1
|
Gómez-Morón Á, Alegre-Gómez S, Ramirez-Muñoz R, Hernaiz-Esteban A, Carrasco-Padilla C, Scagnetti C, Aguilar-Sopeña Ó, García-Gil M, Borroto A, Torres-Ruiz R, Rodriguez-Perales S, Sánchez-Madrid F, Martín-Cófreces NB, Roda-Navarro P. Human T-cell receptor triggering requires inactivation of Lim kinase-1 by Slingshot-1 phosphatase. Commun Biol 2024; 7:918. [PMID: 39080357 PMCID: PMC11289303 DOI: 10.1038/s42003-024-06605-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
Actin dynamics control early T-cell receptor (TCR) signalling during T-cell activation. However, the precise regulation of initial actin rearrangements is not completely understood. Here, we have investigated the regulatory role of the phosphatase Slingshot-1 (SSH1) in this process. Our data show that SSH1 rapidly polarises to nascent cognate synaptic contacts and later relocalises to peripheral F-actin networks organised at the mature immunological synapse. Knockdown of SSH1 expression by CRISPR/Cas9-mediated genome editing or small interfering RNA reveal a regulatory role for SSH1 in CD3ε conformational change, allowing Nck binding and proper downstream signalling and immunological synapse organisation. TCR triggering induces SSH1-mediated activation of actin dynamics through a mechanism mediated by Limk-1 inactivation. These data suggest that during early TCR activation, SSH1 is required for rapid F-actin rearrangements that mediate initial conformational changes of the TCR, integrin organisation and proximal signalling events for proper synapse organisation. Therefore, the SSH1 and Limk-1 axis is a key regulatory element for full T cell activation.
Collapse
Affiliation(s)
- Álvaro Gómez-Morón
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, UAM, 28006, Madrid, Spain
| | - Sergio Alegre-Gómez
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain
| | - Rocio Ramirez-Muñoz
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain
| | - Alicia Hernaiz-Esteban
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain
| | - Carlos Carrasco-Padilla
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain
| | - Camila Scagnetti
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, UAM, 28006, Madrid, Spain
- Videomicroscopy Unit, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, UAM, 28006, Madrid, Spain
| | - Óscar Aguilar-Sopeña
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain
| | - Marta García-Gil
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain
| | - Aldo Borroto
- Centro de Biología Molecular Severo Ochoa, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Raul Torres-Ruiz
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
- Division of Hematopoietic Innovative Therapies, Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnologicas (CIEMAT); Advanced Therapies Unit, Instituto de Investigacion Sanitaria Fundacion Jiménez Díaz; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040, Madrid, Spain
| | - Sandra Rodriguez-Perales
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, UAM, 28006, Madrid, Spain
- Area of Vascular Pathophysiology, Laboratory of Intercellular Communication, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, 28029, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Noa Beatriz Martín-Cófreces
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, UAM, 28006, Madrid, Spain.
- Videomicroscopy Unit, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, UAM, 28006, Madrid, Spain.
- Area of Vascular Pathophysiology, Laboratory of Intercellular Communication, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, 28029, Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| | - Pedro Roda-Navarro
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain.
| |
Collapse
|
2
|
Kroll J, Renkawitz J. Principles of organelle positioning in motile and non-motile cells. EMBO Rep 2024; 25:2172-2187. [PMID: 38627564 PMCID: PMC11094012 DOI: 10.1038/s44319-024-00135-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/15/2024] [Accepted: 04/04/2024] [Indexed: 05/16/2024] Open
Abstract
Cells are equipped with asymmetrically localised and functionally specialised components, including cytoskeletal structures and organelles. Positioning these components to specific intracellular locations in an asymmetric manner is critical for their functionality and affects processes like immune responses, tissue maintenance, muscle functionality, and neurobiology. Here, we provide an overview of strategies to actively move, position, and anchor organelles to specific locations. By conceptualizing the cytoskeletal forces and the organelle-to-cytoskeleton connectivity, we present a framework of active positioning of both membrane-enclosed and membrane-less organelles. Using this framework, we discuss how different principles of force generation and organelle anchorage are utilised by different cells, such as mesenchymal and amoeboid cells, and how the microenvironment influences the plasticity of organelle positioning. Given that motile cells face the challenge of coordinating the positioning of their content with cellular motion, we particularly focus on principles of organelle positioning during migration. In this context, we discuss novel findings on organelle positioning by anchorage-independent mechanisms and their advantages and disadvantages in motile as well as stationary cells.
Collapse
Affiliation(s)
- Janina Kroll
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany
| | - Jörg Renkawitz
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany.
| |
Collapse
|
3
|
Hannaford MR, Rusan NM. Positioning centrioles and centrosomes. J Cell Biol 2024; 223:e202311140. [PMID: 38512059 PMCID: PMC10959756 DOI: 10.1083/jcb.202311140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Centrosomes are the primary microtubule organizer in eukaryotic cells. In addition to shaping the intracellular microtubule network and the mitotic spindle, centrosomes are responsible for positioning cilia and flagella. To fulfill these diverse functions, centrosomes must be properly located within cells, which requires that they undergo intracellular transport. Importantly, centrosome mispositioning has been linked to ciliopathies, cancer, and infertility. The mechanisms by which centrosomes migrate are diverse and context dependent. In many cells, centrosomes move via indirect motor transport, whereby centrosomal microtubules engage anchored motor proteins that exert forces on those microtubules, resulting in centrosome movement. However, in some cases, centrosomes move via direct motor transport, whereby the centrosome or centriole functions as cargo that directly binds molecular motors which then walk on stationary microtubules. In this review, we summarize the mechanisms of centrosome motility and the consequences of centrosome mispositioning and identify key questions that remain to be addressed.
Collapse
Affiliation(s)
- Matthew R. Hannaford
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nasser M. Rusan
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Gélin M, Schaeffer A, Gaillard J, Guérin C, Vianay B, Orhant-Prioux M, Braun M, Leterrier C, Blanchoin L, Théry M. Microtubules under mechanical pressure can breach dense actin networks. J Cell Sci 2023; 136:jcs261667. [PMID: 37870087 DOI: 10.1242/jcs.261667] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
The crosstalk between the actin network and microtubules is essential for cell polarity. It orchestrates microtubule organization within the cell, driven by the asymmetry of actin architecture along the cell periphery. The physical intertwining of these networks regulates spatial organization and force distribution in the microtubule network. Although their biochemical interactions are becoming clearer, the mechanical aspects remain less understood. To explore this mechanical interplay, we developed an in vitro reconstitution assay to investigate how dynamic microtubules interact with various actin filament structures. Our findings revealed that microtubules can align and move along linear actin filament bundles through polymerization force. However, they are unable to pass through when encountering dense branched actin meshworks, similar to those present in the lamellipodium along the periphery of the cell. Interestingly, immobilizing microtubules through crosslinking with actin or other means allow the buildup of pressure, enabling them to breach these dense actin barriers. This mechanism offers insights into microtubule progression towards the cell periphery, with them overcoming obstacles within the denser parts of the actin network and ultimately contributing to cell polarity establishment.
Collapse
Affiliation(s)
- Matthieu Gélin
- Université Paris cité, CEA, INSERM, Institut de Recherche Saint Louis, UMR976 HIPI, CytoMorpho Lab, Avenue Claude Vellefaux, 75010 Paris, France
| | - Alexandre Schaeffer
- Université Paris cité, CEA, INSERM, Institut de Recherche Saint Louis, UMR976 HIPI, CytoMorpho Lab, Avenue Claude Vellefaux, 75010 Paris, France
| | - Jérémie Gaillard
- Université Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, UMR5168-LPCV, CytoMorpho Lab, Avenue des Martyrs, 38054 Grenoble, France
| | - Christophe Guérin
- Université Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, UMR5168-LPCV, CytoMorpho Lab, Avenue des Martyrs, 38054 Grenoble, France
| | - Benoit Vianay
- Université Paris cité, CEA, INSERM, Institut de Recherche Saint Louis, UMR976 HIPI, CytoMorpho Lab, Avenue Claude Vellefaux, 75010 Paris, France
| | - Magali Orhant-Prioux
- Université Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, UMR5168-LPCV, CytoMorpho Lab, Avenue des Martyrs, 38054 Grenoble, France
| | - Marcus Braun
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, 25250 Vestec, Prague West, Czech Republic
| | - Christophe Leterrier
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, 13385, Marseille, France
| | - Laurent Blanchoin
- Université Paris cité, CEA, INSERM, Institut de Recherche Saint Louis, UMR976 HIPI, CytoMorpho Lab, Avenue Claude Vellefaux, 75010 Paris, France
- Université Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, UMR5168-LPCV, CytoMorpho Lab, Avenue des Martyrs, 38054 Grenoble, France
| | - Manuel Théry
- Université Paris cité, CEA, INSERM, Institut de Recherche Saint Louis, UMR976 HIPI, CytoMorpho Lab, Avenue Claude Vellefaux, 75010 Paris, France
- Université Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, UMR5168-LPCV, CytoMorpho Lab, Avenue des Martyrs, 38054 Grenoble, France
| |
Collapse
|
5
|
Malycheva D, Alvarado-Kristensson M. Centrosome Movements Are TUBG1-Dependent. Int J Mol Sci 2023; 24:13154. [PMID: 37685969 PMCID: PMC10488117 DOI: 10.3390/ijms241713154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The centrosome of mammalian cells is in constant movement and its motion plays a part in cell differentiation and cell division. The purpose of this study was to establish the involvement of the TUBG meshwork in centrosomal motility. In live cells, we used a monomeric red-fluorescence-protein-tagged centrin 2 gene and a green-fluorescence-protein-tagged TUBG1 gene for labeling the centrosome and the TUBG1 meshwork, respectively. We found that centrosome movements occurred in cellular sites rich in GTPase TUBG1 and single-guide RNA mediated a reduction in the expression of TUBG1, altering the motility pattern of centrosomes. We propose that the TUBG1 meshwork enables the centrosomes to move by providing them with an interacting platform that mediates positional changes. These findings uncover a novel regulatory mechanism that controls the behavior of centrosomes.
Collapse
Affiliation(s)
| | - Maria Alvarado-Kristensson
- Molecular Pathology, Department of Translational Medicine, Skåne University Hospital, Lund University, 21428 Malmö, Sweden;
| |
Collapse
|
6
|
Colin A, Kotila T, Guérin C, Orhant-Prioux M, Vianay B, Mogilner A, Lappalainen P, Théry M, Blanchoin L. Recycling of the actin monomer pool limits the lifetime of network turnover. EMBO J 2023; 42:e112717. [PMID: 36912152 PMCID: PMC10152149 DOI: 10.15252/embj.2022112717] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/14/2023] Open
Abstract
Intracellular organization is largely mediated by actin turnover. Cellular actin networks continuously assemble and disassemble, while maintaining their overall appearance. This behavior, called "dynamic steady state," allows cells to sense and adapt to their environment. However, how structural stability can be maintained during the constant turnover of a limited actin monomer pool is poorly understood. To answer this question, we developed an experimental system where polystyrene beads are propelled by an actin comet in a microwell containing a limited amount of components. We used the speed and the size of the actin comet tails to evaluate the system's monomer consumption and its lifetime. We established the relative contribution of actin assembly, disassembly, and recycling for a bead movement over tens of hours. Recycling mediated by cyclase-associated protein (CAP) is the key step in allowing the reuse of monomers for multiple assembly cycles. ATP supply and protein aging are also factors that limit the lifetime of actin turnover. This work reveals the balancing mechanism for long-term network assembly with a limited amount of building blocks.
Collapse
Affiliation(s)
- Alexandra Colin
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire & Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France
| | - Tommi Kotila
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Christophe Guérin
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire & Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France
| | - Magali Orhant-Prioux
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire & Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France
| | - Benoit Vianay
- CytoMorpho Lab, Institut de Recherche Saint Louis, U976 Human Immunology Pathophysiology Immunotherapy (HIPI), University of Paris, INSERM, CEA, Paris, France
| | - Alex Mogilner
- Courant Institute of Mathematical Sciences, New York University, New York, NY, USA.,Department of Biology, New York University, New York, NY, USA
| | - Pekka Lappalainen
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Manuel Théry
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire & Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France.,CytoMorpho Lab, Institut de Recherche Saint Louis, U976 Human Immunology Pathophysiology Immunotherapy (HIPI), University of Paris, INSERM, CEA, Paris, France
| | - Laurent Blanchoin
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire & Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France.,CytoMorpho Lab, Institut de Recherche Saint Louis, U976 Human Immunology Pathophysiology Immunotherapy (HIPI), University of Paris, INSERM, CEA, Paris, France
| |
Collapse
|
7
|
Zhou J, Corvaisier M, Malycheva D, Alvarado-Kristensson M. Hubbing the Cancer Cell. Cancers (Basel) 2022; 14:5924. [PMID: 36497405 PMCID: PMC9738523 DOI: 10.3390/cancers14235924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Oncogenic transformation drives adaptive changes in a growing tumor that affect the cellular organization of cancerous cells, resulting in the loss of specialized cellular functions in the polarized compartmentalization of cells. The resulting altered metabolic and morphological patterns are used clinically as diagnostic markers. This review recapitulates the known functions of actin, microtubules and the γ-tubulin meshwork in orchestrating cell metabolism and functional cellular asymmetry.
Collapse
Affiliation(s)
| | | | | | - Maria Alvarado-Kristensson
- Molecular Pathology, Department of Translational Medicine, Skåne University Hospital Malmö 1, Lund University, 20502 Malmö, Sweden
| |
Collapse
|