regulates a wide variety of cellular processes, such as differentiation, apoptosis, cell cycle, and immunity. Because of its essential role in immunity, the ubiquitin network is a common target of infectious agents, which have evolved various effective strategies to hijack and co-opt ubiquitin signaling for their benefit. The intracellular pathogen Legionella pneumophila represents one such example; it utilizes a large cohort of virulence factors called effectors to modulate diverse cellular processes, resulting in the formation a compartment called the Legionella-containing vacuole (LCV) that supports its replication. Many of these effectors function to re-orchestrate ubiquitin signaling with distinct biochemical activities. In this review, we highlight recent progress in the mechanism of action of L. pneumophila effectors involved in ubiquitination and discuss their roles in bacterial virulence and host cell biology.
Collapse
Affiliation(s)
- Jingjing Luo
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Lidong Wang
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Lei Song
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Zhao-Qing Luo
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
33
|
Iyer S, Das C. The unity of opposites: Strategic interplay between bacterial effectors to regulate cellular homeostasis. J Biol Chem 2021; 297:101340. [PMID: 34695417 PMCID: PMC8605245 DOI: 10.1016/j.jbc.2021.101340] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 11/23/2022] Open
Abstract
Legionella pneumophila is a facultative intracellular pathogen that uses the Dot/Icm Type IV secretion system (T4SS) to translocate many effectors into its host and establish a safe, replicative lifestyle. The bacteria, once phagocytosed, reside in a vacuolar structure known as the Legionella-containing vacuole (LCV) within the host cells and rapidly subvert organelle trafficking events, block inflammatory responses, hijack the host ubiquitination system, and abolish apoptotic signaling. This arsenal of translocated effectors can manipulate the host factors in a multitude of different ways. These proteins also contribute to bacterial virulence by positively or negatively regulating the activity of one another. Such effector-effector interactions, direct and indirect, provide the delicate balance required to maintain cellular homeostasis while establishing itself within the host. This review summarizes the recent progress in our knowledge of the structure-function relationship and biochemical mechanisms of select effector pairs from Legionella that work in opposition to one another, while highlighting the diversity of biochemical means adopted by this intracellular pathogen to establish a replicative niche within host cells.
Collapse
Affiliation(s)
- Shalini Iyer
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA.
| | - Chittaranjan Das
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
34
|
Schulze-Niemand E, Naumann M, Stein M. Substrate-assisted activation and selectivity of the bacterial RavD effector deubiquitinylase. Proteins 2021; 90:947-958. [PMID: 34825414 DOI: 10.1002/prot.26286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 11/12/2022]
Abstract
Deubiquitinylases (DUBs) catalyze the peptide bond cleavage of specific ubiquitin linkages at distinct protein substrates. Pathogens from viruses and bacteria independently developed effector proteins with DUB activity to mimic host DUB functions and circumvent immune responses. The effector protein RavD from Legionella pneumophila cleaves linear ubiquitin chains with an exclusive methionine-1 selectivity. It thus performs as a functional analogue of the human DUB OTULIN, which achieves its selectivity only via a specialized proximal ubiquitin S1' binding site as well as a substrate-assisted activation of the catalytic triad. An analysis of the crystal structures of bacterial RavD in its free and di-ubiquitin-bound forms, in order to rationalize the structural basis for its selectivity and activation mechanism, is not fully conclusive. As these ambiguities might arise from the introduced double mutation of the di-ubiquitin substrate in the RavD-di-ubiquitin complex crystal structure, biomolecular modeling, and molecular dynamics sampling (1-2 μs for each system of RavD and OTULIN) were employed to reconstitute the physiological RavD-di-ubiquitin complex. The simulations show that the distal S1 ubiquitin binding sites of RavD and OTULIN are similar in terms of interface area, composition, and ubiquitin binding affinity. The proximal S1' site of RavD, in contrast, is significantly smaller and ubiquitin binding is weaker and more flexible than in OTULIN. Upon substrate access, the residues of the catalytic triad of RavD show a reduction of flexibility and a conformational transition toward a catalytically active state. Thus, the enzymatic activation of RavD is presumably also substrate-assisted and a clear rationale for the common M1-substrate selectivity.
Collapse
Affiliation(s)
- Eric Schulze-Niemand
- Institute for Experimental Internal Medicine, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.,Molecular Simulations and Design Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Michael Naumann
- Institute for Experimental Internal Medicine, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Matthias Stein
- Molecular Simulations and Design Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| |
Collapse
|
35
|
Structural basis of ubiquitin recognition by a bacterial OTU deubiquitinase LotA. J Bacteriol 2021; 204:e0037621. [PMID: 34633867 DOI: 10.1128/jb.00376-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogenic bacteria have acquired a vast array of eukaryotic-like proteins via intimate interaction with host cells. Bacterial effector proteins that function as ubiquitin ligases and deubiquitinases (DUBs) are remarkable examples of such molecular mimicry. LotA, a Legionella pneumophila effector, belongs to the ovarian tumor (OTU) superfamily, which regulates diverse ubiquitin signals by their DUB activities. LotA harbors two OTU domains that have distinct reactivities; the first one is responsible for the cleavage of the K6-linked ubiquitin chain, and the second one shows an uncommon preference for long chains of ubiquitin. Here, we report the crystal structure of a middle domain of LotA (LotAM), which contains the second OTU domain. LotAM consists of two distinct subdomains, a catalytic domain having high structural similarity with human OTU DUBs and an extended helical lobe (EHL) domain, which is characteristically conserved only in Legionella OTU DUBs. The docking simulation of LotAM with ubiquitin suggested that hydrophobic and electrostatic interactions between the EHL of LotAM and the C-terminal region of ubiquitin are crucial for the binding of ubiquitin to LotAM. The structure-based mutagenesis demonstrated that the acidic residue in the characteristic short helical segment termed the 'helical arm' is essential for the enzymatic activity of LotAM. The EHL domain of the three Legionella OTU DUBs, LotA, LotB, and LotC, share the 'helical arm' structure, suggesting that the EHL domain defines the Lot-OTUs as a unique class of DUBs. Importance To successfully colonize, some pathogenic bacteria hijack the host ubiquitin system. Legionella OTU-like-DUBs (Lot-DUBs) are novel bacterial deubiquitinases found in effector proteins of L. pneumophila. LotA is a member of Lot-DUBs and has two OTU domains (OTU1 and OTU2). We determined the structure of a middle fragment of LotA (LotAM), which includes OTU2. LotAM consists of the conserved catalytic domain and the Legionella OTUs-specific EHL domain. The docking simulation with ubiquitin and the mutational analysis suggested that the acidic surface in the EHL is essential for enzymatic activity. The structure of the EHL differs from those of other Lot-DUBs, suggesting that the variation of the EHL is related to the variable cleaving specificity of each DUB.
Collapse
|
36
|
Kitao T, Taguchi K, Seto S, Arasaki K, Ando H, Nagai H, Kubori T. Legionella Manipulates Non-canonical SNARE Pairing Using a Bacterial Deubiquitinase. Cell Rep 2021; 32:108107. [PMID: 32905772 DOI: 10.1016/j.celrep.2020.108107] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 05/30/2020] [Accepted: 08/12/2020] [Indexed: 10/23/2022] Open
Abstract
The intracellular bacterial pathogen Legionella pneumophila uses many effector proteins delivered by the bacterial type IV secretion system (T4SS) to hijack the early secretory pathway to establish its replicative niche, known as the Legionella-containing vacuole (LCV). On LCV biogenesis, the endoplasmic reticulum (ER) vesicular soluble N-ethylmaleimide-sensitive factor attachment protein receptors (v-SNARE) Sec22b is recruited to the bacterial phagosome and forms non-canonical pairings with target membrane SNAREs (t-SNAREs) from the plasma membrane. Here, we identify a Legionella deubiquitinase (DUB), LotB, that can modulate the early secretory pathway by interacting with coatomer protein complex I (COPI) vesicles when ectopically expressed. We show that Sec22b is ubiquitinated upon L. pneumophila infection in a T4SS-dependent manner and that, subsequently, LotB deconjugates K63-linked ubiquitins from Sec22b. The DUB activity of LotB stimulates dissociation of the t-SNARE syntaxin 3 (Stx3) from Sec22b, which resides on the LCV. Our study highlights a bacterial strategy manipulating the dynamics of infection-induced SNARE pairing using a bacterial DUB.
Collapse
Affiliation(s)
- Tomoe Kitao
- Department of Microbiology, Graduate School of Medicine, Gifu University, Gifu, Gifu 501-1194, Japan
| | - Kyoichiro Taguchi
- Department of Microbiology, Graduate School of Medicine, Gifu University, Gifu, Gifu 501-1194, Japan; Laboratory of Veterinary Microbiology, Faculty of Applied Biological Science, Gifu University, Gifu, Gifu 501-1193, Japan
| | - Shintaro Seto
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Tokyo 204-8533, Japan
| | - Kohei Arasaki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Hiroki Ando
- G-CHAIN, Gifu University, Gifu, Gifu 501-1194, Japan; Laboratory of Phage Biologics, Graduate School of Medicine, Gifu University, Gifu, Gifu 501-1194, Japan
| | - Hiroki Nagai
- Department of Microbiology, Graduate School of Medicine, Gifu University, Gifu, Gifu 501-1194, Japan; G-CHAIN, Gifu University, Gifu, Gifu 501-1194, Japan.
| | - Tomoko Kubori
- Department of Microbiology, Graduate School of Medicine, Gifu University, Gifu, Gifu 501-1194, Japan; G-CHAIN, Gifu University, Gifu, Gifu 501-1194, Japan.
| |
Collapse
|
37
|
Schlüter D, Schulze-Niemand E, Stein M, Naumann M. Ovarian tumor domain proteases in pathogen infection. Trends Microbiol 2021; 30:22-33. [PMID: 34016513 DOI: 10.1016/j.tim.2021.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 01/06/2023]
Abstract
With the aim of overcoming host immune responses, and to permit persistence, numerous bacterial and viral pathogens have evolved effective strategies to control the activity of ovarian tumor domain proteases (OTUs), a group of deubiquitinylases crucial for regulating ubiquitin-modified proteins. Due to the important role of eukaryotic OTUs in cellular physiology, it is not surprising that pathogens have evolutionarily developed effector proteins which mimic host OTUs. Here, we focus on recent findings that illustrate how pathogen-encoded OTUs modulate eukaryotic host proteins and how they are implicated in cellular dysregulation. Further, we discuss the biological effects of OTUs in the context of structural features and pharmacological targeting. We point out the potentiality of selective OTU inhibitors, which shield ubiquitin-binding sites, as pharmacologic targets to treat harmful infections.
Collapse
Affiliation(s)
- Dirk Schlüter
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - Eric Schulze-Niemand
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany; Molecular Simulations and Design Group, Max Planck Institute of Dynamic of Complex Technical Systems, 39106 Magdeburg, Germany
| | - Matthias Stein
- Molecular Simulations and Design Group, Max Planck Institute of Dynamic of Complex Technical Systems, 39106 Magdeburg, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany.
| |
Collapse
|
38
|
Mons E, Kim RQ, van Doodewaerd BR, van Veelen PA, Mulder MPC, Ovaa H. Exploring the Versatility of the Covalent Thiol-Alkyne Reaction with Substituted Propargyl Warheads: A Deciding Role for the Cysteine Protease. J Am Chem Soc 2021; 143:6423-6433. [PMID: 33885283 PMCID: PMC8154518 DOI: 10.1021/jacs.0c10513] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Indexed: 12/17/2022]
Abstract
Terminal unactivated alkynes are nowadays considered the golden standard for cysteine-reactive warheads in activity-based probes (ABPs) targeting cysteine deubiquitinating enzymes (DUBs). In this work, we study the versatility of the thiol-alkyne addition reaction in more depth. Contrary to previous findings with UCHL3, we now show that covalent adduct formation can progress with substituents on the terminal or internal alkyne position. Strikingly, acceptance of alkyne substituents is strictly DUB-specific as this is not conserved among members of the same subfamily. Covalent adduct formation with the catalytic cysteine residue was validated by gel analysis and mass spectrometry of intact ABP-treated USP16CDWT and catalytically inactive mutant USP16CDC205A. Bottom-up mass spectrometric analysis of the covalent adduct with a deuterated propargyl ABP provides mechanistic understanding of the in situ thiol-alkyne reaction, identifying the alkyne rather than an allenic intermediate as the reactive species. Furthermore, kinetic analysis revealed that introduction of (bulky/electron-donating) methyl substituents on the propargyl moiety decreases the rate of covalent adduct formation, thus providing a rational explanation for the commonly lower level of observed covalent adduct compared to unmodified alkynes. Altogether, our work extends the scope of possible propargyl derivatives in cysteine targeting ABPs from unmodified terminal alkynes to internal and substituted alkynes, which we anticipate will have great value in the development of ABPs with improved selectivity profiles.
Collapse
Affiliation(s)
- Elma Mons
- Department
of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Robbert Q. Kim
- Department
of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Bjorn R. van Doodewaerd
- Department
of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Peter A. van Veelen
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Monique P. C. Mulder
- Department
of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Huib Ovaa
- Department
of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
39
|
Affiliation(s)
- Tyler G. Franklin
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jonathan N. Pruneda
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
40
|
Grishin A, Voth K, Gagarinova A, Cygler M. Structural biology of the invasion arsenal of Gram-negative bacterial pathogens. FEBS J 2021; 289:1385-1427. [PMID: 33650300 DOI: 10.1111/febs.15794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/11/2021] [Accepted: 02/26/2021] [Indexed: 12/20/2022]
Abstract
In the last several years, there has been a tremendous progress in the understanding of host-pathogen interactions and the mechanisms by which bacterial pathogens modulate behavior of the host cell. Pathogens use secretion systems to inject a set of proteins, called effectors, into the cytosol of the host cell. These effectors are secreted in a highly regulated, temporal manner and interact with host proteins to modify a multitude of cellular processes. The number of effectors varies between pathogens from ~ 30 to as many as ~ 350. The functional redundancy of effectors encoded by each pathogen makes it difficult to determine the cellular effects or function of individual effectors, since their individual knockouts frequently produce no easily detectable phenotypes. Structural biology of effector proteins and their interactions with host proteins, in conjunction with cell biology approaches, has provided invaluable information about the cellular function of effectors and underlying molecular mechanisms of their modes of action. Many bacterial effectors are functionally equivalent to host proteins while being structurally divergent from them. Other effector proteins display new, previously unobserved functionalities. Here, we summarize the contribution of the structural characterization of effectors and effector-host protein complexes to our understanding of host subversion mechanisms used by the most commonly investigated Gram-negative bacterial pathogens. We describe in some detail the enzymatic activities discovered among effector proteins and how they affect various cellular processes.
Collapse
Affiliation(s)
- Andrey Grishin
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Kevin Voth
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Alla Gagarinova
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Miroslaw Cygler
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
41
|
Fiil BK, Gyrd-Hansen M. The Met1-linked ubiquitin machinery in inflammation and infection. Cell Death Differ 2021; 28:557-569. [PMID: 33473179 PMCID: PMC7816137 DOI: 10.1038/s41418-020-00702-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Ubiquitination is an essential post-translational modification that regulates most cellular processes. The assembly of ubiquitin into polymeric chains by E3 ubiquitin ligases underlies the pleiotropic functions ubiquitin chains regulate. Ubiquitin chains assembled via the N-terminal methionine, termed Met1-linked ubiquitin chains or linear ubiquitin chains, have emerged as essential signalling scaffolds that regulate pro-inflammatory responses, anti-viral interferon responses, cell death and xenophagy of bacterial pathogens downstream of innate immune receptors. Met1-linked ubiquitin chains are exclusively assembled by the linear ubiquitin chain assembly complex, LUBAC, and are disassembled by the deubiquitinases OTULIN and CYLD. Genetic defects that perturb the regulation of Met1-linked ubiquitin chains causes severe immune-related disorders, illustrating their potent signalling capacity. Here, we review the current knowledge about the cellular machinery that conjugates, recognises, and disassembles Met1-linked ubiquitin chains, and discuss the function of this unique posttranslational modification in regulating inflammation, cell death and immunity to pathogens.
Collapse
Affiliation(s)
- Berthe Katrine Fiil
- grid.5254.60000 0001 0674 042XLEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Maersk Tower, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Mads Gyrd-Hansen
- grid.5254.60000 0001 0674 042XLEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Maersk Tower, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark ,grid.4991.50000 0004 1936 8948Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ UK
| |
Collapse
|
42
|
Kitao T, Nagai H, Kubori T. Divergence of Legionella Effectors Reversing Conventional and Unconventional Ubiquitination. Front Cell Infect Microbiol 2020; 10:448. [PMID: 32974222 PMCID: PMC7472693 DOI: 10.3389/fcimb.2020.00448] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/21/2020] [Indexed: 02/05/2023] Open
Abstract
The intracellular bacterial pathogen Legionella pneumophila employs bacteria-derived effector proteins in a variety of functions to exploit host cellular systems. The ubiquitination machinery constitutes a crucial eukaryotic system for the regulation of numerous cellular processes, and is a representative target for effector-mediated bacterial manipulation. L. pneumophila transports over 300 effector proteins into host cells through its Dot/Icm type IV secretion system. Among these, several effector proteins have been found to function as ubiquitin ligases, including unprecedented enzymes that catalyze ubiquitination through unconventional mechanisms. Recent studies have identified many L. pneumophila effector proteins that can interfere with ubiquitination. These effectors include proteins that are distantly related to the ovarian tumor protein superfamily described as deubiquitinases (DUBs), which regulate important signaling cascades in human cells. Intriguingly, L. pneumophila DUBs are not limited to enzymes that exhibit canonical DUB activity. Some L. pneumophila DUBs can catalyze the cleavage of the unconventional linkage between ubiquitin and substrates. Furthermore, novel mechanisms have been found that adversely affect the function of specific ubiquitin ligases; for instance, effector-mediated posttranslational modifications of ubiquitin ligases result in the inhibition of their activity. In the context of L. pneumophila infection, the existence of enzymes that reverse ubiquitination primarily relates to a fine tuning of biogenesis and remodeling of the Legionella-containing vacuole as a replicative niche. The complexity of the effector arrays reflects sophisticated strategies that bacteria have adopted to adapt their host environment and enable their survival in host cells. This review summarizes the current state of knowledge on the divergent mechanisms of the L. pneumophila effectors that can reverse ubiquitination, which is mediated by other effectors as well as the host ubiquitin machinery.
Collapse
Affiliation(s)
- Tomoe Kitao
- Department of Microbiology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Hiroki Nagai
- Department of Microbiology, Graduate School of Medicine, Gifu University, Gifu, Japan
- G-CHAIN, Gifu University, Gifu, Japan
| | - Tomoko Kubori
- Department of Microbiology, Graduate School of Medicine, Gifu University, Gifu, Japan
- G-CHAIN, Gifu University, Gifu, Japan
| |
Collapse
|
43
|
Schubert AF, Nguyen JV, Franklin TG, Geurink PP, Roberts CG, Sanderson DJ, Miller LN, Ovaa H, Hofmann K, Pruneda JN, Komander D. Identification and characterization of diverse OTU deubiquitinases in bacteria. EMBO J 2020; 39:e105127. [PMID: 32567101 PMCID: PMC7396840 DOI: 10.15252/embj.2020105127] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/19/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Manipulation of host ubiquitin signaling is becoming an increasingly apparent evolutionary strategy among bacterial and viral pathogens. By removing host ubiquitin signals, for example, invading pathogens can inactivate immune response pathways and evade detection. The ovarian tumor (OTU) family of deubiquitinases regulates diverse ubiquitin signals in humans. Viral pathogens have also extensively co-opted the OTU fold to subvert host signaling, but the extent to which bacteria utilize the OTU fold was unknown. We have predicted and validated a set of OTU deubiquitinases encoded by several classes of pathogenic bacteria. Biochemical assays highlight the ubiquitin and polyubiquitin linkage specificities of these bacterial deubiquitinases. By determining the ubiquitin-bound structures of two examples, we demonstrate the novel strategies that have evolved to both thread an OTU fold and recognize a ubiquitin substrate. With these new examples, we perform the first cross-kingdom structural analysis of the OTU fold that highlights commonalities among distantly related OTU deubiquitinases.
Collapse
Affiliation(s)
- Alexander F Schubert
- Medical Research Council Laboratory of Molecular BiologyCambridgeUK
- Present address:
Department of Structural BiologyGenentech Inc.South San FranciscoCAUSA
| | - Justine V Nguyen
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Tyler G Franklin
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Paul P Geurink
- Oncode Institute & Department of Cell and Chemical BiologyLeiden University Medical CentreLeidenThe Netherlands
| | - Cameron G Roberts
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Daniel J Sanderson
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Lauren N Miller
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Huib Ovaa
- Oncode Institute & Department of Cell and Chemical BiologyLeiden University Medical CentreLeidenThe Netherlands
| | - Kay Hofmann
- Institute for GeneticsUniversity of CologneCologneGermany
| | - Jonathan N Pruneda
- Medical Research Council Laboratory of Molecular BiologyCambridgeUK
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - David Komander
- Medical Research Council Laboratory of Molecular BiologyCambridgeUK
- Ubiquitin Signalling DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVICAustralia
| |
Collapse
|
44
|
Hermanns T, Woiwode I, Guerreiro RF, Vogt R, Lammers M, Hofmann K. An evolutionary approach to systematic discovery of novel deubiquitinases, applied to Legionella. Life Sci Alliance 2020; 3:3/9/e202000838. [PMID: 32719160 PMCID: PMC7391069 DOI: 10.26508/lsa.202000838] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022] Open
Abstract
The analysis of the relationships between different deubiquitinase classes leads to the definition of an aromatic “gatekeeper” motif that distinguishes DUBs from other cysteine proteases and helps to predict new bacterial DUBs. Deubiquitinating enzymes (DUBs) are important regulators of the posttranslational protein ubiquitination system. Mammalian genomes encode about 100 different DUBs, which can be grouped into seven different classes. Members of other DUB classes are found in pathogenic bacteria, which use them to target the host defense. By combining bioinformatical and experimental approaches, we address the question if the known DUB families have a common evolutionary ancestry and share conserved features that set them apart from other proteases. By systematically comparing family-specific hidden Markov models, we uncovered distant relationships between established DUBs and other cysteine protease families. Most DUB families share a conserved aromatic residue linked to the active site, which restricts the cleavage of substrates with side chains at the S2 position, corresponding to Gly-75 in ubiquitin. By applying these criteria to Legionella pneumophila ORFs, we identified lpg1621 and lpg1148 as deubiquitinases, characterized their cleavage specificities, and confirmed the importance of the aromatic gatekeeper motif for substrate selection.
Collapse
Affiliation(s)
- Thomas Hermanns
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Ilka Woiwode
- Institute for Genetics, University of Cologne, Cologne, Germany
| | | | - Robert Vogt
- Institute of Biochemistry, Synthetic and Structural Biochemistry, University of Greifswald, Greifswald, Germany
| | - Michael Lammers
- Institute of Biochemistry, Synthetic and Structural Biochemistry, University of Greifswald, Greifswald, Germany
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Cologne, Germany
| |
Collapse
|