1
|
Bijjam R, Shorter S, Bratt AM, O'Leary VB, Ntziachristos V, Ovsepian SV. Neurotoxin-Derived Optical Probes for Elucidating Molecular and Developmental Biology of Neurons and Synaptic Connections.
Toxin-Derived Optical Probes for Neuroimaging. Mol Imaging Biol 2024:10.1007/s11307-024-01954-6. [PMID: 39348040 DOI: 10.1007/s11307-024-01954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/21/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024]
Abstract
Botulinum neurotoxins (BoNTs) and tetanus toxin (TeTX) are the deadliest biological substances that cause botulism and tetanus, respectively. Their astonishing potency and capacity to enter neurons and interfere with neurotransmitter release at presynaptic terminals have attracted much interest in experimental neurobiology and clinical research. Fused with reporter proteins or labelled with fluorophores, BoNTs and TeTX and their non-toxic fragments also offer remarkable opportunities to visualize cellular processes and functions in neurons and synaptic connections. This study presents the state-of-the-art optical probes derived from BoNTs and TeTX and discusses their applications in molecular and synaptic biology and neurodevelopmental research. It reviews the principles of the design and production of probes, revisits their applications with advantages and limitations and considers prospects for future improvements. The versatile characteristics of discussed probes and reporters make them an integral part of the expanding toolkit for molecular neuroimaging, promoting the discovery process in neurobiology and translational neurosciences.
Collapse
Affiliation(s)
- Rohini Bijjam
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, UK
| | - Susan Shorter
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, UK
| | - Alison M Bratt
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, UK
| | - Valerie B O'Leary
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, 10000, Prague, Czech Republic
| | - Vasilis Ntziachristos
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675, Munich, Germany
- Institute of Biological and Medical Imaging and Healthcare, Helmholtz Zentrum München (GmbH), 85764, Neuherberg, Germany
- Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, 80992, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Saak Victor Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, UK.
- Faculty of Medicine, Ivane Javakhishvili Tbilisi State University, 0159, Tbilisi, Georgia.
| |
Collapse
|
2
|
Small C, Harper C, Jiang A, Kontaxi C, Pronot M, Yak N, Malapaka A, Davenport EC, Wallis TP, Gormal RS, Joensuu M, Martínez-Mármol R, Cousin MA, Meunier FA. SV2A controls the surface nanoclustering and endocytic recruitment of Syt1 during synaptic vesicle recycling. J Neurochem 2024; 168:3188-3208. [PMID: 39091022 DOI: 10.1111/jnc.16186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 08/04/2024]
Abstract
Following exocytosis, the recapture of plasma membrane-stranded vesicular proteins into recycling synaptic vesicles (SVs) is essential for sustaining neurotransmission. Surface clustering of vesicular proteins has been proposed to act as a 'pre-assembly' mechanism for endocytosis that ensures high-fidelity retrieval of SV cargo. Here, we used single-molecule imaging to examine the nanoclustering of synaptotagmin-1 (Syt1) and synaptic vesicle protein 2A (SV2A) in hippocampal neurons. Syt1 forms surface nanoclusters through the interaction of its C2B domain with SV2A, which are sensitive to mutations in this domain (Syt1K326A/K328A) and SV2A knockdown. SV2A co-clustering with Syt1 is reduced by blocking SV2A's cognate interaction with Syt1 (SV2AT84A). Surprisingly, impairing SV2A-Syt1 nanoclustering enhanced the plasma membrane recruitment of key endocytic protein dynamin-1, causing accelerated Syt1 endocytosis, altered intracellular sorting and decreased trafficking of Syt1 to Rab5-positive endocytic compartments. Therefore, SV2A and Syt1 are segregated from the endocytic machinery in surface nanoclusters, limiting dynamin recruitment and negatively regulating Syt1 entry into recycling SVs.
Collapse
Affiliation(s)
- Christopher Small
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Callista Harper
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Anmin Jiang
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Christiana Kontaxi
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Marie Pronot
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Nyakuoy Yak
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Anusha Malapaka
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Elizabeth C Davenport
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Tristan P Wallis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Ramón Martínez-Mármol
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
- School of Biomedical Sciences, the University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
3
|
Fabris F, Megighian A, Rossetto O, Simonato M, Schiavo G, Pirazzini M, Montecucco C. Local Tetanus Begins with a Neuromuscular Junction Paralysis around the Site of Tetanus Neurotoxin Release due to Cleavage of the Vesicle-Associated Membrane Protein. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1752-1763. [PMID: 38885925 DOI: 10.1016/j.ajpath.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
Local tetanus develops when limited amounts of tetanus neurotoxin (TeNT) are released by Clostridium tetani generated from spores inside a necrotic wound. Within days, a spastic paralysis restricted to the muscles of the affected anatomical area develops. This paralysis follows the retrograde transport of TeNT inside the axons of motoneurons and its uptake by inhibitory interneurons with cleavage of a vesicle-associated membrane protein required for neurotransmitter release. Consequently, incontrollable excitation of motoneurons causes contractures of innervated muscles and leads to local spastic paralysis. Here, the initial events occurring close to the site of TeNT release were investigated in a mouse model of local tetanus. A peripheral flaccid paralysis was found to occur, before or concurrent to the spastic paralysis. At variance from the confined TeNT proteolytic activity taking place within motor neuron terminals, central protein cleavage was detected within inhibitory interneurons controlling motor neuron efferents innervating muscle groups distant from the site of TeNT release. These results indicate peripheral activity of TeNT in tetanus and explains why the spastic paralysis observed in local tetanus, although confined to single limbs, generally affects multiple muscles. The initial TeNT neuroparalytic activity can be detected by measuring the compound muscle action potential, providing a very early diagnosis and therapy, thus preventing the ensuing life-threatening generalized tetanus.
Collapse
Affiliation(s)
- Federico Fabris
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Aram Megighian
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Padua Neuroscience Center, University of Padua, Padua, Italy
| | - Ornella Rossetto
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Center of Myology CIR-Myo, University of Padua, Padua, Italy; Institute of Neuroscience, National Research Council, Padua, Italy
| | - Morena Simonato
- Institute of Neuroscience, National Research Council, Padua, Italy
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, London, United Kingdom; UK Dementia Research Institute, University College London, London, United Kingdom
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Center of Myology CIR-Myo, University of Padua, Padua, Italy.
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Institute of Neuroscience, National Research Council, Padua, Italy.
| |
Collapse
|
4
|
Viravathana P, Tepp WH, Bradshaw M, Przedpelski A, Barbieri JT, Pellett S. Potency Evaluations of Recombinant Botulinum Neurotoxin A1 Mutants Designed to Reduce Toxicity. Int J Mol Sci 2024; 25:8955. [PMID: 39201641 PMCID: PMC11355004 DOI: 10.3390/ijms25168955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Recombinant mutant holotoxin BoNTs (rBoNTs) are being evaluated as possible vaccines against botulism. Previously, several rBoNTs containing 2-3 amino acid mutations in the light chain (LC) showed significant decreases in toxicity (2.5-million-fold-12.5-million-fold) versus wild-type BoNT/A1, leading to their current exclusion from the Federal Select Agent list. In this study, we added four additional mutations in the receptor-binding domain, translocation domain, and enzymatic cleft to further decrease toxicity, creating 7M rBoNT/A1. Due to poor expression in E. coli, 7M rBoNT/A1 was produced in an endogenous C. botulinum expression system. This protein had higher residual toxicity (LD50: 280 ng/mouse) than previously reported for the catalytically inactive rBoNT/A1 containing only three of the mutations (>10 µg/mouse). To investigate this discrepancy, several additional rBoNT/A1 constructs containing individual sets of amino acid substitutions from 7M rBoNT/A1 and related mutations were also endogenously produced. Similarly to endogenously produced 7M rBoNT/A1, all of the endogenously produced mutants had ~100-1000-fold greater toxicity than what was reported for their original heterologous host counterparts. A combination of mutations in multiple functional domains resulted in a greater but not multiplicative reduction in toxicity. This report demonstrates the impact of production systems on residual toxicity of genetically inactivated rBoNTs.
Collapse
Affiliation(s)
- Polrit Viravathana
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - William H. Tepp
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Marite Bradshaw
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Amanda Przedpelski
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Joseph T. Barbieri
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sabine Pellett
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
5
|
Wu PP, Cao BR, Tian FY, Gao ZB. Development of SV2A Ligands for Epilepsy Treatment: A Review of Levetiracetam, Brivaracetam, and Padsevonil. Neurosci Bull 2024; 40:594-608. [PMID: 37897555 PMCID: PMC11127901 DOI: 10.1007/s12264-023-01138-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/16/2023] [Indexed: 10/30/2023] Open
Abstract
Epilepsy is a common neurological disorder that is primarily treated with antiseizure medications (ASMs). Although dozens of ASMs are available in the clinic, approximately 30% of epileptic patients have medically refractory seizures; other limitations in most traditional ASMs include poor tolerability and drug-drug interactions. Therefore, there is an urgent need to develop alternative ASMs. Levetiracetam (LEV) is a first-line ASM that is well tolerated, has promising efficacy, and has little drug-drug interaction. Although it is widely accepted that LEV acts through a unique therapeutic target synaptic vesicle protein (SV) 2A, the molecular basis of its action remains unknown. Even so, the next-generation SV2A ligands against epilepsy based on the structure of LEV have achieved clinical success. This review highlights the research and development (R&D) process of LEV and its analogs, brivaracetam and padsevonil, to provide ideas and experience for the R&D of novel ASMs.
Collapse
Affiliation(s)
- Peng-Peng Wu
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bi-Rong Cao
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fu-Yun Tian
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
| | - Zhao-Bing Gao
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
| |
Collapse
|
6
|
Yamagata A, Ito K, Suzuki T, Dohmae N, Terada T, Shirouzu M. Structural basis for antiepileptic drugs and botulinum neurotoxin recognition of SV2A. Nat Commun 2024; 15:3027. [PMID: 38637505 PMCID: PMC11026379 DOI: 10.1038/s41467-024-47322-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/26/2024] [Indexed: 04/20/2024] Open
Abstract
More than one percent of people have epilepsy worldwide. Levetiracetam (LEV) is a successful new-generation antiepileptic drug (AED), and its derivative, brivaracetam (BRV), shows improved efficacy. Synaptic vesicle glycoprotein 2a (SV2A), a putative membrane transporter in the synaptic vesicles (SVs), has been identified as a target of LEV and BRV. SV2A also serves as a receptor for botulinum neurotoxin (BoNT), which is the most toxic protein and has paradoxically emerged as a potent reagent for therapeutic and cosmetic applications. Nevertheless, no structural analysis on AEDs and BoNT recognition by full-length SV2A has been available. Here we describe the cryo-electron microscopy structures of the full-length SV2A in complex with the BoNT receptor-binding domain, BoNT/A2 HC, and either LEV or BRV. The large fourth luminal domain of SV2A binds to BoNT/A2 HC through protein-protein and protein-glycan interactions. LEV and BRV occupy the putative substrate-binding site in an outward-open conformation. A propyl group in BRV creates additional contacts with SV2A, explaining its higher binding affinity than that of LEV, which was further supported by label-free spectral shift assay. Numerous LEV derivatives have been developed as AEDs and positron emission tomography (PET) tracers for neuroimaging. Our work provides a structural framework for AEDs and BoNT recognition of SV2A and a blueprint for the rational design of additional AEDs and PET tracers.
Collapse
Affiliation(s)
- Atsushi Yamagata
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan.
| | - Kaori Ito
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Tohru Terada
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| |
Collapse
|
7
|
Xu H, Ge H, Cai Z. Botulinum toxin type a blocks aquaporin 5 trafficking by decreasing synaptosomal-associated protein 23 in submandibular acinar cells. Exp Cell Res 2024; 436:113954. [PMID: 38307188 DOI: 10.1016/j.yexcr.2024.113954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/24/2023] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
The trafficking of aquaporin 5 (AQP5) is critical for salivary secretion. Synaptosomal-associated protein 23 (SNAP23) is an important regulator in the process of membrane fusion. However, the role of SNAP23 on AQP5 trafficking has not been explored. Botulinum toxin type A (BoNT/A) is a bacterial toxin that effectively treats sialorrhea. We previously reported that BoNT/A induced AQP5 redistribution in cultured acinar cells, but the mechanism remained unclear. In this study, SNAP23 was predominantly localized to the plasma membrane of acinar cells in the rat submandibular gland (SMG) and colocalized with AQP5 at the apical membrane of acinar cells. In stable GFP-AQP5-transfected SMG-C6 cells, the acetylcholine receptor agonist carbachol (CCh) induced trafficking of AQP5 from intracellular vesicles to the apical membrane. Furthermore, SNAP23 knockdown by siRNA significantly inhibited CCh-induced AQP5 trafficking, whereas this inhibitory effect was reversed by SNAP23 re-expression, indicating that SNAP23 was essential in AQP5 trafficking. More importantly, BoNT/A inhibited salivary secretion from SMGs, and the underlying mechanism involved that BoNT/A blocked CCh-triggered AQP5 trafficking by decreasing SNAP23 in acinar cells. Taken together, these results identified a crucial role for SNAP23 in AQP5 trafficking and provided new insights into the mechanism of BoNT/A in treating sialorrhea and thereby a theoretical basis for clinical applications.
Collapse
Affiliation(s)
- Hui Xu
- Department of Wangfujing General Dentistry, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Huabing Ge
- Department of Wangfujing General Dentistry, Beijing Stomatological Hospital, Capital Medical University, Beijing, China.
| | - Zhigang Cai
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
8
|
Rossetto O, Pirazzini M, Montecucco C. Three players in the 'toxic affair' between botulinum neurotoxin type A and neurons. Trends Neurosci 2023; 46:695-697. [PMID: 37385877 DOI: 10.1016/j.tins.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/09/2023] [Indexed: 07/01/2023]
Abstract
Joensuu and colleagues have recently shown that botulinum neurotoxin (BoNT) type A exploits a heterotrimeric complex in the presynaptic membrane to bind to and enter neurons using a Trojan horse-like mechanism. Similar processes may be relevant to the neuronal entry of different botulinum toxin serotypes and other neuropathogens.
Collapse
Affiliation(s)
- Ornella Rossetto
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Consiglio Nazionale delle Ricerche, Institute of Neuroscience, University of Padova, Padova, Italy.
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Consiglio Nazionale delle Ricerche, Institute of Neuroscience, University of Padova, Padova, Italy
| |
Collapse
|
9
|
Joensuu M, Syed P, Saber SH, Lanoue V, Wallis TP, Rae J, Blum A, Gormal RS, Small C, Sanders S, Jiang A, Mahrhold S, Krez N, Cousin MA, Cooper‐White R, Cooper‐White JJ, Collins BM, Parton RG, Balistreri G, Rummel A, Meunier FA. Presynaptic targeting of botulinum neurotoxin type A requires a tripartite PSG-Syt1-SV2 plasma membrane nanocluster for synaptic vesicle entry. EMBO J 2023; 42:e112095. [PMID: 37226896 PMCID: PMC10308369 DOI: 10.15252/embj.2022112095] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 04/18/2023] [Accepted: 04/28/2023] [Indexed: 05/26/2023] Open
Abstract
The unique nerve terminal targeting of botulinum neurotoxin type A (BoNT/A) is due to its capacity to bind two receptors on the neuronal plasma membrane: polysialoganglioside (PSG) and synaptic vesicle glycoprotein 2 (SV2). Whether and how PSGs and SV2 may coordinate other proteins for BoNT/A recruitment and internalization remains unknown. Here, we demonstrate that the targeted endocytosis of BoNT/A into synaptic vesicles (SVs) requires a tripartite surface nanocluster. Live-cell super-resolution imaging and electron microscopy of catalytically inactivated BoNT/A wildtype and receptor-binding-deficient mutants in cultured hippocampal neurons demonstrated that BoNT/A must bind coincidentally to a PSG and SV2 to target synaptic vesicles. We reveal that BoNT/A simultaneously interacts with a preassembled PSG-synaptotagmin-1 (Syt1) complex and SV2 on the neuronal plasma membrane, facilitating Syt1-SV2 nanoclustering that controls endocytic sorting of the toxin into synaptic vesicles. Syt1 CRISPRi knockdown suppressed BoNT/A- and BoNT/E-induced neurointoxication as quantified by SNAP-25 cleavage, suggesting that this tripartite nanocluster may be a unifying entry point for selected botulinum neurotoxins that hijack this for synaptic vesicle targeting.
Collapse
Affiliation(s)
- Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQLDAustralia
| | - Parnayan Syed
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Saber H Saber
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQLDAustralia
| | - Vanessa Lanoue
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Tristan P Wallis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - James Rae
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia
| | - Ailisa Blum
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Christopher Small
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Shanley Sanders
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Anmin Jiang
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Stefan Mahrhold
- Institut für ToxikologieMedizinische Hochschule HannoverHannoverGermany
| | - Nadja Krez
- Institut für ToxikologieMedizinische Hochschule HannoverHannoverGermany
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, Hugh Robson BuildingUniversity of EdinburghEdinburghUK
- Muir Maxwell Epilepsy CentreUniversity of EdinburghEdinburghUK
- Simons Initiative for the Developing BrainUniversity of EdinburghEdinburghUK
| | - Ruby Cooper‐White
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQLDAustralia
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLDAustralia
| | - Justin J Cooper‐White
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQLDAustralia
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLDAustralia
- UQ Centre for Stem Cell Ageing and Regenerative EngineeringThe University of QueenslandBrisbaneQLDAustralia
| | - Brett M Collins
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia
| | - Robert G Parton
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia
- Centre for Microscopy and MicroanalysisThe University of QueenslandBrisbaneQLDAustralia
| | - Giuseppe Balistreri
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Department of Virology, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Andreas Rummel
- Institut für ToxikologieMedizinische Hochschule HannoverHannoverGermany
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- School of Biomedical SciencesThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
10
|
Wallis TP, Jiang A, Young K, Hou H, Kudo K, McCann AJ, Durisic N, Joensuu M, Oelz D, Nguyen H, Gormal RS, Meunier FA. Super-resolved trajectory-derived nanoclustering analysis using spatiotemporal indexing. Nat Commun 2023; 14:3353. [PMID: 37291117 PMCID: PMC10250379 DOI: 10.1038/s41467-023-38866-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/11/2023] [Indexed: 06/10/2023] Open
Abstract
Single-molecule localization microscopy techniques are emerging as vital tools to unravel the nanoscale world of living cells by understanding the spatiotemporal organization of protein clusters at the nanometer scale. Current analyses define spatial nanoclusters based on detections but neglect important temporal information such as cluster lifetime and recurrence in "hotspots" on the plasma membrane. Spatial indexing is widely used in video games to detect interactions between moving geometric objects. Here, we use the R-tree spatial indexing algorithm to determine the overlap of the bounding boxes of individual molecular trajectories to establish membership in nanoclusters. Extending the spatial indexing into the time dimension allows the resolution of spatial nanoclusters into multiple spatiotemporal clusters. Using spatiotemporal indexing, we found that syntaxin1a and Munc18-1 molecules transiently cluster in hotspots, offering insights into the dynamics of neuroexocytosis. Nanoscale spatiotemporal indexing clustering (NASTIC) has been implemented as a free and open-source Python graphic user interface.
Collapse
Affiliation(s)
- Tristan P Wallis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Anmin Jiang
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Kyle Young
- School of Mathematics and Physics, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Huiyi Hou
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Kye Kudo
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Alex J McCann
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Nela Durisic
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Dietmar Oelz
- School of Mathematics and Physics, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Hien Nguyen
- School of Mathematics and Physics, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|