1
|
Pooranachithra M, Jyo EM, Brouilly N, Pujol N, Ernst AM, Chisholm AD. C. elegans epicuticlins define specific compartments in the apical extracellular matrix and function in wound repair. Development 2024; 151:dev204330. [PMID: 39373389 PMCID: PMC11529277 DOI: 10.1242/dev.204330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 09/22/2024] [Indexed: 10/08/2024]
Abstract
The apical extracellular matrix (aECM) of external epithelia often contains lipid-rich outer layers that contribute to permeability barrier function. The external aECM of nematodes is known as the cuticle and contains an external lipid-rich layer - the epicuticle. Epicuticlins are a family of tandem repeat cuticle proteins of unknown function. Here, we analyze the localization and function of the three C. elegans epicuticlins (EPIC proteins). EPIC-1 and EPIC-2 localize to the surface of the cuticle near the outer lipid layer, as well as to interfacial cuticles and adult-specific struts. EPIC-3 is expressed in dauer larvae and localizes to interfacial aECM in the buccal cavity. Skin wounding in the adult induces epic-3 expression, and EPIC proteins localize to wound sites. Null mutants lacking EPIC proteins are viable with reduced permeability barrier function and normal epicuticle lipid mobility. Loss of function in EPIC genes modifies the skin blistering phenotypes of Bli mutants and reduces survival after skin wounding. Our results suggest EPIC proteins define specific cortical compartments of the aECM and promote wound repair.
Collapse
Affiliation(s)
- Murugesan Pooranachithra
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Erin M. Jyo
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Nathalie Pujol
- Aix-Marseille Université, INSERM, CNRS, CIML, Turing Centre for Living Systems, 13009, Marseille, France
| | - Andreas M. Ernst
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrew D. Chisholm
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Sundaram MV, Pujol N. The Caenorhabditis elegans cuticle and precuticle: a model for studying dynamic apical extracellular matrices in vivo. Genetics 2024; 227:iyae072. [PMID: 38995735 PMCID: PMC11304992 DOI: 10.1093/genetics/iyae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/25/2024] [Indexed: 07/14/2024] Open
Abstract
Apical extracellular matrices (aECMs) coat the exposed surfaces of animal bodies to shape tissues, influence social interactions, and protect against pathogens and other environmental challenges. In the nematode Caenorhabditis elegans, collagenous cuticle and zona pellucida protein-rich precuticle aECMs alternately coat external epithelia across the molt cycle and play many important roles in the worm's development, behavior, and physiology. Both these types of aECMs contain many matrix proteins related to those in vertebrates, as well as some that are nematode-specific. Extensive differences observed among tissues and life stages demonstrate that aECMs are a major feature of epithelial cell identity. In addition to forming discrete layers, some cuticle components assemble into complex substructures such as ridges, furrows, and nanoscale pillars. The epidermis and cuticle are mechanically linked, allowing the epidermis to sense cuticle damage and induce protective innate immune and stress responses. The C. elegans model, with its optical transparency, facilitates the study of aECM cell biology and structure/function relationships and all the myriad ways by which aECM can influence an organism.
Collapse
Affiliation(s)
- Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nathalie Pujol
- Aix Marseille University, INSERM, CNRS, CIML, Turing Centre for Living Systems, 13009 Marseille, France
| |
Collapse
|
3
|
Nahar S, Morales Moya LJ, Brunner J, Hendriks GJ, Towbin B, Hauser Y, Brancati G, Gaidatzis D, Großhans H. Dynamics of miRNA accumulation during C. elegans larval development. Nucleic Acids Res 2024; 52:5336-5355. [PMID: 38381904 PMCID: PMC11109986 DOI: 10.1093/nar/gkae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/23/2024] Open
Abstract
Temporally and spatially controlled accumulation underlies the functions of microRNAs (miRNAs) in various developmental processes. In Caenorhabditis elegans, this is exemplified by the temporal patterning miRNAs lin-4 and let-7, but for most miRNAs, developmental expression patterns remain poorly resolved. Indeed, experimentally observed long half-lives may constrain possible dynamics. Here, we profile miRNA expression throughout C. elegans postembryonic development at high temporal resolution, which identifies dynamically expressed miRNAs. We use mathematical models to explore the underlying mechanisms. For let-7, we can explain, and experimentally confirm, a striking stepwise accumulation pattern through a combination of rhythmic transcription and stage-specific regulation of precursor processing by the RNA-binding protein LIN-28. By contrast, the dynamics of several other miRNAs cannot be explained by regulation of production rates alone. Specifically, we show that a combination of oscillatory transcription and rhythmic decay drive rhythmic accumulation of miR-235, orthologous to miR-92 in other animals. We demonstrate that decay of miR-235 and additional miRNAs depends on EBAX-1, previously implicated in target-directed miRNA degradation (TDMD). Taken together, our results provide insight into dynamic miRNA decay and establish a resource to studying both the developmental functions of, and the regulatory mechanisms acting on, miRNAs.
Collapse
Affiliation(s)
- Smita Nahar
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | | | - Jana Brunner
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Gert-Jan Hendriks
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | - Benjamin Towbin
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- University of Bern, Bern, Switzerland
| | - Yannick P Hauser
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Giovanna Brancati
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Dimos Gaidatzis
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Patil G, van Zon JS. Timers, variability, and body-wide coordination: C. elegans as a model system for whole-animal developmental timing. Curr Opin Genet Dev 2024; 85:102172. [PMID: 38432125 DOI: 10.1016/j.gde.2024.102172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024]
Abstract
Successful development requires both precise timing of cellular processes, such as division and differentiation, and tight coordination of timing between tissues and organs. Yet, how time information is encoded with high precision and synchronized between tissues, despite inherent molecular noise, is unsolved. Here, we propose the nematode C. elegans as a unique model system for studying body-wide control of developmental timing. Recent studies combining genetics, quantitative analysis, and simulations have 1) mapped core timers controlling larval development, indicating temporal gradients as an underlying mechanism, and 2) elucidated general principles that make timing insensitive to inherent fluctuations and variation in environmental conditions. As the molecular regulators of C. elegans developmental timing are broadly conserved, these mechanisms likely apply also to higher organisms.
Collapse
|
5
|
Quiroga-Artigas G, Moriel-Carretero M. Storage cell proliferation during somatic growth establishes that tardigrades are not eutelic organisms. Biol Open 2024; 13:bio060299. [PMID: 38411464 PMCID: PMC10924213 DOI: 10.1242/bio.060299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 02/28/2024] Open
Abstract
Tardigrades, microscopic ecdysozoans known for extreme environment resilience, were traditionally believed to maintain a constant cell number after completing embryonic development, a phenomenon termed eutely. However, sporadic reports of dividing cells have raised questions about this assumption. In this study, we explored tardigrade post-embryonic cell proliferation using the model species Hypsibius exemplaris. Comparing hatchlings to adults, we observed an increase in the number of storage cells, responsible for nutrient storage. We monitored cell proliferation via 5-ethynyl-2'-deoxyuridine (EdU) incorporation, revealing large numbers of EdU+ storage cells during growth, which starvation halted. EdU incorporation associated with molting, a vital post-embryonic development process involving cuticle renewal for further growth. Notably, DNA replication inhibition strongly reduced EdU+ cell numbers and caused molting-related fatalities. Our study is the first to demonstrate using molecular approaches that storage cells actively proliferate during tardigrade post-embryonic development, providing a comprehensive insight into replication events throughout their somatic growth. Additionally, our data underscore the significance of proper DNA replication in tardigrade molting and survival. This work definitely establishes that tardigrades are not eutelic, and offers insights into cell cycle regulation, replication stress, and DNA damage management in these remarkable creatures as genetic manipulation techniques emerge within the field.
Collapse
Affiliation(s)
- Gonzalo Quiroga-Artigas
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier CEDEX 05, France
| | - María Moriel-Carretero
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier CEDEX 05, France
| |
Collapse
|
6
|
Pooranachithra M, Jyo EM, Ernst AM, Chisholm AD. C. elegans epicuticlins define specific compartments in the apical extracellular matrix and function in wound repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575393. [PMID: 38260454 PMCID: PMC10802564 DOI: 10.1101/2024.01.12.575393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The apical extracellular matrix (aECM) of external epithelia often contains lipid-rich outer layers that contribute to permeability barrier function. The external aECM of nematode is known as the cuticle and contains an external lipid-rich layer, the epicuticle. Epicuticlins are a family of tandem repeat proteins originally identified as components of the insoluble fraction of the cuticular aECM and thought to localize in or near epicuticle. However, there has been little in vivo analysis of epicuticlins. Here, we report the localization analysis of the three C. elegans epicuticlins (EPIC proteins) using fluorescent protein knock-ins to visualize endogenously expressed proteins, and further examine their in vivo function using genetic null mutants. By TIRF microscopy, we find that EPIC-1 and EPIC-2 localize to the surface of the cuticle in larval and adult stages in close proximity to the outer lipid layer. EPIC-1 and EPIC-2 also localize to interfacial cuticles and adult-specific cuticle struts. EPIC-3 expression is restricted to the stress-induced dauer stage, where it localizes to interfacial aECM in the buccal cavity. Strikingly, skin wounding in the adult induces epic-3 expression, and EPIC-3::mNG localizes to wound scars. Null mutants lacking one, two, or all three EPIC proteins display reduced survival after skin wounding yet are viable with low penetrance defects in epidermal morphogenesis. Our results suggest EPIC proteins define specific aECM compartments and have roles in wound repair.
Collapse
Affiliation(s)
- Murugesan Pooranachithra
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Erin M Jyo
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Andreas M Ernst
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Andrew D Chisholm
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
7
|
Abstract
Organismal development requires the reproducible unfolding of an ordered sequence of discrete steps (cell fate determination, migration, tissue folding, etc.) in both time and space. Here, we review the mechanisms that grant temporal specificity to developmental steps, including molecular clocks and timers. Individual timing mechanisms must be coordinated with each other to maintain the overall developmental sequence. However, phenotypic novelties can also arise through the modification of temporal patterns over the course of evolution. Two main types of variation in temporal patterning characterize interspecies differences in developmental time: allochrony, where the overall developmental sequence is either accelerated or slowed down while maintaining the relative duration of individual steps, and heterochrony, where the duration of specific developmental steps is altered relative to the rest. New advances in in vitro modeling of mammalian development using stem cells have recently enabled the revival of mechanistic studies of allochrony and heterochrony. In both cases, differences in the rate of basic cellular functions such as splicing, translation, protein degradation, and metabolism seem to underlie differences in developmental time. In the coming years, these studies should identify the genetic differences that drive divergence in developmental time between species.
Collapse
Affiliation(s)
- Margarete Diaz-Cuadros
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA;
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA;
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA;
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
8
|
Kinney B, Sahu S, Stec N, Hills-Muckey K, Adams DW, Wang J, Jaremko M, Joshua-Tor L, Keil W, Hammell CM. A circadian-like gene network programs the timing and dosage of heterochronic miRNA transcription during C. elegans development. Dev Cell 2023; 58:2563-2579.e8. [PMID: 37643611 PMCID: PMC10840721 DOI: 10.1016/j.devcel.2023.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/10/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023]
Abstract
Development relies on the exquisite control of both the timing and the levels of gene expression to achieve robust developmental transitions. How cis- and trans-acting factors control both aspects simultaneously is unclear. We show that transcriptional pulses of the temporal patterning microRNA (miRNA) lin-4 are generated by two nuclear hormone receptors (NHRs) in C. elegans, NHR-85 and NHR-23, whose mammalian orthologs, Rev-Erb and ROR, function in the circadian clock. Although Rev-Erb and ROR antagonize each other to control once-daily transcription in mammals, NHR-85/NHR-23 heterodimers bind cooperatively to lin-4 regulatory elements to induce a single pulse of expression during each larval stage. Each pulse's timing, amplitude, and duration are dictated by the phased expression of these NHRs and the C. elegans Period ortholog, LIN-42, that binds to and represses NHR-85. Therefore, during nematode temporal patterning, an evolutionary rewiring of circadian clock components couples the timing of gene expression to the control of transcriptional dosage.
Collapse
Affiliation(s)
- Brian Kinney
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Shubham Sahu
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168 Laboratoire Physico Chimie Curie, Paris 75005, France
| | - Natalia Stec
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Dexter W Adams
- Howard Hughes Medical Institute, W. M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jing Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Matt Jaremko
- Howard Hughes Medical Institute, W. M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Leemor Joshua-Tor
- Howard Hughes Medical Institute, W. M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Wolfgang Keil
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168 Laboratoire Physico Chimie Curie, Paris 75005, France.
| | | |
Collapse
|
9
|
Jordan DJ, Miska EA. Canalisation and plasticity on the developmental manifold of Caenorhabditis elegans. Mol Syst Biol 2023; 19:e11835. [PMID: 37850520 PMCID: PMC10632735 DOI: 10.15252/msb.202311835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023] Open
Abstract
How do the same mechanisms that faithfully regenerate complex developmental programmes in spite of environmental and genetic perturbations also allow responsiveness to environmental signals, adaptation and genetic evolution? Using the nematode Caenorhabditis elegans as a model, we explore the phenotypic space of growth and development in various genetic and environmental contexts. Our data are growth curves and developmental parameters obtained by automated microscopy. Using these, we show that among the traits that make up the developmental space, correlations within a particular context are predictive of correlations among different contexts. Furthermore, we find that the developmental variability of this animal can be captured on a relatively low-dimensional phenotypic manifold and that on this manifold, genetic and environmental contributions to plasticity can be deconvolved independently. Our perspective offers a new way of understanding the relationship between robustness and flexibility in complex systems, suggesting that projection and concentration of dimension can naturally align these forces as complementary rather than competing.
Collapse
Affiliation(s)
- David J Jordan
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Eric A Miska
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| |
Collapse
|
10
|
Johnson LC, Vo AA, Clancy JC, Myles KM, Pooranachithra M, Aguilera J, Levenson MT, Wohlenberg C, Rechtsteiner A, Ragle JM, Chisholm AD, Ward JD. NHR-23 activity is necessary for C. elegans developmental progression and apical extracellular matrix structure and function. Development 2023; 150:dev201085. [PMID: 37129010 PMCID: PMC10233720 DOI: 10.1242/dev.201085] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Nematode molting is a remarkable process where animals must repeatedly build a new apical extracellular matrix (aECM) beneath a previously built aECM that is subsequently shed. The nuclear hormone receptor NHR-23 (also known as NR1F1) is an important regulator of C. elegans molting. NHR-23 expression oscillates in the epidermal epithelium, and soma-specific NHR-23 depletion causes severe developmental delay and death. Tissue-specific RNAi suggests that nhr-23 acts primarily in seam and hypodermal cells. NHR-23 coordinates the expression of factors involved in molting, lipid transport/metabolism and remodeling of the aECM. NHR-23 depletion causes dampened expression of a nas-37 promoter reporter and a loss of reporter oscillation. The cuticle collagen ROL-6 and zona pellucida protein NOAH-1 display aberrant annular localization and severe disorganization over the seam cells after NHR-23 depletion, while the expression of the adult-specific cuticle collagen BLI-1 is diminished and frequently found in patches. Consistent with these localization defects, the cuticle barrier is severely compromised when NHR-23 is depleted. Together, this work provides insight into how NHR-23 acts in the seam and hypodermal cells to coordinate aECM regeneration during development.
Collapse
Affiliation(s)
- Londen C. Johnson
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - An A. Vo
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - John C. Clancy
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Krista M. Myles
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Murugesan Pooranachithra
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Joseph Aguilera
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Max T. Levenson
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Chloe Wohlenberg
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Andreas Rechtsteiner
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - James Matthew Ragle
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Andrew D. Chisholm
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jordan D. Ward
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|