1
|
Huang Y, Gao Y, Lin Z, Miao H. Involvement of the ubiquitin-proteasome system in the regulation of the tumor microenvironment and progression. Genes Dis 2025; 12:101240. [PMID: 39759114 PMCID: PMC11697063 DOI: 10.1016/j.gendis.2024.101240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/11/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2025] Open
Abstract
The tumor microenvironment is a complex environment comprising tumor cells, non-tumor cells, and other critical non-cellular components. Some studies about tumor microenvironment have recently achieved remarkable progress in tumor treatment. As a substantial part of post-translational protein modification, ubiquitination is a crucial player in maintaining protein stability in cell signaling, cell growth, and a series of cellular life activities, which are also essential for regulating tumor cells or other non-tumor cells in the tumor microenvironment. This review focuses on the role and function of ubiquitination and deubiquitination modification in the tumor microenvironment while discussing the prospect of developing inhibitors targeting ubiquity-related enzymes, thereby providing ideas for future research in cancer therapy.
Collapse
Affiliation(s)
- Yulan Huang
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yuan Gao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China
| | - Zhenghong Lin
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Hongming Miao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
2
|
Pauzaite T, Nathan JA. A closer look at the role of deubiquitinating enzymes in the Hypoxia Inducible Factor pathway. Biochem Soc Trans 2024; 52:2253-2265. [PMID: 39584532 DOI: 10.1042/bst20230861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024]
Abstract
Hypoxia Inducible transcription Factors (HIFs) are central to the metazoan oxygen-sensing response. Under low oxygen conditions (hypoxia), HIFs are stabilised and govern an adaptive transcriptional programme to cope with prolonged oxygen starvation. However, when oxygen is present, HIFs are continuously degraded by the proteasome in a process involving prolyl hydroxylation and subsequent ubiquitination by the Von Hippel Lindau (VHL) E3 ligase. The essential nature of VHL in the HIF response is well established but the role of other enzymes involved in ubiquitination is less clear. Deubiquitinating enzymes (DUBs) counteract ubiquitination and provide an important regulatory aspect to many signalling pathways involving ubiquitination. In this review, we look at the complex network of ubiquitination and deubiquitination in controlling HIF signalling in normal and low oxygen tensions. We discuss the relative importance of DUBs in opposing VHL, and explore roles of DUBs more broadly in hypoxia, in both VHL and HIF independent contexts. We also consider the catalytic and non-catalytic roles of DUBs, and elaborate on the potential benefits and challenges of inhibiting these enzymes for therapeutic use.
Collapse
Affiliation(s)
- Tekle Pauzaite
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah, Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, U.K
| | - James A Nathan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah, Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, U.K
| |
Collapse
|
3
|
Zhu Y, Chen Z, Niu K, Li M, Deng Y, Zhang J, Wei D, Wang J, Zhao Y. USP33 Regulates DNA Damage Response and Carcinogenesis Through Deubiquitylating and Stabilising p53. Cell Prolif 2024:e13793. [PMID: 39694539 DOI: 10.1111/cpr.13793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
The de-ubiquitinase USP33 has been shown to possess either tumour-promoting or inhibitory effect on human cancer cells. However, all these findings are mainly based on in vitro cell culture models, and the in vivo evidence, which is more plausible to digest the functional role of USP33 in carcinogenic process, is still lacking. Here, we demonstrate that USP33 modulates DNA damage responses including cell cycle arrest and apoptosis induction through associating with p53. It directly interacts with p53 to mediate its de-ubiquitination and further stabilisation under DNA damage condition. Depletion of USP33 induces an enhanced level of p53 ubiquitination, which de-stabilises p53 protein leading to impaired DNA damage responses. Furthermore, USP33 silencing shows either promoted or inhibited effect on cell proliferation in human cancer cells with p53 WT and mutant background, respectively. Consistently, mice with hepatocyte-specific USP33 knockout are more sensitive to nitrosodiethylamine (DEN)-induced hepatocarcinogenesis compared to wild type mice. Thus, our in vitro and in vivo evidences illustrate that USP33 possesses anti-tumour activity via regulating p53 stability and activity.
Collapse
Affiliation(s)
- Yuqi Zhu
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zixiang Chen
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Kaifeng Niu
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Mengge Li
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuchun Deng
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ji Zhang
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Di Wei
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Wang
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - YongLiang Zhao
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Hang Q, Zuo S, Yang Y, Wang Y, Li C, Li W, Guo J, Hou S, Huang H. USP33 is an integrin α6 deubiquitinase and promotes esophageal squamous cell carcinoma cell migration and metastasis. J Cancer Res Clin Oncol 2024; 150:511. [PMID: 39589547 PMCID: PMC11599434 DOI: 10.1007/s00432-024-06041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 11/16/2024] [Indexed: 11/27/2024]
Abstract
PURPOSE The deubiquitinating enzymes (DUBs) have been linked to cancer initiation and progression. Although ubiquitin-specific protease 33 (USP33) represents a significant factor in regulating various tumor cell behaviors, its specific biological functions and precise mechanisms in esophageal squamous cell carcinoma (ESCC) progression remain unclear. METHODS The expressions of USP33 mRNA in GEO databases, clinical ESCC samples, and USP33 protein were analyzed using bioinformatics, RT-PCR, and immunohistochemistry, respectively. Using Kaplan-Meier survival curves, the log-rank test was used to determine the cumulative survival rate. Western blotting was used to determine indicated protein expression. The cell biological functions were evaluated by cell growth assay, transwell, cell adhesion, and cell spreading assay, respectively. The interaction between USP33 and integrins was detected by immunoprecipitation, and the deubiquitination was performed by deubiquitination assay. The metastatic ability was checked by tail vein injection. RESULTS A significant positive correlation was found between USP33 expression and clinical TNM stage, T classification, and poor prognosis in patients with ESCC. USP33 promoted laminin-dependent adhesion, spreading, and migration of ESCC cells but not their proliferation. Mechanistically, USP33 mediates cell migration through binding, deubiquinating, and stabilizing integrin α6. USP33 knockdown could inhibit ESCC cell migration and metastasis majorly through integrin α6. CONCLUSION This study reveals a novel mechanism of USP33 in promoting laminin-dependent ESCC cell migration and metastasis through integrin α6, suggesting that USP33 may be a promising target for treating ESCC.
Collapse
Affiliation(s)
- Qinglei Hang
- Department of Clinical Medicine, Medical College, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China.
- Jiangsu Provincial Innovation and Practice Base for Postdoctors, Suining People's Hospital, Affiliated Hospital of Xuzhou Medical University, Suining, Jiangsu Province, 221200, China.
| | - Shiying Zuo
- Department of Clinical Medicine, Medical College, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, 225001, China
| | - Yawen Yang
- Department of Clinical Medicine, Medical College, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
| | - Yuanzhi Wang
- Department of Clinical Medicine, Medical College, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, 225001, China
| | - Caimin Li
- Department of Clinical Medicine, Medical College, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, 225001, China
| | - Wenqian Li
- Department of Clinical Medicine, Medical College, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, 225001, China
| | - Jingya Guo
- Department of Clinical Medicine, Medical College, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, 225001, China
| | - Sicong Hou
- Department of Clinical Medicine, Medical College, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China.
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, 225001, China.
| | - Haifeng Huang
- Department of Laboratory Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu Province, 224006, China.
- Department of Laboratory Medicine, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, 224006, China.
| |
Collapse
|
5
|
Zhou Y, Liao Y, Fan L, Wei X, Huang Q, Yang C, Feng W, Wu Y, Gao X, Shen X, Zhou J, Xia Z, Zhang Z. Lung-Targeted Lipid Nanoparticle-Delivered siUSP33 Attenuates SARS-CoV-2 Replication and Virulence by Promoting Envelope Degradation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406211. [PMID: 39301916 PMCID: PMC11558077 DOI: 10.1002/advs.202406211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/02/2024] [Indexed: 09/22/2024]
Abstract
As a structural protein of SARS-CoV-2, the envelope (E) protein not only plays a key role in the formation of viral particles, but also forms ion channels and has pathogenic functions, including triggering cell death and inflammatory responses. The stability of E proteins is controlled by the host ubiquitin-proteasome system. By screening human deubiquitinases, it is found that ubiquitin-specific protease 33 (USP33) can enhance the stability of E proteins depending on its deubiquitinase activity, thereby promoting viral replication. In the absence of USP33, E proteins are rapidly degraded, leading to a reduced viral load and inflammation. Using lipid nanoparticle (LNP) encapsulation of siUSP33 by adjusting the lipid components (ionizable cationic lipids), siUSP33 is successfully delivered to mouse lung tissues, rapidly reducing USP33 expression in the lungs and maintaining knockdown for at least 14 days, effectively suppressing viral replication and virulence. This method of delivery allows efficient targeting of the lungs and a response to acute infections without long-term USP33 deficiency. This research, based on the deubiquitination mechanism of USP33 on the E protein, demonstrates that LNP-mediated siRNA delivery targeting USP33 plays a role in antiviral and anti-inflammatory responses, offering a novel strategy for the prevention and treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Yuzheng Zhou
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
| | - Yujie Liao
- Department of Cell BiologySchool of Life SciencesCentral South UniversityChangsha410083China
| | - Lujie Fan
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
- Guangzhou LaboratoryGuangzhou510700China
| | - Xiafei Wei
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
| | - Qiang Huang
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
| | - Chuwei Yang
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
| | - Wei Feng
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
| | - Yezi Wu
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
| | - Xiang Gao
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
| | - Xiaotong Shen
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
| | - Jian Zhou
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
| | - Zanxian Xia
- Department of Cell BiologySchool of Life SciencesCentral South UniversityChangsha410083China
- Hunan Key Laboratory of Animal Models for Human DiseasesHunan Key Laboratory of Medical Genetics & Center for Medical GeneticsSchool of Life SciencesCentral South UniversityChangsha410013China
| | - Zheng Zhang
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
- Shenzhen Research Center for Communicable Disease Diagnosis and TreatmentChinese Academy of Medical SciencesShenzhen518112China
| |
Collapse
|
6
|
Chen J, Shan W, Jia Q, Chen Y, Jiang W, Tian Y, Huang X, Li X, Wang Z, Xia B. USP33 facilitates the ovarian cancer progression via deubiquitinating and stabilizing CBX2. Oncogene 2024; 43:3170-3183. [PMID: 39256572 DOI: 10.1038/s41388-024-03151-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024]
Abstract
Post-translational modifications of proteins play a pivotal role in both the initiation and progression of ovarian cancer. Despite the recognition of USP33 as a significant factor in various cancers, its specific function and underlying mechanisms in ovarian cancer remain elusive. Proteomics and ubiquitinomics approaches were coupled to screen novel substrate proteins directly regulated by USP33. Our findings unveil that USP33 was observed to eliminate K27- and K48-linked ubiquitin chains from CBX2 at the K277 position. Notably, acetylation of CBX2 at K199, catalyzed by lysine acetyltransferase GCN5, was found to enhance its interaction with USP33, subsequently promoting further deubiquitination and stabilization. Functionally, our experiments demonstrate that USP33 significantly enhances ovarian cancer proliferation and metastasis in a CBX2-dependent manner. Furthermore, analysis revealed a direct positive correlation between the expression levels of USP33 and CBX2 proteins in human specimens, with elevated levels being associated with reduced survival rates in ovarian cancer patients. These findings elucidate the mechanism by which USP33 augments ovarian cancer progression through the stabilization of CBX2, underscoring the USP33-CBX2 axis as a promising therapeutic target in ovarian cancer management.
Collapse
Affiliation(s)
- Jiming Chen
- Department of Gynecology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Wulin Shan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Obstetrics and Gynecology, Anhui Provincial Cancer Hospital, Hefei, Anhui, China
| | - Qiucheng Jia
- Department of Gynecology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yao Chen
- Department of Obstetrics and Gynecology, Anhui Provincial Cancer Hospital, Hefei, Anhui, China
- Bengbu Medical University, Bengbu, Anhui, China
| | - Wenjing Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Obstetrics and Gynecology, Anhui Provincial Cancer Hospital, Hefei, Anhui, China
| | - Yuan Tian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Obstetrics and Gynecology, Anhui Provincial Cancer Hospital, Hefei, Anhui, China
| | - Xu Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Obstetrics and Gynecology, Anhui Provincial Cancer Hospital, Hefei, Anhui, China
| | - Xiaoyu Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Obstetrics and Gynecology, Anhui Provincial Cancer Hospital, Hefei, Anhui, China
| | - Zengying Wang
- Department of Obstetrics and Gynecology, Anhui Provincial Cancer Hospital, Hefei, Anhui, China
- Bengbu Medical University, Bengbu, Anhui, China
| | - Bairong Xia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Department of Obstetrics and Gynecology, Anhui Provincial Cancer Hospital, Hefei, Anhui, China.
- Bengbu Medical University, Bengbu, Anhui, China.
| |
Collapse
|
7
|
Xie J, Jiang J, Wang X, Zuo X, Jia Y. RNA binding protein ELAVL1-mediated USP33 stabilizes HIF1A to promote pathological proliferation, migration and angiogenesis of RECs. Int Ophthalmol 2024; 44:393. [PMID: 39320536 DOI: 10.1007/s10792-024-03311-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/08/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Dysfunction of retinal vascularization plays pathogenic roles in retinopathy of prematurity (ROP). Hypoxia-inducible factor 1 alpha (HIF1A) is activated by hypoxia and contributes to ROP progression. Herein, we clarified the mechanism underlying HIF1A activation in human retinal vascular endothelial cells (HRECs) under hypoxia. METHODS Protein expression was assayed by immunoblot analysis. Cell migration, microtubule formation, invasion, proliferation, and viability were detected by wound-healing, tube formation, transwell, EdU, and CCK-8 assays, respectively. Bioinformatics was used to predict the deubiquitinase-HIF1A interactions and RNA binding proteins (RBPs) bound to USP33. The impact of USP33 on HIF1A deubiquitination was validated by immunoprecipitation (IP) assay. RNA stability analysis was performed with actinomycin D (Act D) treatment. The ELAVL1/USP33 interaction was assessed by RNA immunoprecipitation experiment. RESULTS In hypoxia-exposed HRECs, HIF1A and USP33 protein levels were upregulated. Deficiency of HIF1A or USP33 suppressed cell migration, proliferation and microtubule formation of hypoxia-exposed HRECs. Mechanistically, USP33 deficiency led to an elevation in HIF1A ubiquitination and degradation. USP33 deficiency reduced HIF1A protein levels to suppress the proliferation and microtubule formation of hypoxia-induced HRECs. Moreover, the RBP ELAVL1 stabilized USP33 mRNA to increase USP33 protein levels. ELAVL1 decrease repressed the proliferation and microtubule formation of hypoxia-induced HRECs by reducing USP33. CONCLUSION Our study identifies a novel ELAVL1/USP33/HIF1A regulatory cascade with the ability to affect hypoxia-induced pathological proliferation, angiogenesis, and migration in HRECs.
Collapse
Affiliation(s)
- Jing Xie
- Department of Ophthalmology, Xingtai People's Hospital, No. 818 Xiangdu North Road, Xiangdu District, Xingtai, 054001, Hebei, China.
| | - Jun Jiang
- Department of Urology, The First Affiliated Hospital of Xingtai Medical College, Xingtai City, 054001, Hebei, China
| | - Xiuxian Wang
- Department of Ophthalmology, Xingtai People's Hospital, No. 818 Xiangdu North Road, Xiangdu District, Xingtai, 054001, Hebei, China
| | - Xiangrong Zuo
- Department of Ophthalmology, Xingtai People's Hospital, No. 818 Xiangdu North Road, Xiangdu District, Xingtai, 054001, Hebei, China
| | - Yuhong Jia
- Department of Ophthalmology, Xingtai People's Hospital, No. 818 Xiangdu North Road, Xiangdu District, Xingtai, 054001, Hebei, China
| |
Collapse
|
8
|
Pauzaite T, Wit N, Seear RV, Nathan JA. Deubiquitinating enzyme mutagenesis screens identify a USP43-dependent HIF-1 transcriptional response. EMBO J 2024; 43:3677-3709. [PMID: 39009674 PMCID: PMC11377827 DOI: 10.1038/s44318-024-00166-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/13/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
The ubiquitination and proteasome-mediated degradation of Hypoxia Inducible Factors (HIFs) is central to metazoan oxygen-sensing, but the involvement of deubiquitinating enzymes (DUBs) in HIF signalling is less clear. Here, using a bespoke DUBs sgRNA library we conduct CRISPR/Cas9 mutagenesis screens to determine how DUBs are involved in HIF signalling. Alongside defining DUBs involved in HIF activation or suppression, we identify USP43 as a DUB required for efficient activation of a HIF response. USP43 is hypoxia regulated and selectively associates with the HIF-1α isoform, and while USP43 does not alter HIF-1α stability, it facilitates HIF-1 nuclear accumulation and binding to its target genes. Mechanistically, USP43 associates with 14-3-3 proteins in a hypoxia and phosphorylation dependent manner to increase the nuclear pool of HIF-1. Together, our results highlight the multifunctionality of DUBs, illustrating that they can provide important signalling functions alongside their catalytic roles.
Collapse
Affiliation(s)
- Tekle Pauzaite
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, United Kingdom
| | - Niek Wit
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, United Kingdom
| | - Rachel V Seear
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, United Kingdom
| | - James A Nathan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, United Kingdom.
| |
Collapse
|
9
|
Si J, Guo J, Zhang X, Li W, Zhang S, Shang S, Zhang Q. Hypoxia-induced activation of HIF-1alpha/IL-1beta axis in microglia promotes glioma progression via NF-κB-mediated upregulation of heparanase expression. Biol Direct 2024; 19:45. [PMID: 38863009 PMCID: PMC11165725 DOI: 10.1186/s13062-024-00487-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Glioma is a common tumor that occurs in the brain and spinal cord. Hypoxia is a crucial feature of the tumor microenvironment. Tumor-associated macrophages/microglia play a crucial role in the advancement of glioma. This study aims to illuminate the detailed mechanisms by which hypoxia regulates microglia and, consequently, influences the progression of glioma. METHODS The glioma cell viability and proliferation were analyzed by cell counting kit-8 assay and 5-ethynyl-2'-deoxyuridine assay. Wound healing assay and transwell assay were implemented to detect glioma cell migration and invasion, respectively. Enzyme-linked immunosorbent assay was conducted to detect protein levels in cell culture medium. The protein levels in glioma cells and tumor tissues were evaluated using western blot analysis. The histological morphology of tumor tissue was determined by hematoxylin-eosin staining. The protein expression in tumor tissues was determined using immunohistochemistry. Human glioma xenograft in nude mice was employed to test the influence of hypoxic microglia-derived interleukin-1beta (IL-1β) and heparanase (HPSE) on glioma growth in vivo. RESULTS Hypoxic HMC3 cells promoted proliferation, migration, and invasion abilities of U251 and U87 cells by secreting IL-1β, which was upregulated by hypoxia-induced activation of hypoxia inducible factor-1alpha (HIF-1α). Besides, IL-1β from HMC3 cells promoted glioma progression and caused activation of nuclear factor-κB (NF-κB) and upregulation of HPSE in vivo. We also confirmed that IL-1β facilitated HPSE expression in U251 and U87 cells by activating NF-κB. Hypoxic HMC3 cells-secreted IL-1β facilitated the proliferation, migration, and invasion of U251 and U87 cells via NF-κB-mediated upregulation of HPSE expression. Finally, we revealed that silencing HPSE curbed the proliferation and metastasis of glioma in mice. CONCLUSION Hypoxia-induced activation of HIF-1α/IL-1β axis in microglia promoted glioma progression via NF-κB-mediated upregulation of HPSE expression.
Collapse
Affiliation(s)
- Jinchao Si
- Department of Neurology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, China
| | - Jingya Guo
- Department of Neuroelectrophysiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, China
| | - Xu Zhang
- Department of General Practice, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, China
| | - Wei Li
- Department of Physiology, School of Basic Medicine, Zhengzhou University, Zhengzhou, 450066, China
| | - Shen Zhang
- Department of Neuroelectrophysiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, China
| | - Shuyu Shang
- Department of Physiology, Medical College, HuangHe Science and Technology University, Zhengzhou, 450064, China
| | - Quanwu Zhang
- Department of Pathology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 16 Tongbai North Road, Zhengzhou, Henan Province, 450007, China.
| |
Collapse
|
10
|
Chen M, Xiao S, Sun P, Li Y, Xu Z, Wang J. Morusin suppresses the stemness characteristics of gastric cancer cells induced by hypoxic microenvironment through inhibition of HIF-1α accumulation. Toxicon 2024; 241:107675. [PMID: 38432611 DOI: 10.1016/j.toxicon.2024.107675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Gastric cancer (GC) is a common, life-threatening malignancy that contributes to the global burden of cancer-related mortality, as conventional therapeutic modalities show limited effects on GC. Hence, it is critical to develop novel agents for GC therapy. Morusin, a typical prenylated flavonoid, possesses antitumor effects against various cancers. The present study aimed to demonstrate the inhibitory effect and mechanism of morusin on the stemness characteristics of human GC in vitro under hypoxia and to explore the potential molecular mechanisms. The effects of morusin on cell proliferation and cancer stem cell-like properties of the human GC cell lines SNU-1 and AGS were assessed by MTT assay, colony formation test, qRT-PCR, flow cytometry analysis, and sphere formation test under hypoxia or normoxia condition through in vitro assays. The potential molecular mechanisms underlying the effects of morusin on the stem-cell-like properties of human GC cells in vitro were investigated by qRT-PCR, western blotting assay, and immunofluorescence assay by evaluating the nuclear translocation and expression level of hypoxia-inducible factor-1α (HIF-1α). The results showed that morusin exerted growth inhibitory effects on SNU-1 and AGS cells under hypoxia in vitro. Moreover, the proportions of CD44+/CD24- cells and the sphere formation ability of SNU-1 and AGS reduced in a dose-dependent manner following morusin treatment. The expression levels of stem cell-related genes, namely Nanog, OCT4, SOX2, and HIF-1α, gradually decreased, and the nuclear translocation of the HIF-1α protein was apparently attenuated. HIF-1α overexpression partially reversed the abovementioned effects of morusin. Taken together, morusin could restrain stemness characteristics of GC cells by inhibiting HIF-1α accumulation and nuclear translocation and could serve as a promising compound for GC treatment.
Collapse
Affiliation(s)
- Mo Chen
- Department of Gastrointestinal and Burn Plastic Surgery, Pu'er People's Hospital, Pu 'er 665000, Yunnan Province, China.
| | - Shufeng Xiao
- Department of Gastrointestinal and Burn Plastic Surgery, Pu'er People's Hospital, Pu 'er 665000, Yunnan Province, China.
| | - Ping Sun
- Department of Science and Education, Pu'er People's Hospital, Pu 'er 665000, Yunnan Province, China.
| | - Yongfu Li
- Department of Science and Education, Pu'er People's Hospital, Pu 'er 665000, Yunnan Province, China.
| | - Zhixing Xu
- Department of Neuro surgery, Pu'er People's Hospital, Pu 'er 665000, Yunnan Province, China.
| | - Jun Wang
- Department of Medical Laboratory Center, Pu'er People's Hospital, Pu 'er 665000, Yunnan Province, China.
| |
Collapse
|
11
|
Dong W, Chen J, Wang Y, Weng J, Du X, Fang X, Liu W, Long T, You J, Wang W, Peng X. miR-206 alleviates LPS-induced inflammatory injury in cardiomyocytes via directly targeting USP33 to inhibit the JAK2/STAT3 signaling pathway. Mol Cell Biochem 2024; 479:929-940. [PMID: 37256445 PMCID: PMC10230473 DOI: 10.1007/s11010-023-04754-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023]
Abstract
Previous reports have confirmed that miR-206 participates in inflammatory cardiomyopathy, but its definite mechanism remains elusive. This study aims to elucidate the potential mechanism of miR-206 in septic cardiomyopathy (SCM). The primary mouse cardiomyocytes were isolated and exposed to lipopolysaccharides (LPS) to construct a septic injury model in vitro. Then, the gene transcripts and protein levels were detected by RT-qPCR and/or Western blot assay. Cell proliferation, apoptosis, and inflammatory responses were evaluated by CCK-8/EdU, flow cytometry, and ELISA assays, respectively. Dual luciferase assay, Co-IP, and ubiquitination experiments were carried out to validate the molecular interactions among miR-206, USP33, and JAK2/STAT3 signaling. miR-206 was significantly downregulated, but USP33 was upregulated in LPS-induced cardiomyocytes. Gain-of-function of miR-206 elevated the proliferation but suppressed the inflammatory responses and apoptosis in LPS-induced cardiomyocytes. USP33, as a member of the USP protein family, was confirmed to be a direct target of miR-206 and could catalyze deubiquitination of JAK2 to activate JAK2/STAT3 signaling. Rescue experiments presented that neither upregulation of USP33 nor JAK2/STAT3 signaling activation considerably reversed the protective effects of miR-206 upregulation in LPS-induced cardiomyocytes. The above data showed that miR-206 protected cardiomyocytes from LPS-induced inflammatory injuries by targeting the USP33/JAK2/STAT3 signaling pathway, which might be a novel target for SCM treatment.
Collapse
Affiliation(s)
- Wei Dong
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Jin Chen
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Yadong Wang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Junfei Weng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Xingxiang Du
- Department of Emergency, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Xu Fang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Wenyu Liu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Tao Long
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Jiaxiang You
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Wensheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Xiaoping Peng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China.
| |
Collapse
|
12
|
Habeeb M, Vengateswaran HT, You HW, Saddhono K, Aher KB, Bhavar GB. Nanomedicine facilitated cell signaling blockade: difficulties and strategies to overcome glioblastoma. J Mater Chem B 2024; 12:1677-1705. [PMID: 38288615 DOI: 10.1039/d3tb02485g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Glioblastoma (GBM) is a highly aggressive and lethal type of brain tumor with complex and diverse molecular signaling pathways involved that are in its development and progression. Despite numerous attempts to develop effective treatments, the survival rate remains low. Therefore, understanding the molecular mechanisms of these pathways can aid in the development of targeted therapies for the treatment of glioblastoma. Nanomedicines have shown potential in targeting and blocking signaling pathways involved in glioblastoma. Nanomedicines can be engineered to specifically target tumor sites, bypass the blood-brain barrier (BBB), and release drugs over an extended period. However, current nanomedicine strategies also face limitations, including poor stability, toxicity, and low therapeutic efficacy. Therefore, novel and advanced nanomedicine-based strategies must be developed for enhanced drug delivery. In this review, we highlight risk factors and chemotherapeutics for the treatment of glioblastoma. Further, we discuss different nanoformulations fabricated using synthetic and natural materials for treatment and diagnosis to selectively target signaling pathways involved in GBM. Furthermore, we discuss current clinical strategies and the role of artificial intelligence in the field of nanomedicine for targeting GBM.
Collapse
Affiliation(s)
- Mohammad Habeeb
- Department of Pharmaceutics, Crescent School of Pharmacy, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai-600048, India.
| | - Hariharan Thirumalai Vengateswaran
- Department of Pharmaceutics, Crescent School of Pharmacy, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai-600048, India.
| | - Huay Woon You
- Pusat PERMATA@Pintar Negara, Universiti Kebangsaan 43600, Bangi, Selangor, Malaysia
| | - Kundharu Saddhono
- Faculty of Teacher Training and Education, Universitas Sebelas Maret, 57126, Indonesia
| | - Kiran Balasaheb Aher
- Department of Pharmaceutical Quality Assurance, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, 424001, India
| | - Girija Balasaheb Bhavar
- Department of Pharmaceutical Chemistry, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, 424001, India
| |
Collapse
|
13
|
Zhu Q, Liang P, Meng H, Li F, Miao W, Chu C, Wang W, Li D, Chen C, Shi Y, Yu X, Ping Y, Niu C, Wu HB, Zhang A, Bian XW, Zhou W. Stabilization of Pin1 by USP34 promotes Ubc9 isomerization and protein sumoylation in glioma stem cells. Nat Commun 2024; 15:40. [PMID: 38167292 PMCID: PMC10762127 DOI: 10.1038/s41467-023-44349-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
The peptidyl-prolyl cis-trans isomerase Pin1 is a pivotal therapeutic target in cancers, but the regulation of Pin1 protein stability is largely unknown. High Pin1 expression is associated with SUMO1-modified protein hypersumoylation in glioma stem cells (GSCs), but the underlying mechanisms remain elusive. Here we demonstrate that Pin1 is deubiquitinated and stabilized by USP34, which promotes isomerization of the sole SUMO E2 enzyme Ubc9, leading to SUMO1-modified hypersumoylation to support GSC maintenance. Pin1 interacts with USP34, a deubiquitinase with preferential expression and oncogenic function in GSCs. Such interaction is facilitated by Plk1-mediated phosphorylation of Pin1. Disruption of USP34 or inhibition of Plk1 promotes poly-ubiquitination and degradation of Pin1. Furthermore, Pin1 isomerizes Ubc9 to upregulate Ubc9 thioester formation with SUMO1, which requires CDK1-mediated phosphorylation of Ubc9. Combined inhibition of Pin1 and CDK1 with sulfopin and RO3306 most effectively suppresses orthotopic tumor growth. Our findings provide multiple molecular targets to induce Pin1 degradation and suppress hypersumoylation for cancer treatment.
Collapse
Affiliation(s)
- Qiuhong Zhu
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Panpan Liang
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Hao Meng
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Fangzhen Li
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wei Miao
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Cuiying Chu
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wei Wang
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Dongxue Li
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Cong Chen
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Yu Shi
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Xingjiang Yu
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifang Ping
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Chaoshi Niu
- Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hai-Bo Wu
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Aili Zhang
- Department of Cell Biology, School of Life Science, Anhui Medical University, Hefei, Anhui, China.
| | - Xiu-Wu Bian
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.
| | - Wenchao Zhou
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
14
|
Luan R, He M, Li H, Bai Y, Wang A, Sun G, Zhou B, Wang M, Wang C, Wang S, Zeng K, Feng J, Lin L, Wei Y, Kato S, Zhang Q, Zhao Y. MYSM1 acts as a novel co-activator of ERα to confer antiestrogen resistance in breast cancer. EMBO Mol Med 2024; 16:10-39. [PMID: 38177530 PMCID: PMC10883278 DOI: 10.1038/s44321-023-00003-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 01/06/2024] Open
Abstract
Endocrine resistance is a crucial challenge in estrogen receptor alpha (ERα)-positive breast cancer (BCa). Aberrant alteration in modulation of E2/ERα signaling pathway has emerged as the putative contributor for endocrine resistance in BCa. Herein, we demonstrate that MYSM1 as a deubiquitinase participates in modulating ERα action via histone and non-histone deubiquitination. MYSM1 is involved in maintenance of ERα stability via ERα deubiquitination. MYSM1 regulates relevant histone modifications on cis regulatory elements of ERα-regulated genes, facilitating chromatin decondensation. MYSM1 is highly expressed in clinical BCa samples. MYSM1 depletion attenuates BCa-derived cell growth in xenograft models and increases the sensitivity of antiestrogen agents in BCa cells. A virtual screen shows that the small molecule Imatinib could potentially interact with catalytic MPN domain of MYSM1 to inhibit BCa cell growth via MYSM1-ERα axis. These findings clarify the molecular mechanism of MYSM1 as an epigenetic modifier in regulation of ERα action and provide a potential therapeutic target for endocrine resistance in BCa.
Collapse
Affiliation(s)
- Ruina Luan
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, 110122, Shenyang City, Liaoning Province, China
| | - Mingcong He
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, 110122, Shenyang City, Liaoning Province, China
| | - Hao Li
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, 110122, Shenyang City, Liaoning Province, China
| | - Yu Bai
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, 110122, Shenyang City, Liaoning Province, China
| | - Anqi Wang
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, 110122, Shenyang City, Liaoning Province, China
- First Clinical Medical College, China Medical University, 110001, Shenyang City, Liaoning Province, China
| | - Ge Sun
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, 110122, Shenyang City, Liaoning Province, China
| | - Baosheng Zhou
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, 110122, Shenyang City, Liaoning Province, China
| | - Manlin Wang
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, 110122, Shenyang City, Liaoning Province, China
| | - Chunyu Wang
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, 110122, Shenyang City, Liaoning Province, China
| | - Shengli Wang
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, 110122, Shenyang City, Liaoning Province, China
| | - Kai Zeng
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, 110122, Shenyang City, Liaoning Province, China
| | - Jianwei Feng
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, 110122, Shenyang City, Liaoning Province, China
| | - Lin Lin
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, 110122, Shenyang City, Liaoning Province, China
| | - Yuntao Wei
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 110042, Shenyang City, Liaoning Province, China
| | - Shigeaki Kato
- Graduate School of Life Science and Engineering, Iryo Sosei University, Iino, Chuo-dai, Iwaki, Fukushima, 9708551, Japan
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima, Japan
| | - Qiang Zhang
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 110042, Shenyang City, Liaoning Province, China.
| | - Yue Zhao
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, 110122, Shenyang City, Liaoning Province, China.
| |
Collapse
|
15
|
Hu C, Sun Y, Li W, Bi Y. Hypoxia improves self-renew and migration of urine-derived stem cells by upregulating autophagy and mitochondrial function through ERK signal pathway. Mitochondrion 2023; 73:1-9. [PMID: 37678426 DOI: 10.1016/j.mito.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/10/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Urine-derived stem cells (USCs) are autologous stem cells with self-renewal ability and multi-lineage differentiation potential. Our previous studies have shown that hypoxia preconditioning can improve self-renewal and migration abilities of USCs by up-regulating autophagy. The purpose of this study was to investigate the specific mechanism by which hypoxia treatment promotes the biological function of USCs. We found that hypoxia treatment upregulated the expression of phosphralated ERK protein without affecting the expression of total ERK protein. Inhibiting ERK signaling with the PD98059 inhibitor decreased cell proliferation, migration and colony formation during hypoxia treatment. Hypoxia increased ATP production, mitochondrial membrane potential and mt-DNA copy number, which were reversed by inhibiting the ERK signal. Additionally, the number of autophagosomes and autophagic lysosomes was significantly lower in PD98059 group than in the hypoxia group. PD98059 treatment inhibited the up-regulation of autophagy related proteins induced by hypoxia. Therefore, this study suggests that hypoxia improves the self-renewal and migration abilities of USCs by upregulating autophagy and mitochondrial function through ERK signaling pathway. This finding may provide a new therapeutic mechanism for hypoxia pretreated USCs as a source of stem cell transplantation.
Collapse
Affiliation(s)
- Chaoqun Hu
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, The Children's Hospital of Chongqing Medical University, Chongqing, China; Digestive Department, Chongqing People's Hospital, Chongqing, China
| | - Yanting Sun
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, The Children's Hospital of Chongqing Medical University, Chongqing, China; Centre of Clinical Laboratory, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Wanxia Li
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Bi
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, The Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
16
|
Huang Q, Liu L, Xiao D, Huang Z, Wang W, Zhai K, Fang X, Kim J, Liu J, Liang W, He J, Bao S. CD44 + lung cancer stem cell-derived pericyte-like cells cause brain metastases through GPR124-enhanced trans-endothelial migration. Cancer Cell 2023; 41:1621-1636.e8. [PMID: 37595587 DOI: 10.1016/j.ccell.2023.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/07/2023] [Accepted: 07/28/2023] [Indexed: 08/20/2023]
Abstract
Brain metastasis of lung cancer causes high mortality, but the exact mechanisms underlying the metastasis remain unclear. Here we report that vascular pericytes derived from CD44+ lung cancer stem cells (CSCs) in lung adenocarcinoma (ADC) potently cause brain metastases through the G-protein-coupled receptor 124 (GPR124)-enhanced trans-endothelial migration (TEM). CD44+ CSCs in perivascular niches generate the majority of vascular pericytes in lung ADC. CSC-derived pericyte-like cells (Cd-pericytes) exhibit remarkable TEM capacity to effectively intravasate into the vessel lumina, survive in the circulation, extravasate into the brain parenchyma, and then de-differentiate into tumorigenic CSCs to form metastases. Cd-pericytes uniquely express GPR124 that activates Wnt7-β-catenin signaling to enhance TEM capacity of Cd-pericytes for intravasation and extravasation, two critical steps during tumor metastasis. Furthermore, selective disruption of Cd-pericytes, GPR124, or the Wnt7-β-catenin signaling markedly reduces brain and liver metastases of lung ADC. Our findings uncover an unappreciated cellular and molecular paradigm driving tumor metastasis.
Collapse
Affiliation(s)
- Qian Huang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Liping Liu
- Department of Thoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, the State Key Laboratory of Respiratory Disease, and the National Clinical Research Centre for Respiratory Disease, Guangzhou 510120, China
| | - Dakai Xiao
- Department of Thoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, the State Key Laboratory of Respiratory Disease, and the National Clinical Research Centre for Respiratory Disease, Guangzhou 510120, China
| | - Zhi Huang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Wenjun Wang
- Department of Thoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, the State Key Laboratory of Respiratory Disease, and the National Clinical Research Centre for Respiratory Disease, Guangzhou 510120, China
| | - Kui Zhai
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xiaoguang Fang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jongmyung Kim
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - James Liu
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Wenhua Liang
- Department of Thoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, the State Key Laboratory of Respiratory Disease, and the National Clinical Research Centre for Respiratory Disease, Guangzhou 510120, China
| | - Jianxing He
- Department of Thoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, the State Key Laboratory of Respiratory Disease, and the National Clinical Research Centre for Respiratory Disease, Guangzhou 510120, China.
| | - Shideng Bao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Cancer Stem Cell Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
17
|
Lin X, Su H, Huo J, Zhang F. The association of hypoxia-inducible factor-1α and hypoxia-inducible factor-2α protein expression with clinicopathological characteristics in papillary thyroid carcinoma: A meta-analysis. Medicine (Baltimore) 2023; 102:e34045. [PMID: 37327294 PMCID: PMC10270558 DOI: 10.1097/md.0000000000034045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/30/2023] [Indexed: 06/18/2023] Open
Abstract
OBJECTIVE To investigate the correlation of hypoxia-inducible factor-1α (HIF-1α) and hypoxia-inducible factor-2α (HIF-2α) protein expression with clinicopathologic characteristics in patients with papillary thyroid carcinoma (PTC) through a meta-analysis. METHODS PubMed, Embase, Web of Science, Cochrane, CNKI, Wanfang, and VIP databases were searched from the establishment of the database to February 2023. The New castle-Ottawa Scale was used to evaluate the quality of the literature. Rev Man 5.3 and Stata14.0 were used to conduct a meta-analysis of the included studies. RESULTS Twenty-eight articles with 2346 samples were included in the Meta-analysis. Compared with normal thyroid tissues, HIF-1α and HIF-2α proteins were highly expressed in PTC tumor tissues. High expression of HIF-1α protein was associated with tumor size (odds ratio [OR] = 4.50, 95% confidence interval [CI]: 2.88-7.04, P < .00001), lymph node metastasis (OR = 4.76, 95% CI: 3.78-5.99, P < .00001), TNM stage (OR = 3.67, 95% CI: 2.68-5.03, P < .00001), capsular invasion (OR = 2.30, 95% CI: 1.43-3.71, P = .0006 < .05), and extrathyroidal extension (OR = 10.96, 95% CI: 4.80-25.02, P < .00001). High expression of HIF-2α protein was associated with lymph node metastasis (OR = 4.18, 95% CI: 2.63-6.65, P < .00001), TNM stage (OR = 2.56, 95% CI: 1.36-4.82, P = .004 < .05), and capsular invasion (OR = 3.84, 95% CI: 1.66-8.88, P = .002 < .05). In addition, we concluded for the first time that there was a statistically significant difference in the expression of HIF-1α and HIF-2α in PTC patients (OR = 2.36, 95% CI: 1.26-4.42, P = .007 < .05). CONCLUSIONS The high expression of HIF-1α and HIF-2α proteins is closely related to some clinicopathological parameters of PTC, and can provide potential biological indicators for the diagnosis and prognosis of PTC.
Collapse
Affiliation(s)
- Xunyi Lin
- Department of Thyroid and Breast Surgery, Hebei General Hospital Affiliated to Hebei North University, Shijiazhuang, China
| | - Hang Su
- Department of Thyroid and Breast Surgery, Hebei General Hospital Affiliated to North China University of Science and Technology, Shijiazhuang, China
| | - Jiaxing Huo
- Department of Thyroid and Breast Surgery, Hebei General Hospital Affiliated to Hebei Medicine University, Shijiazhuang, China
| | - Fenghua Zhang
- Department of Thyroid and Breast Surgery, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
18
|
Histone acetyltransferase 1 (HAT1) acetylates hypoxia-inducible factor 2 alpha (HIF2A) to execute hypoxia response. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194900. [PMID: 36410688 DOI: 10.1016/j.bbagrm.2022.194900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/20/2022]
Abstract
Hypoxic response to low oxygen levels is characteristic of most solid cancers. Hypoxia-inducible factors (HIFs) regulate cellular metabolism, survival, proliferation, and cancer stem cell growth during hypoxia. The genome-wide analysis identified HAT1, a type B histone acetyltransferase, as an upregulated and essential gene in glioblastoma (GBM). GSEA analysis of differentially regulated genes in HAT1 silenced cells identified significant depletion of "hypoxia" gene sets. Hypoxia conditions induced HIF2A, not HIF1A protein levels in glioma cells in a HAT1-dependent manner. HAT1 and HIF2A interacted with each other and occupied the promoter of VEGFA, a bonafide HIF1A/HIF2A target. Acetylation of K512 and K596 residues by HAT1 is essential for HIF2A stabilization under normoxia and hypoxia as HIF2A carrying acetylation mimic mutations at either of these residues (H512Q or K596Q) showed stable expression in HAT1 silenced cells under normoxia and hypoxia conditions. Finally, we demonstrate that the HAT1-HIF2A axis is essential for hypoxia-promoted cancer stem cell maintenance and reprogramming. Thus, our study identifies that the HAT1-dependent acetylation of HIF2A is vital to executing the hypoxia-induced cell survival and cancer stem cell growth, therefore proposing the HAT1-HIF2A axis as a potential therapeutic target.
Collapse
|
19
|
Progress in targeting PTEN/PI3K/Akt axis in glioblastoma therapy: Revisiting molecular interactions. Biomed Pharmacother 2023; 158:114204. [PMID: 36916430 DOI: 10.1016/j.biopha.2022.114204] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/16/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma (GBM) is one of the most malignant cancers of central nervous system and due to its sensitive location, surgical resection has high risk and therefore, chemotherapy and radiotherapy are utilized for its treatment. However, chemoresistance and radio-resistance are other problems in GBM treatment. Hence, new therapies based on genes are recommended for treatment of GBM. PTEN is a tumor-suppressor operator in cancer that inhibits PI3K/Akt/mTOR axis in diminishing growth, metastasis and drug resistance. In the current review, the function of PTEN/PI3K/Akt axis in GBM progression is evaluated. Mutation or depletion of PTEN leads to increase in GBM progression. Low expression level of PTEN mediates poor prognosis in GBM and by increasing proliferation and invasion, promotes malignancy of tumor cells. Moreover, loss of PTEN signaling can result in therapy resistance in GBM. Activation of PTEN signaling impairs GBM metabolism via glycolysis inhibition. In contrast to PTEN, PI3K/Akt signaling has oncogenic function and during tumor progression, expression level of PI3K/Akt enhances. PI3K/Akt signaling shows positive association with oncogenic pathways and its expression similar to PTEN signaling, is regulated by non-coding RNAs. PTEN upregulation and PI3K/Akt signaling inhibition by anti-cancer agents can be beneficial in interfering GBM progression. This review emphasizes on the signaling networks related to PTEN/PI3K/Akt and provides new insights for targeting this axis in effective GBM treatment.
Collapse
|
20
|
Gao Z, Li C, Sun H, Bian Y, Cui Z, Wang N, Wang Z, Yang Y, Liu Z, He Z, Li B, Li F, Li Z, Wang L, Zhang D, Yang L, Xu Z, Li X, Xu H. N 6-methyladenosine-modified USP13 induces pro-survival autophagy and imatinib resistance via regulating the stabilization of autophagy-related protein 5 in gastrointestinal stromal tumors. Cell Death Differ 2023; 30:544-559. [PMID: 36528756 PMCID: PMC9950061 DOI: 10.1038/s41418-022-01107-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Secondary resistance to imatinib (IM) represents a major challenge for therapy of gastrointestinal stromal tumors (GISTs). Aberrations in oncogenic pathways, including autophagy, correlate with IM resistance. Regulation of autophagy-related protein 5 (ATG5) by the ubiquitin-proteasome system is critical for autophagic activity, although the molecular mechanisms that underpin reversible deubiquitination of ATG5 have not been deciphered fully. Here, we identified USP13 as an essential deubiquitinase that stabilizes ATG5 in a process that depends on the PAK1 serine/threonine-protein kinase and which enhances autophagy and promotes IM resistance in GIST cells. USP13 preferentially is induced in GIST cells by IM and interacts with ATG5, which leads to stabilization of ATG5 through deubiquitination. Activation of PAK1 promoted phosphorylation of ATG5 thereby enhancing the interaction of ATG5 with USP13. Furthermore, N6-methyladenosine methyltransferase-like 3 (METTL3) mediated stabilization of USP13 mRNA that required the m6A reader IGF2BP2. Moreover, an inhibitor of USP13 caused ATG5 decay and co-administration of this inhibitor with 3-methyladenine boosted treatment efficacy of IM in murine xenograft models derived from GIST cells. Our findings highlight USP13 as an essential regulator of autophagy and IM resistance in GIST cells and reveal USP13 as a novel potential therapeutic target for GIST treatment.
Collapse
Affiliation(s)
- Zhishuang Gao
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, 211166, Nanjing, China
| | - Chao Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, 211166, Nanjing, China
| | - Haoyu Sun
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, 211166, Nanjing, China
| | - Yibo Bian
- Department of Oncology, the Second Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Zhiwei Cui
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, 211166, Nanjing, China
| | - Nuofan Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, 211166, Nanjing, China
| | - Zhangjie Wang
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yang Yang
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Zonghang Liu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, 211166, Nanjing, China
| | - Zhongyuan He
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, 211166, Nanjing, China
| | - Bowen Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, 211166, Nanjing, China
| | - Fengyuan Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, 211166, Nanjing, China
| | - Zheng Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, 211166, Nanjing, China
| | - Linjun Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, 211166, Nanjing, China
| | - Diancai Zhang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, 211166, Nanjing, China
| | - Li Yang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, 211166, Nanjing, China
| | - Zekuan Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, 211166, Nanjing, China
| | - Xueming Li
- School of Pharmaceutical Science, Nanjing Tech University, 211816, Nanjing, China.
| | - Hao Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, 211166, Nanjing, China.
| |
Collapse
|
21
|
Chen PW, Huang SK, Chou WC, Chang FR, Cheng YB, Wang HC. Severinia buxifolia-isolated acridones inhibit lung cancer invasion and decrease HIFα protein synthesis involving 5'UTR-mediated translation inhibition. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154570. [PMID: 36610169 DOI: 10.1016/j.phymed.2022.154570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/10/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Lung cancer is one of the most common cancers worldwide and is by far the leading cause of cancer death attributed to its rapid metastasis and poor prognosis. Given that hypoxia-inducible factors (HIFs) are associated with cancer metastasis, discovering agents to inhibit HIF-mediated invasive cancer is highly desired. PURPOSE This study aimed to investigate the natural acridone compounds isolated from Severinia buxifolia for the potential to delay hypoxia-induced lung cancer invasiveness by HIF inhibition. METHODS Using a hypoxia-responsive element (HRE) luciferase reporter, cell migration and invasion assays, real-time PCR, Western blot, and DNA recombinant clones, compound effect on HIF activity, cancer metastasis, HIF-1α mRNA transcription, HIFs protein stability, and HIF-1α translation were observed under hypoxia conditions. RESULTS Atalaphyllidine (Sbs-A) and atalaphyllinine (Sbs-B) were found to show the most potent effects on HIF transcriptional activity and HIF-1α protein expression in NSCLC cell line A549, although Sbs-A and Sbs-B might not attribute decreasing HIF-1α mRNA expression to potent inhibition of HIF activity. HIF-1α protein stability was not affected by Sbs-A; also, prolyl hydroxylase and proteasome inhibitors could not reverse the inhibitory effect from compounds. Furthermore, 3 - 10 μM low concentrations of Sbs-A inhibited HIF target gene expression, gelatin zymography activity, and A549 cancer invasion. Ultimately, Sbs-A inhibited HIF-1α 5'UTR-mediated translation independent of oxygen concentration, underlying the mechanism of compounds inhibiting HIF-1α protein expression. CONCLUSION Our study proposed Severinia buxifolia-isolated acridone compounds inhibited 5'-mRNA HIFA-mediated translation and provided evidence supporting the ability of acridone compounds in targeting HIFα for delayed lung cancer metastasis.
Collapse
Affiliation(s)
- Pin-Wei Chen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Sheng-Kai Huang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wen-Cheng Chou
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yuan-Bin Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Hui-Chun Wang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan..
| |
Collapse
|
22
|
USPs in Pancreatic Ductal Adenocarcinoma: A Comprehensive Bioinformatic Analysis of Expression, Prognostic Significance, and Immune Infiltration. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6109052. [PMID: 36582601 PMCID: PMC9794441 DOI: 10.1155/2022/6109052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), as an intractable malignancy, still causes an extremely high mortality worldwide. The ubiquitin-specific protease (USP) family constitutes the major part of deubiquitinating enzymes (DUBs) which has been reported to be involved in initiation and progression of various malignancies via the function of deubiquitination. However, the biological function and clinical values of USPs in PDAC have not been comprehensively elucidated. In this study, Gene Expression Profiling Interactive Analysis (GEPIA), Gene Expression Omnibus (GEO) datasets, UALCAN database, and the Human Protein Atlas (HPA) online tool were used to analyze the expression level and the relationship between USP expression and clinicopathological features in PDAC. Survival module of HPA and Kaplan-Meier plotter (KMP) databases was recruited to explore the prognostic value of USPs. Tumor Immune Estimation Resource (TIMER) online tool and KMP databases were utilized to elucidate tumor immune infiltration and immune-related survival of USPs. CBioPortal online tool was used to identify the gene mutation level of USPs in PDAC. Both cBioPortal and LinkedOmics were used to confirm the potential biological functions of USPs in PDAC. Our study showed that USP10, USP14, USP18, USP32, USP33, and USP39 (termed as six-USPs) expressions were significantly elevated in tumor tissues. The high expression of the four USPs (USP10, USP14, USP18, and USP39) indicated a poor prognosis. A significant relationship was indicated between the expression of six-USPs and clinicopathological features. Also, the expression of six-USPs was related to promoter methylation level. Moreover, more than 40% genetic alterations and mutations were discovered in six-USPs. Furthermore, the six-USP expression was correlated with immune infiltration and immune-related prognosis. The functional analysis found that the six-USPs were involved in various biological processes and signaling pathways, such as nucleocytoplasmic transport, choline metabolism in cancer, cell cycle, ErbB signaling pathway, RIG-I-like receptor signaling pathway, TGF-β signaling pathway, and TNF signaling pathway. In conclusion, the results showed that six-USPs are potential prognostic biomarkers and can be recruited as possible therapeutic targets of PDAC.
Collapse
|
23
|
Visintin R, Ray SK. Intersections of Ubiquitin-Proteosome System and Autophagy in Promoting Growth of Glioblastoma Multiforme: Challenges and Opportunities. Cells 2022; 11:cells11244063. [PMID: 36552827 PMCID: PMC9776575 DOI: 10.3390/cells11244063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a brain tumor notorious for its propensity to recur after the standard treatments of surgical resection, ionizing radiation (IR), and temozolomide (TMZ). Combined with the acquired resistance to standard treatments and recurrence, GBM is an especially deadly malignancy with hardly any worthwhile treatment options. The treatment resistance of GBM is influenced, in large part, by the contributions from two main degradative pathways in eukaryotic cells: ubiquitin-proteasome system (UPS) and autophagy. These two systems influence GBM cell survival by removing and recycling cellular components that have been damaged by treatments, as well as by modulating metabolism and selective degradation of components of cell survival or cell death pathways. There has recently been a large amount of interest in potential cancer therapies involving modulation of UPS or autophagy pathways. There is significant crosstalk between the two systems that pose therapeutic challenges, including utilization of ubiquitin signaling, the degradation of components of one system by the other, and compensatory activation of autophagy in the case of proteasome inhibition for GBM cell survival and proliferation. There are several important regulatory nodes which have functions affecting both systems. There are various molecular components at the intersections of UPS and autophagy pathways that pose challenges but also show some new therapeutic opportunities for GBM. This review article aims to provide an overview of the recent advancements in research regarding the intersections of UPS and autophagy with relevance to finding novel GBM treatment opportunities, especially for combating GBM treatment resistance.
Collapse
Affiliation(s)
- Rhett Visintin
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Swapan K. Ray
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
- Correspondence: ; Tel.: +1-803-216-3420; Fax: +1-803-216-3428
| |
Collapse
|
24
|
Targeting hypoxia-related metabolism molecules: How to improve tumour immune and clinical treatment? Biomed Pharmacother 2022; 156:113917. [DOI: 10.1016/j.biopha.2022.113917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/20/2022] Open
|
25
|
Wang Y, Liu X, Huang W, Liang J, Chen Y. The intricate interplay between HIFs, ROS, and the ubiquitin system in the tumor hypoxic microenvironment. Pharmacol Ther 2022; 240:108303. [PMID: 36328089 DOI: 10.1016/j.pharmthera.2022.108303] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/16/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Alterations in protein ubiquitination and hypoxia-inducible factor (HIF) signaling both contribute to tumorigenesis and tumor progression. Ubiquitination is a dynamic process that is coordinately regulated by E3 ligases and deubiquitinases (DUBs), which have emerged as attractive therapeutic targets. HIF expression and transcriptional activity are usually increased in tumors, leading to poor clinical outcomes. Reactive oxygen species (ROS) are upregulated in tumors and have multiple effects on HIF signaling and the ubiquitin system. A growing body of evidence has shown that multiple E3 ligases and UBDs function synergistically to control the expression and activity of HIF, thereby allowing cancer cells to cope with the hypoxic microenvironment. Conversely, several E3 ligases and DUBs are regulated by hypoxia and/or HIF signaling. Hypoxia also induces ROS production, which in turn modulates the stability or activity of HIF, E3 ligases, and DUBs. Understanding the complex networks between E3 ligase, DUBs, ROS, and HIF will provide insights into the fundamental mechanism of the cellular response to hypoxia and help identify novel molecular targets for cancer treatment. We review the current knowledge on the comprehensive relationship between E3 ligase, DUBs, ROS, and HIF signaling, with a particular focus on the use of E3 ligase or DUB inhibitors in cancer.
Collapse
Affiliation(s)
- Yijie Wang
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xiong Liu
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Weixiao Huang
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Junjie Liang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China.
| | - Yan Chen
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China; School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
26
|
Gkotinakou IM, Mylonis I, Tsakalof A. Vitamin D and Hypoxia: Points of Interplay in Cancer. Cancers (Basel) 2022; 14:cancers14071791. [PMID: 35406562 PMCID: PMC8997790 DOI: 10.3390/cancers14071791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
Vitamin D is a hormone that, through its action, elicits a broad spectrum of physiological responses ranging from classic to nonclassical actions such as bone morphogenesis and immune function. In parallel, many studies describe the antiproliferative, proapoptotic, antiangiogenic effects of calcitriol (the active hormonal form) that contribute to its anticancer activity. Additionally, epidemiological data signify the inverse correlation between vitamin D levels and cancer risk. On the contrary, tumors possess several adaptive mechanisms that enable them to evade the anticancer effects of calcitriol. Such maladaptive processes are often a characteristic of the cancer microenvironment, which in solid tumors is frequently hypoxic and elicits the overexpression of Hypoxia-Inducible Factors (HIFs). HIF-mediated signaling not only contributes to cancer cell survival and proliferation but also confers resistance to anticancer agents. Taking into consideration that calcitriol intertwines with signaling events elicited by the hypoxic status cells, this review examines their interplay in cellular signaling to give the opportunity to better understand their relationship in cancer development and their prospect for the treatment of cancer.
Collapse
Affiliation(s)
| | - Ilias Mylonis
- Correspondence: (I.M.); (A.T.); Tel.: +30-2410-685578 (I.M. & A.T)
| | - Andreas Tsakalof
- Correspondence: (I.M.); (A.T.); Tel.: +30-2410-685578 (I.M. & A.T)
| |
Collapse
|
27
|
Pietras A. What (H)IF isoform matters? A deubiquitinase can tune the hypoxic response. EMBO J 2022; 41:e110819. [PMID: 35199359 PMCID: PMC8982620 DOI: 10.15252/embj.2022110819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 11/09/2022] Open
Abstract
Context-specific control mechanisms of hypoxia-inducible transcription factors HIF-1alpha and HIF-2alpha in tumors exposed to oxygen shortage remain incompletely understood. In this issue, Zhang et al (2022) identify a deubiquitinase that differentially stabilizes HIF-2alpha in stem-like glioblastoma cells, suggesting potential implications for regulation of the hypoxic response in a wide array of tissues and cancers.
Collapse
Affiliation(s)
- Alexander Pietras
- Division of Translational Cancer ResearchDepartment of Laboratory MedicineLund UniversityLundSweden
| |
Collapse
|