1
|
Zhang HJ, Zhu L, Xie QH, Zhang LZ, Liu JY, Feng YYF, Chen ZK, Xia HF, Fu QY, Yu ZL, Chen G. Extracellular vesicle-packaged PD-L1 impedes macrophage-mediated antibacterial immunity in preexisting malignancy. Cell Rep 2024; 43:114903. [PMID: 39489940 DOI: 10.1016/j.celrep.2024.114903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 09/08/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
Malignancies can compromise systemic innate immunity, but the underlying mechanisms are largely unknown. Here, we find that tumor-derived small extracellular vesicles (sEVs; TEVs) deliver PD-L1 to host macrophages, thereby impeding antibacterial immunity. Mice implanted with Rab27a-knockdown tumors are more resistant to bacterial infection than wild-type controls. Injection of TEVs into mice impairs macrophage-mediated bacterial clearance, increases systemic bacterial dissemination, and enhances sepsis score in a PD-L1-dependent manner. Mechanistically, TEV-packaged PD-L1 inhibits Bruton's tyrosine kinase/PLCγ2 signaling-mediated cytoskeleton reorganization and reactive oxygen species generation, impacting bacterial phagocytosis and killing by macrophages. Neutralizing PD-L1 markedly normalizes macrophage-mediated bacterial clearance in tumor-bearing mice. Importantly, circulating sEV PD-L1 levels in patients with tumors can predict bacterial infection susceptibility, while patients with tumors treated with αPD-1 exhibit fewer postoperative infections. These findings identify a mechanism by which cancer cells dampen host innate immunity-mediated bacterial clearance and suggest targeting TEV-packaged PD-L1 to reduce bacterial infection susceptibility in tumor-bearing conditions.
Collapse
Affiliation(s)
- He-Jing Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Lingxin Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Qi-Hui Xie
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Lin-Zhou Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jin-Yuan Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yang-Ying-Fan Feng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhuo-Kun Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hou-Fu Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Qiu-Yun Fu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zi-Li Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Gang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
2
|
Sun X, Wang Z, Tang Y, Weiss SJ, Zhu L. An In Vitro Model of Murine Osteoclast-Mediated Bone Resorption. Bio Protoc 2024; 14:e5100. [PMID: 39525976 PMCID: PMC11543606 DOI: 10.21769/bioprotoc.5100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 11/16/2024] Open
Abstract
Osteoclasts are terminally differentiated multinucleated giant cells that mediate bone resorption and regulate skeletal homeostasis under physiological and pathological states. Excessive osteoclast activity will give rise to enhanced bone resorption, being responsible for a wide range of metabolic skeletal diseases, ranging from osteoporosis and rheumatoid arthritis to tumor-induced osteolysis. Therefore, the construction of in vitro models of osteoclast-mediated bone resorption is helpful to better understand the functional status of osteoclasts under (patho)physiological conditions. Notably, it is essential to provide an in vivo-relevant bone substrate that induces osteoclasts to generate authentic resorption lacunae and excavate bone. Here, we summarize the experimental design of a reproducible and cost-effective method, which is suitable for evaluating the regulatory mechanisms and influence of molecular agonists and antagonists as well as therapeutics on osteoclast-mediated bone-resorbing activity. Key features • Experiments are performed using bovine cortical bone slices to simulate bone substrate resorption by murine osteoclasts in vivo. • The method allows for quantification of bone resorption in vitro. • The method is suitable for evaluating the regulatory mechanisms that control osteoclast-mediated bone-resorbing activity.
Collapse
Affiliation(s)
- Xiaoyue Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zijun Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yi Tang
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Stephen J. Weiss
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Lingxin Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Chu W, Peng W, Lu Y, Liu Y, Li Q, Wang H, Wang L, Zhang B, Liu Z, Han L, Ma H, Yang H, Han C, Lu X. PRMT6 Epigenetically Drives Metabolic Switch from Fatty Acid Oxidation toward Glycolysis and Promotes Osteoclast Differentiation During Osteoporosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403177. [PMID: 39120025 PMCID: PMC11516099 DOI: 10.1002/advs.202403177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/23/2024] [Indexed: 08/10/2024]
Abstract
Epigenetic regulation of metabolism profoundly influences cell fate commitment. During osteoclast differentiation, the activation of RANK signaling is accompanied by metabolic reprogramming, but the epigenetic mechanisms by which RANK signaling induces this reprogramming remain elusive. By transcriptional sequence and ATAC analysis, this study identifies that activation of RANK signaling upregulates PRMT6 by epigenetic modification, triggering a metabolic switching from fatty acids oxidation toward glycolysis. Conversely, Prmt6 deficiency reverses this shift, markedly reducing HIF-1α-mediated glycolysis and enhancing fatty acid oxidation. Consequently, PRMT6 deficiency or inhibitor impedes osteoclast differentiation and alleviates bone loss in ovariectomized (OVX) mice. At the molecular level, Prmt6 deficiency reduces asymmetric dimethylation of H3R2 at the promoters of genes including Ppard, Acox3, and Cpt1a, enhancing genomic accessibility for fatty acid oxidation. PRMT6 thus emerges as a metabolic checkpoint, mediating metabolic switch from fatty acid oxidation to glycolysis, thereby supporting osteoclastogenesis. Unveiling PRMT6's critical role in epigenetically orchestrating metabolic shifts in osteoclastogenesis offers a promising target for anti-resorptive therapy.
Collapse
Affiliation(s)
- Wenxiang Chu
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Weilin Peng
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Yingying Lu
- Obstetrics and Gynecology HospitalFudan UniversityShanghai200011China
| | - Yishan Liu
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Qisheng Li
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Haibin Wang
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Liang Wang
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Bangke Zhang
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Zhixiao Liu
- Histology and Embryology Department and Shanghai Key Laboratory of Cell EngineeringNaval Medical UniversityShanghai200433China
| | - Lin Han
- Department of OrthopaedicsThird Affiliated Hospital of Naval Medical UniversityShanghai201805China
| | - Hongdao Ma
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Haisong Yang
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Chaofeng Han
- Histology and Embryology Department and Shanghai Key Laboratory of Cell EngineeringNaval Medical UniversityShanghai200433China
- National Key Laboratory of Immunity and Inflammation, Institute of ImmunologyNaval Medical UniversityShanghai200433China
| | - Xuhua Lu
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| |
Collapse
|
4
|
Shi Y, Li S, Xie X, Feng Y. Association between Metabolic Syndrome and Musculoskeletal Status: A Cross-Sectional Study of NHANES. Int J Endocrinol 2024; 2024:7330133. [PMID: 39345904 PMCID: PMC11438510 DOI: 10.1155/2024/7330133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 08/26/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Objective The metabolic effects of metabolic syndrome (MetS) on musculoskeletal metabolism are controversial. This study explored the effect of MetS on bone mineral density (BMD) and muscle quality index (MQI). Methods Data from the NHANES database from 2011 to 2014 were extracted, and nonpregnant participants aged 45-59 years were included. The included data were first weighted by complex sampling, and then, the effect of MetS on BMD and MQI was analyzed using multifactorial linear regression. We then performed a stratified analysis by gender and BMI classification. Moreover, a mediation analysis of MetS on BMD was conducted, with MQI as a mediating variable. A propensity score matching analysis method with a complex sampling design was additionally performed to verify the stability of the results. Results A total of 1943 participants were eventually included. After adjusting for covariates, the results of linear regression show that MetS is associated with elevated pelvic BMD (beta = 0.03; 95% CI = 0.01, 0.06; P=0.02) and reduced MQI, especially arm MQI (beta = -1.02; 95% CI = -1.27, -0.77; P < 0.0001). MetS is more associated with BMD in women, MQI in normal or heavyweight, and BMD in lightweight, according to stratified analysis. MQI explains the indirect effect of MetS on BMD (beta = 0.007; 95% CI = 0.003, 0.010). Conclusion This study provides evidence that MetS elevates BMD and reduces MQI, and further, that there is a mediating effect of MQI on elevated BMD.
Collapse
Affiliation(s)
- Yue Shi
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Shuhan Li
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xiaolong Xie
- Meishan Hospital of Traditional Chinese Medicine, Meishan 620000, China
| | - Yue Feng
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|
5
|
Ammons DT, Hopkins LS, Cronise KE, Kurihara J, Regan DP, Dow S. Single-cell RNA sequencing reveals the cellular and molecular heterogeneity of treatment-naïve primary osteosarcoma in dogs. Commun Biol 2024; 7:496. [PMID: 38658617 PMCID: PMC11043452 DOI: 10.1038/s42003-024-06182-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
Osteosarcoma (OS) is a heterogeneous, aggressive malignancy of the bone that disproportionally affects children and adolescents. Therapeutic interventions for OS are limited, which is in part due to the complex tumor microenvironment (TME). As such, we used single-cell RNA sequencing (scRNA-seq) to describe the cellular and molecular composition of the TME in 6 treatment-naïve dogs with spontaneously occurring primary OS. Through analysis of 35,310 cells, we identified 41 transcriptomically distinct cell types including the characterization of follicular helper T cells, mature regulatory dendritic cells (mregDCs), and 8 tumor-associated macrophage (TAM) populations. Cell-cell interaction analysis predicted that mregDCs and TAMs play key roles in modulating T cell mediated immunity. Furthermore, we completed cross-species cell type gene signature homology analysis and found a high degree of similarity between human and canine OS. The data presented here act as a roadmap of canine OS which can be applied to advance translational immuno-oncology research.
Collapse
Affiliation(s)
- Dylan T Ammons
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Leone S Hopkins
- Flint Animal Cancer Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Kathryn E Cronise
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jade Kurihara
- Flint Animal Cancer Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Daniel P Regan
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Flint Animal Cancer Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Steven Dow
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
- Flint Animal Cancer Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
6
|
Tsuno S, Harada K, Horikoshi M, Mita M, Kitaguchi T, Hirai MY, Matsumoto M, Tsuboi T. Mitochondrial ATP concentration decreases immediately after glucose administration to glucose-deprived hepatocytes. FEBS Open Bio 2024; 14:79-95. [PMID: 38049196 PMCID: PMC10761928 DOI: 10.1002/2211-5463.13744] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/15/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023] Open
Abstract
Hepatocytes can switch their metabolic processes in response to nutrient availability. However, the dynamics of metabolites (such as lactate, pyruvate, and ATP) in hepatocytes during the metabolic switch remain unknown. In this study, we visualized metabolite dynamics in primary cultured hepatocytes during recovery from glucose-deprivation. We observed a decrease in the mitochondrial ATP concentration when glucose was administered to hepatocytes under glucose-deprivation conditions. In contrast, there was slight change in the cytoplasmic ATP concentration. A decrease in mitochondrial ATP concentration was associated with increased protein synthesis rather than glycogen synthesis, activation of urea cycle, and production of reactive oxygen species. These results suggest that mitochondrial ATP is important in switching metabolic processes in the hepatocytes.
Collapse
Affiliation(s)
- Saki Tsuno
- Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
- Dairy Science and Technology InstituteKyodo Milk Industry Co., Ltd.TokyoJapan
| | - Kazuki Harada
- Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
| | - Mina Horikoshi
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoTokyoJapan
| | - Marie Mita
- Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
- Present address:
Biomedical Research InstituteNational Institute of Advanced Industrial Science and TechnologyOsakaJapan
| | - Tetsuya Kitaguchi
- Laboratory for Chemistry and Life Science, Institute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
| | | | - Mitsuharu Matsumoto
- Dairy Science and Technology InstituteKyodo Milk Industry Co., Ltd.TokyoJapan
| | - Takashi Tsuboi
- Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoTokyoJapan
| |
Collapse
|
7
|
Ammons D, Hopkins L, Cronise K, Kurihara J, Regan D, Dow S. Single-cell RNA sequencing reveals the cellular and molecular heterogeneity of treatment-naïve primary osteosarcoma in dogs. RESEARCH SQUARE 2023:rs.3.rs-3232360. [PMID: 37609233 PMCID: PMC10441479 DOI: 10.21203/rs.3.rs-3232360/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Osteosarcoma (OS) is a heterogeneous, aggressive malignancy of the bone that disproportionally affects children and adolescents. Therapeutic interventions for OS are limited, which is in part due to the complex tumor microenvironment (TME) that has proven to be refractory to immunotherapies. Thus, there is a need to better define the complexity of the OS TME. To address this need, we used single-cell RNA sequencing (scRNA-seq) to describe the cellular and molecular composition of the TME in 6 treatment-naïve dogs with spontaneously occurring primary OS. Through analysis of 35,310 cells, we identified 30 distinct immune cell types, 9 unique tumor populations, 1 cluster of fibroblasts, and 1 cluster of endothelial cells. Independent reclustering of major cell types revealed the presence of follicular helper T cells, mature regulatory dendritic cells (mregDCs), and 8 transcriptomically distinct macrophage/monocyte populations. Cell-cell interaction inference analysis predicted that mregDCs and tumor-associated macrophages (TAMs) play key roles in modulating T cell mediate immunity. Furthermore, we used publicly available human OS scRNA-seq data to complete a cross-species cell type gene signature homology analysis. The analysis revealed a high degree of cell type gene signature homology between species, suggesting the cellular composition of OS is largely conserved between humans and dogs. Our findings provide key new insights into the biology of canine OS and highlight the conserved features of OS across species. Generally, the data presented here acts as a cellular and molecular roadmap of canine OS which can be applied to advance the translational immuno-oncology research field.
Collapse
|