1
|
Blankenchip CL, Corbett KD. Bacterial WYL domain transcriptional repressors sense single-stranded DNA to control gene expression. Nucleic Acids Res 2024; 52:13723-13732. [PMID: 39588753 DOI: 10.1093/nar/gkae1101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/04/2024] [Accepted: 10/26/2024] [Indexed: 11/27/2024] Open
Abstract
Bacteria encode a wide array of immune systems to protect themselves against ubiquitous bacteriophages and foreign DNA elements. While these systems' molecular mechanisms are becoming increasingly well known, their regulation remains poorly understood. Here, we show that an immune system-associated transcriptional repressor of the wHTH-WYL-WCX family, CapW, directly binds single-stranded DNA to sense DNA damage and activate expression of its associated immune system. We show that CapW mediates increased expression of a reporter gene in response to DNA damage in a host cell. CapW directly binds single-stranded DNA by-products of DNA repair through its WYL domain, causing a conformational change that releases the protein from double-stranded DNA. In an Escherichia coli CBASS system with an integrated capW gene, we find that CapW-mediated transcriptional activation is important for this system's ability to prevent induction of a λ prophage. Overall, our data reveal the molecular mechanisms of WYL-domain transcriptional repressors, and provide an example of how bacteria can balance the protective benefits of carrying anti-phage immune systems against the inherent risk of these systems' aberrant activation.
Collapse
Affiliation(s)
- Chelsea L Blankenchip
- Biomedical Sciences Graduate Program, University of California, San Diego, 9500 Gilman Dr. La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Dr. La Jolla, CA 92093, USA
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Dr. La Jolla, CA 92093, USA
- Department of Molecular Biology, University of California, San Diego, 9500 Gilman Dr. La Jolla, CA, 92093, USA
| |
Collapse
|
2
|
Ye Q, Gong M, Chambers LR, Corbett KD. Mechanistic basis for protein conjugation in a diverged bacterial ubiquitination pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.623953. [PMID: 39605596 PMCID: PMC11601596 DOI: 10.1101/2024.11.21.623953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Ubiquitination is a fundamental and highly conserved protein post-translational modification pathway, in which ubiquitin or a ubiquitin-like protein (Ubl) is typically conjugated to a lysine side chain of a target protein. Ubiquitination is a multistep process initiated by adenylation of the Ubl C-terminus, followed by sequential formation of 2-3 Ubl~cysteine thioester intermediates with E1, E2, and E3 proteins before formation of the final Ubl-lysine isopeptide bond1. Ubiquitination is conserved across eukaryotes, and recent work has also revealed at least two related bacterial pathways that perform protein conjugation in the context of antiphage immunity2-5. Bioinformatics analysis has hinted at the existence of additional, as-yet uncharacterized, pathways in bacteria that could perform protein conjugation using ubiquitination-like machinery6-8. Here we describe the architecture and biochemical mechanisms of Bub (bacterial ubiquitination-like) pathways, revealing strong structural parallels along with striking mechanistic differences when compared to eukaryotic ubiquitination pathways. We show that Bub operons encode functional E1, E2, and Ubl proteins that are related to their eukaryotic counterparts but function entirely through oxyester, rather than thioester, intermediates. We also identify a novel family of serine proteases in Bub operons with a conserved serine-histidine catalytic dyad. The genomic context of Bub operons suggests that, like other bacterial ubiquitination-related pathways, they also function in antiphage immunity. Overall, our results reveal a new family of bacterial ubiquitination-related pathways with unprecedented biochemical mechanisms in both protein conjugation and deconjugation.
Collapse
Affiliation(s)
- Qiaozhen Ye
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla CA 92093
| | - Minheng Gong
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla CA 92093
| | - Lydia R. Chambers
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla CA 92093
| | - Kevin D. Corbett
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla CA 92093
- Department of Molecular Biology, University of California San Diego, La Jolla CA 92093
| |
Collapse
|
3
|
Gong M, Ye Q, Gu Y, Chambers LR, Bobkov AA, Arakawa NK, Matyszewski M, Corbett KD. Structural diversity and oligomerization of bacterial ubiquitin-like proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.623966. [PMID: 39605667 PMCID: PMC11601603 DOI: 10.1101/2024.11.21.623966] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Bacteria possess a variety of operons with homology to eukaryotic ubiquitination pathways that encode predicted E1, E2, E3, deubiquitinase, and ubiquitin-like proteins. Some of these pathways have recently been shown to function in anti-bacteriophage immunity, but the biological functions of others remain unknown. Here, we show that ubiquitin-like proteins in two bacterial operon families show surprising architectural diversity, possessing one to three β-grasp domains preceded by diverse N-terminal domains. We find that a large group of bacterial ubiquitin-like proteins possess three β-grasp domains and form homodimers and helical filaments mediated by conserved Ca2+ ion binding sites. Our findings highlight a distinctive mode of self-assembly for ubiquitin-like proteins, and suggest that Ca2+-mediated ubiquitin-like protein filament assembly and/or disassembly enables cells to sense and respond to stress conditions that alter intracellular metal ion concentration.
Collapse
Affiliation(s)
- Minheng Gong
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla CA 92093
| | - Qiaozhen Ye
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla CA 92093
| | - Yajie Gu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla CA 92093
| | - Lydia R. Chambers
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla CA 92093
| | - Andrey A. Bobkov
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, CA 92037
| | - Neal K. Arakawa
- Environmental and Complex Analysis Laboratory, Department of Chemistry and Biochemistry, University of California San Diego, La Jolla CA 92093
| | - Mariusz Matyszewski
- UC San Diego Cryo-EM Facility, University of California San Diego, La Jolla CA 92093
| | - Kevin D. Corbett
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla CA 92093
- Department of Molecular Biology, University of California San Diego, La Jolla CA 92093
| |
Collapse
|
4
|
Taylor JC, Gu Liu C, Chang JD, Thompson BE, Maresso AW. Gene discovery from microbial gene libraries I: protection against reactive oxygen species-driven DNA damage. Microbiol Spectr 2024; 12:e0036524. [PMID: 39283089 PMCID: PMC11536983 DOI: 10.1128/spectrum.00365-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/08/2024] [Indexed: 11/07/2024] Open
Abstract
Reactive oxygen species (ROS) pose a lethal risk for all life forms by causing damage to cell processes, genome-wide DNA damage-driving mutation, replicative instability, and death. Thus, the development of mechanisms to resist or repair ROS-induced DNA damage is critical for the reliable replication of nucleic acids. DNA repair and protection mechanisms have been discovered in all forms of life. However, the vast array of microbes that may harbor novel repair or protection mechanisms, especially bacterial viruses, have not been adequately assessed. Here, we screened a microbial gene library composed primarily of phage open reading frames (ORFs) to uncover elements that overcome a DNA damage blockade. We report the discovery of one such protein, termed F21, which promotes bacterial survival by possibly repairing or protecting DNA in the face of ROS-induced DNA damage.IMPORTANCEDiscovery of proteins that promote DNA damage repair and protection in the face of reactive oxygen species (ROS) is of vital importance. Our group is in possession of a unique microbial DNA library with which we can screen for undiscovered genes that encode novel proteins with DNA damage repair and protective functions. This library is composed of diverse DNA from a variety of sources, namely bacteriophages, which must be assessed for their novel functions. This work focuses on the discovery of DNA damage repair and protection, but the possibilities for discovery are endless, thus highlighting the significance of this work.
Collapse
Affiliation(s)
- John C. Taylor
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Carmen Gu Liu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- TAILΦR: Tailored Antibacterials and Innovative Laboratories for phage (Φ) Research, Baylor College of Medicine, Houston, Texas, USA
| | - James D. Chang
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Brianna E. Thompson
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Anthony W. Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- TAILΦR: Tailored Antibacterials and Innovative Laboratories for phage (Φ) Research, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
5
|
Bernal-Bernal D, Pantoja-Uceda D, López-Alonso JP, López-Rojo A, López-Ruiz JA, Galbis-Martínez M, Ochoa-Lizarralde B, Tascón I, Elías-Arnanz M, Ubarretxena-Belandia I, Padmanabhan S. Structural basis for regulation of a CBASS-CRISPR-Cas defense island by a transmembrane anti-σ factor and its ECF σ partner. SCIENCE ADVANCES 2024; 10:eadp1053. [PMID: 39454004 PMCID: PMC11506125 DOI: 10.1126/sciadv.adp1053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/20/2024] [Indexed: 10/27/2024]
Abstract
How CRISPR-Cas and cyclic oligonucleotide-based antiphage signaling systems (CBASS) are coordinately deployed against invaders remains unclear. We show that a locus containing two CBASS and one type III-B CRISPR-Cas system, regulated by the transmembrane anti-σ DdvA and its cognate extracytoplasmic function (ECF) σ DdvS, can defend Myxococcus xanthus against a phage. Cryo-electron microscopy reveals DdvA-DdvS pairs assemble as arrow-shaped transmembrane dimers. Each DdvA periplasmic domain adopts a separase/craspase-type tetratricopeptide repeat (TPR)-caspase HetF-associated with TPR (TPR-CHAT) architecture with an incomplete His-Cys active site, lacking three α-helices conserved among CHAT domains. Each active site faces the dimer interface, raising the possibility that signal-induced caspase-like DdvA autoproteolysis in trans precedes RseP-mediated intramembrane proteolysis and DdvS release. Nuclear magnetic resonance reveals a DdvA cytoplasmic CHCC-type zinc-bound three-helix bundle that binds to DdvS σ2 and σ4 domains, undergoing σ4-induced helix extension to trap DdvS. Altogether, we provide structural-mechanistic insights into membrane anti-σ-ECF σ regulation of an antiviral CBASS-CRISPR-Cas defense island.
Collapse
Affiliation(s)
- Diego Bernal-Bernal
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQF-CSIC), Universidad de Murcia, 30100 Murcia, Spain
- Instituto de Química Física “Blas Cabrera,” CSIC (IQF-CSIC), 28006 Madrid, Spain
- Instituto Biofisika (UPV/EHU, CSIC), 48940 Leioa, Spain
| | - David Pantoja-Uceda
- Instituto de Química Física “Blas Cabrera,” CSIC (IQF-CSIC), 28006 Madrid, Spain
| | | | - Alfonso López-Rojo
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQF-CSIC), Universidad de Murcia, 30100 Murcia, Spain
| | - José Antonio López-Ruiz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQF-CSIC), Universidad de Murcia, 30100 Murcia, Spain
| | - Marisa Galbis-Martínez
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQF-CSIC), Universidad de Murcia, 30100 Murcia, Spain
| | | | - Igor Tascón
- Instituto Biofisika (UPV/EHU, CSIC), 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQF-CSIC), Universidad de Murcia, 30100 Murcia, Spain
| | - Iban Ubarretxena-Belandia
- Instituto Biofisika (UPV/EHU, CSIC), 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - S. Padmanabhan
- Instituto de Química Física “Blas Cabrera,” CSIC (IQF-CSIC), 28006 Madrid, Spain
| |
Collapse
|
6
|
Liu T, Gao X, Chen R, Tang K, Liu Z, Wang P, Wang X. A nuclease domain fused to the Snf2 helicase confers antiphage defence in coral-associated Halomonas meridiana. Microb Biotechnol 2024; 17:e14524. [PMID: 38980956 PMCID: PMC11232893 DOI: 10.1111/1751-7915.14524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
The coral reef microbiome plays a vital role in the health and resilience of reefs. Previous studies have examined phage therapy for coral pathogens and for modifying the coral reef microbiome, but defence systems against coral-associated bacteria have received limited attention. Phage defence systems play a crucial role in helping bacteria fight phage infections. In this study, we characterized a new defence system, Hma (HmaA-HmaB-HmaC), in the coral-associated Halomonas meridiana derived from the scleractinian coral Galaxea fascicularis. The Swi2/Snf2 helicase HmaA with a C-terminal nuclease domain exhibits antiviral activity against Escherichia phage T4. Mutation analysis revealed the nickase activity of the nuclease domain (belonging to PDD/EXK superfamily) of HmaA is essential in phage defence. Additionally, HmaA homologues are present in ~1000 bacterial and archaeal genomes. The high frequency of HmaA helicase in Halomonas strains indicates the widespread presence of these phage defence systems, while the insertion of defence genes in the hma region confirms the existence of a defence gene insertion hotspot. These findings offer insights into the diversity of phage defence systems in coral-associated bacteria and these diverse defence systems can be further applied into designing probiotics with high-phage resistance.
Collapse
Affiliation(s)
- Tianlang Liu
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xinyu Gao
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ran Chen
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| | - Ziyao Liu
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Pengxia Wang
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| |
Collapse
|
7
|
Chambers LR, Ye Q, Cai J, Gong M, Ledvina HE, Zhou H, Whiteley AT, Suhandynata RT, Corbett KD. A eukaryotic-like ubiquitination system in bacterial antiviral defence. Nature 2024; 631:843-849. [PMID: 39020180 PMCID: PMC11476048 DOI: 10.1038/s41586-024-07730-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 06/18/2024] [Indexed: 07/19/2024]
Abstract
Ubiquitination pathways have crucial roles in protein homeostasis, signalling and innate immunity1-3. In these pathways, an enzymatic cascade of E1, E2 and E3 proteins conjugates ubiquitin or a ubiquitin-like protein (Ubl) to target-protein lysine residues4. Bacteria encode ancient relatives of E1 and Ubl proteins involved in sulfur metabolism5,6, but these proteins do not mediate Ubl-target conjugation, leaving open the question of whether bacteria can perform ubiquitination-like protein conjugation. Here we demonstrate that a bacterial operon associated with phage defence islands encodes a complete ubiquitination pathway. Two structures of a bacterial E1-E2-Ubl complex reveal striking architectural parallels with canonical eukaryotic ubiquitination machinery. The bacterial E1 possesses an amino-terminal inactive adenylation domain and a carboxy-terminal active adenylation domain with a mobile α-helical insertion containing the catalytic cysteine (CYS domain). One structure reveals a pre-reaction state with the bacterial Ubl C terminus positioned for adenylation, and a second structure mimics an E1-to-E2 transthioesterification state with the E1 CYS domain adjacent to the bound E2. We show that a deubiquitinase in the same pathway preprocesses the bacterial Ubl, exposing its C-terminal glycine for adenylation. Finally, we show that the bacterial E1 and E2 collaborate to conjugate Ubl to target-protein lysine residues. Together, these data reveal that bacteria possess bona fide ubiquitination systems with strong mechanistic and architectural parallels to canonical eukaryotic ubiquitination pathways, suggesting that these pathways arose first in bacteria.
Collapse
Affiliation(s)
- Lydia R Chambers
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Qiaozhen Ye
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jiaxi Cai
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Minheng Gong
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Hannah E Ledvina
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Huilin Zhou
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Aaron T Whiteley
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Raymond T Suhandynata
- School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
8
|
Krüger L, Gaskell-Mew L, Graham S, Shirran S, Hertel R, White MF. Reversible conjugation of a CBASS nucleotide cyclase regulates bacterial immune response to phage infection. Nat Microbiol 2024; 9:1579-1592. [PMID: 38589469 PMCID: PMC11153139 DOI: 10.1038/s41564-024-01670-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/07/2024] [Indexed: 04/10/2024]
Abstract
Prokaryotic antiviral defence systems are frequently toxic for host cells and stringent regulation is required to ensure survival and fitness. These systems must be readily available in case of infection but tightly controlled to prevent activation of an unnecessary cellular response. Here we investigate how the bacterial cyclic oligonucleotide-based antiphage signalling system (CBASS) uses its intrinsic protein modification system to regulate the nucleotide cyclase. By integrating a type II CBASS system from Bacillus cereus into the model organism Bacillus subtilis, we show that the protein-conjugating Cap2 (CBASS associated protein 2) enzyme links the cyclase exclusively to the conserved phage shock protein A (PspA) in the absence of phage. The cyclase-PspA conjugation is reversed by the deconjugating isopeptidase Cap3 (CBASS associated protein 3). We propose a model in which the cyclase is held in an inactive state by conjugation to PspA in the absence of phage, with conjugation released upon infection, priming the cyclase for activation.
Collapse
Affiliation(s)
- Larissa Krüger
- School of Biology, University of St Andrews, St Andrews, UK.
| | | | - Shirley Graham
- School of Biology, University of St Andrews, St Andrews, UK
| | - Sally Shirran
- School of Biology, University of St Andrews, St Andrews, UK
| | - Robert Hertel
- Genomic and Applied Microbiology, Göttingen Centre for Molecular Biosciences, Georg-August-University Göttingen, Göttingen, Germany
| | - Malcolm F White
- School of Biology, University of St Andrews, St Andrews, UK.
| |
Collapse
|
9
|
Lu H, Chen Z, Xie T, Zhong S, Suo S, Song S, Wang L, Xu H, Tian B, Zhao Y, Zhou R, Hua Y. The Deinococcus protease PprI senses DNA damage by directly interacting with single-stranded DNA. Nat Commun 2024; 15:1892. [PMID: 38424107 PMCID: PMC10904395 DOI: 10.1038/s41467-024-46208-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
Bacteria have evolved various response systems to adapt to environmental stress. A protease-based derepression mechanism in response to DNA damage was characterized in Deinococcus, which is controlled by the specific cleavage of repressor DdrO by metallopeptidase PprI (also called IrrE). Despite the efforts to document the biochemical, physiological, and downstream regulation of PprI-DdrO, the upstream regulatory signal activating this system remains unclear. Here, we show that single-stranded DNA physically interacts with PprI protease, which enhances the PprI-DdrO interactions as well as the DdrO cleavage in a length-dependent manner both in vivo and in vitro. Structures of PprI, in its apo and complexed forms with single-stranded DNA, reveal two DNA-binding interfaces shaping the cleavage site. Moreover, we show that the dynamic monomer-dimer equilibrium of PprI is also important for its cleavage activity. Our data provide evidence that single-stranded DNA could serve as the signal for DNA damage sensing in the metalloprotease/repressor system in bacteria. These results also shed light on the survival and acquired drug resistance of certain bacteria under antimicrobial stress through a SOS-independent pathway.
Collapse
Affiliation(s)
- Huizhi Lu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zijing Chen
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Teng Xie
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
- Shanghai Institute for Advanced Study, Zhejiang University, Shanghai, China
| | - Shitong Zhong
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shasha Suo
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shuang Song
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Liangyan Wang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hong Xu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bing Tian
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ye Zhao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Ruhong Zhou
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China.
- Shanghai Institute for Advanced Study, Zhejiang University, Shanghai, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
- Department of Chemistry, Columbia University, New York, NY, USA.
| | - Yuejin Hua
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Fernández-García L, Song S, Kirigo J, Battisti ME, Petersen ME, Tomás M, Wood TK. Toxin/antitoxin systems induce persistence and work in concert with restriction/modification systems to inhibit phage. Microbiol Spectr 2024; 12:e0338823. [PMID: 38054715 PMCID: PMC10783111 DOI: 10.1128/spectrum.03388-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE To date, there are no reports of phage infection-inducing persistence. Therefore, our results are important since we show for the first time that a phage-defense system, the MqsRAC toxin/antitoxin system, allows the host to survive infection by forming persister cells, rather than inducing cell suicide. Moreover, we demonstrate that the MqsRAC system works in concert with restriction/modification systems. These results imply that if phage therapy is to be successful, anti-persister compounds need to be administered along with phages.
Collapse
Affiliation(s)
- Laura Fernández-García
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
- Microbiology Department of Hospital A Coruña (CHUAC), Microbiology Translational and Multidisciplinary (MicroTM)-Research Institute Biomedical A Coruña (INIBIC) and University of A Coruña (UDC), A Coruña, Spain
| | - Sooyeon Song
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Animal Science, Jeonbuk National University, Jeonju-Si, Jellabuk-Do, South Korea
- Agricultural Convergence Technology, Jeonbuk National University, Jeonju-Si, Jellabuk-Do, South Korea
| | - Joy Kirigo
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Michael E. Battisti
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Maiken E. Petersen
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - María Tomás
- Microbiology Department of Hospital A Coruña (CHUAC), Microbiology Translational and Multidisciplinary (MicroTM)-Research Institute Biomedical A Coruña (INIBIC) and University of A Coruña (UDC), A Coruña, Spain
| | - Thomas K. Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
11
|
Brenzinger S, Airoldi M, Ogunleye AJ, Jugovic K, Amstalden MK, Brochado AR. The Vibrio cholerae CBASS phage defence system modulates resistance and killing by antifolate antibiotics. Nat Microbiol 2024; 9:251-262. [PMID: 38172623 DOI: 10.1038/s41564-023-01556-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/13/2023] [Indexed: 01/05/2024]
Abstract
Toxic bacterial modules such as toxin-antitoxin systems hold antimicrobial potential, though successful applications are rare. Here we show that in Vibrio cholerae the cyclic-oligonucleotide-based anti-phage signalling system (CBASS), another example of a toxic module, increases sensitivity to antifolate antibiotics up to 10×, interferes with their synergy and ultimately enables bacterial lysis by these otherwise classic bacteriostatic antibiotics. Cyclic-oligonucleotide production by the CBASS nucleotidyltransferase DncV upon antifolate treatment confirms full CBASS activation under these conditions, and suggests that antifolates release DncV allosteric inhibition by folates. Consequently, the CBASS-antifolate interaction is specific to CBASS systems with closely related nucleotidyltransferases and similar folate-binding pockets. Last, antifolate resistance genes abolish the CBASS-antifolate interaction by bypassing the effects of on-target antifolate activity, thereby creating potential for their coevolution with CBASS. Altogether, our findings illustrate how toxic modules can impact antibiotic activity and ultimately confer bactericidal activity to classical bacteriostatic antibiotics.
Collapse
Affiliation(s)
- Susanne Brenzinger
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Martina Airoldi
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany
| | | | - Karl Jugovic
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Ana Rita Brochado
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany.
- Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany.
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
12
|
Keller LML, Flattich K, Weber-Ban E. Novel WYL domain-containing transcriptional activator acts in response to genotoxic stress in rapidly growing mycobacteria. Commun Biol 2023; 6:1222. [PMID: 38042942 PMCID: PMC10693628 DOI: 10.1038/s42003-023-05592-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/15/2023] [Indexed: 12/04/2023] Open
Abstract
The WYL domain is a nucleotide-sensing module that controls the activity of transcription factors involved in the regulation of DNA damage response and phage defense mechanisms in bacteria. In this study, we investigated a WYL domain-containing transcription factor in Mycobacterium smegmatis that we termed stress-involved WYL domain-containing regulator (SiwR). We found that SiwR controls adjacent genes that belong to the DinB/YfiT-like putative metalloenzymes superfamily by upregulating their expression in response to various genotoxic stress conditions, including upon exposure to H2O2 or the natural antibiotic zeocin. We show that SiwR binds different forms of single-stranded DNA (ssDNA) with high affinity, primarily through its characteristic WYL domain. In combination with complementation studies of a M. smegmatis siwR deletion strain, our findings support a role of the WYL domains as signal-sensing activity switches of WYL domain-containing transcription factors (WYL TFs). Our study provides evidence that WYL TFs are involved in the adaptation of bacteria to changing environments and encountered stress conditions.
Collapse
Affiliation(s)
| | - Kim Flattich
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093, Zurich, Switzerland
| | - Eilika Weber-Ban
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093, Zurich, Switzerland.
| |
Collapse
|
13
|
Nicastro GG, Burroughs AM, Iyer L, Aravind L. Functionally comparable but evolutionarily distinct nucleotide-targeting effectors help identify conserved paradigms across diverse immune systems. Nucleic Acids Res 2023; 51:11479-11503. [PMID: 37889040 PMCID: PMC10681802 DOI: 10.1093/nar/gkad879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
While nucleic acid-targeting effectors are known to be central to biological conflicts and anti-selfish element immunity, recent findings have revealed immune effectors that target their building blocks and the cellular energy currency-free nucleotides. Through comparative genomics and sequence-structure analysis, we identified several distinct effector domains, which we named Calcineurin-CE, HD-CE, and PRTase-CE. These domains, along with specific versions of the ParB and MazG domains, are widely present in diverse prokaryotic immune systems and are predicted to degrade nucleotides by targeting phosphate or glycosidic linkages. Our findings unveil multiple potential immune systems associated with at least 17 different functional themes featuring these effectors. Some of these systems sense modified DNA/nucleotides from phages or operate downstream of novel enzymes generating signaling nucleotides. We also uncovered a class of systems utilizing HSP90- and HSP70-related modules as analogs of STAND and GTPase domains that are coupled to these nucleotide-targeting- or proteolysis-induced complex-forming effectors. While widespread in bacteria, only a limited subset of nucleotide-targeting effectors was integrated into eukaryotic immune systems, suggesting barriers to interoperability across subcellular contexts. This work establishes nucleotide-degrading effectors as an emerging immune paradigm and traces their origins back to homologous domains in housekeeping systems.
Collapse
Affiliation(s)
- Gianlucca G Nicastro
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, USA
| | - A Maxwell Burroughs
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, USA
| | - Lakshminarayan M Iyer
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, USA
| | - L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, USA
| |
Collapse
|
14
|
Chambers LR, Ye Q, Cai J, Gong M, Ledvina HE, Zhou H, Whiteley AT, Suhandynata RT, Corbett KD. Bacterial antiviral defense pathways encode eukaryotic-like ubiquitination systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559546. [PMID: 37808811 PMCID: PMC10557695 DOI: 10.1101/2023.09.26.559546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Ubiquitination and related pathways play crucial roles in protein homeostasis, signaling, and innate immunity1-3. In these pathways, an enzymatic cascade of E1, E2, and E3 proteins conjugates ubiquitin or a ubiquitin-like protein (Ubl) to target-protein lysine residues4. Bacteria encode ancient relatives of E1 and Ubl proteins involved in sulfur metabolism5,6 but these proteins do not mediate Ubl-target conjugation, leaving open the question of whether bacteria can perform ubiquitination-like protein conjugation. Here, we demonstrate that a bacterial antiviral immune system encodes a complete ubiquitination pathway. Two structures of a bacterial E1:E2:Ubl complex reveal striking architectural parallels with canonical eukaryotic ubiquitination machinery. The bacterial E1 encodes an N-terminal inactive adenylation domain (IAD) and a C-terminal active adenylation domain (AAD) with a mobile α-helical insertion containing the catalytic cysteine (CYS domain). One structure reveals a pre-reaction state with the bacterial Ubl C-terminus positioned for adenylation, and the E1 CYS domain poised nearby for thioester formation. A second structure mimics an E1-to-E2 transthioesterification state, with the E1 CYS domain rotated outward and its catalytic cysteine adjacent to the bound E2. We show that a deubiquitinase (DUB) in the same pathway pre-processes the bacterial Ubl, exposing its C-terminal glycine for adenylation. Finally, we show that the bacterial E1 and E2 collaborate to conjugate Ubl to target-protein lysine residues. Together, these data reveal that bacteria possess bona fide ubiquitination systems with strong mechanistic and architectural parallels to canonical eukaryotic ubiquitination pathways, suggesting that these pathways arose first in bacteria.
Collapse
Affiliation(s)
- Lydia R. Chambers
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla CA, USA
| | - Qiaozhen Ye
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla CA, USA
| | - Jiaxi Cai
- Department of Bioengineering, University of California San Diego, La Jolla CA, USA
| | - Minheng Gong
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla CA, USA
| | - Hannah E. Ledvina
- Department of Biochemistry, University of Colorado Boulder, Boulder CO, USA
| | - Huilin Zhou
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla CA, USA
| | - Aaron T. Whiteley
- Department of Biochemistry, University of Colorado Boulder, Boulder CO, USA
| | - Raymond T. Suhandynata
- School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla CA, USA
| | - Kevin D. Corbett
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla CA, USA
- Department of Molecular Biology, University of California San Diego, La Jolla CA, USA
| |
Collapse
|
15
|
Ernits K, Saha CK, Brodiazhenko T, Chouhan B, Shenoy A, Buttress JA, Duque-Pedraza JJ, Bojar V, Nakamoto JA, Kurata T, Egorov AA, Shyrokova L, Johansson MJO, Mets T, Rustamova A, Džigurski J, Tenson T, Garcia-Pino A, Strahl H, Elofsson A, Hauryliuk V, Atkinson GC. The structural basis of hyperpromiscuity in a core combinatorial network of type II toxin-antitoxin and related phage defense systems. Proc Natl Acad Sci U S A 2023; 120:e2305393120. [PMID: 37556498 PMCID: PMC10440598 DOI: 10.1073/pnas.2305393120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023] Open
Abstract
Toxin-antitoxin (TA) systems are a large group of small genetic modules found in prokaryotes and their mobile genetic elements. Type II TAs are encoded as bicistronic (two-gene) operons that encode two proteins: a toxin and a neutralizing antitoxin. Using our tool NetFlax (standing for Network-FlaGs for toxins and antitoxins), we have performed a large-scale bioinformatic analysis of proteinaceous TAs, revealing interconnected clusters constituting a core network of TA-like gene pairs. To understand the structural basis of toxin neutralization by antitoxins, we have predicted the structures of 3,419 complexes with AlphaFold2. Together with mutagenesis and functional assays, our structural predictions provide insights into the neutralizing mechanism of the hyperpromiscuous Panacea antitoxin domain. In antitoxins composed of standalone Panacea, the domain mediates direct toxin neutralization, while in multidomain antitoxins the neutralization is mediated by other domains, such as PAD1, Phd-C, and ZFD. We hypothesize that Panacea acts as a sensor that regulates TA activation. We have experimentally validated 16 NetFlax TA systems and used domain annotations and metabolic labeling assays to predict their potential mechanisms of toxicity (such as membrane disruption, and inhibition of cell division or protein synthesis) as well as biological functions (such as antiphage defense). We have validated the antiphage activity of a RosmerTA system encoded by Gordonia phage Kita, and used fluorescence microscopy to confirm its predicted membrane-depolarizing activity. The interactive version of the NetFlax TA network that includes structural predictions can be accessed at http://netflax.webflags.se/.
Collapse
Affiliation(s)
- Karin Ernits
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
| | - Chayan Kumar Saha
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
| | | | - Bhanu Chouhan
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
- Department of Molecular Biology, Umeå University, Umeå901 87, Sweden
| | - Aditi Shenoy
- Department of Biochemistry and Biophysics and Science for Life Laboratory, Stockholm University, Solna171 21, Sweden
| | - Jessica A. Buttress
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon TyneNE2 4AX, United Kingdom
| | | | - Veda Bojar
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
| | - Jose A. Nakamoto
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
| | - Tatsuaki Kurata
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
| | - Artyom A. Egorov
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
| | - Lena Shyrokova
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
| | | | - Toomas Mets
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
- Institute of Technology, University of Tartu, Tartu50411, Estonia
| | - Aytan Rustamova
- Institute of Technology, University of Tartu, Tartu50411, Estonia
| | | | - Tanel Tenson
- Institute of Technology, University of Tartu, Tartu50411, Estonia
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles, Brussels1050, Belgium
| | - Henrik Strahl
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon TyneNE2 4AX, United Kingdom
| | - Arne Elofsson
- Department of Biochemistry and Biophysics and Science for Life Laboratory, Stockholm University, Solna171 21, Sweden
| | - Vasili Hauryliuk
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
- Institute of Technology, University of Tartu, Tartu50411, Estonia
- Science for Life Laboratory, Lund221 84, Sweden
- Lund University Virus Centre, Lund221 84, Sweden
| | - Gemma C. Atkinson
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
- Lund University Virus Centre, Lund221 84, Sweden
| |
Collapse
|