1
|
Zhang JL, Xu MF, Chen J, Wei YL, She ZY. Kinesin-7 CENP-E mediates chromosome alignment and spindle assembly checkpoint in meiosis I. Chromosoma 2024; 133:149-168. [PMID: 38456964 DOI: 10.1007/s00412-024-00818-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
In eukaryotes, meiosis is the genetic basis for sexual reproduction, which is important for chromosome stability and species evolution. The defects in meiosis usually lead to chromosome aneuploidy, reduced gamete number, and genetic diseases, but the pathogenic mechanisms are not well clarified. Kinesin-7 CENP-E is a key regulator in chromosome alignment and spindle assembly checkpoint in cell division. However, the functions and mechanisms of CENP-E in male meiosis remain largely unknown. In this study, we have revealed that the CENP-E gene was highly expressed in the rat testis. CENP-E inhibition influences chromosome alignment and spindle organization in metaphase I spermatocytes. We have found that a portion of misaligned homologous chromosomes is located at the spindle poles after CENP-E inhibition, which further activates the spindle assembly checkpoint during the metaphase-to-anaphase transition in rat spermatocytes. Furthermore, CENP-E depletion leads to abnormal spermatogenesis, reduced sperm count, and abnormal sperm head structure. Our findings have elucidated that CENP-E is essential for homologous chromosome alignment and spindle assembly checkpoint in spermatocytes, which further contribute to chromosome stability and sperm cell quality during spermatogenesis.
Collapse
Affiliation(s)
- Jing-Lian Zhang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China
| | - Meng-Fei Xu
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China
| | - Jie Chen
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China
| | - Ya-Lan Wei
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China.
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
2
|
Fankhaenel M, Hashemi FSG, Mourao L, Lucas E, Hosawi MM, Skipp P, Morin X, Scheele CLGJ, Elias S. Annexin A1 is a polarity cue that directs mitotic spindle orientation during mammalian epithelial morphogenesis. Nat Commun 2023; 14:151. [PMID: 36631478 PMCID: PMC9834401 DOI: 10.1038/s41467-023-35881-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Oriented cell divisions are critical for the formation and maintenance of structured epithelia. Proper mitotic spindle orientation relies on polarised anchoring of force generators to the cell cortex by the evolutionarily conserved protein complex formed by the Gαi subunit of heterotrimeric G proteins, the Leucine-Glycine-Asparagine repeat protein (LGN) and the nuclear mitotic apparatus protein. However, the polarity cues that control cortical patterning of this ternary complex remain largely unknown in mammalian epithelia. Here we identify the membrane-associated protein Annexin A1 (ANXA1) as an interactor of LGN in mammary epithelial cells. Annexin A1 acts independently of Gαi to instruct the accumulation of LGN and nuclear mitotic apparatus protein at the lateral cortex to ensure cortical anchoring of Dynein-Dynactin and astral microtubules and thereby planar alignment of the mitotic spindle. Loss of Annexin A1 randomises mitotic spindle orientation, which in turn disrupts epithelial architecture and luminogenesis in three-dimensional cultures of primary mammary epithelial cells. Our findings establish Annexin A1 as an upstream cortical cue that regulates LGN to direct planar cell divisions during mammalian epithelial morphogenesis.
Collapse
Affiliation(s)
- Maria Fankhaenel
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Farahnaz S Golestan Hashemi
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Larissa Mourao
- VIB-KULeuven Center for Cancer Biology, Herestraat 49, 3000, Leuven, Belgium
| | - Emily Lucas
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Manal M Hosawi
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Paul Skipp
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Centre for Proteomic Research, University of Southampton, Southampton, SO17 1BJ, UK
| | - Xavier Morin
- Ecole Normale Supérieure, CNRS, Inserm, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), PSL Research University, Paris, France
| | | | - Salah Elias
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK. .,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
3
|
Moreno-Andrés D, Bhattacharyya A, Scheufen A, Stegmaier J. LiveCellMiner: A new tool to analyze mitotic progression. PLoS One 2022; 17:e0270923. [PMID: 35797385 PMCID: PMC9262191 DOI: 10.1371/journal.pone.0270923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/17/2022] [Indexed: 11/21/2022] Open
Abstract
Live-cell imaging has become state of the art to accurately identify the nature of mitotic and cell cycle defects. Low- and high-throughput microscopy setups have yield huge data amounts of cells recorded in different experimental and pathological conditions. Tailored semi-automated and automated image analysis approaches allow the analysis of high-content screening data sets, saving time and avoiding bias. However, they were mostly designed for very specific experimental setups, which restricts their flexibility and usability. The general need for dedicated experiment-specific user-annotated training sets and experiment-specific user-defined segmentation parameters remains a major bottleneck for fully automating the analysis process. In this work we present LiveCellMiner, a highly flexible open-source software tool to automatically extract, analyze and visualize both aggregated and time-resolved image features with potential biological relevance. The software tool allows analysis across high-content data sets obtained in different platforms, in a quantitative and unbiased manner. As proof of principle application, we analyze here the dynamic chromatin and tubulin cytoskeleton features in human cells passing through mitosis highlighting the versatile and flexible potential of this tool set.
Collapse
Affiliation(s)
- Daniel Moreno-Andrés
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
- * E-mail: (DMA), (JS)
| | - Anuk Bhattacharyya
- Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
| | - Anja Scheufen
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Johannes Stegmaier
- Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
- * E-mail: (DMA), (JS)
| |
Collapse
|
4
|
Vukušić K, Tolić IM. Polar Chromosomes-Challenges of a Risky Path. Cells 2022; 11:1531. [PMID: 35563837 PMCID: PMC9101661 DOI: 10.3390/cells11091531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 12/29/2022] Open
Abstract
The process of chromosome congression and alignment is at the core of mitotic fidelity. In this review, we discuss distinct spatial routes that the chromosomes take to align during prometaphase, which are characterized by distinct biomolecular requirements. Peripheral polar chromosomes are an intriguing case as their alignment depends on the activity of kinetochore motors, polar ejection forces, and a transition from lateral to end-on attachments to microtubules, all of which can result in the delayed alignment of these chromosomes. Due to their undesirable position close to and often behind the spindle pole, these chromosomes may be particularly prone to the formation of erroneous kinetochore-microtubule interactions, such as merotelic attachments. To prevent such errors, the cell employs intricate mechanisms to preposition the spindle poles with respect to chromosomes, ensure the formation of end-on attachments in restricted spindle regions, repair faulty attachments by error correction mechanisms, and delay segregation by the spindle assembly checkpoint. Despite this protective machinery, there are several ways in which polar chromosomes can fail in alignment, mis-segregate, and lead to aneuploidy. In agreement with this, polar chromosomes are present in certain tumors and may even be involved in the process of tumorigenesis.
Collapse
Affiliation(s)
- Kruno Vukušić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | | |
Collapse
|
5
|
Lechler T, Mapelli M. Spindle positioning and its impact on vertebrate tissue architecture and cell fate. Nat Rev Mol Cell Biol 2021; 22:691-708. [PMID: 34158639 PMCID: PMC10544824 DOI: 10.1038/s41580-021-00384-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 12/18/2022]
Abstract
In multicellular systems, oriented cell divisions are essential for morphogenesis and homeostasis as they determine the position of daughter cells within the tissue and also, in many cases, their fate. Early studies in invertebrates led to the identification of conserved core mechanisms of mitotic spindle positioning centred on the Gαi-LGN-NuMA-dynein complex. In recent years, much has been learnt about the way this complex functions in vertebrate cells. In particular, studies addressed how the Gαi-LGN-NuMA-dynein complex dynamically crosstalks with astral microtubules and the actin cytoskeleton, and how it is regulated to orient the spindle according to cellular and tissue-wide cues. We have also begun to understand how dynein motors and actin regulators interact with mechanosensitive adhesion molecules sensing extracellular mechanical stimuli, such as cadherins and integrins, and with signalling pathways so as to respond to extracellular cues instructing the orientation of the division axis in vivo. In this Review, with the focus on epithelial tissues, we discuss the molecular mechanisms of mitotic spindle orientation in vertebrate cells, and how this machinery is regulated by epithelial cues and extracellular signals to maintain tissue cohesiveness during mitosis. We also outline recent knowledge of how spindle orientation impacts tissue architecture in epithelia and its emerging links to the regulation of cell fate decisions. Finally, we describe how defective spindle orientation can be corrected or its effects eliminated in tissues under physiological conditions, and the pathological implications associated with spindle misorientation.
Collapse
Affiliation(s)
- Terry Lechler
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA.
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
| | - Marina Mapelli
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
6
|
Aquino Perez C, Burocziova M, Jenikova G, Macurek L. CK1-mediated phosphorylation of FAM110A promotes its interaction with mitotic spindle and controls chromosomal alignment. EMBO Rep 2021; 22:e51847. [PMID: 34080749 DOI: 10.15252/embr.202051847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/14/2021] [Accepted: 05/05/2021] [Indexed: 01/10/2023] Open
Abstract
Progression through the cell cycle is driven by cyclin-dependent kinases that control gene expression, orchestration of mitotic spindle, and cell division. To identify new regulators of the cell cycle, we performed transcriptomic analysis of human non-transformed cells expressing a fluorescent ubiquitination-based cell cycle indicator and identified 701 transcripts differentially expressed in G1 and G2 cells. Family with sequence similarity 110 member A (FAM110A) protein is highly expressed in G2 cells and localized at mitotic spindle and spindle poles during mitosis. Depletion of FAM110A impairs chromosomal alignment, delays metaphase-to-anaphase transition, and affects spindle positioning. Using mass spectrometry and immunoprecipitation, we identified casein kinase I (CK1) in complex with FAM110A during mitosis. CK1 phosphorylates the C-terminal domain of FAM110A in vitro, and inhibition of CK1 reduces phosphorylation of mitotic FAM110A. Wild-type FAM110A, but not the FAM110A-S252-S255A mutant deficient in CK1 phosphorylation, rescues the chromosomal alignment, duration of mitosis, and orientation of the mitotic spindle after depletion of endogenous FAM110A. We propose that CK1 regulates chromosomal alignment by phosphorylating FAM110A and promoting its interaction with mitotic spindle.
Collapse
Affiliation(s)
- Cecilia Aquino Perez
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Monika Burocziova
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Gabriela Jenikova
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Libor Macurek
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
7
|
Kiyomitsu T, Boerner S. The Nuclear Mitotic Apparatus (NuMA) Protein: A Key Player for Nuclear Formation, Spindle Assembly, and Spindle Positioning. Front Cell Dev Biol 2021; 9:653801. [PMID: 33869212 PMCID: PMC8047419 DOI: 10.3389/fcell.2021.653801] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/10/2021] [Indexed: 01/10/2023] Open
Abstract
The nuclear mitotic apparatus (NuMA) protein is well conserved in vertebrates, and dynamically changes its subcellular localization from the interphase nucleus to the mitotic/meiotic spindle poles and the mitotic cell cortex. At these locations, NuMA acts as a key structural hub in nuclear formation, spindle assembly, and mitotic spindle positioning, respectively. To achieve its variable functions, NuMA interacts with multiple factors, including DNA, microtubules, the plasma membrane, importins, and cytoplasmic dynein. The binding of NuMA to dynein via its N-terminal domain drives spindle pole focusing and spindle positioning, while multiple interactions through its C-terminal region define its subcellular localizations and functions. In addition, NuMA can self-assemble into high-ordered structures which likely contribute to spindle positioning and nuclear formation. In this review, we summarize recent advances in NuMA’s domains, functions and regulations, with a focus on human NuMA, to understand how and why vertebrate NuMA participates in these functions in comparison with invertebrate NuMA-related proteins.
Collapse
Affiliation(s)
- Tomomi Kiyomitsu
- Cell Division Dynamics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Japan
| | - Susan Boerner
- Cell Division Dynamics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Japan
| |
Collapse
|
8
|
Owa M, Dynlacht B. A non-canonical function for Centromere-associated protein-E controls centrosome integrity and orientation of cell division. Commun Biol 2021; 4:358. [PMID: 33742057 PMCID: PMC7979751 DOI: 10.1038/s42003-021-01861-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/17/2021] [Indexed: 12/27/2022] Open
Abstract
Centromere-associated protein-E (CENP-E) is a kinesin motor localizing at kinetochores. Although its mitotic functions have been well studied, it has been challenging to investigate direct consequences of CENP-E removal using conventional methods because CENP-E depletion resulted in mitotic arrest. In this study, we harnessed an auxin-inducible degron system to achieve acute degradation of CENP-E. We revealed a kinetochore-independent role for CENP-E that removes pericentriolar material 1 (PCM1) from centrosomes in late S/early G2 phase. After acute loss of CENP-E, centrosomal Polo-like kinase 1 (Plk1) localization is abrogated through accumulation of PCM1, resulting in aberrant phosphorylation and destabilization of centrosomes, which triggers shortened astral microtubules and oblique cell divisions. Furthermore, we also observed centrosome and cell division defects in cells from a microcephaly patient with mutations in CENPE. Orientation of cell division is deregulated in some microcephalic patients, and our unanticipated findings provide additional insights into how microcephaly can result from centrosomal defects.
Collapse
Affiliation(s)
- Mikito Owa
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, USA.
| | - Brian Dynlacht
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Singh D, Schmidt N, Müller F, Bange T, Bird AW. Destabilization of Long Astral Microtubules via Cdk1-Dependent Removal of GTSE1 from Their Plus Ends Facilitates Prometaphase Spindle Orientation. Curr Biol 2020; 31:766-781.e8. [PMID: 33333009 DOI: 10.1016/j.cub.2020.11.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/25/2020] [Accepted: 11/16/2020] [Indexed: 12/19/2022]
Abstract
The precise regulation of microtubule dynamics over time and space in dividing cells is critical for several mitotic mechanisms that ultimately enable cell proliferation, tissue organization, and development. Astral microtubules, which extend from the centrosome toward the cell cortex, must be present for the mitotic spindle to properly orient, as well as for the faithful execution of anaphase and cytokinesis. However, little is understood about how the dynamic properties of astral microtubules are regulated spatiotemporally, or the contribution of astral microtubule dynamics to spindle positioning. The mitotic regulator Cdk1-CyclinB promotes destabilization of centrosomal microtubules and increased microtubule dynamics as cells enter mitosis, but how Cdk1 activity modulates astral microtubule stability, and whether it impacts spindle positioning, is unknown. Here, we uncover a mechanism revealing that Cdk1 destabilizes astral microtubules in prometaphase and thereby influences spindle reorientation. Phosphorylation of the EB1-dependent microtubule plus-end tracking protein GTSE1 by Cdk1 in early mitosis abolishes its interaction with EB1 and recruitment to microtubule plus ends. Loss of Cdk1 activity, or mutation of phosphorylation sites in GTSE1, induces recruitment of GTSE1 to growing microtubule plus ends in mitosis. This decreases the catastrophe frequency of astral microtubules and causes an increase in the number of long astral microtubules reaching the cell cortex, which restrains the ability of cells to reorient spindles along the long cellular axis in early mitosis. Astral microtubules thus must not only be present but also dynamic to allow the spindle to reorient, a state assisted by selective destabilization of long astral microtubules via Cdk1.
Collapse
Affiliation(s)
- Divya Singh
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Nadine Schmidt
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Franziska Müller
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Tanja Bange
- Department for Systems Chronobiology, Institute of Medical Psychology, LMU Munich, Goethestrasse 31/ I, 80336 Munich, Germany
| | - Alexander W Bird
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
| |
Collapse
|
10
|
Wu G, Xia P, Yan S, Chen D, Xie L, Fan G. Identification of unique long non-coding RNAs as putative biomarkers for chromophobe renal cell carcinoma. Per Med 2020; 18:9-19. [PMID: 33052074 DOI: 10.2217/pme-2020-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: To investigate whether long non-coding RNAs (lncRNAs) can be utilized as molecular biomarkers in predicting the occurrence and progression of chromophobe renal cell carcinoma. Methods & results: Genetic and related clinical traits of chromophobe renal cell carcinoma were downloaded from the Cancer Genome Atlas and used to construct modules using weighted gene coexpression network analysis. In total, 44,889 genes were allocated into 21 coexpression modules depending on intergenic correlation. Among them, the green module was the most significant key module identified by module-trait correlation calculations (R2 = 0.43 and p = 4e-04). Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses demonstrated that genes in the green module were enriched in many pathways. Coexpression, protein-protein interaction networks, screening for differentially expressed genes, and survival analysis were used to select hub lncRNAs. Five hub lncRNAs (TTK, CENPE, KIF2C, BUB1, and RAD51AP1) were selected out. Conclusion: Our findings suggest that the five lncRNAs may act as potential biomarkers for chromophobe renal cell carcinoma progression and prognosis.
Collapse
Affiliation(s)
- Guanlin Wu
- Experimental & Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin-Buch, Germany.,Max DelbrückCenter for Molecular Medicine (MDC) in the Helmholtz Association, Berlin-Buch, Germany
| | - Pengfei Xia
- Max DelbrückCenter for Molecular Medicine (MDC) in the Helmholtz Association, Berlin-Buch, Germany
| | - Shixian Yan
- Experimental & Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin-Buch, Germany.,Max DelbrückCenter for Molecular Medicine (MDC) in the Helmholtz Association, Berlin-Buch, Germany
| | - Dongming Chen
- Department of Cerebral Surgery, First People's Hospital of Tianmen, Tianmen, PR China
| | - Lei Xie
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, PR China
| | - Gang Fan
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, PR China.,The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, PR China
| |
Collapse
|
11
|
Johansson PA, Brooks K, Newell F, Palmer JM, Wilmott JS, Pritchard AL, Broit N, Wood S, Carlino MS, Leonard C, Koufariotis LT, Nathan V, Beasley AB, Howlie M, Dawson R, Rizos H, Schmidt CW, Long GV, Hamilton H, Kiilgaard JF, Isaacs T, Gray ES, Rolfe OJ, Park JJ, Stark A, Mann GJ, Scolyer RA, Pearson JV, van Baren N, Waddell N, Wadt KW, McGrath LA, Warrier SK, Glasson W, Hayward NK. Whole genome landscapes of uveal melanoma show an ultraviolet radiation signature in iris tumours. Nat Commun 2020; 11:2408. [PMID: 32415113 PMCID: PMC7229209 DOI: 10.1038/s41467-020-16276-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/22/2020] [Indexed: 01/04/2023] Open
Abstract
Uveal melanoma (UM) is the most common intraocular tumour in adults and despite surgical or radiation treatment of primary tumours, ~50% of patients progress to metastatic disease. Therapeutic options for metastatic UM are limited, with clinical trials having little impact. Here we perform whole-genome sequencing (WGS) of 103 UM from all sites of the uveal tract (choroid, ciliary body, iris). While most UM have low tumour mutation burden (TMB), two subsets with high TMB are seen; one driven by germline MBD4 mutation, and another by ultraviolet radiation (UVR) exposure, which is restricted to iris UM. All but one tumour have a known UM driver gene mutation (GNAQ, GNA11, BAP1, PLCB4, CYSLTR2, SF3B1, EIF1AX). We identify three other significantly mutated genes (TP53, RPL5 and CENPE). Uveal melanoma has a propensity to metastasise. Here, the authors report the whole genome sequence of 103 uveal melanomas and find that the tumour mutational burden is variable and that two subsets of tumours are characterised by MBD4 mutations and a UV exposure signature.
Collapse
Affiliation(s)
| | - Kelly Brooks
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Felicity Newell
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jane M Palmer
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Antonia L Pritchard
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,University of the Highlands and Island, Inverness, UK
| | - Natasa Broit
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,University of Queensland, Brisbane, QLD, Australia
| | - Scott Wood
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Matteo S Carlino
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Conrad Leonard
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | - Vaishnavi Nathan
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,University of Queensland, Brisbane, QLD, Australia
| | - Aaron B Beasley
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Madeleine Howlie
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Rebecca Dawson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Helen Rizos
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,Department of Biomedical Science, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Chris W Schmidt
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Mater Research, Woolloongabba, QLD, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,Department of Medical Oncology, Royal North Shore Hospital, St Leonards, Sydney, NSW, Australia
| | - Hayley Hamilton
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Queensland Ocular Oncology Service, The Terrace Eye Centre, Brisbane, QLD, Australia
| | - Jens F Kiilgaard
- Department of Ophthalmology, Rigshospitalet-Glostrup Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Timothy Isaacs
- Perth Retina, Perth, WA, Australia.,Centre for Ophthalmology and Visual Science, University of Western Australia, Crawley, WA, Australia.,Department of Ophthalmology, Royal Perth Hospital, Perth, WA, Australia
| | - Elin S Gray
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Centre for Ophthalmology and Visual Science, University of Western Australia, Crawley, WA, Australia
| | - Olivia J Rolfe
- Queensland Ocular Oncology Service, The Terrace Eye Centre, Brisbane, QLD, Australia
| | - John J Park
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Andrew Stark
- Queensland Ocular Oncology Service, The Terrace Eye Centre, Brisbane, QLD, Australia
| | - Graham J Mann
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,Centre for Cancer Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Sydney, NSW, Australia.,John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.,Royal Prince Alfred Hospital and New South Wales Health Pathology, Sydney, Australia
| | - John V Pearson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Karin W Wadt
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | - Lindsay A McGrath
- Queensland Ocular Oncology Service, The Terrace Eye Centre, Brisbane, QLD, Australia
| | - Sunil K Warrier
- Queensland Ocular Oncology Service, The Terrace Eye Centre, Brisbane, QLD, Australia
| | - William Glasson
- Queensland Ocular Oncology Service, The Terrace Eye Centre, Brisbane, QLD, Australia
| | | |
Collapse
|
12
|
Rizzelli F, Malabarba MG, Sigismund S, Mapelli M. The crosstalk between microtubules, actin and membranes shapes cell division. Open Biol 2020; 10:190314. [PMID: 32183618 PMCID: PMC7125961 DOI: 10.1098/rsob.190314] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
Mitotic progression is orchestrated by morphological and mechanical changes promoted by the coordinated activities of the microtubule (MT) cytoskeleton, the actin cytoskeleton and the plasma membrane (PM). MTs assemble the mitotic spindle, which assists sister chromatid separation, and contact the rigid and tensile actomyosin cortex rounded-up underneath the PM. Here, we highlight the dynamic crosstalk between MTs, actin and cell membranes during mitosis, and discuss the molecular connections between them. We also summarize recent views on how MT traction forces, the actomyosin cortex and membrane trafficking contribute to spindle positioning in isolated cells in culture and in epithelial sheets. Finally, we describe the emerging role of membrane trafficking in synchronizing actomyosin tension and cell shape changes with cell-substrate adhesion, cell-cell contacts and extracellular signalling events regulating proliferation.
Collapse
Affiliation(s)
| | - Maria Grazia Malabarba
- IEO, Istituto Europeo di Oncologia IRCCS, Milan, Italy
- Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Milan, Italy
| | - Sara Sigismund
- IEO, Istituto Europeo di Oncologia IRCCS, Milan, Italy
- Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
13
|
Affiliation(s)
- Jonne A Raaijmakers
- Division of Cell BiologyOncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - René H Medema
- Division of Cell BiologyOncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| |
Collapse
|
14
|
Fulcher LJ, He Z, Mei L, Macartney TJ, Wood NT, Prescott AR, Whigham AJ, Varghese J, Gourlay R, Ball G, Clarke R, Campbell DG, Maxwell CA, Sapkota GP. FAM83D directs protein kinase CK1α to the mitotic spindle for proper spindle positioning. EMBO Rep 2019; 20:e47495. [PMID: 31338967 PMCID: PMC6726907 DOI: 10.15252/embr.201847495] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 06/13/2019] [Accepted: 06/26/2019] [Indexed: 12/26/2022] Open
Abstract
The concerted action of many protein kinases helps orchestrate the error-free progression through mitosis of mammalian cells. The roles and regulation of some prominent mitotic kinases, such as cyclin-dependent kinases, are well established. However, these and other known mitotic kinases alone cannot account for the extent of protein phosphorylation that has been reported during mammalian mitosis. Here we demonstrate that CK1α, of the casein kinase 1 family of protein kinases, localises to the spindle and is required for proper spindle positioning and timely cell division. CK1α is recruited to the spindle by FAM83D, and cells devoid of FAM83D, or those harbouring CK1α-binding-deficient FAM83DF283A/F283A knockin mutations, display pronounced spindle positioning defects, and a prolonged mitosis. Restoring FAM83D at the endogenous locus in FAM83D-/- cells, or artificially delivering CK1α to the spindle in FAM83DF283A/F283A cells, rescues these defects. These findings implicate CK1α as new mitotic kinase that orchestrates the kinetics and orientation of cell division.
Collapse
Affiliation(s)
- Luke J Fulcher
- Medical Research CouncilProtein Phosphorylation and Ubiquitylation UnitUniversity of DundeeDundeeUK
| | - Zhengcheng He
- Michael Cuccione Childhood Cancer Research ProgramBritish Columbia Children's HospitalUniversity of British ColumbiaVancouverBCCanada
| | - Lin Mei
- Michael Cuccione Childhood Cancer Research ProgramBritish Columbia Children's HospitalUniversity of British ColumbiaVancouverBCCanada
| | - Thomas J Macartney
- Medical Research CouncilProtein Phosphorylation and Ubiquitylation UnitUniversity of DundeeDundeeUK
| | - Nicola T Wood
- Medical Research CouncilProtein Phosphorylation and Ubiquitylation UnitUniversity of DundeeDundeeUK
| | - Alan R Prescott
- Dundee Imaging FacilitySchool of Life SciencesUniversity of DundeeDundeeUK
| | - Arlene J Whigham
- Flow Cytometry and Sorting FacilitySchool of Life SciencesUniversity of DundeeDundeeUK
| | - Joby Varghese
- Medical Research CouncilProtein Phosphorylation and Ubiquitylation UnitUniversity of DundeeDundeeUK
| | - Robert Gourlay
- Medical Research CouncilProtein Phosphorylation and Ubiquitylation UnitUniversity of DundeeDundeeUK
| | - Graeme Ball
- Dundee Imaging FacilitySchool of Life SciencesUniversity of DundeeDundeeUK
| | - Rosemary Clarke
- Flow Cytometry and Sorting FacilitySchool of Life SciencesUniversity of DundeeDundeeUK
| | - David G Campbell
- Medical Research CouncilProtein Phosphorylation and Ubiquitylation UnitUniversity of DundeeDundeeUK
| | - Christopher A Maxwell
- Michael Cuccione Childhood Cancer Research ProgramBritish Columbia Children's HospitalUniversity of British ColumbiaVancouverBCCanada
| | - Gopal P Sapkota
- Medical Research CouncilProtein Phosphorylation and Ubiquitylation UnitUniversity of DundeeDundeeUK
| |
Collapse
|
15
|
Wolf B, Busso C, Gönczy P. Live imaging screen reveals that TYRO3 and GAK ensure accurate spindle positioning in human cells. Nat Commun 2019; 10:2859. [PMID: 31253758 PMCID: PMC6599018 DOI: 10.1038/s41467-019-10446-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 04/29/2019] [Indexed: 12/28/2022] Open
Abstract
Proper spindle positioning is crucial for spatial cell division control. Spindle positioning in human cells relies on a ternary complex comprising Gαi1-3, LGN and NuMA, which anchors dynein at the cell cortex, thus enabling pulling forces to be exerted on astral microtubules. We develop a live imaging siRNA-based screen using stereotyped fibronectin micropatterns to uncover components modulating spindle positioning in human cells, testing 1280 genes, including all kinases and phosphatases. We thus discover 16 components whose inactivation dramatically perturbs spindle positioning, including tyrosine receptor kinase 3 (TYRO3) and cyclin G associated kinase (GAK). TYRO3 depletion results in excess NuMA and dynein at the cortex during metaphase, similar to the effect of blocking the TYRO3 downstream target phosphatidylinositol 3-kinase (PI3K). Furthermore, depletion of GAK leads to impaired astral microtubules, similar to the effect of downregulating the GAK-interactor Clathrin. Overall, our work uncovers components and mechanisms governing spindle positioning in human cells.
Collapse
Affiliation(s)
- Benita Wolf
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Coralie Busso
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015, Lausanne, Switzerland.
| |
Collapse
|
16
|
Hao X, Qu T. Expression of CENPE and its Prognostic Role in Non-small Cell Lung Cancer. Open Med (Wars) 2019; 14:497-502. [PMID: 31259255 PMCID: PMC6592151 DOI: 10.1515/med-2019-0053] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/06/2019] [Indexed: 01/04/2023] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is one of the most important causes of death worldwide. Most patients are diagnosed in the advanced stage and have a poor prognosis. This study was to investigate the expression and significance of CENPE in NSCLC. Method Collecting information about CENPE in the Oncoming database, and perform a further analysis of the data in the current database to conduct a meta-analysis for its functional role in NSCLC. Patient life cycle analysis using Kaplan-Meier Plotter and GEPIA databases are used to perform patient survival analysis. Result A total of 12 studies involved the expression of CENPE in NSCLC cancer tissues and normal tissues, including 1195 samples. CENPE was highly expressed in NSCLC cell carcinoma compared with the control group (P < 0.05). Moreover, the expression of CENPE was correlated with the overall survival rate of CENPE. The overall survival rate of patients with high expression of CENPE was poor, and the prognosis of patients with low expression of CENPE was better (P<0.05). Conclusion We propose high expression of CENPE in NSLCL tissue is related to the prognosis of NSCLC, which may provide important basis for the development of tumor drugs.
Collapse
Affiliation(s)
- Xuezhi Hao
- Department of Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Qu
- Department of Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|
17
|
Choi SH, Martinez TF, Kim S, Donaldson C, Shokhirev MN, Saghatelian A, Jones KA. CDK12 phosphorylates 4E-BP1 to enable mTORC1-dependent translation and mitotic genome stability. Genes Dev 2019; 33:418-435. [PMID: 30819820 PMCID: PMC6446539 DOI: 10.1101/gad.322339.118] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/22/2019] [Indexed: 01/23/2023]
Abstract
Here, Choi et al. show that CDK12, the RNA polymerase II C-terminal domain kinase, which regulates genome stability, expression of DNA repair genes, and cancer cell drug resistance, also phosphorylates the mRNA 5′ cap-binding repressor 4E-BP1 to promote translation of mTORC1-dependent mRNAs. Using RIP-seq and Ribo-seq, the authors found that CDK12 regulates binding of eIF4G to many mTORC1 target mRNAs, and identified specific CDK12 “translation-only” target mRNAs. The RNA polymerase II (RNAPII) C-terminal domain kinase, CDK12, regulates genome stability, expression of DNA repair genes, and cancer cell resistance to chemotherapy and immunotherapy. In addition to its role in mRNA biosynthesis of DNA repair genes, we show here that CDK12 phosphorylates the mRNA 5′ cap-binding repressor, 4E-BP1, to promote translation of mTORC1-dependent mRNAs. In particular, we found that phosphorylation of 4E-BP1 by mTORC1 (T37 and T46) facilitates subsequent CDK12 phosphorylation at two Ser–Pro sites (S65 and T70) that control the exchange of 4E-BP1 with eIF4G at the 5′ cap of CHK1 and other target mRNAs. RNA immunoprecipitation coupled with deep sequencing (RIP-seq) revealed that CDK12 regulates release of 4E-BP1, and binding of eIF4G, to many mTORC1 target mRNAs, including those needed for MYC transformation. Genome-wide ribosome profiling (Ribo-seq) further identified specific CDK12 “translation-only” target mRNAs, including many mTORC1 target mRNAs as well as many subunits of mitotic and centromere/centrosome complexes. Accordingly, confocal imaging analyses revealed severe chromosome misalignment, bridging, and segregation defects in cells deprived of CDK12 or CCNK. We conclude that the nuclear RNAPII-CTD kinase CDK12 cooperates with mTORC1, and controls a specialized translation network that is essential for mitotic chromosome stability.
Collapse
Affiliation(s)
- Seung H Choi
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Thomas F Martinez
- Clayton Foundation Laboratory for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Seongjae Kim
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Cynthia Donaldson
- Clayton Foundation Laboratory for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Alan Saghatelian
- Clayton Foundation Laboratory for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Katherine A Jones
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
18
|
Kotak S. Mechanisms of Spindle Positioning: Lessons from Worms and Mammalian Cells. Biomolecules 2019; 9:E80. [PMID: 30823600 PMCID: PMC6406873 DOI: 10.3390/biom9020080] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/13/2019] [Accepted: 02/18/2019] [Indexed: 02/06/2023] Open
Abstract
Proper positioning of the mitotic spindle is fundamental for specifying the site for cleavage furrow, and thus regulates the appropriate sizes and accurate distribution of the cell fate determinants in the resulting daughter cells during development and in the stem cells. The past couple of years have witnessed tremendous work accomplished in the area of spindle positioning, and this has led to the emergence of a working model unravelling in-depth mechanistic insight of the underlying process orchestrating spindle positioning. It is evident now that the correct positioning of the mitotic spindle is not only guided by the chemical cues (protein⁻protein interactions) but also influenced by the physical nature of the cellular environment. In metazoans, the key players that regulate proper spindle positioning are the actin-rich cell cortex and associated proteins, the ternary complex (Gα/GPR-1/2/LIN-5 in Caenorhabditis elegans, Gαi/Pins/Mud in Drosophila and Gαi1-3/LGN/NuMA in humans), minus-end-directed motor protein dynein and the cortical machinery containing myosin. In this review, I will mainly discuss how the abovementioned components precisely and spatiotemporally regulate spindle positioning by sensing the physicochemical environment for execution of flawless mitosis.
Collapse
Affiliation(s)
- Sachin Kotak
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science (IISc), Bangalore 560012, India.
| |
Collapse
|
19
|
Raspelli E, Fraschini R. Spindle pole power in health and disease. Curr Genet 2019; 65:851-855. [DOI: 10.1007/s00294-019-00941-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/05/2019] [Accepted: 02/13/2019] [Indexed: 12/27/2022]
|
20
|
Yokoyama H, Moreno-Andres D, Astrinidis SA, Hao Y, Weberruss M, Schellhaus AK, Lue H, Haramoto Y, Gruss OJ, Antonin W. Chromosome alignment maintenance requires the MAP RECQL4, mutated in the Rothmund-Thomson syndrome. Life Sci Alliance 2019; 2:2/1/e201800120. [PMID: 30718377 PMCID: PMC6362308 DOI: 10.26508/lsa.201800120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 12/21/2022] Open
Abstract
RECQL4, which is mutated in the Rothmund–Thomson syndrome characterized by premature aging and cancer susceptibility, is a microtubule-associated protein required for mitotic chromosome alignment. RecQ-like helicase 4 (RECQL4) is mutated in patients suffering from the Rothmund–Thomson syndrome, a genetic disease characterized by premature aging, skeletal malformations, and high cancer susceptibility. Known roles of RECQL4 in DNA replication and repair provide a possible explanation of chromosome instability observed in patient cells. Here, we demonstrate that RECQL4 is a microtubule-associated protein (MAP) localizing to the mitotic spindle. RECQL4 depletion in M-phase–arrested frog egg extracts does not affect spindle assembly per se, but interferes with maintaining chromosome alignment at the metaphase plate. Low doses of nocodazole depolymerize RECQL4-depleted spindles more easily, suggesting abnormal microtubule–kinetochore interaction. Surprisingly, inter-kinetochore distance of sister chromatids is larger in depleted extracts and patient fibroblasts. Consistent with a role to maintain stable chromosome alignment, RECQL4 down-regulation in HeLa cells causes chromosome misalignment and delays mitotic progression. Importantly, these chromosome alignment defects are independent from RECQL4’s reported roles in DNA replication and damage repair. Our data elucidate a novel function of RECQL4 in mitosis, and defects in mitotic chromosome alignment might be a contributing factor for the Rothmund–Thomson syndrome.
Collapse
Affiliation(s)
- Hideki Yokoyama
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany .,Institute of Biochemistry and Molecular Cell Biology, Medical School, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany.,ID Pharma Co. Ltd., Tsukuba, Japan
| | - Daniel Moreno-Andres
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany.,Institute of Biochemistry and Molecular Cell Biology, Medical School, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | | | - Yuqing Hao
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum-ZMBH Alliance, Heidelberg, Germany
| | - Marion Weberruss
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany.,Institute of Biochemistry and Molecular Cell Biology, Medical School, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Anna K Schellhaus
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany.,Institute of Biochemistry and Molecular Cell Biology, Medical School, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Hongqi Lue
- Institute of Biochemistry and Molecular Cell Biology, Medical School, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Yoshikazu Haramoto
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Oliver J Gruss
- Institute of Genetics, Rheinische Friedrich-Wilhelms Universität Bonn, Bonn, Germany
| | - Wolfram Antonin
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany .,Institute of Biochemistry and Molecular Cell Biology, Medical School, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| |
Collapse
|
21
|
Zhu X, Luo X, Feng G, Huang H, He Y, Ma W, Zhang C, Zeng M, Liu H. CENPE expression is associated with its DNA methylation status in esophageal adenocarcinoma and independently predicts unfavorable overall survival. PLoS One 2019; 14:e0207341. [PMID: 30716092 PMCID: PMC6361429 DOI: 10.1371/journal.pone.0207341] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/30/2018] [Indexed: 12/20/2022] Open
Abstract
Centrosome-associated protein E (CENPE) is a plus end-directed kinetochore motor protein, which plays a critical role in mitosis. In this in silico study, using data from the Cancer Genome Atlas-Esophageal Carcinoma (TCGA-ESCA), we analyzed the expression profile of CENPE mRNA in esophageal squamous cell carcinoma (ESCC) and adenocarcinoma (EA), its independent prognostic value and the potential mechanisms of its dysregulation in EA. Results showed that both ESCC and EA tissues had significantly elevated CENPE expression compared with their respective adjacent normal tissues. However, Kaplan-Meier survival curves showed that high CENPE was associated with unfavorable OS in EA. Univariate and multivariate analysis confirmed that CENPE expression was an independent indicator of unfavorable OS in EA patients, as a continuous variable (HR: 1.861, 95%CI: 1.235–2.806, p = 0.003) or as categorical variables (HR: 2.550, 95%CI: 1.294–5.025, p = 0.007). However, CENPE expression had no prognostic value in ESCC. Compared with the methylation status in normal samples, 3 CpG sites were hypomethylated (cg27388036, cg27443373, and cg24651824) in EA, among which two sites (cg27443373 and cg24651824) showed moderately negative correlation with CENPE expression. In addition, we also found that although heterozygous loss (-1) was frequent in EA (50/88, 56.8%), it was not necessarily associated with decreased CENPE expression compared with the copy neutral (0) cases. The methylation of the -1 group was significantly lower than that of the +1/0 group (p = 0.04). Based on these findings, we infer that CENPE upregulation in EA might serve as a valuable indicator of unfavorable OS. The methylation status of cg27443373 and cg24651824 might play a critical role in modulating CENPE expression.
Collapse
Affiliation(s)
- Xueqiang Zhu
- Cancer Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xing Luo
- Cancer Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Gang Feng
- Division of Thoracic Surgery, Department of Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hui Huang
- Cancer Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yangke He
- Cancer Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wen Ma
- Department of Tumor Center, Gansu Provincial People's Hospital, Lanzhou, China
| | - Changqing Zhang
- Department of Tumor Center, Gansu Provincial People's Hospital, Lanzhou, China
| | - Ming Zeng
- Cancer Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Liu
- Cancer Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- * E-mail:
| |
Collapse
|
22
|
Sana S, Keshri R, Rajeevan A, Kapoor S, Kotak S. Plk1 regulates spindle orientation by phosphorylating NuMA in human cells. Life Sci Alliance 2018; 1:e201800223. [PMID: 30456393 PMCID: PMC6240335 DOI: 10.26508/lsa.201800223] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 11/24/2022] Open
Abstract
Proper orientation of the mitotic spindle defines the correct division plane and is essential for accurate cell division and development. In metazoans, an evolutionarily conserved complex comprising of NuMA/LGN/Gαi regulates proper orientation of the mitotic spindle by orchestrating cortical dynein levels during metaphase. However, the molecular mechanisms that modulate the spatiotemporal dynamics of this complex during mitosis remain elusive. Here, we report that acute inactivation of Polo-like kinase 1 (Plk1) during metaphase enriches cortical levels of dynein/NuMA/LGN and thus influences spindle orientation. We establish that this impact of Plk1 on cortical levels of dynein/NuMA/LGN is through NuMA, but not via dynein/LGN. Moreover, we reveal that Plk1 inhibition alters the dynamic behavior of NuMA at the cell cortex. We further show that Plk1 directly interacts and phosphorylates NuMA. Notably, NuMA-phosphorylation by Plk1 impacts its cortical localization, and this is needed for precise spindle orientation during metaphase. Overall, our finding connects spindle-pole pool of Plk1 with cortical NuMA and answers a long-standing puzzle about how spindle-pole Plk1 gradient dictates proper spindle orientation for error-free mitosis.
Collapse
Affiliation(s)
- Shrividya Sana
- Department of Microbiology and Cell Biology, Indian Institute of Science (IISc), Bangalore, India
| | - Riya Keshri
- Department of Microbiology and Cell Biology, Indian Institute of Science (IISc), Bangalore, India
| | - Ashwathi Rajeevan
- Department of Microbiology and Cell Biology, Indian Institute of Science (IISc), Bangalore, India
| | - Sukriti Kapoor
- Department of Microbiology and Cell Biology, Indian Institute of Science (IISc), Bangalore, India
| | - Sachin Kotak
- Department of Microbiology and Cell Biology, Indian Institute of Science (IISc), Bangalore, India
| |
Collapse
|
23
|
He Z, Kannan N, Nemirovsky O, Chen H, Connell M, Taylor B, Jiang J, Pilarski LM, Fleisch MC, Niederacher D, Pujana MA, Eaves CJ, Maxwell CA. BRCA1 controls the cell division axis and governs ploidy and phenotype in human mammary cells. Oncotarget 2018; 8:32461-32475. [PMID: 28427147 PMCID: PMC5464802 DOI: 10.18632/oncotarget.15688] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 02/16/2017] [Indexed: 11/25/2022] Open
Abstract
BRCA1 deficiency may perturb the differentiation hierarchy present in the normal mammary gland and is associated with the genesis of breast cancers that are genomically unstable and typically display a basal-like transcriptome. Oriented cell division is a mechanism known to regulate cell fates and to restrict tumor formation. We now show that the cell division axis is altered following shRNA-mediated BRCA1 depletion in immortalized but non-tumorigenic, or freshly isolated normal human mammary cells with graded consequences in progeny cells that include aneuploidy, perturbation of cell polarity in spheroid cultures, and a selective loss of cells with luminal features. BRCA1 depletion stabilizes HMMR abundance and disrupts cortical asymmetry of NUMA-dynein complexes in dividing cells such that polarity cues provided by cell-matrix adhesions were not able to orient division. We also show that immortalized mammary cells carrying a mutant BRCA1 allele (BRCA1 185delAG/+) reproduce many of these effects but in this model, oriented divisions were maintained through cues provided by CDH1+ cell-cell junctions. These findings reveal a previously unknown effect of BRCA1 suppression on mechanisms that regulate the cell division axis in proliferating, non-transformed human mammary epithelial cells and consequent downstream effects on the mitotic integrity and phenotype control of their progeny.
Collapse
Affiliation(s)
- Zhengcheng He
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nagarajan Kannan
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada.,Department of Laboratory Medicine and Pathology, Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Oksana Nemirovsky
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Helen Chen
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marisa Connell
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian Taylor
- Department of Oncology, University of Alberta and Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Jihong Jiang
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Linda M Pilarski
- Department of Oncology, University of Alberta and Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Markus C Fleisch
- Department of Obstetrics and Gynaecology, Landesfrauenklinik, HELIOS University Medical Center, Wuppertal, Germany
| | - Dieter Niederacher
- Department of Gynaecology and Obstetrics, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Germany
| | - Miguel Angel Pujana
- Breast Cancer and Systems Biology Unit, Program Against Cancer Therapeutic Resistance (ProCure), Catalan Institute of Oncology, IDIBELL, L'Hospitalet del Llobregat, Barcelona, Spain
| | - Connie J Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher A Maxwell
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada.,Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
24
|
Lee BH, Schwager F, Meraldi P, Gotta M. p37/UBXN2B regulates spindle orientation by limiting cortical NuMA recruitment via PP1/Repo-Man. J Cell Biol 2017; 217:483-493. [PMID: 29222185 PMCID: PMC5800812 DOI: 10.1083/jcb.201707050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/27/2017] [Accepted: 11/16/2017] [Indexed: 12/03/2022] Open
Abstract
The p97 adapter p37 was known to regulate spindle orientation in human cells, but the mechanism was unknown. In this study, we show that it limits the cortical recruitment of NuMA in a PP1–Repo-Man–dependent manner. This study identifies a novel pathway controlling cortical NuMA localization. Spindle orientation determines the axis of division and is crucial for cell fate, tissue morphogenesis, and the development of an organism. In animal cells, spindle orientation is regulated by the conserved Gαi–LGN–NuMA complex, which targets the force generator dynein–dynactin to the cortex. In this study, we show that p37/UBXN2B, a cofactor of the p97 AAA ATPase, regulates spindle orientation in mammalian cells by limiting the levels of cortical NuMA. p37 controls cortical NuMA levels via the phosphatase PP1 and its regulatory subunit Repo-Man, but it acts independently of Gαi, the kinase Aurora A, and the phosphatase PP2A. Our data show that in anaphase, when the spindle elongates, PP1/Repo-Man promotes the accumulation of NuMA at the cortex. In metaphase, p37 negatively regulates this function of PP1, resulting in lower cortical NuMA levels and correct spindle orientation.
Collapse
Affiliation(s)
- Byung Ho Lee
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Francoise Schwager
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.,Swiss National Centre for Competence in Research in Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Monica Gotta
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland .,Swiss National Centre for Competence in Research in Chemical Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
25
|
Thaiparambil J, Mansour O, El-Zein R. Effect of Benzo[a]Pyrene on Spindle Misorientation and Fidelity of Chromosome Segregation in Lung Epithelial BEAS-2B Cells. Toxicol Sci 2017; 162:167-176. [DOI: 10.1093/toxsci/kfx229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Jose Thaiparambil
- Department of Radiology, Houston Methodist Research Institute, Houston, Texas
| | - Oula Mansour
- Department of Radiology, Houston Methodist Research Institute, Houston, Texas
| | - Randa El-Zein
- Department of Radiology, Houston Methodist Research Institute, Houston, Texas
| |
Collapse
|
26
|
Connell M, Chen H, Jiang J, Kuan CW, Fotovati A, Chu TLH, He Z, Lengyell TC, Li H, Kroll T, Li AM, Goldowitz D, Frappart L, Ploubidou A, Patel MS, Pilarski LM, Simpson EM, Lange PF, Allan DW, Maxwell CA. HMMR acts in the PLK1-dependent spindle positioning pathway and supports neural development. eLife 2017; 6:e28672. [PMID: 28994651 PMCID: PMC5681225 DOI: 10.7554/elife.28672] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/05/2017] [Indexed: 01/08/2023] Open
Abstract
Oriented cell division is one mechanism progenitor cells use during development and to maintain tissue homeostasis. Common to most cell types is the asymmetric establishment and regulation of cortical NuMA-dynein complexes that position the mitotic spindle. Here, we discover that HMMR acts at centrosomes in a PLK1-dependent pathway that locates active Ran and modulates the cortical localization of NuMA-dynein complexes to correct mispositioned spindles. This pathway was discovered through the creation and analysis of Hmmr-knockout mice, which suffer neonatal lethality with defective neural development and pleiotropic phenotypes in multiple tissues. HMMR over-expression in immortalized cancer cells induces phenotypes consistent with an increase in active Ran including defects in spindle orientation. These data identify an essential role for HMMR in the PLK1-dependent regulatory pathway that orients progenitor cell division and supports neural development.
Collapse
Affiliation(s)
- Marisa Connell
- Department of PaediatricsUniversity of British ColumbiaVancouverCanada
| | - Helen Chen
- Department of PaediatricsUniversity of British ColumbiaVancouverCanada
| | - Jihong Jiang
- Department of PaediatricsUniversity of British ColumbiaVancouverCanada
| | - Chia-Wei Kuan
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverCanada
| | - Abbas Fotovati
- Department of PaediatricsUniversity of British ColumbiaVancouverCanada
| | - Tony LH Chu
- Department of PaediatricsUniversity of British ColumbiaVancouverCanada
| | - Zhengcheng He
- Department of PaediatricsUniversity of British ColumbiaVancouverCanada
| | - Tess C Lengyell
- Centre for Molecular Medicine and TherapeuticsUniversity of British ColumbiaVancouverCanada
| | - Huaibiao Li
- Leibniz Institute on Aging—Fritz Lipmann InstituteBeutenbergstrasseGermany
| | - Torsten Kroll
- Leibniz Institute on Aging—Fritz Lipmann InstituteBeutenbergstrasseGermany
| | - Amanda M Li
- Department of PaediatricsUniversity of British ColumbiaVancouverCanada
| | - Daniel Goldowitz
- Centre for Molecular Medicine and TherapeuticsUniversity of British ColumbiaVancouverCanada
- Department of Medical GeneticsUniversity of British ColumbiaVancouverCanada
| | - Lucien Frappart
- Leibniz Institute on Aging—Fritz Lipmann InstituteBeutenbergstrasseGermany
| | - Aspasia Ploubidou
- Leibniz Institute on Aging—Fritz Lipmann InstituteBeutenbergstrasseGermany
| | - Millan S Patel
- Department of Medical GeneticsUniversity of British ColumbiaVancouverCanada
| | - Linda M Pilarski
- Cross Cancer Institute, Department of OncologyUniversity of AlbertaEdmontonCanada
| | - Elizabeth M Simpson
- Centre for Molecular Medicine and TherapeuticsUniversity of British ColumbiaVancouverCanada
- Department of Medical GeneticsUniversity of British ColumbiaVancouverCanada
| | - Philipp F Lange
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverCanada
- Michael Cuccione Childhood Cancer Research ProgramBC Children’s HospitalVancouverCanada
| | - Douglas W Allan
- Department of Cellular and Physiological SciencesLife Sciences Centre, University of British ColumbiaVancouverCanada
| | - Christopher A Maxwell
- Department of PaediatricsUniversity of British ColumbiaVancouverCanada
- Michael Cuccione Childhood Cancer Research ProgramBC Children’s HospitalVancouverCanada
| |
Collapse
|
27
|
di Pietro F, Valon L, Li Y, Goïame R, Genovesio A, Morin X. An RNAi Screen in a Novel Model of Oriented Divisions Identifies the Actin-Capping Protein Z β as an Essential Regulator of Spindle Orientation. Curr Biol 2017; 27:2452-2464.e8. [PMID: 28803871 DOI: 10.1016/j.cub.2017.06.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/06/2017] [Accepted: 06/20/2017] [Indexed: 10/19/2022]
Abstract
Oriented cell divisions are controlled by a conserved molecular cascade involving Gαi, LGN, and NuMA. We developed a new cellular model of oriented cell divisions combining micropatterning and localized recruitment of Gαi and performed an RNAi screen for regulators acting downstream of Gαi. Remarkably, this screen revealed a unique subset of dynein regulators as being essential for spindle orientation, shedding light on a core regulatory aspect of oriented divisions. We further analyze the involvement of one novel regulator, the actin-capping protein CAPZB. Mechanistically, we show that CAPZB controls spindle orientation independently of its classical role in the actin cytoskeleton by regulating the assembly, stability, and motor activity of the dynein/dynactin complex at the cell cortex, as well as the dynamics of mitotic microtubules. Finally, we show that CAPZB controls planar divisions in vivo in the developing neuroepithelium. This demonstrates the power of this in cellulo model of oriented cell divisions to uncover new genes required in spindle orientation in vertebrates.
Collapse
Affiliation(s)
- Florencia di Pietro
- Cell Division and Neurogenesis, IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, 75005 Paris, France; Sorbonne Universités, UPMC Université Paris 06, IFD, 4 Place Jussieu, 75252 Paris, France
| | - Léo Valon
- Laboratoire Physico-Chimie, Institut Curie, PSL Research University, CNRS, UPMC Université Paris 06, 75005 Paris, France
| | - Yingbo Li
- Cell Division and Neurogenesis, IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, 75005 Paris, France; Scientific Center for Computational Biology, IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, 75005 Paris, France
| | - Rosette Goïame
- Cell Division and Neurogenesis, IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, 75005 Paris, France
| | - Auguste Genovesio
- Scientific Center for Computational Biology, IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, 75005 Paris, France
| | - Xavier Morin
- Cell Division and Neurogenesis, IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, 75005 Paris, France.
| |
Collapse
|
28
|
Bergstralh DT, Dawney NS, St Johnston D. Spindle orientation: a question of complex positioning. Development 2017; 144:1137-1145. [DOI: 10.1242/dev.140764] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The direction in which a cell divides is determined by the orientation of its mitotic spindle at metaphase. Spindle orientation is therefore important for a wide range of developmental processes, ranging from germline stem cell division to epithelial tissue homeostasis and regeneration. In multiple cell types in multiple animals, spindle orientation is controlled by a conserved biological machine that mediates a pulling force on astral microtubules. Restricting the localization of this machine to only specific regions of the cortex can thus determine how the mitotic spindle is oriented. As we review here, recent findings based on studies in tunicate, worm, fly and vertebrate cells have revealed that the mechanisms for mediating this restriction are surprisingly diverse.
Collapse
Affiliation(s)
- Dan T. Bergstralh
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Nicole S. Dawney
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| |
Collapse
|
29
|
Decarreau J, Wagenbach M, Lynch E, Halpern AR, Vaughan JC, Kollman J, Wordeman L. The tetrameric kinesin Kif25 suppresses pre-mitotic centrosome separation to establish proper spindle orientation. Nat Cell Biol 2017; 19:384-390. [PMID: 28263957 PMCID: PMC5376238 DOI: 10.1038/ncb3486] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 02/03/2017] [Indexed: 12/17/2022]
Abstract
Microtubules tether centrosomes together during interphase. How this is accomplished and what benefit it provides to the cell is not known. We have identified a bipolar, minus-end-directed kinesin, Kif25, that suppresses centrosome separation. Kif25 is required to prevent premature centrosome separation during interphase. We show that premature centrosome separation leads to microtubule-dependent nuclear translocation, culminating in eccentric nuclear positioning that disrupts the cortical spindle positioning machinery. The activity of Kif25 during interphase is required to maintain a centred nucleus to ensure the spindle is stably oriented at the onset of mitosis.
Collapse
Affiliation(s)
- Justin Decarreau
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA
| | - Michael Wagenbach
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA
| | - Eric Lynch
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Aaron R Halpern
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Joshua C Vaughan
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA.,Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Justin Kollman
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Linda Wordeman
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
30
|
di Pietro F, Echard A, Morin X. Regulation of mitotic spindle orientation: an integrated view. EMBO Rep 2016; 17:1106-30. [PMID: 27432284 DOI: 10.15252/embr.201642292] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/17/2016] [Indexed: 12/18/2022] Open
Abstract
Mitotic spindle orientation is essential for cell fate decisions, epithelial maintenance, and tissue morphogenesis. In most animal cell types, the dynein motor complex is anchored at the cell cortex and exerts pulling forces on astral microtubules to position the spindle. Early studies identified the evolutionarily conserved Gαi/LGN/NuMA complex as a key regulator that polarizes cortical force generators. In recent years, a combination of genetics, biochemistry, modeling, and live imaging has contributed to decipher the mechanisms of spindle orientation. Here, we highlight the dynamic nature of the assembly of this complex and discuss the molecular regulation of its localization. Remarkably, a number of LGN-independent mechanisms were described recently, whereas NuMA remains central in most pathways involved in recruiting force generators at the cell cortex. We also describe the emerging role of the actin cortex in spindle orientation and discuss how dynamic astral microtubule formation is involved. We further give an overview on instructive external signals that control spindle orientation in tissues. Finally, we discuss the influence of cell geometry and mechanical forces on spindle orientation.
Collapse
Affiliation(s)
- Florencia di Pietro
- Cell Division and Neurogenesis Laboratory, Ecole Normale Supérieure CNRS Inserm Institut de Biologie de l'Ecole Normale Supérieure (IBENS) PSL Research University, Paris, France Institute of Doctoral Studies (IFD), Sorbonne Universités Université Pierre et Marie Curie-Université Paris 6, Paris, France
| | - Arnaud Echard
- Membrane Traffic and Cell Division Laboratory, Cell Biology and Infection Department, Institut Pasteur, Paris, France Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3691, Paris, France
| | - Xavier Morin
- Cell Division and Neurogenesis Laboratory, Ecole Normale Supérieure CNRS Inserm Institut de Biologie de l'Ecole Normale Supérieure (IBENS) PSL Research University, Paris, France
| |
Collapse
|
31
|
Kern DM, Nicholls PK, Page DC, Cheeseman IM. A mitotic SKAP isoform regulates spindle positioning at astral microtubule plus ends. J Cell Biol 2016; 213:315-28. [PMID: 27138257 PMCID: PMC4862331 DOI: 10.1083/jcb.201510117] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/30/2016] [Indexed: 12/14/2022] Open
Abstract
The Astrin/SKAP complex regulates mitotic chromosome alignment and centrosome integrity, but previous work found conflicting results for SKAP function. Here, Kern et al. demonstrate that a previously unappreciated short SKAP isoform mediates mitotic spindle positioning at astral microtubule plus ends. The Astrin/SKAP complex plays important roles in mitotic chromosome alignment and centrosome integrity, but previous work found conflicting results for SKAP function. Here, we demonstrate that SKAP is expressed as two distinct isoforms in mammals: a longer, testis-specific isoform that was used for the previous studies in mitotic cells and a novel, shorter mitotic isoform. Unlike the long isoform, short SKAP rescues SKAP depletion in mitosis and displays robust microtubule plus-end tracking, including localization to astral microtubules. Eliminating SKAP microtubule binding results in severe chromosome segregation defects. In contrast, SKAP mutants specifically defective for plus-end tracking facilitate proper chromosome segregation but display spindle positioning defects. Cells lacking SKAP plus-end tracking have reduced Clasp1 localization at microtubule plus ends and display increased lateral microtubule contacts with the cell cortex, which we propose results in unbalanced dynein-dependent cortical pulling forces. Our work reveals an unappreciated role for the Astrin/SKAP complex as an astral microtubule mediator of mitotic spindle positioning.
Collapse
Affiliation(s)
- David M Kern
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Peter K Nicholls
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | - David C Page
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
32
|
Tame MA, Raaijmakers JA, Afanasyev P, Medema RH. Chromosome misalignments induce spindle-positioning defects. EMBO Rep 2016; 17:317-25. [PMID: 26882550 PMCID: PMC4772978 DOI: 10.15252/embr.201541143] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 12/08/2015] [Accepted: 01/04/2016] [Indexed: 11/09/2022] Open
Abstract
Cortical pulling forces on astral microtubules are essential to position the spindle. These forces are generated by cortical dynein, a minus-end directed motor. Previously, another dynein regulator termed Spindly was proposed to regulate dynein-dependent spindle positioning. However, the mechanism of how Spindly regulates spindle positioning has remained elusive. Here, we find that the misalignment of chromosomes caused by Spindly depletion is directly provoking spindle misorientation. Chromosome misalignments induced by CLIP-170 or CENP-E depletion or by noscapine treatment are similarly accompanied by severe spindle-positioning defects. We find that cortical LGN is actively displaced from the cortex when misaligned chromosomes are in close proximity. Preventing the KT recruitment of Plk1 by the depletion of PBIP1 rescues cortical LGN enrichment near misaligned chromosomes and re-establishes proper spindle orientation. Hence, KT-enriched Plk1 is responsible for the negative regulation of cortical LGN localization. In summary, we uncovered a compelling molecular link between chromosome alignment and spindle orientation defects, both of which are implicated in tumorigenesis.
Collapse
Affiliation(s)
- Mihoko A Tame
- Department of Cell Biology and Cancer Genomics Center, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jonne A Raaijmakers
- Department of Cell Biology and Cancer Genomics Center, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Pavel Afanasyev
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands
| | - René H Medema
- Department of Cell Biology and Cancer Genomics Center, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|